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Type 1 interferons (T1IFNs) are typically expressed in low concentrations under
homeostatic conditions, but upon pathogenic insult or perturbation of the pathway,
these critical immune signaling molecules can become either protectors from or
drivers of pathology. While essential for initiating antiviral defense and modulating
inflammation, dysregulation of T1IFN signaling can contribute to
immunopathology, making it and its associated pathways prime targets for
immune evasion and disruption by pathogens. This review focuses on the
changes in T1IFN signaling across the lifespan, with particular emphasis on the
role of the Stimulator of Interferon Genes (STING) pathway in autoimmune and
infectious disease susceptibility, especially in the context of viral infections. Aging is
associated with diminished T1IFN responsiveness, partially resulting from chronic
stimulation of the STING pathway, which contributes to increased susceptibility and
impaired viral clearance. Conversely, neonates and young children also show
increased vulnerability to certain viral infections, but whether this is driven by
T1IFN differences or another mechanism remains incompletely understood.
Despite growing interest in T1LIFN-based immunotherapies, pediatric and elderly
populations remain underrepresented in clinical trials. Here, we advocate for a
deeper molecular and systems understanding of how the interferon response
evolves across the human lifespan, to inform age-tailored therapeutic
approaches and more inclusive study designs, thereby improving outcomes in
both the youngest and oldest patients.
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1 Introduction

Interferons (IFN) are a class of cytokines that ‘interfere’ with
viral replication. There are currently three known IFN families, each
defined by its use of distinct signaling receptors. Type 1 Interferons
(T1IFN) were the first to be characterized and are key effectors and
modulators of both innate and adaptive immunity, with broad
effects (1). T1IENs are highly conserved throughout mammalian
evolution, and the human genome contains 17 functional genes
encoding 16 proteins, including tissue-specific IFN-€ and -k, the
ubiquitous IFN-, and 12 IFN-o subtypes (2).

T1IFN and their downstream Interferon Stimulated Genes
(ISGs) play a unique role in controlling inflammation with both
pro- and anti-inflammatory effects. This dual nature makes them
highly relevant not just in pathogen-mediated disease, but also in
autoimmune and autoinflammatory conditions (3). Due to their
broad biological activity, dysregulation of the T1IFN pathway can
have harmful consequences (4, 5). Given the diverse and numerous
roles of TIIFN in immune function, comprehending these is
essential to enhance treatment strategies and elucidate underlying
pathologies during infections. Furthermore, emerging evidence
suggests that the T1IFN response varies across life stages,
potentially influencing disease susceptibility, severity, and
treatment in both the young and the elderly. In this review, we
outline key age-related differences in T1IFN signaling, with
particular focus on antiviral responses mediated by the cyclic
GMP-AMP synthase (cGAS) - Stimulator of Interferon Genes
(STING) pathway, underscoring the need for a deeper
understanding of age-specific immunity to improve
infection outcomes.

2 Type 1 interferon signaling in health
and disease

T1IFNs are constitutively expressed at very low concentrations
in healthy individuals and are essential for immune homeostasis (6).
This basal signaling contributes to the development and
maintenance of the hematopoietic system, supporting the
proliferation and differentiation of immune cells under steady-
state conditions (7, 8). Additionally, low-level TIIFN activity also
facilitates immune surveillance, regulates tissue integrity, and
primes host defenses in the absence of infection (9, 10). However,
dysregulation of T1IFN signaling, through genetic factors or
triggered by endogenous stimuli, leads to chronic, sterile
inflammation. This activation is a hallmark of several
autoinflammatory and autoimmune conditions, including
systemic lupus erythematosus (SLE), Aicardi-Goutieres syndrome,
and STING-associated vasculopathy with onset in infancy (SAVI),
where disrupted IFN signaling drives pathological immune
activation and tissue damage (3, 11, 12). During a pathogenic
insult, T1IFNs transition from homeostatic regulators to powerful
antimicrobial agents.

During infection, T1IFNs are canonically induced by several
pathogen recognition receptors across cellular and tissue
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compartments in response to diverse stimuli such as bacterial
lipopolysaccharide and virion proteins, and intracellular and
extracellular detection of nucleotides (Figure 1A) (13-16). The
STING pathway is a dedicated induction pathway for TIIEN,
primarily activated by cytosolic DNA and double-stranded RNA
(dsRNA) via the ¢cGAS-Cyclic guanosine monophosphate-
adenosine monophosphate (cGAMP) complex (9). Binding of the
cGAS sensor to free nucleotides in the cytoplasm produces the
intermediary cGAMP, initiating a complex signaling cascade (as
shown in Figure 1) that culminates in the production of T1IFNs and
ISGs (17-19). Secreted T1IFNSs act in both autocrine and paracrine
manners through the Interferon Alpha Receptor 1/Interferon Alpha
Receptor 2 (IFNAR1/2) complex, leading to the production of ISGs
(Figure 1D). These ISGs contribute to diverse effects, including
antiviral function, regulation of antigen presentation, and metabolic
modulation (20-24). With their vital role in host defense, T1IFNs
are delicately balanced so as to avoid the immunopathology that
comes with dysregulated signaling. This duality is evident during
infection, where the nature, timing, and context of T1IFN signaling
shape the course and outcome of disease.

3 Type 1 interferons during infection

The immunological impact of T1IFNs during infection is
defined not only by their induction pathways but also by
pathogen-specific evasion strategies. Signaling through cGAS-
STING has been shown to be essential for T1IFN responses to
DNA-containing pathogens, with genetic disruption altogether
preventing such responses to bacteria (14), as well as DNA
viruses and retroviruses. Bacterial induction of cGAS-STING-IFN
is not fully elucidated, as, unlike viruses, successful bacteria do not
release their genetic material into the cytoplasm of host cells.
However, it has been proposed that bacterial induction of T1IFN
relies on mistakes in bacterial infection processes, such as the
accidental secretion of genetic material or bacterial cyclic
dinucleotides (CDNs) along with toxins (25).

The consequences of T1IFN induction in bacterial infection are
context-dependent and can be paradoxical (26). While T1IFNs
induce bacterial autophagy by host dendritic cells, they also
increase cell motility, facilitating cell-to-cell spread and bacterial
escape (27). In contrast, during viral infection, the cGAS-STING
pathway quickly senses viral nucleotides released into the cytoplasm
during the infection process, inducing T1IFN and its downstream
effectors (as seen in Figure 1). Interference in viral infection by ISGs
occurs at most stages of the viral replication cycle, including
preventing viral entry, protein and mRNA synthesis, and
assembly (28). Additionally, IFNs and ISGs contribute to wider
immune defense by mediating cell-cell interactions and recruitment
via altering cell receptor and chemoattractant expression and
promoting antigen presentation (Figures 1C, E) (28-30). The
timing, magnitude, and duration of the T1IFN response is critical
for optimal function in host defense. T1IEN signaling is highly
beneficial in the host response mechanisms to acute viral infection
but becomes detrimental in prolonged or chronic infection, such as
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Type 1 interferon (T1IFN) signaling during viral infection with black arrows showing signal transduction within the cytosol from Pathogen Recognition
Receptors (PRRs) and the Interferon Alpha Receptor (IFNAR) heterodimer complex to the transcription factors and response elements, the blue arrow
showing the release and direct effects of T1IFNs and the green pathway showing the release and effects of Interferon Stimulated Genes (ISGs). During a
viral infection and viral entry, viral components are detected through various PRRs in the cytosol and the endosome (A). Cytosolic sensing works through
the Stimulator of Interferon Genes (STING) and Retinoic acid-Inducible Gene | (RIG-1) pathways, while endosomal sensing functions involve several Toll-
Like Receptor (TLR) pathways. These signal through the endoplasmic reticulum to release Interferon Regulatory Factors (IRFs). Binding of IRFs to
promoter regions induces the transcription of T1IFNs, such as IFNA and IFNB (B). These T1IFNs are then released into the extracellular space where they
exert antiviral effects such as signaling infected cells to die, recruitment and differentiation of immune cells, RNA degradation, and control of
inflammatory response (C). All T1IFNs signal through the same IFNAR heterodimer complex, initiating a Signal Transducer and Activator of Transcription
(STAT) cascade, ultimately resulting in transcription of various Interferon ISGs through Interferon-Sensitive Response Elements (ISRE) and Gamma-
Activated Sites (GAS) promoter regions (D). These ISGs are released into the extracellular space alongside the T1IFNs, further perpetuating the antiviral
and inflammatory responses (E). Figures created in BioRender. Hartnell, L. (2025) https://BioRender.com/ua8nw9b.

in human immunodeficiency virus (HIV) infection, where it
induces a negative feedback loop that reduces the immune
response over time, promoting a proviral state (30-32). This
exemplifies the finely tuned balance of STING-IFN signaling that
is integral to the proper functioning of immune responses, and how
pathogens can utilize its mechanisms to perpetuate infection.

4 Evasion and disruption of STING-IFN
signaling by pathogens

Given the importance of T1IFNs to immune response and
pathogen clearance, many infectious agents disrupt related
pathways to either evade detection or improve escape (33, 34).
These various strategies not only perpetuate infectious agents
within the body but also increase immune-mediated tissue
damage (35, 36). Many bacteria induce T1IFNs, especially
intracellular bacteria, like Listeria, which stimulate the cGAS-
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STING pathway (14). Bacterial strategies for the disruption of
TIIFN responses typically rely on taking advantage of
inflammation and IFN-induced apoptosis of essential immune
effector cells (3, 37).

Numerous viruses express viral proteins that prevent signal
transduction through the STING-IFN pathway, such as the papain-
like protease of coronaviruses (38-40). Non-structural proteins in
Respiratory Syncytial Virus (RSV) suppress T1IEN responses, and
higher T1IFN levels are associated with better outcomes from the
infection (41). Beyond the damage caused by invading microbes, the
host’s response to pathogens can lead to hyperinflammation and
other pathologies with severe outcomes. Disrupting or delaying the
T1IEN response can result in a poorly timed influx of inflammatory
cells that perpetuates pathological inflammation and a pro-viral
state that is unable to resolve successfully (3, 42, 43). Therefore,
understanding the dynamic interplay between pathogens and the
host’s immune response is crucial to improving the understanding
of infection progression and outcomes.
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5 Type 1 interferon signaling in early
life

Compared to their adult counterparts, the current
understanding of the TI1IFN response to infection in early life is
limited. In 2019, infectious diseases accounted for up to 49% of
deaths in children under five years of age worldwide, with lower
respiratory infections responsible for 13.9% of these deaths (44).
The immune systems of neonates and children rely heavily on
innate immunity due to the naivete of the adaptive system (45-48).
Infant immunity also relies on vertically transmitted antibodies and
antimicrobials through their mother’s placenta and breastmilk.
Nevertheless, these protective substances wane six months post-
birth for placental antibodies and diminish with the cessation of
breastfeeding for other immune factors (49-51).

Particularly in neonates, numerous aspects of immune
responses appear counterintuitive to infection clearance. Immune
cell populations in children differ from those in adults and change
dynamically as individuals age, impacting both the capacity and
coordination of immune response, with implications for systemic
immunity (52-54). At the cellular level, neonatal innate cells
produce higher quantities of single cytokines such as interleukins
IL-1B, IL-6, IL-23, and IL-10 compared to adults but have
diminished simultaneous multi-cytokine responses (55, 56).
While almost all immune cell types produce T1IEN, plasmacytoid
dendritic cells (pDCs) are the major drivers of TIIFN production
during infection (57-60). These specialized dendritic cells have the
capacity to produce substantial amounts of T1IFN rapidly and can
infiltrate other tissue types such as the airway mucosa (61). Their
potent T1IFN production and ability to migrate into infected tissue
make them crucial to host immune responses despite representing a
small fraction of peripheral blood mononuclear cells (PBMC) (62,
63). Neonatal mononuclear cells produce significantly lower levels
of IFN-o than adults, which is less effective at activating pDCs, and
while production increases after two months, it remains lower until
about 18 months of age (Table 1) (64, 65). Multi-omics profiling of
infant PBMCs reveals an elevated baseline of antiviral ISGs,
suggesting a partially primed innate state (66). Ex vivo studies of
cord blood pDCs also show decreased activity of interferon
regulatory factors IRF3 and IRF7, with reduced IRF3 activation
observed in cord blood mononuclear cells, and decreased
production of the intermediary cGAMP molecule (Figure 2A)

TABLE 1 Age-related differences in type | interferon (T1IFN) subtypes.

T1IFN subtype Early life

IFN-o Reduced production in neonates; low until ~18 months (64, 67-69).
IFN-B Impaired IRF3 activity; TGF-p inhibition of transcription (70-73).
IFN-¢ Data lacking in neonates/infants.

IFN-® Data lacking.

IEN-«/others Limited data; infants show elevated baseline ISGs (66).

10.3389/fimmu.2025.1654604

(67-69). IRF3 is a key regulator in IFN-B production and
Transforming Growth Factor B (TGF-B), by preventing IRF3
phosphorylation and subsequent nuclear translocation, inhibits
IFN-B transcription (70-72). Interestingly, Okamoto et al. found
that pediatric populations have higher levels of circulating TGF,
suggesting one possible mechanism for decreased childhood T1IFN
responses (73). These differences in innate TI1IFN responses may
contribute to observed differences in susceptibility to and severity of
infection in children (Table 1).

Children exhibit higher infection rates compared to adults,
particularly with respiratory viruses, alongside increased rates of
coinfection; however, most children experience more favorable
health outcomes (74-77). This may be attributed to differences in
first-line defense involving T1IFNs. Compared to adults, neonatal
and infant infection with RSV is associated with less circulating
pDCs, reduced T1IFN responses, and Retinoic acid-Inducible Gene I
(RIG-I) signaling (41). More severe RSV infections in infants
correlate with lower nasal IFN levels, bronchiolitis, and respiratory
failure (78). Contrary to RSV responses, children have a stronger
innate immune response to influenza than adults, driven by increased
T1IFNs (79). In children, impaired IRF production and T1IFN
signaling during influenza infection are associated with
susceptibility, and increased T1IFN appears to be protective from
severe disease (80, 81). Similar to influenza, pediatric infections with
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)
are associated with stronger innate IFN responses than adults (82,
83). Children, particularly in the upper airway mucosa, exhibit higher
pre-infection levels of T1IFN, allowing for more efficient early viral
control and limiting systemic spread (84, 85). Additionally, in vitro
co-culture of pediatric nasal epithelial and immune cells shows
enhanced epithelial-immune crosstalk, resulting in more rapid and
higher magnitude T1IFN induction than adults (86). In early life, T-
cells are generally less polyfunctional, producing fewer cytokines
simultaneously (53). Polyfunctionality of T cells can influence the
course of SARS-CoV-2 infection and, in children, the presence of
polyfunctional SARS-CoV-2-specific CD4" T cells correlates with
seroconversion, suggesting a role in the development of lasting
immunity (87, 88). This apparent divergence in adult and pediatric
responses underscores that the two immune systems function
differently. Understanding these differences is crucial for enhancing
prevention strategies, therapeutic interventions, and overall
health outcomes.

Adult/aged life

Diminished PBMC responses to viral/PRR stimulation (108).
Basal transcripts decline with age (109).

Basal transcripts decline with age (109).

Basal transcripts decline with age (109).

Sparse evidence; some subtypes are reduced (108, 109).

Early life is characterized by reduced IFN-o. and IFN-p production, with limited data available for other subtypes. In elderly populations, basal transcript levels of several IFNs decline and PBMC

responsiveness is diminished, underscoring the need for further age-specific characterization.
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(A) Type 1 interferon (T1IFN) signaling in early life is believed to be diminished resulting from immature and decreased numbers of immune cells.

(B) T1IFN signaling increases after puberty, with hormones significantly affecting T1IFN signaling pathways. (C) The true immunological ‘peak’ of
T1IFN is still unknown. (D) Lower baseline T1IFNs through chronic STING stimulation, combined with lower circulating T1IFN-producing cells results
in decreased sensitivity and responsiveness in elderly individuals. Figures created in BioRender. Hartnell, L. (2025) https://BioRender.com/x713f99.

6 Therapeutic use of type 1 interferon
in early life

The immune system develops at varying rates from infancy to
old age and relies heavily on the accumulation of immunity through
repeated exposures. As a result, there is no defined age at which an
individual is considered immunologically “mature” (Figure 2) (52).
This highlights a need for age-specific treatment approaches and a
deeper understanding of the baseline immune environment
in children.

Clinical trials of TI1IFNs therapy in adults for SARS-CoV-2
infection have shown significant success in reducing viral load,
disease severity, and transmission, particularly when administered
before peak viral load (89-92). While most trials exclude both
young children and the elderly, some studies have demonstrated the
effectiveness of T1IFN in reducing viral load in pediatric patients
(93). Both IFN-0. and IFN-f have been proven safe and effective for
treating chronic viral infections in children; however, further
research is needed before they can be widely applied for acute
infections (94, 95). Given the critical role of timing in IFN therapy,
more research is necessary to understand differences in viral
response kinetics between adults and children.

7 Type 1 interferon signaling in adult
life

Given the role of STING in sensing and responding to damaged
DNA, it is highly relevant in understanding health and disease in
aging populations. Aging increases the risk and prevalence of
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cellular and genomic damage (96). Accumulated damage results
in the release of self-DNA into the cytoplasm and stimulation of the
STING-IFN pathway (97), which has been implicated in age-related
chronic inflammation, immunosenescence, and cancer (98, 99).
These factors, combined with differences in circulating immune cell
populations, lead to an increased susceptibility of aged individuals
to disease (100-103). Notably, the T1IFN-producing pDCs decrease
in the elderly, and their capacity to produce T1IFNs diminishes,
reducing their capacity to mount a response (Figure 2) (100, 104,
105). Additionally, key pathogen recognition pathways that induce
T1IEN are decreased in later life, such as RIG-I and numerous TLR
pathways, across multiple cell types (106, 107). In short, elderly
populations exhibit chronic STING activation, leading to reduced
TI1IFN production and sensitivity, which results in dysregulated cell
differentiation and recruitment during immune responses
to infection.

While T1IFNs (including IFN-o, IFN-f3, IFN-¢, and IFN-A) are
critical for antiviral immunity, the extent to which they change with
age varies by subtype, and such characterization remains
incomplete (as summarized in Table 1). Ex vivo stimulation of
PBMCs from older adults shows delayed and diminished
production of IFN-a. in response to PRR agonists, including those
targeting STING and RIG-I pathways (108). Transcriptomic
analysis of upper from SARS-CoV-2-negative individuals shows
that basal mRNA transcripts of IFN-& and IFN-A decline with
increasing age, in addition to IFN-o and IFN-f, although to a lesser
extent (Figure 2D) (109). Notably, evidence for IFN-k and other
subtypes in the aging immune system remains sparse, highlighting a
critical knowledge gap and an area for future investigation across all
ages (Table 1).
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Deficiencies in T1IFN signaling in aged individuals have been
associated with poorer vaccine responses and increased viral load
during infection (110, 111). This combination of factors contributes
to an overarching susceptibility to viral infections during later life
and poorer outcomes from these infections (112). Repeated and
chronic infections in elderly populations exacerbate this
vulnerability, resulting in a functionally exhausted pDC
population that is less able to respond to TIIFN stimulation
(113). Among these, human cytomegalovirus (HCMV) is
particularly influential. Lifelong HCMV latency is characterized
by sustained immune stimulation, chronic STING pathway
activation, and dysfunctional memory T cells that can accelerate
immunosenescence and impair T1IFN responsiveness (114). The
cumulative burden of chronic infections such as HCMV not only
reshapes immune cell compartments but also leaves older adults less
able to respond effectively to acute viral threats.

These differences in immunity may help to explain
disproportionate susceptibility and severity of numerous viruses.
RSV is typically more severe in both the young and the elderly,
partly because it suppresses T1IFN responses (41, 115). In the
elderly, poor RSV outcomes result from multiple factors, including
reduced IFN sensitivity, immune exhaustion, and defective immune
memory, culminating in an inability to produce a sufficient
response to viral assault (116, 117). In geriatric influenza
infections, PBMC-derived production of IFN-o. is decreased, but
the individual capacity of pDCs to produce the cytokine remains
intact (118). However, localized expression of ISGs in geriatric
airway epithelial cells is skewed to favor an inflammatory
phenotype, which impairs viral clearance (119). In addition to
RSV and influenza, older adults are also more likely to have
poorer outcomes of SARS-CoV-2 infection than their younger
counterparts (120). Disease severity of SARS-CoV-2 has been
linked to the timing and magnitude of the T1IFN response (84,
121, 122). Aging-related dysfunction of T1IFN, and its role in
inflammation and immunosenescence, contributes to increased risk
of cytokine storm and adverse outcomes of SARS-CoV-2 infection
(123, 124). Taken together, STING-mediated chronic
inflammation, lower populations of T1IFN-producing cells, and
reduced TIIFN sensitivity become a potentially disastrous
combination for older adults with viral infections. To tackle this,
intervention strategies that modulate activation along the STING-
TI1IFN pathway present promising avenues for reversing
immunosenescence and restoring T1IFN responsiveness in elderly
populations (125, 126). This rationale underpins the growing
interest in T1IFN-based therapies in adult and elderly populations.

8 Therapeutic use of type | interferon
in adult life

Given its inherent antiviral properties, T1IFN has the potential
to complement standard treatments for viral infections. IFN- is
already an established and effective therapy for reducing relapse
frequency and disease progression in multiple sclerosis (127).
Additionally, IFNs and related modulators are widely used as
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both frontline and alternative therapies for viral infections, in
acute and chronic stages, often in combination with standard care
(94, 128-132). A 2022 scoping review on interferon-based therapies
for human respiratory viral infections found that 66% of trials
evaluated IFN-o. as the primary intervention, with rhinovirus (40%
of trials) and SARS-CoV-2 (29% of trials) being the most studied
pathogens (133). Elderly populations, however, have historically
been underrepresented in clinical trials involving IFN-based
treatments. Older participants are also more likely to experience
higher rates of adverse events and study withdrawal compared to
younger participants (134). Despite these challenges, IFN treatment
remains a promising option for novel viral infections such as SARS-
CoV-2, particularly in elderly populations, where age is a significant
risk factor for severe outcomes (135). Given the observed age-
related differences in immune response and infection susceptibility,
it is essential to ensure broader representation across all age groups
in clinical trials, including individuals at both ends of the
age spectrum.

9 Discussion

Interferon signaling during infection differs between pediatric,
adult, and geriatric populations, influencing disease susceptibility as
well as progression to morbidity and mortality. At one end of the
lifespan, the early-life environment balances the cost-benefit of
growth processes against the need to fight infections. In neonates,
immune cells are less polyfunctional, and interferon production is
diminished throughout the first 18 months of life. In contrast,
children have stronger innate T1IFN responses, resulting in better
outcomes than adults despite experiencing higher infection rates.
These patterns are observed in both common and severe viral
infections. At the other end of the spectrum, the aging immune
system is characterized and driven by chronic inflammation,
diminished cell populations, and immune exhaustion. Within this
context, chronic stimulation of the STING pathway, resulting from
accumulated genome damage, along with decreased T1IFN
production and sensitivity, perpetuates susceptibility and poor
outcomes to disease in the elderly, particularly in cases of
respiratory virus infection.

In a world increasingly at risk from novel pathogens such as
SARS-CoV-2, T1IENSs offer a valuable treatment option due to their
dual role in regulating innate immune responses and exerting
antiviral effects. T1IFNs not only restrict pathogen replication but
also modulate immune responses to mitigate or prevent the
immunopathology associated with severe infections. However,
applying this therapy across age groups requires a deeper
understanding of age-related differences in T1IFN pathway
function and regulation.

This review has outlined age-related differences in the T1IFN
pathway, regulated by the cGAS-STING pathway, and response to
viral infection (as summarized in Tables 1 and 2). Although
significant progress has been made in the development of T1IFN-
based therapies, few studies have included or considered pediatric
populations. Identifying age-specific T1IFN response
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TABLE 2 Comparison of type | interferon (T1IFN) signaling in early life and adult/aged life.

Aspect Early life

BASELINE IMMUNITY Rellan?e on m‘aternal e‘mtlbody protection;
innate immunity dominates (45-51).

Reduced numbers and IFN-o output until

DC:
pLAs ~18 months (64, 67-69).

Lower IFN-o., impaired IRF3/7, higher

T1IFN PRODUCTION
TGF-B inhibition (67-73).

RSV: weak IFN response, severe disease
(41, 78). Influenza & SARS-CoV-2:
stronger IFN, better control (79-83, 85).

VIRAL OUTCOMES

Reduced polyfunctionality; protective
polyfunctional CD4+ T cells in SARS-
CoV-2 (53, 87, 88).

T CELL FUNCTION

IFN-0/B safe in chronic infections;

T1IFN THERAPIES
limited data in acute (93-95).

135).

Adult/aged life

Chronic STING activation, immunosenescence,
inflammation (96-99).

Decline in frequency and function with age (100,
104, 105).

Reduced IFN-o/B/e/A; impaired responsiveness;
chronic infection burden (108, 109, 114).

RSV: poor IFN sensitivity, severe disease (41, 115—
117). Influenza & SARS-CoV-2: delayed/
dysregulated IFN, worse outcomes (84, 118-124).

Impaired memory from chronic infections, poor
vaccine responses (100-113).

IFN widely used (e.g., MS, viral infections); elderly
underrepresented, more adverse events (94, 127-

Therapeutic implications

Tailor therapies to immature vs.
exhausted immunity.

Boost pDC responses in both groups.

Enhance IFN in neonates; restore
responsiveness in elderly.

Age-specific IFN therapy may mitigate
severity; timing critical.

Support T cell polyfunctionality in young;
reverse exhaustion in elderly.

Include both age groups in trials; early
dosing improves outcomes (89-92).

Key differences are summarized across baseline immunity, plasmacytoid dendritic cells (pDCs), interferon production, infection outcomes, T cell function, and therapeutic use. This highlights

how age-specific immune features shape susceptibility to infection and responsiveness to T1IFN-based therapies, underscoring the need for tailored treatment strategies and inclusive clinical trial

designs.

characteristics, kinetics, and magnitude shift could help optimize
treatment protocols, improving infection management and
reducing treatment burdens. Additionally, a deeper understanding
of the developing innate interferon response could inform targeted
and age-specific treatments for both pediatric and geriatric viral
infections, such as RSV, and provide a basis for host-focused
therapies to combat future novel pathogens. Ultimately, age-
related differences in the innate immune response warrant greater
attention, including explicit consideration in the design of
clinical trials.

10 Future directions

Together, these findings underscore the importance of
contextualizing TIIFN biology across the lifespan. Building on
this foundation, future work should leverage emerging
technologies and therapeutic strategies to address these age-
related differences. Advancing our understanding of T1IFN
biology will require integrative approaches that go beyond single-
dimensional measurements of cytokine production. The emergence
of multi-omics profiling i.e., combining transcriptomics,
proteomics, metabolomics, and epigenomics, offers the potential
to characterize age-specific signatures of STING activation and
T1IFN responsiveness at a higher resolution than ever before.
Combining this with systems-level computational modelling
could identify predictive biomarkers of infection trajectory,
antiviral protection, or immunopathology, as well as regulatory
nodes that can be leveraged for therapeutic intervention. In parallel,
there is an urgent need to expand translational studies into
underrepresented pediatric and geriatric populations. Age-tailored
modulation of the STING-TIIFN axis may help restore
responsiveness in the elderly or temper hyperresponsiveness in
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the neonate, ultimately reducing infection-related morbidity at both
ends of the lifespan. Incorporating these perspectives into clinical
trial design will not only refine therapeutic strategies for existing
pathogens but also enhance preparedness against future
viral threats.
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