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Type 1 interferons (T1IFNs) are typically expressed in low concentrations under

homeostatic conditions, but upon pathogenic insult or perturbation of the pathway,

these critical immune signaling molecules can become either protectors from or

drivers of pathology. While essential for initiating antiviral defense and modulating

inflammation, dysregulation of T1IFN signaling can contribute to

immunopathology, making it and its associated pathways prime targets for

immune evasion and disruption by pathogens. This review focuses on the

changes in T1IFN signaling across the lifespan, with particular emphasis on the

role of the Stimulator of Interferon Genes (STING) pathway in autoimmune and

infectious disease susceptibility, especially in the context of viral infections. Aging is

associated with diminished T1IFN responsiveness, partially resulting from chronic

stimulation of the STING pathway, which contributes to increased susceptibility and

impaired viral clearance. Conversely, neonates and young children also show

increased vulnerability to certain viral infections, but whether this is driven by

T1IFN differences or another mechanism remains incompletely understood.

Despite growing interest in T1IFN-based immunotherapies, pediatric and elderly

populations remain underrepresented in clinical trials. Here, we advocate for a

deeper molecular and systems understanding of how the interferon response

evolves across the human lifespan, to inform age-tailored therapeutic

approaches and more inclusive study designs, thereby improving outcomes in

both the youngest and oldest patients.
KEYWORDS

interferon, type 1 interferon, STING, age-related, pediatric, viral infection, SARS-CoV-2,
COVID-19
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1654604/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1654604/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1654604/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1654604&domain=pdf&date_stamp=2025-10-16
mailto:lucy.hartnell@thekids.org.au
https://doi.org/10.3389/fimmu.2025.1654604
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1654604
https://www.frontiersin.org/journals/immunology


Hartnell et al. 10.3389/fimmu.2025.1654604
1 Introduction

Interferons (IFN) are a class of cytokines that ‘interfere’ with

viral replication. There are currently three known IFN families, each

defined by its use of distinct signaling receptors. Type 1 Interferons

(T1IFN) were the first to be characterized and are key effectors and

modulators of both innate and adaptive immunity, with broad

effects (1). T1IFNs are highly conserved throughout mammalian

evolution, and the human genome contains 17 functional genes

encoding 16 proteins, including tissue-specific IFN-e and -k, the
ubiquitous IFN-b, and 12 IFN-a subtypes (2).

T1IFN and their downstream Interferon Stimulated Genes

(ISGs) play a unique role in controlling inflammation with both

pro- and anti-inflammatory effects. This dual nature makes them

highly relevant not just in pathogen-mediated disease, but also in

autoimmune and autoinflammatory conditions (3). Due to their

broad biological activity, dysregulation of the T1IFN pathway can

have harmful consequences (4, 5). Given the diverse and numerous

roles of T1IFN in immune function, comprehending these is

essential to enhance treatment strategies and elucidate underlying

pathologies during infections. Furthermore, emerging evidence

suggests that the T1IFN response varies across life stages,

potentially influencing disease susceptibility, severity, and

treatment in both the young and the elderly. In this review, we

outline key age-related differences in T1IFN signaling, with

particular focus on antiviral responses mediated by the cyclic

GMP-AMP synthase (cGAS) – Stimulator of Interferon Genes

(STING) pathway, underscoring the need for a deeper

unders tanding of age-spec ific immunity to improve

infection outcomes.
2 Type 1 interferon signaling in health
and disease

T1IFNs are constitutively expressed at very low concentrations

in healthy individuals and are essential for immune homeostasis (6).

This basal signaling contributes to the development and

maintenance of the hematopoietic system, supporting the

proliferation and differentiation of immune cells under steady-

state conditions (7, 8). Additionally, low-level T1IFN activity also

facilitates immune surveillance, regulates tissue integrity, and

primes host defenses in the absence of infection (9, 10). However,

dysregulation of T1IFN signaling, through genetic factors or

triggered by endogenous stimuli, leads to chronic, sterile

inflammation. This activation is a hallmark of several

autoinflammatory and autoimmune conditions, including

systemic lupus erythematosus (SLE), Aicardi-Goutières syndrome,

and STING-associated vasculopathy with onset in infancy (SAVI),

where disrupted IFN signaling drives pathological immune

activation and tissue damage (3, 11, 12). During a pathogenic

insult, T1IFNs transition from homeostatic regulators to powerful

antimicrobial agents.

During infection, T1IFNs are canonically induced by several

pathogen recognition receptors across cellular and tissue
Frontiers in Immunology 02
compartments in response to diverse stimuli such as bacterial

lipopolysaccharide and virion proteins, and intracellular and

extracellular detection of nucleotides (Figure 1A) (13–16). The

STING pathway is a dedicated induction pathway for T1IFN,

primarily activated by cytosolic DNA and double-stranded RNA

(dsRNA) via the cGAS-Cyclic guanosine monophosphate-

adenosine monophosphate (cGAMP) complex (9). Binding of the

cGAS sensor to free nucleotides in the cytoplasm produces the

intermediary cGAMP, initiating a complex signaling cascade (as

shown in Figure 1) that culminates in the production of T1IFNs and

ISGs (17–19). Secreted T1IFNs act in both autocrine and paracrine

manners through the Interferon Alpha Receptor 1/Interferon Alpha

Receptor 2 (IFNAR1/2) complex, leading to the production of ISGs

(Figure 1D). These ISGs contribute to diverse effects, including

antiviral function, regulation of antigen presentation, and metabolic

modulation (20–24). With their vital role in host defense, T1IFNs

are delicately balanced so as to avoid the immunopathology that

comes with dysregulated signaling. This duality is evident during

infection, where the nature, timing, and context of T1IFN signaling

shape the course and outcome of disease.
3 Type 1 interferons during infection

The immunological impact of T1IFNs during infection is

defined not only by their induction pathways but also by

pathogen-specific evasion strategies. Signaling through cGAS-

STING has been shown to be essential for T1IFN responses to

DNA-containing pathogens, with genetic disruption altogether

preventing such responses to bacteria (14), as well as DNA

viruses and retroviruses. Bacterial induction of cGAS-STING-IFN

is not fully elucidated, as, unlike viruses, successful bacteria do not

release their genetic material into the cytoplasm of host cells.

However, it has been proposed that bacterial induction of T1IFN

relies on mistakes in bacterial infection processes, such as the

accidental secretion of genetic material or bacterial cyclic

dinucleotides (CDNs) along with toxins (25).

The consequences of T1IFN induction in bacterial infection are

context-dependent and can be paradoxical (26). While T1IFNs

induce bacterial autophagy by host dendritic cells, they also

increase cell motility, facilitating cell-to-cell spread and bacterial

escape (27). In contrast, during viral infection, the cGAS-STING

pathway quickly senses viral nucleotides released into the cytoplasm

during the infection process, inducing T1IFN and its downstream

effectors (as seen in Figure 1). Interference in viral infection by ISGs

occurs at most stages of the viral replication cycle, including

preventing viral entry, protein and mRNA synthesis, and

assembly (28). Additionally, IFNs and ISGs contribute to wider

immune defense by mediating cell-cell interactions and recruitment

via altering cell receptor and chemoattractant expression and

promoting antigen presentation (Figures 1C, E) (28–30). The

timing, magnitude, and duration of the T1IFN response is critical

for optimal function in host defense. T1IFN signaling is highly

beneficial in the host response mechanisms to acute viral infection

but becomes detrimental in prolonged or chronic infection, such as
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https://doi.org/10.3389/fimmu.2025.1654604
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hartnell et al. 10.3389/fimmu.2025.1654604
in human immunodeficiency virus (HIV) infection, where it

induces a negative feedback loop that reduces the immune

response over time, promoting a proviral state (30–32). This

exemplifies the finely tuned balance of STING-IFN signaling that

is integral to the proper functioning of immune responses, and how

pathogens can utilize its mechanisms to perpetuate infection.
4 Evasion and disruption of STING-IFN
signaling by pathogens

Given the importance of T1IFNs to immune response and

pathogen clearance, many infectious agents disrupt related

pathways to either evade detection or improve escape (33, 34).

These various strategies not only perpetuate infectious agents

within the body but also increase immune-mediated tissue

damage (35, 36). Many bacteria induce T1IFNs, especially

intracellular bacteria, like Listeria, which stimulate the cGAS-
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STING pathway (14). Bacterial strategies for the disruption of

T1IFN responses typically rely on taking advantage of

inflammation and IFN-induced apoptosis of essential immune

effector cells (3, 37).

Numerous viruses express viral proteins that prevent signal

transduction through the STING-IFN pathway, such as the papain-

like protease of coronaviruses (38–40). Non-structural proteins in

Respiratory Syncytial Virus (RSV) suppress T1IFN responses, and

higher T1IFN levels are associated with better outcomes from the

infection (41). Beyond the damage caused by invading microbes, the

host’s response to pathogens can lead to hyperinflammation and

other pathologies with severe outcomes. Disrupting or delaying the

T1IFN response can result in a poorly timed influx of inflammatory

cells that perpetuates pathological inflammation and a pro-viral

state that is unable to resolve successfully (3, 42, 43). Therefore,

understanding the dynamic interplay between pathogens and the

host’s immune response is crucial to improving the understanding

of infection progression and outcomes.
FIGURE 1

Type 1 interferon (T1IFN) signaling during viral infection with black arrows showing signal transduction within the cytosol from Pathogen Recognition
Receptors (PRRs) and the Interferon Alpha Receptor (IFNAR) heterodimer complex to the transcription factors and response elements, the blue arrow
showing the release and direct effects of T1IFNs and the green pathway showing the release and effects of Interferon Stimulated Genes (ISGs). During a
viral infection and viral entry, viral components are detected through various PRRs in the cytosol and the endosome (A). Cytosolic sensing works through
the Stimulator of Interferon Genes (STING) and Retinoic acid-Inducible Gene I (RIG-I) pathways, while endosomal sensing functions involve several Toll-
Like Receptor (TLR) pathways. These signal through the endoplasmic reticulum to release Interferon Regulatory Factors (IRFs). Binding of IRFs to
promoter regions induces the transcription of T1IFNs, such as IFNA and IFNB (B). These T1IFNs are then released into the extracellular space where they
exert antiviral effects such as signaling infected cells to die, recruitment and differentiation of immune cells, RNA degradation, and control of
inflammatory response (C). All T1IFNs signal through the same IFNAR heterodimer complex, initiating a Signal Transducer and Activator of Transcription
(STAT) cascade, ultimately resulting in transcription of various Interferon ISGs through Interferon-Sensitive Response Elements (ISRE) and Gamma-
Activated Sites (GAS) promoter regions (D). These ISGs are released into the extracellular space alongside the T1IFNs, further perpetuating the antiviral
and inflammatory responses (E). Figures created in BioRender. Hartnell, L. (2025) https://BioRender.com/ua8nw9b.
frontiersin.org
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5 Type 1 interferon signaling in early
life

Compared to their adult counterparts, the current

understanding of the T1IFN response to infection in early life is

limited. In 2019, infectious diseases accounted for up to 49% of

deaths in children under five years of age worldwide, with lower

respiratory infections responsible for 13.9% of these deaths (44).

The immune systems of neonates and children rely heavily on

innate immunity due to the naïveté of the adaptive system (45–48).

Infant immunity also relies on vertically transmitted antibodies and

antimicrobials through their mother’s placenta and breastmilk.

Nevertheless, these protective substances wane six months post-

birth for placental antibodies and diminish with the cessation of

breastfeeding for other immune factors (49–51).

Particularly in neonates, numerous aspects of immune

responses appear counterintuitive to infection clearance. Immune

cell populations in children differ from those in adults and change

dynamically as individuals age, impacting both the capacity and

coordination of immune response, with implications for systemic

immunity (52–54). At the cellular level, neonatal innate cells

produce higher quantities of single cytokines such as interleukins

IL-1b, IL-6, IL-23, and IL-10 compared to adults but have

diminished simultaneous multi-cytokine responses (55, 56).

While almost all immune cell types produce T1IFN, plasmacytoid

dendritic cells (pDCs) are the major drivers of T1IFN production

during infection (57–60). These specialized dendritic cells have the

capacity to produce substantial amounts of T1IFN rapidly and can

infiltrate other tissue types such as the airway mucosa (61). Their

potent T1IFN production and ability to migrate into infected tissue

make them crucial to host immune responses despite representing a

small fraction of peripheral blood mononuclear cells (PBMC) (62,

63). Neonatal mononuclear cells produce significantly lower levels

of IFN-a than adults, which is less effective at activating pDCs, and

while production increases after two months, it remains lower until

about 18 months of age (Table 1) (64, 65). Multi-omics profiling of

infant PBMCs reveals an elevated baseline of antiviral ISGs,

suggesting a partially primed innate state (66). Ex vivo studies of

cord blood pDCs also show decreased activity of interferon

regulatory factors IRF3 and IRF7, with reduced IRF3 activation

observed in cord blood mononuclear cells, and decreased

production of the intermediary cGAMP molecule (Figure 2A)
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(67–69). IRF3 is a key regulator in IFN-b production and

Transforming Growth Factor b (TGF-b), by preventing IRF3

phosphorylation and subsequent nuclear translocation, inhibits

IFN-b transcription (70–72). Interestingly, Okamoto et al. found

that pediatric populations have higher levels of circulating TGF,

suggesting one possible mechanism for decreased childhood T1IFN

responses (73). These differences in innate T1IFN responses may

contribute to observed differences in susceptibility to and severity of

infection in children (Table 1).

Children exhibit higher infection rates compared to adults,

particularly with respiratory viruses, alongside increased rates of

coinfection; however, most children experience more favorable

health outcomes (74–77). This may be attributed to differences in

first-line defense involving T1IFNs. Compared to adults, neonatal

and infant infection with RSV is associated with less circulating

pDCs, reduced T1IFN responses, and Retinoic acid-Inducible Gene I

(RIG-I) signaling (41). More severe RSV infections in infants

correlate with lower nasal IFN levels, bronchiolitis, and respiratory

failure (78). Contrary to RSV responses, children have a stronger

innate immune response to influenza than adults, driven by increased

T1IFNs (79). In children, impaired IRF production and T1IFN

signaling during influenza infection are associated with

susceptibility, and increased T1IFN appears to be protective from

severe disease (80, 81). Similar to influenza, pediatric infections with

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)

are associated with stronger innate IFN responses than adults (82,

83). Children, particularly in the upper airway mucosa, exhibit higher

pre-infection levels of T1IFN, allowing for more efficient early viral

control and limiting systemic spread (84, 85). Additionally, in vitro

co-culture of pediatric nasal epithelial and immune cells shows

enhanced epithelial-immune crosstalk, resulting in more rapid and

higher magnitude T1IFN induction than adults (86). In early life, T-

cells are generally less polyfunctional, producing fewer cytokines

simultaneously (53). Polyfunctionality of T cells can influence the

course of SARS-CoV-2 infection and, in children, the presence of

polyfunctional SARS-CoV-2-specific CD4+ T cells correlates with

seroconversion, suggesting a role in the development of lasting

immunity (87, 88). This apparent divergence in adult and pediatric

responses underscores that the two immune systems function

differently. Understanding these differences is crucial for enhancing

prevention strategies, therapeutic interventions, and overall

health outcomes.
TABLE 1 Age-related differences in type I interferon (T1IFN) subtypes.

T1IFN subtype Early life Adult/aged life

IFN-a Reduced production in neonates; low until ~18 months (64, 67–69). Diminished PBMC responses to viral/PRR stimulation (108).

IFN-b Impaired IRF3 activity; TGF-b inhibition of transcription (70–73). Basal transcripts decline with age (109).

IFN-e Data lacking in neonates/infants. Basal transcripts decline with age (109).

IFN-w Data lacking. Basal transcripts decline with age (109).

IFN-k/others Limited data; infants show elevated baseline ISGs (66). Sparse evidence; some subtypes are reduced (108, 109).
Early life is characterized by reduced IFN-a and IFN-b production, with limited data available for other subtypes. In elderly populations, basal transcript levels of several IFNs decline and PBMC
responsiveness is diminished, underscoring the need for further age-specific characterization.
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6 Therapeutic use of type 1 interferon
in early life

The immune system develops at varying rates from infancy to

old age and relies heavily on the accumulation of immunity through

repeated exposures. As a result, there is no defined age at which an

individual is considered immunologically “mature” (Figure 2) (52).

This highlights a need for age-specific treatment approaches and a

deeper understanding of the baseline immune environment

in children.

Clinical trials of T1IFNs therapy in adults for SARS-CoV-2

infection have shown significant success in reducing viral load,

disease severity, and transmission, particularly when administered

before peak viral load (89–92). While most trials exclude both

young children and the elderly, some studies have demonstrated the

effectiveness of T1IFN in reducing viral load in pediatric patients

(93). Both IFN-a and IFN-b have been proven safe and effective for

treating chronic viral infections in children; however, further

research is needed before they can be widely applied for acute

infections (94, 95). Given the critical role of timing in IFN therapy,

more research is necessary to understand differences in viral

response kinetics between adults and children.

7 Type 1 interferon signaling in adult
life

Given the role of STING in sensing and responding to damaged

DNA, it is highly relevant in understanding health and disease in

aging populations. Aging increases the risk and prevalence of
Frontiers in Immunology 05
cellular and genomic damage (96). Accumulated damage results

in the release of self-DNA into the cytoplasm and stimulation of the

STING-IFN pathway (97), which has been implicated in age-related

chronic inflammation, immunosenescence, and cancer (98, 99).

These factors, combined with differences in circulating immune cell

populations, lead to an increased susceptibility of aged individuals

to disease (100–103). Notably, the T1IFN-producing pDCs decrease

in the elderly, and their capacity to produce T1IFNs diminishes,

reducing their capacity to mount a response (Figure 2) (100, 104,

105). Additionally, key pathogen recognition pathways that induce

T1IFN are decreased in later life, such as RIG-I and numerous TLR

pathways, across multiple cell types (106, 107). In short, elderly

populations exhibit chronic STING activation, leading to reduced

T1IFN production and sensitivity, which results in dysregulated cell

differentiation and recruitment during immune responses

to infection.

While T1IFNs (including IFN-a, IFN-b, IFN-e, and IFN-l) are
critical for antiviral immunity, the extent to which they change with

age varies by subtype, and such characterization remains

incomplete (as summarized in Table 1). Ex vivo stimulation of

PBMCs from older adults shows delayed and diminished

production of IFN-a in response to PRR agonists, including those

targeting STING and RIG-I pathways (108). Transcriptomic

analysis of upper from SARS-CoV-2-negative individuals shows

that basal mRNA transcripts of IFN-e and IFN-l decline with

increasing age, in addition to IFN-a and IFN-b, although to a lesser

extent (Figure 2D) (109). Notably, evidence for IFN-k and other

subtypes in the aging immune system remains sparse, highlighting a

critical knowledge gap and an area for future investigation across all

ages (Table 1).
FIGURE 2

(A) Type 1 interferon (T1IFN) signaling in early life is believed to be diminished resulting from immature and decreased numbers of immune cells.
(B) T1IFN signaling increases after puberty, with hormones significantly affecting T1IFN signaling pathways. (C) The true immunological ‘peak’ of
T1IFN is still unknown. (D) Lower baseline T1IFNs through chronic STING stimulation, combined with lower circulating T1IFN-producing cells results
in decreased sensitivity and responsiveness in elderly individuals. Figures created in BioRender. Hartnell, L. (2025) https://BioRender.com/x7l3f99.
frontiersin.org
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Deficiencies in T1IFN signaling in aged individuals have been

associated with poorer vaccine responses and increased viral load

during infection (110, 111). This combination of factors contributes

to an overarching susceptibility to viral infections during later life

and poorer outcomes from these infections (112). Repeated and

chronic infections in elderly populations exacerbate this

vulnerability, resulting in a functionally exhausted pDC

population that is less able to respond to T1IFN stimulation

(113). Among these, human cytomegalovirus (HCMV) is

particularly influential. Lifelong HCMV latency is characterized

by sustained immune stimulation, chronic STING pathway

activation, and dysfunctional memory T cells that can accelerate

immunosenescence and impair T1IFN responsiveness (114). The

cumulative burden of chronic infections such as HCMV not only

reshapes immune cell compartments but also leaves older adults less

able to respond effectively to acute viral threats.

These differences in immunity may help to explain

disproportionate susceptibility and severity of numerous viruses.

RSV is typically more severe in both the young and the elderly,

partly because it suppresses T1IFN responses (41, 115). In the

elderly, poor RSV outcomes result from multiple factors, including

reduced IFN sensitivity, immune exhaustion, and defective immune

memory, culminating in an inability to produce a sufficient

response to viral assault (116, 117). In geriatric influenza

infections, PBMC-derived production of IFN-a is decreased, but

the individual capacity of pDCs to produce the cytokine remains

intact (118). However, localized expression of ISGs in geriatric

airway epithelial cells is skewed to favor an inflammatory

phenotype, which impairs viral clearance (119). In addition to

RSV and influenza, older adults are also more likely to have

poorer outcomes of SARS-CoV-2 infection than their younger

counterparts (120). Disease severity of SARS-CoV-2 has been

linked to the timing and magnitude of the T1IFN response (84,

121, 122). Aging-related dysfunction of T1IFN, and its role in

inflammation and immunosenescence, contributes to increased risk

of cytokine storm and adverse outcomes of SARS-CoV-2 infection

(123, 124). Taken together, STING-mediated chronic

inflammation, lower populations of T1IFN-producing cells, and

reduced T1IFN sensitivity become a potentially disastrous

combination for older adults with viral infections. To tackle this,

intervention strategies that modulate activation along the STING-

T1IFN pathway present promising avenues for reversing

immunosenescence and restoring T1IFN responsiveness in elderly

populations (125, 126). This rationale underpins the growing

interest in T1IFN-based therapies in adult and elderly populations.
8 Therapeutic use of type I interferon
in adult life

Given its inherent antiviral properties, T1IFN has the potential

to complement standard treatments for viral infections. IFN-b is

already an established and effective therapy for reducing relapse

frequency and disease progression in multiple sclerosis (127).

Additionally, IFNs and related modulators are widely used as
Frontiers in Immunology 06
both frontline and alternative therapies for viral infections, in

acute and chronic stages, often in combination with standard care

(94, 128–132). A 2022 scoping review on interferon-based therapies

for human respiratory viral infections found that 66% of trials

evaluated IFN-a as the primary intervention, with rhinovirus (40%

of trials) and SARS-CoV-2 (29% of trials) being the most studied

pathogens (133). Elderly populations, however, have historically

been underrepresented in clinical trials involving IFN-based

treatments. Older participants are also more likely to experience

higher rates of adverse events and study withdrawal compared to

younger participants (134). Despite these challenges, IFN treatment

remains a promising option for novel viral infections such as SARS-

CoV-2, particularly in elderly populations, where age is a significant

risk factor for severe outcomes (135). Given the observed age-

related differences in immune response and infection susceptibility,

it is essential to ensure broader representation across all age groups

in clinical trials, including individuals at both ends of the

age spectrum.
9 Discussion

Interferon signaling during infection differs between pediatric,

adult, and geriatric populations, influencing disease susceptibility as

well as progression to morbidity and mortality. At one end of the

lifespan, the early-life environment balances the cost-benefit of

growth processes against the need to fight infections. In neonates,

immune cells are less polyfunctional, and interferon production is

diminished throughout the first 18 months of life. In contrast,

children have stronger innate T1IFN responses, resulting in better

outcomes than adults despite experiencing higher infection rates.

These patterns are observed in both common and severe viral

infections. At the other end of the spectrum, the aging immune

system is characterized and driven by chronic inflammation,

diminished cell populations, and immune exhaustion. Within this

context, chronic stimulation of the STING pathway, resulting from

accumulated genome damage, along with decreased T1IFN

production and sensitivity, perpetuates susceptibility and poor

outcomes to disease in the elderly, particularly in cases of

respiratory virus infection.

In a world increasingly at risk from novel pathogens such as

SARS-CoV-2, T1IFNs offer a valuable treatment option due to their

dual role in regulating innate immune responses and exerting

antiviral effects. T1IFNs not only restrict pathogen replication but

also modulate immune responses to mitigate or prevent the

immunopathology associated with severe infections. However,

applying this therapy across age groups requires a deeper

understanding of age-related differences in T1IFN pathway

function and regulation.

This review has outlined age-related differences in the T1IFN

pathway, regulated by the cGAS-STING pathway, and response to

viral infection (as summarized in Tables 1 and 2). Although

significant progress has been made in the development of T1IFN-

based therapies, few studies have included or considered pediatric

populat ions. Identi fying age-specific T1IFN response
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characteristics, kinetics, and magnitude shift could help optimize

treatment protocols, improving infection management and

reducing treatment burdens. Additionally, a deeper understanding

of the developing innate interferon response could inform targeted

and age-specific treatments for both pediatric and geriatric viral

infections, such as RSV, and provide a basis for host-focused

therapies to combat future novel pathogens. Ultimately, age-

related differences in the innate immune response warrant greater

attention, including explicit consideration in the design of

clinical trials.
10 Future directions

Together, these findings underscore the importance of

contextualizing T1IFN biology across the lifespan. Building on

this foundation, future work should leverage emerging

technologies and therapeutic strategies to address these age-

related differences. Advancing our understanding of T1IFN

biology will require integrative approaches that go beyond single-

dimensional measurements of cytokine production. The emergence

of multi-omics profiling i.e., combining transcriptomics,

proteomics, metabolomics, and epigenomics, offers the potential

to characterize age-specific signatures of STING activation and

T1IFN responsiveness at a higher resolution than ever before.

Combining this with systems-level computational modelling

could identify predictive biomarkers of infection trajectory,

antiviral protection, or immunopathology, as well as regulatory

nodes that can be leveraged for therapeutic intervention. In parallel,

there is an urgent need to expand translational studies into

underrepresented pediatric and geriatric populations. Age-tailored

modulation of the STING-T1IFN axis may help restore

responsiveness in the elderly or temper hyperresponsiveness in
Frontiers in Immunology 07
the neonate, ultimately reducing infection-related morbidity at both

ends of the lifespan. Incorporating these perspectives into clinical

trial design will not only refine therapeutic strategies for existing

pathogens but also enhance preparedness against future

viral threats.
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TABLE 2 Comparison of type I interferon (T1IFN) signaling in early life and adult/aged life.

Aspect Early life Adult/aged life Therapeutic implications

BASELINE IMMUNITY
Reliance on maternal antibody protection;
innate immunity dominates (45–51).

Chronic STING activation, immunosenescence,
inflammation (96–99).

Tailor therapies to immature vs.
exhausted immunity.

pDCs
Reduced numbers and IFN-a output until
~18 months (64, 67–69).

Decline in frequency and function with age (100,
104, 105).

Boost pDC responses in both groups.

T1IFN PRODUCTION
Lower IFN-a, impaired IRF3/7, higher
TGF-b inhibition (67–73).

Reduced IFN-a/b/e/l; impaired responsiveness;
chronic infection burden (108, 109, 114).

Enhance IFN in neonates; restore
responsiveness in elderly.

VIRAL OUTCOMES
RSV: weak IFN response, severe disease
(41, 78). Influenza & SARS-CoV-2:
stronger IFN, better control (79–83, 85).

RSV: poor IFN sensitivity, severe disease (41, 115–
117). Influenza & SARS-CoV-2: delayed/
dysregulated IFN, worse outcomes (84, 118–124).

Age-specific IFN therapy may mitigate
severity; timing critical.

T CELL FUNCTION
Reduced polyfunctionality; protective
polyfunctional CD4+ T cells in SARS-
CoV-2 (53, 87, 88).

Impaired memory from chronic infections, poor
vaccine responses (100–113).

Support T cell polyfunctionality in young;
reverse exhaustion in elderly.

T1IFN THERAPIES
IFN-a/b safe in chronic infections;
limited data in acute (93–95).

IFN widely used (e.g., MS, viral infections); elderly
underrepresented, more adverse events (94, 127–
135).

Include both age groups in trials; early
dosing improves outcomes (89–92).
Key differences are summarized across baseline immunity, plasmacytoid dendritic cells (pDCs), interferon production, infection outcomes, T cell function, and therapeutic use. This highlights
how age-specific immune features shape susceptibility to infection and responsiveness to T1IFN-based therapies, underscoring the need for tailored treatment strategies and inclusive clinical trial
designs.
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