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Acute aortic dissection (AAD) is a life-threatening cardiovascular emergency

characterized by aortic layer separation and false lumen formation, with high

mortality rates. Emerging evidence highlights the critical role of innate immunity

in AD pathogenesis. Innate immune activation drives AAD progression through

multiple mechanisms, including macrophage polarization (M1/M2 imbalance),

neutrophil extracellular trap (NET) formation, and inflammasome activation.

These processes amplify vascular inflammation via cytokine storms (IL-1b, IL-6,
TNF-a) and oxidative stress, further promoting matrix metalloproteinase

activation and smooth muscle cell phenotypic switching. The cGAS-STING

pathway, triggered by mitochondrial DNA release, and TLR signaling act as

central hubs connecting vascular injury to innate immune responses. This

review synthesizes recent advances in the molecular mechanisms of AAD,

focusing on aortic wall structural alterations, dysregulated signaling pathway,

including TGF-b, Ang II, STING, and TLR cascades, and immune-inflammatory

responses mediated by innate immune components. A deeper understanding of

these innate immune components may lead to improved diagnostic biomarkers

and targeted therapies for AAD management.
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1 Introduction

Acute aortic dissection (AAD) is a fatal cardiovascular emergency

in which blood penetrates a tear in the intima, creating a false lumen

within the medial layer. AAD shows distinct age- and sex-specific

epidemiological patterns and carries a very high mortality rate.

Population studies indicate that AAD occurs predominantly in

men aged 60–70 years (1). Clinically, patients typically present with

abrupt, severe tearing or knife-like chest or back pain, often

complicated by aortic valve insufficiency, acute heart failure, or

myocardial infarction (2). The defining pathophysiological event is

intimal disruption under hemodynamic stress, which separates the

intima from the media, generating a false lumen alongside the

true lumen.

Although the molecular drivers of AAD remain incompletely

defined, several mechanisms have been implicated, including

endothelial-to-mesenchymal transition (EndMT) (3), phenotypic

modulation of medial smooth muscle cells (SMCs) (4),

fragmentation of medial elastic fibers (5), extracellular matrix

degradation in the adventitia, and vascular inflammation (6).

Recognized high-risk factors for AAD encompass hypertension,

advanced age, obesity, tobacco use, and genetic predisposition (7).

Elucidating the molecular basis of AAD is essential for advancing

strategies for prevention, early detection, and therapy. This review

summarizes recent insights into AAD pathogenesis from five

perspectives: aortic wall structure and cell biology, matrix

metabolism, inflammation, oxidative stress, and associated

signaling pathways.
2 Structural alterations of the aortic
wall underlie the pathogenesis of AD

2.1 Injury to the intima and media and
degradation of the extracellular matrix

The aortic wall comprises three layers, including intima, media,

and adventitia, composed of vascular cells and extracellular matrix

(ECM) components undergoing constant remodeling to maintain

biomechanical integrity. Disruption of this balance initiates AAD.

The intima, lined by endothelial cells, acts as a barrier and regulator

of vascular homeostasis. In AAD, hypertension disrupts endothelial

tight junctions, promoting macrophage infiltration and

inflammation, leading to intimal rupture (8). The media contains

SMCs embedded in elastic fibers, collagen, and proteoglycans.

Medial degeneration—marked by SMC loss and elastic fiber

fragmentation—is implicated in AAD onset (9). Fibrillin-1,

crucial for microfibril structure and TGF-b regulation, when

mutated, disrupts SMCs and promotes matrix degradation and

inflammation (7, 10). EMILIN-1, essential for elastic fiber assembly

and suppression of TGF-b activity, when deficient, induces fiber

disarray (11). Collagens I and III, determinants of stiffness and

elasticity, are aberrantly upregulated in AAD, where excessive

deposition promotes fibrosis and vascular rigidity (12). The ECM

provides structural and signaling support, regulating tensile
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strength and cell behavior. Dysregulated ECM turnover impairs

vascular integrity. Matrix metalloproteinases (MMPs), especially

MMP-2 and MMP-9, are elevated in AAD, driving ECM

degradation (13, 14). Tissue inhibitors of metalloproteinases

(TIMPs) maintain MMP balance; their dysregulation results in

pathological remodeling (15). Thus, ECM imbalance and

proteolytic activity facilitate AAD pathogenesis.
2.2 Activation of ECM remodeling
pathways

Transforming growth factor-beta (TGF-b), encompassing TGF-

b1, -b2, and -b3, orchestrates proliferation, differentiation,

apoptosis, ECM synthesis, and motility (16). TGF-b1 and -b3
engage type II receptors, which activate type I receptors to initiate

canonical Smad signaling: R-Smads are phosphorylated, form

complexes with Smad4, and translocate into the nucleus to

regulate transcription, with inhibitory Smads maintaining

homeostasis (17, 18). TGF-b is indispensable for early aortic

development and ECM homeostasis, yet in AAD it is aberrantly

activated, driving ECM degradation through MMP-2 and MMP-9.

Neutralizing TGF-b antibodies prevent AAD initiation (10), but

genetic ablation of pathway components fails to mitigate disease,

and mutations in TGF-b signaling genes are frequently identified in

AAD patients (19). These paradoxes suggest that physiological

TGF-b is vital for aortic integrity, whereas its hyperactivation

contributes to AAD pathology. Ang II, the principal effector of

the renin–angiotensin system, constitutes another critical signaling

axis intricately linked to TGF-b signaling. Beyond its canonical

roles in vasoconstriction, sodium reabsorption, and aldosterone

synthesis, Ang II induces adhesion molecules, cytokines,

chemokines, and pro-fibrotic mediators, thereby promoting

vascular inflammation (20). Notably, Ang II potentiates TGF-b
signaling via the angiotensin II type 1 receptor (AT1R) (21). In

ApoE-/- mice, sustained Ang II infusion provokes elastin

degradation and inflammatory mediator release, culminating in

AAD (22). Ang II also governs inflammatory initiation by engaging

integrins and vascular endothelial (VE)-cadherins, enhancing

vascular permeability and leukocyte infiltration, whereas Ang II

deficiency delays inflammatory activation (23). Thus, dysregulated

Ang II destabilizes vascular homeostasis. Its elevation across

cardiovascular diseases highlights its utility as a diagnostic

biomarker and its indispensability in modeling vascular pathology.
3 Inflammatory cell infiltration and
immune responses

3.1 Inflammatory cell subsets

3.1.1 Macrophages
Macrophages, as central phagocytes of the innate immune

system, play a central role in the pathogenesis of AAD by

mediating inflammation and presenting antigens to initiate
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adaptive responses (6). They are broadly classified into pro-

inflammatory M1 and anti-inflammatory M2 subsets. In AAD

lesions, M1 macrophages predominate, driven by STAT and NF-

kB signaling cascades regulated by miR-720 and miR-127. This

polarization promotes the release of TNF-a, ROS, IL-1, IL-6, and
NO, while suppressing IL-12, IL-23, and IL-10, thereby amplifying

vascular injury (24, 25). During early AAD stages, M1 macrophages

infiltrate from the adventitia into the media, initiating extracellular

matrix degradation (6), whereas M2 macrophages emerge later to

support repair. Macrophage-derived MMPs and interleukins

sustain inflammatory loops via cytokine signaling (26). Moreover,

angiotensin II exacerbates macrophage recruitment and activation

through the KLF6–GM-CSF axis, upregulating MMPs and

ADAMTS-1 expression, which collectively compromise aortic

wall integrity (27).

3.1.2 Neutrophils
Neutrophils initiate acute inflammation by rapidly infiltrating

injured sites and orchestrating secondary immune recruitment via

cytokine release, thus forming the frontline defense barrier (28). In

AAD, activated neutrophils contribute to both inflammatory injury

and maladaptive tissue remodeling (4). Neutrophil extracellular

traps (NETs) are formed through a process known as NETosis,

which is triggered by the generation of reactive oxygen species

(ROS), calcium influx, and activation of peptidylarginine deiminase

4 (PAD4), leading to chromatin decondensation and histone

citrullination (29–31). NET-derived components such as

neutrophil elastase (NE), myeloperoxidase (MPO), and

citrullinated histones exert cytotoxic effects on vascular smooth

muscle cells (VSMCs) by disrupting cell membrane integrity,
Frontiers in Immunology 03
promoting apoptosis, and inducing phenotypic switching toward

a synthetic, matrix-degrading phenotype (32–34). In macrophages,

these NET components enhance inflammasome activation,

upregulate pro-inflammatory cytokines, and perpetuate the

inflammatory cycle within the aortic wall (35, 36). NET

accumulation in AAD correlates with disease severity, promotes

macrophage cytokine secretion, and facilitates Th17 polarization (4,

37). NET-associated components, such as NE and its target TBL1x,

facilitate inflammatory cell migration and vascular smooth muscle

cell phenotypic switching (5). Clinical studies reveal elevated

granzyme and NET markers in aortic tissues of AAD patients,

with circulating NET levels linked to in-hospital mortality and one-

year survival (4). In experimental models, neutrophil depletion or

inhibition of vascular infiltration reduces MMP expression and

significantly decreases AAD incidence (38), underscoring

neutrophils and NETs as potential therapeutic targets (Figure 1).

3.1.3 T lymphocytes
T lymphocyte activation plays a critical role in the pathogenesis

of AAD. Elevated levels of CD3+, CD4+, CD8+, and CD45+ T cells

have been identified in the aortic wall of AAD patients, indicating

active local immune involvement (39). Within T helper subsets,

Th1, Th9, Th17, and Th22 cells and their transcriptional regulators

are obviously upregulated, while Th2 and Tregs are downregulated,

suggesting a protective role for the latter (40). Th17 and Tregs

originate from a shared precursor and are both dependent on TGF-

b; however, IL-6 promotes Th17 differentiation at the expense of

Tregs (41). Elevated IL-6 and Th17-derived IL-17 levels have been

confirmed in AAD tissues (42), supporting the therapeutic potential

of IL-6 inhibition. IL-17 promotes extracellular matrix (ECM)
FIGURE 1

Innate immune in aortic dissection pathogenesis.
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degradation by stimulating MMP-2 and MMP-9 expression in

VSMCs and macrophages (42–45), weakening the structural

integrity of the aortic wall by degrading elastin and collagen (46,

47). Besides, IL-17 stimulates the secretion of pro-inflammatory

cytokines and chemokines (IL-1b, TNF-a, CCL2), further

enhancing immune cell recruitment and inflammation within the

aortic media (48–50). The IL-6/STAT3 axis acts as a key amplifier in

this cascade. IL-6 binding to gp130 activates JAKs, driving STAT3

phosphorylation and nuclear localization, thereby enhancing

transcription of RORgt, the master regulator of Th17 lineage

commitment and IL-17 production (51–54). STAT3 activation

also promotes MMP expression in vascular cells, intensifying

ECM degradation. This feedforward loop—linking IL-6, STAT3,

and IL-17—potentiates vascular inflammation, smooth muscle cell

phenotypic switching, and structural disintegration, hallmarks of

AAD (55). Tregs, though typically anti-inflammatory via IL-10

production, also exhibit functional heterogeneity; increased CD25+

Tregs have been linked to vascular inflammation in carotid artery

disease (56, 57). Additionally, Fas–FasL-mediated apoptosis of

memory T cells may induce smooth muscle cell loss and vascular

wall weakening, exacerbating AAD risk (58).

3.1.4 Monocytes
Monocytes, circulating components of the adaptive immune

system, possess phagocytic capacity and activate other immune

cells. Based on surface markers, they are classified into three subsets:

classical (CD14++CD16−), intermediate (CD14++CD16+), and non-

classical (CD14+CD16+) (59). Among these, classical monocytes

exhibit the highest pro-inflammatory potential, characterized by

robust phagocytic activity and the capacity to secrete cytokines such

as TNF-a and IL-1b upon activation (60). These cells are rapidly

recruited to sites of vascular injury and are primarily responsible for

initiating and amplifying inflammatory responses in the early phase

of AAD (61, 62). In AAD, classical monocytes are markedly

elevated, while intermediate subsets are reduced. Activated

monocytes interact with platelet glycoprotein Iba (GPIba) and

coagulation factor XI (FXI) to promote local thrombin generation,

thereby exacerbating vascular inflammation and hypertension, and

accelerating AAD progression (63). Haider et al. (64) demonstrated

that IL-14 stimulation reduces NF-kB p65 phosphorylation and

decreases monocyte apoptosis in vitro, suggesting that beyond

promoting macrophage differentiation, the NF-kB pathway may

also support monocyte survival and differentiation. Monocytes also

release low-density lipoprotein receptor-related protein 8 (LRP8),

which triggers vascular inflammation and endothelial dysfunction,

further implicating them in the pathogenesis of AAD (65). These

findings imply that monocytes may also play a contributory role in

Ang II–mediated AAD development.
3.2 Inflammatory factors

3.2.1 Cytokine and chemokine
The interleukin-6 (IL-6) cytokine family includes IL-6, IL-11, IL-

30, IL-31, and non-IL molecules, primarily secreted by lymphocytes,
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monocytes/macrophages, adipocytes, tumor cells, and endothelial

cells (66). Elevated IL-6 levels are observed in patients with AAD

compared to healthy controls (67). Sano and Anzai (68) found that

chemokine-dependent signaling induces neutrophilia and infiltration

into the dissected aorta, where IL-6 contributes to aortic dilation and

rupture. Tieu et al. (69) noted IL-6’s localization in the adventitia,

promoting monocyte recruitment, MCP-1 secretion, vascular

inflammation, and ECM degradation. The IL-6 signaling pathway

involves gp130, which recruits co-receptors like the leukemia

inhibitory factor (LIF) receptor and oncostatin M (OSM) receptor,

activating JAK/STAT and MAPK cascades (70). These pathways

enhance angiotensin II (Ang II) signaling, causing vasoconstriction

via the renin-angiotensin system (RAS), elevating blood pressure and

exacerbating aortic wall injury, leading to intimal tearing and false

lumen formation (71). Chemokines are small proteins that guide the

directional migration of cells through interactions with G protein–

coupled receptors on target cells. Based on N-terminal cysteine

residue arrangement, they are classified into five subfamilies: CXC,

CX, CC, XC, and CX3C (72). Most studies focus on the inflammatory

roles of the CXC and CC families. The CC family includes ~28

members, such as CCL2 (MCP-1), which enhances IL-6 expression

and reduces macrophage apoptosis in aortic walls, mitigating Ang II–

induced AAD progression (69). CCL3 (MIP-1b) has been linked to

AAD, with elevated levels found in AAD patients (73). The CXC

family includes ~17 members, such as CXCL1, which is upregulated

in AAD and promotes neutrophil infiltration and IL-6 expression,

leading to aortic dilation and rupture (74). CXCL4 exacerbates

atherosclerosis by enhancing TLR2 signaling and lipid deposition at

the aortic root. These findings highlight chemokines as critical

mediators in vascular inflammation, warranting further research

into their roles.

3.2.2 Tumor necrosis factor-a and interferons
The tumor necrosis factor (TNF) superfamily includes over 20

members, such as TNF-a, B cell activating factor (BAF),

photosensitizer-b (PS-b), TNF-related apoptosis-inducing ligand

(TRAIL), and receptor activator of nuclear factor kappa-B ligand

(RANKL), all of which potentiate inflammation through NF-kB
signaling. Liu et al. (75) reported significantly increased serum

TNF-a levels in AAD patients. TNF-a is also implicated in the

regulation of vascular SMC apoptosis, a process central to AAD

progression (76). Notably, the concentration of TNFa varies with

disease stage and progression (77), suggesting temporal heterogeneity

in its regulatory mechanisms and indicating the need for time-

resolved studies. Interferons (IFNs), a class of cytokines with potent

antiviral, antiproliferative, and immunomodulatory properties, are

crucial components of innate immunity (78). IFNs are classified into

type I, II, and III. Type I IFNs include IFNa, IFNb, IFNd, IFNe, and
IFNk, which exert broad antiviral and antiproliferative functions (79).
Type II IFN (IFN-g) is produced by T lymphocytes, antigen-

presenting cells, and NK cells, and exerts immunoregulatory

functions (80). Type III IFNs include IFN-l1 (IL-29), IFN-l2 (IL-

28A), IFN-l3 (IL-28B), and IFN-l4. Among these, IFN-g plays a

central role in AAD progression. It stimulates macrophages to secrete

IL-12 and IL-18, which further activate the NF-kB pathway,
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1654622
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2025.1654622
establishing a positive feedback loop that enhances IFN-g
expression (81). It also modifies the extracellular matrix (ECM) by

enhancing neutrophil infiltration and stimulating MMP9 release. In

aortic SMCs, IFNg activates JNK signaling, leading to cJun

phosphorylation and MMP2 upregulation (82). Furthermore, IFNg
contributes to SMC phenotypic switching, as evidenced by its ability

to suppress contractile markers such as SM22a and calmodulin (83).

Collectively, these findings support IFN-g’s role in exacerbating

vascular inflammation by modulating ECM remodeling and

SMC plasticity.
3.3 Activation of inflammation-associated
signaling pathways

The stimulator of interferon genes (STING) pathway, a key

component of the cytosolic DNA-sensing cGAS–STING axis, is a

critical mediator of pro-inflammatory responses (84). It detects

intracellular pathogenic DNA and initiates immune signaling

cascades that contribute to tissue inflammation and injury (85).

Cytosolic DNA activates cyclic GMP–AMP synthase (cGAS),

which generates the second messenger cGAMP to activate STING.

Activated STING recruits and activates kinases such as tank-binding

kinase 1 (TBK1), leading to phosphorylation and activation of

downstream effectors including interferon regulatory factor 3

(IRF3) and NF-kB (86). These pathways drive pro-inflammatory

gene expression and apoptosis. In vascular injury, damage-associated

DNA from SMC nuclei or mitochondria is phagocytosed by

macrophages, resulting in aberrant STING–IRF3 activation and

increased MMP-9 expression, thereby contributing to AAD

development (87). Toll-like receptors (TLRs) are pattern

recognition receptors that sense pathogen-associated molecular

patterns and initiate innate immune responses. TLR signaling is

mediated via the MyD88-dependent and TRIF-dependent pathways

(88). MyD88 recruits IRAK-4 to TLRs through death domain

interactions, initiating IRAK-1 phosphorylation and subsequent

activation of TNF receptor–associated factor 6 (TRAF6). This leads

to dual activation of MAPKs via AP-1 and the TAK1–TAB–NF-kB
complex. The TRIF-dependent pathway, primarily activated by TLR3

and TLR4, promotes TBK1-mediated IRF3 phosphorylation and type

I IFN expression. TRIF also facilitates NF-kB activation through

interactions with RIP1 (89). Elevated TLR4 expression has been

observed in AAD patients (90), implicating its role in vascular

inflammation and remodeling. Oxidative stress, driven by the

accumulation of reactive oxygen species (ROS), is a major

contributor to AAD initiation and progression. In the presence of

Ang II, endothelial NADPH oxidase 2 (Nox2)–derived ROS

stimulates cyclophilin A (CyPA) secretion, which in turn activates

MMPs and ROS production in SMCs (91). Increased aortic stiffness

—a precursor to AAD—induces mitochondrial dysfunction in SMCs,

exacerbating ROS generation and promoting a phenotypic shift from

contractile to synthetic states (92, 93). ROS further upregulate

hypoxia-inducible factor-1a (HIF-1a), which enhances MMP-2

and MMP-9 expression and accelerates ECM degradation (94),

facilitating AAD onset.
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3.4 Crosstalk among signaling pathways in
AAD

Multiple signaling pathways, including TGF-b, Ang II, STING, and
TLR cascades, intersect to drive the complex pathogenesis of AAD.

TRAF6 acts as a central adaptor, linking TGF-b receptor activation to

downstream effectors such as TAK1, p38 MAPK, NF-kB, and JNK

(95), while also being engaged by TLR signaling. Mitochondrial

damage caused by ROS leads to the release of cytosolic DNA, which

activates the STING–TBK1–IRF3 pathway in aortic smooth muscle

cells, resulting in pro-inflammatory responses and cell death (87, 96).

STING and TLR pathways share several common regulatory nodes; for

instance, TRIF is essential for STING dimerization and downstream

signal propagation (97), while STING activation induces SOCS1, which

negatively regulates MyD88 and thereby modulates TLR signaling

intensity (98). Moreover, IRF3, downstream of both STING and TLR

pathways, can bind Smad3, thereby preventing its recruitment to TGF-

b receptor I and dampening TGF-b–mediated transcription (99).

These intersecting pathways collectively contribute to extracellular

matrix degradation, oxidative stress, immune cell infiltration, and

phenotypic modulation of vascular smooth muscle cells. While TGF-

b primarily governs matrix remodeling and structural integrity, TLR

signaling intensifies the inflammatory response. Despite the

convergence on shared effectors such as NF-kB, each pathway exerts

distinct biological functions. A deeper understanding of this integrated

signaling network is crucial for identifying novel diagnostic markers

and therapeutic targets for the prevention and treatment of AAD.
4 Conclusion

Acute aortic dissection is a life-threatening vascular disorder

driven by innate immune activation, inflammatory cascades, and

structural degradation of the aortic wall. Endothelial injury, smooth

muscle cell dysfunction, and extracellular matrix breakdown create

a vulnerable microenvironment, while dysregulated TGF-b, Ang II,
and TLR-STING pathways amplify inflammation and oxidative

stress. Innate immunity plays a pivotal role, where macrophage

polarization imbalance, neutrophil NETosis, and monocyte-derived

cytokines exacerbate vascular injury. Additionally, cGAS-STING

and TLR signaling propagate DNA damage responses and matrix

metalloproteinase activation.

The crosstalk between these pathways creates a vicious cycle of

ECM degradation and smooth muscle cell phenotypic switching. For

instance, ROS-induced mitochondrial DNA release fuels STING-

dependent inflammation, further aggravating disease progression.

Therapeutic strategies targeting innate immunity, such as NET

inhibition, IL-6 and IL-1b blockade, or STING antagonists, may

complement conventional approaches by mitigating early

inflammatory triggers. Future research should prioritize biomarkers

of innate immune activation for early diagnosis, as well as

immunomodulatory therapies to disrupt pathogenic feedback loops.

By integrating mechanistic insights into innate immunity with

vascular biology, precision interventions could significantly

improve outcomes in this high-mortality condition.
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