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Smoldering inflammation and neurodegeneration, primarily driven by

intraparenchymal immune cell activation and glial dysfunction, remains a major

therapeutic challenge in Multiple Sclerosis (MS) and contributes largely to

disability progression. Current disease-modifying therapies effectively decrease

relapse rate and, to a lesser extent, disease progression by targeting peripheral

immune cells. However, they largely fail to address Central-Nervous-System-

(CNS)-intrinsic pathological processes – especially glial dysfunction – thus

leaving a critical gap relevant to disease progression and therapeutic

intervention. In this context, neurotrophic factors (NTF) are secreted proteins

central for development and maintenance of the CNS. They promote anti-

inflammatory, protective phenotypes in astrocytes and microglia, support

remyelination by enhancing oligodendrocyte precursor recruitment,

maturation and survival, and exert direct neuroprotective effects. Exploring

their role in MS offers a novel perspective on neuroimmune crosstalk and

prevention of progressive neurodegeneration. In this article, we summarize

relevant findings on NTFs in MS, and give an outlook on opportunities and

challenges of using these mediators as next-generation disease-

modifying therapies.
KEYWORDS
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1 Introduction

Multiple Sclerosis (MS) is a chronic inflammatory, demyelinating autoimmune disease

of the central nervous system. The disease manifests with neurologic symptoms in a

relapsing-remitting (RRMS) as well as a primary (PPMS) or secondary progressive (SPMS)

form. It is characterized by the presence and development of multifocal inflammatory

lesions in brain and spinal cord (1). T cells play an important role in the disease as they pass

the blood-brain-barrier, recognize Central-Nervous-System-(CNS)-specific autoantigens

and cause focal demyelinating lesions with axonal damage and reactive astrogliosis (2)

characterized by the activation of astrocytes and microglia as well as deposition of

extracellular matrix. Recently, long thought beliefs that neurodegeneration typically

happens later in the disease course have been increasingly challenged. Research indicates
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that neurodegeneration occurs early in the disease (3, 4) and

contributes largely to disability progression (5, 6). Indeed, the

relevance of CNS-intrinsic glial cells in this process has become

evident. Glial cells such as astrocytes can lead to the promotion of

inflammation, but also contribute to its alleviation by membrane-

bound as well as secreted mediators as outlined in a recent

review (7).

Effective therapies targeting peripheral immune cells have been

successfully established in recent years. However, their efficacy in

the progressive course of the disease is limited (2) as progression

seems to be mostly associated with intraparenchymal processes

within the CNS (8). These intraparenchymal mechanisms are

mostly driven by resident glial cells, e.g. astrocytes, microglia and

oligodendrocytes, and their complex crosstalk (9). Glial cells are

essential for support and protection of neurons and their axons,

intercellular communication in the CNS, facilitation of synapse

formation and neurotransmission as well as the detection of

inflammation and tissue damage (10).

While the proinflammatory and neurotoxic properties of glial

cells in MS have been of interest for a long time, only recently has

their protective potential become a topic of interest (7, 11).

Microglia play an important role in the phagocytosis of myelin

debris following demyelination and promote recovery and

remyelination by secret ion of anti- inflammatory and

immunomodulatory cytokines as well as neurotrophic factors (12,

13). In MS, they have been shown to play beneficial roles by

formation of a physical barrier at the lesion site as a result of

astrogliosis and providing trophic support for neurons and

oligodendrocytes by secretion of neurotrophic factors,

neuropoietic cytokines and growth factors (7).

Thus, glial cells exert part of their protective functions by the

release of so-called neurotrophic factors (7). For reasons of clarity,

conciseness and volume, this review focusses on an overview of glial

neurotrophic factors, which might be of relevance for future

therapeutic and translational strategies. But what exactly are

neurotrophic factors?
1.1 Neurotrophic factors

Neurotrophic factors (NTFs) comprise a family of secreted

proteins which are essential for the development, survival and

function of neurons in the nervous system (14). In the prenatal

brain, the survival of neurons depends on access to NTFs, while in

the adult CNS, they provide a balance between degeneration and

regeneration (15). NTFs can be broadly classified into the four

neurotrophins, which are Brain-derived neurotrophic factor

(BDNF), Nerve growth factor (NGF), neurotrophin 3 and

neurotrophin 4, the Glia derived neurotrophic factor (GDNF)-

family, members of the Ciliary neurotrophic factor (CNTF)-

family as well as the more recently discovered factors

Mesencephalic Astrocyte-Derived Neurotrophic Factor (MANF)

and Cerebral Dopamine Neurotrophic Factor (CDNF). Several

members of growth factor families, e.g. the epidermal growth

factor family (EGF), have also been shown to support neuronal
Frontiers in Immunology 02
survival, but there is no consensus whether these factors fulfill the

criteria of classical neurotrophic factors (16).

Neurotrophins are initially synthesized in the endoplasmic

reticulum as precursors called proneurotrophins which are then

processed into mature neurotrophins (17). The family of

neurotrophins exert their effects by binding with high affinity to

tropomyosin receptor kinases (Trk, namely TrkA, TrkB and TrkC)

as well as the low-affinity p75 neurotrophin receptor (p75NTR).

Trk-receptors are transmembrane proteins, consisting of an

extracellular domain, a transmembrane region and an

intracellular region, which contains the tyrosine kinase (18). Each

of the four neurotrophins has a binding specificity for a distinct

Trk-receptor. NGF binds to TrkA, BDNF and neurotrophin 4 to

TrkB while neurotrophin 4 can bind to all Trk but has the highest

affinity for TrkC (18). Trk are widely expressed in neurons, however

they are also expressed in glial cells, especially TrkB (19–22) Most

other neurotrophic factors also bind to and activate receptor tyrosin

kinases (14). In the CNS, neurotrophic factors are secreted by

neurons as well as glial cells (23, 24). Neurotrophic factors are

implicated in a number of diseases of the CNS, which involve

inflammation and neurodegeneration like Parkinson’s disease,

Alzheimer’s disease, Huntington’s disease and neuropsychiatric

disorders (25–28).

As outlined, NTFs play an important role in modifying

inflammation in the CNS and controlling neurodegeneration,

which both are central in MS. Therefore, investigating their role

in the disease offers a deeper understanding on the pathophysiology

of MS, especially in the progressive phase and their neuroprotective

and myelinating properties may inspire the development of novel

disease modifying drugs. Therefore, in this review, we will outline

the current knowledge on the most relevant NTFs in MS. To allow

for a more condensed, in depth analysis, we will focus on four

classical neurotrophic factors – the neurotrophins BNDF and NGF,

GDNF, CNTF as well as the growth factor Hb-EGF with an

emphasis on recent data. While Hb-EGF is not a classical

neurotrophic factor, it exerts a number of neurotrophic-like

functions like tissue regeneration and promotion of neuronal

survival and has been studied in the context of inflammatory

brain disease (29, 30). Other factors like Neurotrophin-3/-4,

Neurturin might also be of interest in MS in the future, their role

has been less extensively studied and their functional relevance in

MS remains less well designed.

1.1.1 BDNF
Brain-derived neurotrophic factor (BDNF) is one of the most

common neurotrophins in the CNS and plays important roles for

synaptic development and plasticity, neuronal differentiation,

-transmission and -protection (31). In the CNS, it is expressed by

neurons, astrocytes, oligodendrocytes and microglia (32–35). Glial

expression in the healthy CNS is low (36), however, astrocytes

significantly upregulate its expression during inflammatory

conditions (7, 37). BDNF is first synthesized in the endoplasmic

reticulum as preproBDNF and then cleaved into proBDNF in the

Golgi apparatus. BDNF binds its specific receptor TrkB with high

affinity, while BDNF, its precursor proBDNF as well as the other
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neurotrophins of the neurotrophin family bind to p75NTR (38)

(Figure 1A). Engagement of BDNF with TrkB mainly regulates

neuronal survival, differentiation and plasticity, while p75NTR can

act pro-apoptotic but can also promote cell survival (39). TrkB is

widely expressed in the central nervous system, mainly in neurons,

astrocytes and oligodendroglia (36, 40). BDNF signaling regulates

the cross-talk between astrocytes and microglia, thus influencing

inflammatory mechanisms and exerting anti-inflammatory effects

(41). BDNF-activity is altered in some patients with a distinct

single-nucleotide polymorphism, where valine is exchanged with

methionine at codon 66 in the BDNF gene pro-domain encoding

region (Val66Met-polymorphism). This polymorphism has been
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studied in several disorders, including MS, however, data remains

inconclusive as to its disease-exacerbating or protective effects in

MS (42, 43). A recent study found no difference in clinical

characteristics between the Val66Met polymorphism in MS (44).

However, at disease onset, Val66Met-carriers showed reduced

cortical thickness (44). Still, the influence of the polymorphism

on MRI structural measures remains controversial, as other studies

reported beneficial effects on gray matter volume in MS (45–47).

Evidence points to epigenetic mechanisms, namely the level of

methylation of the BDNF gene playing a more important role than

the prevalence of the Val66Met-polymorphism itself. Genetic

analysis of 209 MS patients revealed no influence of the
FIGURE 1

Neurotrophic factors and their receptors. (C) highlights astrocytes as central producers of NTFs, illustrating their beneficial effects on specific CNS-
resident cells in MS. (A, B, D, E) depict the expression patterns of NTF receptors on these target cells, through which the NTFs mediate their
supportive functions. The artwork used in this figure was adapted from Servier Medical Art (http://https://smart.servier.com/). Servier Medical Art by
Servier is licensed under a Creative Commons Attribution 3.0 Unported License.
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polymorphism on the disease course, however, hypomethylation of

the BDNF gene in the exonic CpG-site affected by the

polymorphism was associated with a higher burden of disability.

This indicates an upregulation of BDNF expression as a response to

higher inflammatory/disease activity (48).

Indeed, data on BDNF levels in MS-patients showed conflicting

results, as some authors described increased, decreased and some

unchanged levels in the disease (49–57). A recent meta-analysis,

which included thirteen studies with 689 MS-patients, concluded

that circulating levels of BDNF are decreased in MS with disease

duration correlating negatively with BDNF-levels (58). In clinical

relapse, most studies reported an increase of BDNF-concentration

(43, 52, 59). However, most of the data is over ten years old and

relies on BDNF-levels in peripheral blood mononuclear cells

(PBMC) or serum, as BDNF-levels in Cerebrospinal fluid (CSF)

are low and ultra-sensitive immunoassays are necessary for its

reliable detection (60). A more recent study found a positive

correlation between serum BDNF-concentration at baseline and

improvement in MS-disability-score EDSS 12 months after relapse

(61). In a study with 28 patients with RRMS and 28 healthy

controls, serum levels of BDNF negatively correlated with the

number of T2-hyperintense lesions in MRI. However, no

association was found between T1-positive lesions and

Gadolinium-enhancing lesions. Comini-Frota, Rodrigues (62) -

the authors of the study - speculate that BDNF controls acute

repair processes and is therefore associated with acute

demyelination as indicated by T2-lesions. T1-lesions, which

mostly account for chronic lesions with chronic neuronal loss,

can therefore not be influenced by BDNF. However, this finding

cannot explain the missing association with Gad+-lesions in the

data, which represent acute demyelination.

BDNF expressing cells are more numerous in actively

demyelinating areas and TrkB is upregulated near MS plaques as

was shown in a human post-mortem study (63). Preclinical, in vivo

studies demonstrate that in the absence of BDNF, mice experienced

a stronger disease course in experimental autoimmune

encephalomyelitis, EAE, the animal model of MS (64, 65). This

effect was more pronounced when BDNF was deleted early in the

disease (65). This suggests that neurodegeneration already occurs

early in the disease and could be ameliorated by neuroprotective

agents like BDNF.

BDNF has been shown to play an important role in

remyelination. Astrocytes promote oligodendrocyte progenitor

cell (OPC) maturation and oligodendrogenesis by secretion of

BDNF after white matter damage (66). Knock-down of TrkB in

mice reduced myelination/myelin thickness and decreased the

proliferative potential of OPCs, highlighting the potential for

BDNF in remyelination (21). In accordance with this study, a

BDNF-mimetic induced oligodendrocyte differentiation and

myelin repair via TrkB in the cuprizone-induced model of toxin-

induced demyelination (67). In another study, astrocytes were

shown as key players in BDNF-dependent remyelination using

the cuprizone model (37). The injection of 2-chloro-5-

hydroxyphenylglycine (CHPG), an agonist of the astrocytic

metabotropic glutamate receptor 5 enhanced myelination via
Frontiers in Immunology 04
astrocytic release of BDNF after cuprizone-induced injury in mice

(68). As BDNF can hardly pass the Blood Brain Barrier (BBB),

Kopec, Kiptoo (69) combined intravenous BDNF-injections with

application of the BBB-modulator ADTC5. The combination

reduced clinical disease progression and induced oligodendroglia-

activation and remyelination in EAE mice (69).

Several immunotherapies have been shown to enhance BDNF

levels. Glatiramer acetate, a synthetic mixture of 4 amino acids

intended to mimic myelin basic protein, one of the major myelin

autoantigens in MS (70), increases BDNF levels (71–73) as well as

Interferon-beta (55, 74), even though these agents do not readily

cross the blood brain barrier, indicating indirect effects founding

these observations. Yet, Fingolimod, which can cross the blood-

brain barrier after phosphorylation, has been shown to increase

BDNF-levels in patients with MS (75, 76).

In summary, the current data suggests that BDNF controls

remyelination after autoimmune inflammatory attacks and is an

important factor in glial-derived neuroprotection. Therefore, a

better understanding of its role in MS might offer new

therapeutic avenues particularly for progressive disease stages

characterized by compartmentalized inflammation.

1.1.2 NGF
Nerve growth factor (NGF) was the first neurotrophin

discovered in 1950 (77). Its mature form is cleaved from its

precursor proNGF (78). NGF mediates its biological function

through two receptors, the high-affinity receptor TrkA and the

low-affinity p75-receptor (79) (Figure 1A). While TrkA mainly

activates growth and survival pathways and affects synaptic

plasticity modulation, the effects of p75NTR are context specific

and the receptor can form complexes with various other receptors,

which mediate a great number of different effects, including pro-

apoptotic pathways (80, 81). In the CNS, NGF is expressed in

neurons, microglia, oligodendrocytes and astrocytes (81–83). In the

inflamed brain, NGF-overexpression is induced in neurons and glia

cells (84). In EAE NGF, TrkA and p75NTR are upregulated in

inflammatory lesions of the spinal cord (85).

NGF mediates protective functions for oligodendroglia,

ultimately protecting from demyelination. NGF can act directly

on oligodendrocytes, which have been shown to express NGF-

receptors TrkA and p75NTR (86, 87). Through activation of the

Erk1/2-MAPK-pathway, NGF preserves myelin thickness and leads

to its maintenance (88, 89). The synthetic micro-neurotrophin

BNN27, which binds specifically to TrkA and p75NTR, protects

mature oligodendrocytes against cell death in a cuprizone-induced

model of demyelination in a TrkA-dependent manner in vitro and

protects against myelin loss and reduces microgliosis and

astrocytosis in an in vivo mouse model. (86). Another recent

study, using mixed neural stem cell-derived OPC/astrocyte

cultures showed that NGF induces OPC differentiation,

maturation and protects them against cell death in the context of

oxygen and glucose deprivation. In this mixed culture, astrocytes

were the main producers of NGF (87). In microglia, NGF induces a

neuroprotective phenotype (90). In accordance with these results,

NGF and its receptors co-localize with anti-inflammatory microglia,
frontiersin.org
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but not pro-inflammatory microglia phenotypes in the EAE model

(85). NGF also induces neuroprotection in astrocytes, as reduced

levels of NGF induce a neurotoxic phenotype (91). In a recent study,

artificial microvesicles carrying NGF showed beneficial effects in

EAE by reducing neurogl ios is and st imulat ing axon

regeneration (92).

Taken together, NGF induces protective mechanisms in glial

cel ls and can help protect against demyel ination by

protecting oligodendroglia.

1.1.3 GDNF
Glia derived neurotrophic factor (GDNF) is a member of the

GDNF-family consisting of GDNF, neurturin, artemin and

persepin. All four members are part of the TGF-ß superfamily.

They exert their effects by activating the transmembrane receptor

tyrosine kinase “rearranged during transfection” (RET), which

regulates cell survival, differentiation, proliferation, migration,

chemotaxis, branching, neurite outgrowth and synaptic plasticity

(93) (Figures 1D, E). In the “healthy” brain, GDNF secretion is

usually low and with neurons as its main cellular source. However,

under autoimmune inflammation, its expression is upregulated in

glial cells, e.g. astrocytes, microglia and infiltrating macrophages

(94–96). So far, studies have shown beneficial effects of GDNF on

dopaminergic neurons in Parkinson’s disease (97), striatal

projection neurons and cortical neurons in Huntington’s disease

(98) and motor neurons, which degenerate in amyotrophic lateral

sclerosis (99, 100).

Recent data on GDNF in MS is scarce. In a current study,

Sokolowski, Kucharska-Lusina (101) showed reduced gene

expression and protein concentration of GDNF in the plasma of

MS-patients, indicating impaired neuroprotection. Exposure of

astrocytes to the CSF of MS-patients resulted in activation of

astrocytes and increased expression of neurotrophic factors

GDNF, BDNF and VEGF (102). Interestingly, Jin, Zhang (103)

revealed the novel role of SARM1/GDNF-signaling in EAE.

SARM1, short for Sterile Alpha and TIR Motif Containing 1 is a

member of the Toll/interleukin 1 receptor junction family, is highly

expressed in the CNS and is involved in mediating neuronal cell

death and axonal degeneration (103). Astrocytic SARM1 promotes

neuroinflammation and axonal demyelination in EAE by inhibiting

the expression of GDNF and knock-out of SARM1 delayed disease

onset and reduced inflammation, demyel inat ion and

neurodegeneration by up-regulation of GDNF (103).

Thus, GDNF serves as a neuroprotective agent in the CNS and

might offer therapeut ic potent ia l to protect against

neurodegeneration. However, further studies on the role of

GDNF are needed to provide a broader understanding of its roles

in MS.

1.1.4 CNTF
Ciliary neurotrophic factor (CNTF) forms part of the IL-6

cytokine family (104). In the CNS, it is primarily expressed by

astrocytes, but not by neurons (105, 106). It provides protection for

several types of neurons (sensory, sympathetic, motor neurons) and

glial cells and plays an important role in brain development and
Frontiers in Immunology 05
neuronal differentiation (107–109). CNTF has been shown to

induce the maturation of astrocytes and oligodendrocytes (7, 110,

111). Its receptor is composed of three components, the non-

signaling CNTFRa, which is specific for CNTF, gp130 and LIFrb,
that are shared with other members of the IL-6 family including LIF

and IL-6 (112). Binding of CNTF to CNTFRa induces the ß-

receptors gp130 and LIFrb, which then activate signaling cascades

i n c l u d i n g J AK / S TAT , R a s /MAP k i n a s e a n d t h e

phosphatidylinositol 3-kinase pathway (113) (Figures 1B, D, E).

CNTF has long been a protein of interest in motoneuron disease

due to its protective effect on motoneurons (114). Recent studies

investigating CNTF in MS are scarce. In an older study, CNTF

receptor expression was enhanced in post-mortem cortical neurons

of MS patients and CNTF expression was increased in neurons and

astrocytes (108). CNTF has been shown to be expressed in a biphasic

manner by astrocytes in a cuprizone model of demyelination, during

early demyelination and then again in remyelination (115). It

provides protection against demyelination in CNS-disease with

more severe EAE-phenotype in CNTF-deficient mice with a strong

decrease in OPC count and increase in oligodendrocyte death (116).

Intraventricular injection of CNTF in EAE mice reduced expression

of inflammatory cytokines TNF-a and interferon-g and decreased

demyelination and neurodegeneration (117). Overexpression of

CNTF in Mesenchymal Stem Cells (MSC) and subsequent

intravenous injection in EAE mice reduced demyelination, lowered

levels of pro-inflammatory cytokines and ameliorated clinical disease

course. However, MSC-CNTF were only found in the spinal cord, but

not in the brain (118).

In summary, some studies showed a beneficial role of CNTF in

MS disease pathology, however, more detailed research of recent

time is mostly lacking.
1.1.5 HB-EGF
Heparin-binding epidermal growth factor-like growth factor

(HB-EGF) is a member of the epidermal growth factor (EGF)

family, which also includes EGF and TGF-a. Its early form is a

transmembrane protein called pro-HB-EGF, which is then cleaved

by a number of proteases (e.g. ADAMs, MMPs), generating soluble

HB-EGF (29). It was first isolated in macrophage-like cells in the

early 1990s (119). HB-EGF is a potent stimulator of cell

proliferation and migration and targets a number of cells,

including peripheral cells including epithelia cells, smooth muscle

cells and fibroblasts (120). HB-EGF binds to epidermal growth

factor receptors HER1 and HER4, which activate a tyrosine kinase

triggering a series of signaling cascades including MAPK and AKT

pathways (29) (Figure 1A). It is involved in development,

homeostasis and tissue growth but also modulates inflammatory

functions (121).

HB-EGF is produced by astrocytes during acute stages of

neuroinflammation and decreases in later stages of the disease in

EAE and in the CSF of patients with RRMS (30, 122). Its expression

is induced by hypoxia, whereafter it exerts neuroprotective

functions and stimulates neurogenesis (30, 123). Activation of the

S1P-receptor, for example by S1P-receptor modulator Fingolimod,

induces upregulation of astrocyte-derived Hb-EGF and - among
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other factors like LIF - protects cultured neurons against excitotoxic

cell death (124, 125). In a cuprizone-induced model of

demyelination of mice of different ages, intracisternal co-injection

of EGF and Hb-EGF increased the proliferation of neural

progenitor cells (NPC) in the ventricular-subventricular zone of

the CNS, which increased the number of oligodendrogenic NPCs

available for remyelination. The production of NPC-derived

oligodendrocytes was increased in the corpus callosum following

the injection, indicating an important role of HB-EGF in

myelination. However, the total density of oligodendrocytes and

myelin abundancy remained stable in this study, indicating an

equilibrium with other oligodendrocyte sources and a consecutive

downregulation of these other sources (126). Linnerbauer, Lößlein

(30) could limit neuroinflammation by intranasal delivery of HB-

EGF in the EAE model. HB-EGF reduced neuroinflammation

through effects on multiple CNS-resident cell types like microglia,

protected neurons against the pro-apoptotic effects of TNFa and

was shown to support OPC survival and myelination (30). On the

other hand, inflammatory conditions induced epigenetic changes in

astrocytes by HB-EGF promoter hypermethylation. This

suppressed HB-EGF expression and therefore hinders tissue-

protective programs, offering a possible explanation for the

progressive decrease of HB-EGF in advanced disease stages of MS

and EAE (30). Of note, reduced HB-EGF expression in an

inflammatory environment could be reversed by treatment with

5-Aza(-cytidine), a clinically approved chemotherapeutic agent and

DNA methyltransferase inhibitor, confirming EAE-ameliorating

effects of the drug in earlier studies (30, 127, 128).

Thus, HB-EGF might represent a promising factor relevant to

disease progression and might serve as a novel therapeutic factor

worthy of further study, either as a downstream target by selective

demethylation strategies or as a drug itself.
2 Translational potential of
neurotrophic factors

MS, especially in the progressive disease phase, poses

therapeutic challenge as current disease modifying therapies fail

to address the complex crosstalk between glial cells, neurons and

CNS-infiltrating cells as well as their highly dynamic functions

(2, 9).

Highlighting the functional dynamics of astrocytes, depletion of

reactive astrocytes in early neuroinflammation increased disease

severity in EAE, while depletion of reactive astrocytes during the

chronic disease phase ameliorated disease pathogenesis (129, 130).

Moreover, astrocytes represent a diverse population of cells with

strong spatial and environment-dependent signatures (131).

Similarly, microglia are well known for their proinflammatory

and neurotoxic roles in neuroinflammation, however, they as well

exert a number of protective effects, e.g. by phagocytosis of myelin

debris, maintaining myelin health, limiting neurodegeneration,

secretion of growth factors and elimination of destructive T-cells

(13, 132–134). Considering the diversity of glial responses in MS,

specific therapeutic interventions, which modulate distinct glial
Frontiers in Immunology 06
subsets are needed, since an overly broad approach as well as

drug-application at an improper time-point might worsen clinical

outcome by also affecting protective glial functions (2). Yet,

neurotrophic factors are key players in this neuroimmune

crosstalk (7). In the paragraphs above, we have outlined their

beneficial effects on inflammation and neurodegeneration in MS

(Table 1, Figure 1C). Their ability to activate anti-inflammatory

pathways and to modulate glial cells into a neuroprotective and

anti-inflammatory phenotype (90, 91) therefore makes

neurotrophic factors interesting candidates for the development

of new therapeutic approaches.

Yet, several challenges, however, must be addressed before their

clinical application. Indeed, most data on neurotrophic factors

stems from in vitro or animal models, underlining the need for

human-derived data. Diagnosing NTF dynamics in MS patients is

complex. Taking BDNF as an example: although it is stored in blood

and platelets and therefore measurable in serum, its diagnostic

utility for CNS-intrinsic mechanisms is limited (57). In contrast to

Neurofilament Light Chain (NFL), a promising biomarker for

neurodegeneration increasingly used in MS whose serum levels

correlate well with CSF levels, it is unclear whether BDNF levels in

serum reflect those in CSF (57). As a result, serum BDNF provides

only limited insight into CNS-intrinsic mechanisms. Moreover,

NTFs like BDNF and NGF are typically present in the CSF at

very low concentrations, often below the detection limits of

conventional ELISAs (60, 135). More sensitive assays are

necessary for obtaining reproducible and biologically meaningful

results, such as Single Molecule Arrays (SIMOA) (60). In clinical

practice, CSF sampling via lumbar puncture is generally conducted

only during the initial diagnostic work-up when most patients show

a relapsing remitting form of the disease. Over time, as more

patients transition to SPMS, CNS-intrinsic mechanisms primarily

driven by resident glial cells become dominant (9). In a rare case of

a MS-patient with available longitudinal CSF-samples Linnerbauer,

Lößlein (30) found a continuous decline of HB-EGF levels over the

disease course whereas initial HB-EGF CSF-levels in RRMS-

patients were increased. This highlights a key limitation: most

available CSF-samples are collected during early disease stages,

potentially missing critical NTF alterations relevant to the

progressive phase of MS. Repeated spinal taps for scientific

purposes pose a challenge considering the invasive nature of the

procedure (136, 137). Even when obtained, CSF-concentrations

reflect global changes across the CNS and cannot resolve cell type-

specific or region-specific dynamics in NTF expression. This is a

significant limitation, especially given that MS is characterized by

focal inflammatory lesions. To address this, human brain tissue

samples offer superior spatial and cellular resolution. However,

access to high-quality human brain tissue remains limited (138).

The increasing establishment of brain banks – which systematically

collect and store post-mortem brain tissue – provides valuable

opportunities for studying MS-specific mechanisms in human

CNS (139). Nonetheless, the success of such efforts depends

critically on the quality of sample preservation, particularly for

protein and gene expression analyses (139). Therapeutic

interventions that target CNS-resident cells have been limited by
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the challenge of delivering drugs across the BBB, as NTFs pass the

BBB only to a limited extent (140, 141). New application strategies

might solve this problem. An interesting approach to passing the

BBB is intranasal drug delivery, which involves transport via the

trigeminal and olfactory nerve systems as direct connectors between

the nasal cavity and the CNS (142) (Figure 2A). Relevant

mechanisms include passive diffusion, paracellular transport,

carrier transport and receptor mediated transcytosis (141, 145)

(Figure 2B). Indeed, neurotrophic factors applied nasally pass the

BBB and reach relevant concentrations in the CNS by this method

of application (141),. Linnerbauer, Lößlein (30) could limit

neuroinflammation in EAE-mice by intranasal delivery of HB-

EGF (Figure 2D). There are additional examples of successful

modification of glial - and specifically astrocyte - dysregulation in

EAE via intranasal drug administration. Interferon-ß does not cross

the BBB when administered peripherally and exerts its

neuromodulatory effects mainly on T-cells and monocytes (146).

Intranasal application however, ameliorated EAE disease scores by

limiting CNS inflammation by acting on the aryl hydrocarbon

receptor (AhR) on astrocytes (147). Similarly, intranasal delivery

of pleiotrophin, an astrocyte-derived mediator that reduces pro-

inflammatory signaling in astrocytes and microglia and exerts
Frontiers in Immunology 07
neuroprotective effects reduced disease severity in late EAE (148).

Highlighting the potential of this approach, several recent

translational and clinical studies beyond the field of MS used this

method of delivery and were able to clear intracellular tau pathology

in tauopathy mice by intranasal application of an anti-tau-antibody

(144) or reduce apathy in frontotemporal dementia patients by

intranasal application of oxytocin (149) (Figure 2C). Intranasal

delivery can further be improved by combination with nanoparticle

formulations like nanoemulsions, lipids or polymer particles. This

was done in the aforementioned study of an intranasal anti-tau-

antibody, which was loaded in micelles (144, 150). Another possible

approach might be the use of synthetic nanoparticles specifically

targeting Trk-receptor-dependent pathways in the CNS. Drug-

carrying nanoparticles can significantly improve the delivery of

drugs through the BBB and their biodistribution in the CNS (151,

152). Moreover, the modification of cells to express neurotrophic

factors is another possible method of drug-delivery into the brain

(153). Stem cells possess a high affinity to sites of injury with active

migration from their respective origin. They can cross the BBB,

especially during inflammation and have immunomodulatory

properties (154–156) (Figure 2E). Their homing to inflamed areas

can further be improved by modifying homing ligands, either by
TABLE 1 Potential effects of Neurotrophic factors in MS.

Mediator
Cellular
source

Cellular targets Potential effects in MS References

BDNF
Neurons, Astrocytes,
Oligodendroglia,
Microglia

Neurons, Astrocytes Oligodendroglia,

Decreased serum levels during clinically
stable phases

(49–58)

Neuroprotective effects and upregulation
during relapse

(52, 63–65)

Supports remyelination and differentiation
of oligodendroglia

(21, 66–68)

Enhanced BDNF-levels by Glatiramer acetate,
Interferon-beta and Fingolimod

(55, 71–76)

NGF
Neurons, Astrocytes,
Oligodendroglia,
Microglia

Neurons, Astrocytes,
Oligodendroglia, Microglia

Mediates protective functions for
oligodendroglia/protects against demyelination
and promotes myelin thickness
and maintenance

(86, 87)

Induction of neuroprotective functions in
microglia and astrocytes

(85, 90, 91)

GDNF

Neurons, Astrocytes,
Microglia,
Infiltrating
Macrophages

Neurons (Dopaminergic neurons,
Striatal projection neurons,
Motoneurons, cortical
neurons), Astrocytes

Reduced plasma concentration in MS-patients (101)

Delayed disease-onset and reduced
neuroinflammation and neurodegeneration
in EAE

(103)

CNTF Astrocytes
Neurons (Motoneurons, cortical
neurons), Astrocytes, Oligodendroglia

Protection against demyelination (116–118)

Increased CNTF-expression in neurons and
astrocytes of MS patients

(108)

HB-EGF Astrocytes
Neural Progenitor cells, Astrocytes,
Oligodendroglia, Microglia

Limits neuroinflammation and protects neurons
against pro-apoptotic mediators

(30)

Supports OPC maturation/proliferation,
promotes myelination

(30, 126)

Enhanced HB-EGF-levels by Fingolimod/S1P-
receptor-induction

(124, 125)
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DNA-transfection or – which is potentially more scalable and cost-

effective – pre-treatment with small molecules (157, 158). Pre-

treatment of MSCs with Ro-31-8425, a selective protein kinase C

(PKC) inhibitor, increased surface expression of CD11a in MSC and

improved ICAM-1-dependent cell adhesion at inflammatory sites

in mice (157). As PKC-dependent pathways also play a central role

in T-cell activation, systemic administration of MSC loaded with

Ro-31–8425 further ameliorated disease course in EAE mice

compared to naive MSC or free Ro-31–8425 by suppressing

antigen-specific proliferation of CD4+ T-cells (159). This further
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underscores the synergistic potential of stem-cell based drug

delivery systems. Intravenous application of genetically

engineered MSC overexpressing BDNF successfully increased

BDNF-concentration in the CNS of EAE-mice and reduced

disease severity (160) (Figure 2C). Finally, viral vector-mediated

gene delivery might permanently upregulate the cellular production

of certain NTFs (153).

Taken together, the translational potential for clinical

applications for NTFs remains exciting, however, while strategies

how to pass the BBB are on the horizon, little is known about
FIGURE 2

Therapeutic potential of neurotrophic factors. (A) Intranasal delivery of drugs via the olfactory nerve system or the trigeminal nerve to bypass the
BBB. Efficacy can be further improved by use of nanoparticle formulations. Adapted after (143), which is licensed under CC BY 4.0. (B) Nanoparticles
can pass the BBB via different mechanisms, which include carrier-mediated transport, receptor-mediated transcytosis and paracellular transport
across tight junctions as well as passive diffusion due to their small size. (C) Packed into lipophile micelles, intranasal application of an tau-antibody
was able to clear intracellular tau pathology (144). (D) Intranasal delivery of HB-EGF in mouse model successfully ameliorated EAE-disease course by
inducing an anti-inflammatory phenotype in astrocytes, inducing trophic effects in CNS-intrinsic cells and reducing peripheral immune cell
infiltration (30) (E) Stem cells, e.g. mesenchymal stem cells can be modified to overexpress NTFs. They can cross the BBB, especially in the inflamed
brain and release their cargo. The artwork used in this figure was adapted from Servier Medical Art (http://https://smart.servier.com/). Servier Medical
Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License.
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potential deleterious consequences of NTFs in the complex

neuroimmune crosstalk in MS for an early use in clinical studies.

Further studies in vitro, in bio databases and in animal models will

need to dive deeper into the complex glial-glial and glial-neuronal

interactions mediated by NTFs in MS.
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