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Differential gene expression
profiling and machine learning-
based discovery of key genetic
markers in VTE and CKD
Hui Li , Cai Lin* and Junjie Kuang*

Emergency Department, Huizhou First Hospital, Huizhou, Guangdong, China
Introduction: Venous thromboembolism (VTE) and chronic kidney disease (CKD)

are multifactorial disorders characterized by complex genetic and molecular

mechanisms. However, their shared genetic signatures and potential

interrelations remain poorly understood. This study aimed to identify key genes

and molecular pathways linking VTE and CKD through comprehensive

transcriptomic and machine learning analyses.

Methods: Gene expression profiles from patients with VTE and CKD, along with

corresponding controls, were analyzed to identify differentially expressed genes

(DEGs). Functional enrichment analyses were performed using Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The

intersection of DEGs between VTE and CKD was used for feature selection via

three machine learning algorithms: Least Absolute Shrinkage and Selection

Operator (LASSO), Support Vector Machine–Recursive Feature Elimination

(SVM-RFE), and Random Forest (RF). A diagnostic nomogram was constructed

based on key genes, followed by receiver operating characteristic (ROC) curve

analysis, gene set enrichment analysis (GSEA), and immune infiltration

assessment. Validation was performed using independent datasets (GSE37171

and GSE48000) and single-cell RNA sequencing data.

Results: A total of 637 DEGs (413 upregulated and 224 downregulated) were

identified in VTE patients, and 671 DEGs (99 upregulated and 572 downregulated)

were identified in CKD patients. Enrichment analyses revealed that VTE DEGs

were primarily involved in cytoplasmic translation, immune activation, and

oxidative phosphorylation, while CKD DEGs were enriched in muscle

contraction regulation, ATPase activity, and vascular smooth muscle

contraction. Twenty-three overlapping DEGs were found between CKD and

VTE, including CCNL2, HNRNPA0, PI4KA, FOS, and HBD. Machine learning

analyses identified HNRNPA0 and PI4KA as the most robust feature genes,

both exhibiting excellent diagnostic performance (AUC = 1.000). A diagnostic

nomogram based on these genes showed strong predictive accuracy and

calibration. GSEA and immune infiltration analyses revealed their involvement

in immune-related and metabolic pathways. Validation in external datasets

confirmed significantly lower expression of HNRNPA0 and PI4KA in CKD

samples. Single-cell RNA sequencing further delineated their expression across

11 cellular clusters corresponding to eight major cell types.
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Discussion: This study identifies HNRNPA0 and PI4KA as key genes shared

between VTE and CKD, providing new insights into their genetic and

immunological links. The diagnostic model based on these genes offers a

promising tool for CKD prediction and highlights potential targets for future

mechanistic and therapeutic investigations.
KEYWORDS
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1 Introduction

Venous thromboembolism (VTE) and chronic kidney disease

(CKD) are two complex and multifactorial diseases that have

profound impacts on global public health (1, 2). Both diseases,

individually, have been the focus of extensive research over the past

decades due to their high prevalence, significant morbidity, and

mortality (2, 3). However, the precise molecular mechanisms

underlying their pathogenesis remain elusive.

VTE, which encompasses both deep vein thrombosis (DVT) and

pulmonary embolism (PE), is a critical condition arising from the

formation of blood clots in the deep veins, particularly of the legs (4, 5).

It poses a significant health threat, with millions of individuals affected

worldwide. If untreated, these clots can break off and travel to the lungs,

resulting in a potentially fatal pulmonary embolism (6). The intricate

nature of VTE, with its multifactorial origin encompassing genetic,

environmental, and behavioral factors, makes its diagnosis and

treatment challenging (7, 8). Although genetic markers like Factor V

Leiden mutation are well-known for their association with VTE (9), a

comprehensive genetic landscape detailing the interaction of multiple

genes remains to be uncovered.

Chronic kidney disease is another grave health concern that

affects a significant portion of the global population (10). CKD

gradually leads to a loss of kidney function over time and can

culminate in kidney failure (11). Like VTE, the development and

progression of CKD are influenced by a myriad of factors, both

genetic and environmental (12, 13). While the genetic

predispositions of certain populations to CKD are known, the

vast network of genetic interactions and their impact on disease

progression and severity remain an area rife for exploration.

Given the complexities associated with VTE and CKD, a

molecular-level understanding is paramount. The advent of advanced

genomic technologies, especially next-generation sequencing, has

offered a profound insight into the genetic underpinnings of various

diseases (14). By utilizing such cutting-edge techniques, researchers

have the tools necessary to decipher the intricate gene networks and

pathways associated with these diseases. A holistic understanding can

guide clinicians in early detection, prognosis assessment, and

personalized treatment approaches, offering a paradigm shift from

the traditional one-size-fits-all model.
02
The intersection of genetics and computational methods has

ushered in the era of genomics-driven personalized medicine (15).

Machine learning, a subfield of artificial intelligence, has

demonstrated immense potential in decoding the vast amounts of

genomic data (16). By employing algorithms that can ‘learn’ from

and make decisions based on data, machine learning can facilitate

the identification of genetic markers and predictive modeling for

diseases like VTE and CKD. This convergence of genomics and

computational methodologies offers a promise to elucidate

previously unrecognized genetic interactions and networks

integral to the pathophysiology of these conditions.

Considering the abovementioned background and the potential

of an integrated approach, this study was conceived. Our primary

aim was to delve deep into the genetic landscape of VTE and CKD,

identify differentially expressed genes (DEGs), and employ machine

learning algorithms to pinpoint key genetic markers. By shedding

light on these markers, we hoped to pave the way for a better

understanding of disease mechanisms, early detection strategies,

and possibly, more targeted therapeutic interventions.
2 Methods

2.1 Data retrieval

Gene expression data associated with CKD andVTEwere obtained

from the Gene Expression Omnibus (GEO) database. For CKD, the

GSE66494 dataset, based on the GPL6480 platform, included placenta

samples from 48 CKD patients and 5 healthy controls, and the

GSE37171 dataset, based on GPL570, contained 75 CKD samples

and 40 healthy controls, which was used to validate diagnostic

efficiency and the robustness of simulated gene expression results.

For VTE, the GSE19151 dataset, based on the GPL571 platform,

comprised 70 VTE patient and 63 healthy control blood samples,

and the GSE48000 dataset, based on GPL10558, including 15 VTE and

11 healthy control samples, served as an independent validation set.

Additionally, single-cell RNA sequencing data for CKD (GSE198621)

incorporating samples from 3 CKD cases and 3 normal controls were

utilized to validate the expression levels of key genes at the single-cell

level. All datasets were retrieved in accordance with the GEO repository
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protocols. Prior to analysis, expression data were processed for quality

control and normalized, and batch effect correction was performed

using the ComBat method to reduce heterogeneity arising from

different platforms and experimental conditions.
2.2 Identification and enrichment analysis
of differentially expressed genes

Differentially expressed genes (DEGs) were identified using the

“limma” R package for both CKD and VTE datasets. For the

GSE19151 dataset, genes with |log2 fold change (FC)| ≥ 0.5 and

p < 0.05 were considered differentially expressed, while for the

GSE66494 dataset, the threshold was set at |log2FC| ≥ 1 and p <

0.05. The different thresholds were selected considering the sample

sizes and variability in each dataset, consistent with previously

published studies. To minimize potential bias due to platform

differences, all datasets were subjected to batch effect correction

prior to DEG analysis. Functional enrichment analysis was

conducted using the “clusterProfiler” package, including Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment. Pathways with p < 0.05 were

considered significantly enriched. For validation at the single-cell

level, key DEGs were mapped to the CKD single-cell dataset to

confirm their expression patterns across different cell types.
2.3 Identification of crosstalk genes

The crosstalk genes for the two diseases were obtained by

hybridizing the DEGs of CKD with those of VTE. To reduce the

high false discovery rate, these genes were further screened using the

Wilcoxon test (p < 0.05) between CKD and control samples, and a

similar analysis was carried out between VTE and control samples.
2.4 Establishment of the diagnostic model

To identify key gene features for the diagnostic model, we

utilized three machine learning algorithms: LASSO (Least Absolute

Shrinkage and Selection Operator), Random Forest, and SVM-RFE

(Support Vector Machine Recursive Feature Elimination). For

LASSO, we employed Cox proportional hazards regression using

the “glmnet” R package. Cross-validation was applied to optimize

the regularization parameter (l) via 10-fold cross-validation, where

the l value that minimized the mean cross-validation error was

selected. The coxnet option was used to perform survival analysis,

with 100 iterations to ensure model stability.

For Random Forest, we used the randomForest R package to

rank the importance of CKD-related marker genes. The model was

configured with 500 trees, which is the default setting, and the

number of variables at each split was set to the square root of the

total number of features. To minimize overfitting, a 5-fold cross-

validation was performed, and genes with an importance score

greater than 0.8, as determined by the mean decrease in Gini index,

were considered for further analysis.
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SVM-RFE was implemented using the e1071 R package with a

linear kernel. The cost parameter (C) was set to 1 to balance the

trade-off between maximizing the margin and minimizing

classification errors. The algorithm was run for 10 iterations to

identify the most relevant features, with genes ranked based on the

average performance across all iterations. A 10-fold cross-validation

approach was used to assess the optimal number of features to

retain, focusing on accuracy and error rates.

In the final step, a hybrid approach was adopted, combining the

results from LASSO, Random Forest, and SVM-RFE. This

consensus approach helped to identify a set of robust and reliable

gene features for further validation. The diagnostic performance of

these marker genes was evaluated using Receiver Operating

Characteristic (ROC) curve analysis, and the Area Under the

Curve (AUC) was calculated to assess their ability to distinguish

CKD samples. To validate the diagnostic potential, the expression

profiles of the selected genes were analyzed in external datasets,

including GSE37171, GSE19151, and GSE48000.
2.5 Modeling and validation of PE
diagnostic nomogram

The diagnostic nomogram was created using the “rms”

R package. Patient scores were calculated based on the expression

of individual core genes, with the total risk score defined as the sum

of risk scores for all individual genes. The dCA curve, calibration

curve, and ROC curve were utilized to evaluate the diagnostic value

of the nomogram for CKD.
2.6 Enrichment analysis of key genes and
immune cell infiltration

GSEA was used to analyze the biological function of the key

genes. Based on the gene sets of 28 immune-related cells, the

ssGSEA algorithm from the R package “GSVA” was employed to

assess the immune activity for each sample. Differences in

immune infiltration between the CKD and VTE groups were

analyzed. Additionally, the correlation between immune

infiltration levels and the expression of key genes in the two

diseases was investigated.
2.7 scRNA-seq analysis

For single-cell characterization studies, the scRNA-seq dataset

GSE198621 was analyzed using the standard protocol of “Seurat”.

Cells with fewer than 100 genes, more than 5000 total genes, and

mitochondrial gene content exceeding 20% were further filtered

out. The R package “Harmony” was employed to mitigate batch

effects between samples. The “FindVariableFeatures” function was

used to identify the top 2000 variably expressed genes. Cells were

annotated using “SingleR”, and the expression of key genes in

different cell types was subsequently validated.
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2.8 Quantitative real-time PCR validation
of key genes

Peripheral blood samples were collected from 15 patients with

clinically diagnosed CKD (stage 3–4) and 15 age- and sex-matched

healthy controls at Huizhou First People’s Hospital, following

approval by the institutional Ethics Committee and acquisition of

written informed consent from all participants.

Peripheral blood mononuclear cells (PBMCs) were isolated from

whole blood using Ficoll-Paque density gradient centrifugation

according to standard protocols. Total RNA was extracted from

PBMCs using the FastPure Cell/Tissue Total RNA Isolation Kit

(Vazyme, China) following the manufacturer’s instructions. RNA

concentration and purity were assessed by NanoDrop

spectrophotometry. Reverse transcription was performed using the

ReverTra Ace qPCR RT Master Mix with gDNA Remover (Toyobo,

Japan) to synthesize complementary DNA (cDNA).

qRT-PCR was conducted using SYBR Premix Ex Taq II (Takara,

Japan) on a real-time PCR system. The thermocycling conditions were

as follows: initial denaturation at 95 °C for 10 minutes, followed by 45

cycles of 95 °C for 5 seconds and 60 °C for 30 seconds. The

housekeeping gene GAPDH was used as the internal control. Primer

sequences are listed in Supplementary File 1.
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2.9 Statistical analysis

All statistical analyses were performed using R (version 4.3.2) and

GraphPad Prism 9.0. Differential expression was determined with the

“limma” package, and p values were adjusted using the Benjamini–

Hochberg method. Comparisons between two groups were analyzed

using Student’s t-test or the Wilcoxon rank-sum test as appropriate.

Correlations were assessed by Spearman’s method. Diagnostic

performance was evaluated by ROC curve analysis, and qRT-PCR

results were calculated using the 2^–DDCtmethod. A two-tailed p < 0.05

was considered statistically significant. Infigures, significance is indicated

as follows: p < 0.05 (*), p < 0.01 (**), p < 0.001 (***), and p< 0.0001 (****).
3 Results

3.1 Identification of differentially expressed
genes

Differential analysis revealed that between VTE patients and the

control group, there were 637 differentially expressed genes, of

which 224 were downregulated and 413 were upregulated

(Figures 1A, C). Analysis of differences between CKD patients
FIGURE 1

Differential gene expression profiles in VTE and CKD patients compared to controls. (A) Upset plot showing the number of downregulated (224) and
upregulated (413) genes in VTE patients versus control. (B) Upset plot illustrating the number of downregulated (572) and upregulated (99) genes in
CKD patients versus control. (C) Heatmap representing the expression profiles of the differentially expressed genes in VTE patients compared to
controls. Red indicates upregulated genes, and blue indicates downregulated genes. (D) Heatmap showcasing the expression profiles of the
differentially expressed genes in CKD patients compared to controls. Red denotes upregulated genes, while blue indicates downregulated genes.
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and the control group showed 671 differentially expressed genes,

including 572 downregulated genes and 99 upregulated genes

(Figures 1B, D).
3.2 Enrichment analysis of differentially
expressed genes

The biological functions of differentially expressed genes in

different diseases were explored through GO and KEGG

enrichment analyses. Differentially expressed genes in VTE

patients were mainly enriched in cytoplasmic translation, cell

activation involved in the immune response, and ribosomal

subunits (Figure 2A). KEGG enrichment analysis showed that

VTE differentially expressed genes were mainly enriched in

oxidative phosphorylation, reactive oxygen species associated with

chemical carcinogenesis, and signaling pathways of the 2019

coronavirus disease (Figure 2C). Differentially expressed genes in

CKD patients were primarily enriched in regulation of muscle

contraction, cation-transporting ATPase complex, and

endopeptidase inhibitor activity (Figure 2B). KEGG enrichment

analysis showed that CKD differentially expressed genes were

primarily enriched in signaling pathways such as pancreatic
Frontiers in Immunology 05
secretion, protein digestion and absorption, and vascular smooth

muscle contraction (Figure 2D).
3.3 Identification of crosstalk genes

Venn diagram results identified 23 overlapping genes

differentially expressed in both CKD and VTE diseases, including

CCNL2, HNRNPA0, PI4KA, FOS, HBD, TSC22D3, DUSP1, and

ZNF692 (Figure 3A). Results from the Wilcoxon test indicated that

these 23 genes were significantly differentially expressed in both

CKD and VTE diseases (Figures 3B, C).
3.4 Feature gene selection using LASSO,
random forest, and SVM-RFE algorithms

Upon performing 10-fold cross-validation, the optimal lambda

for the LASSO algorithm was determined to be 0.002. The penalty

parameter (l) corresponding to the minimal partial likelihood

deviance was selected, yielding 5 feature genes: CCNL2,

HNRNPA0, PI4KA, FOS, and HBD (Figures 4A). In contrast, for

SVM-RFE, the model classifier with the highest accuracy and the
FIGURE 2

GO and KEGG enrichment analyses of differentially expressed genes in VTE and CKD. (A) Bar chart illustrating the top GO enrichment terms for
differentially expressed genes in VTE patients, highlighting cytoplasmic translation, cell activation in the immune response, and ribosomal subunits.
(B) Bar chart demonstrating the top GO enrichment terms for differentially expressed genes in CKD patients, emphasizing the regulation of muscle
contraction, cation-transporting ATPase complex, and endopeptidase inhibitor activity. (C) Bar chart depicting the top KEGG pathways enriched in
VTE differentially expressed genes, with a focus on oxidative phosphorylation, reactive oxygen species related to chemical carcinogenesis, and 2019
coronavirus disease signaling pathways. (D) Bar chart revealing the top KEGG pathways enriched in CKD differentially expressed genes, highlighting
pancreatic secretion, protein digestion and absorption, and vascular smooth muscle contraction.
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lowest error had 2 features: HNRNPA0 and PI4KA (Figures 4B, C).

The random forest algorithm selected 7 genes with significance

greater than 0.8, including HNRNPA0, FOS, PI4KA, DLST, NGRN,

CCNL2, and SEC16A (Figures 4D, E). Based on the aforementioned

three machine learning algorithms, two key genes were selected:

HNRNPA0 and PI4KA (Figure 4F). The AUC for the key genes

HNRNPA0 and PI4KA were both 1.000 (Figures 4G, H).
3.5 Construction and testing of the CKD
prediction nomogram based on feature
genes

The “rms” R package was used to construct a nomogram model

for RM diagnosis based on the feature genes (HNRNPA0 and

PI4KA) (Figure 5A). Calibration curves indicated a minimal

discrepancy between the predicted CKD risk and the actual CKD

risk, suggesting that the nomogram model has high accuracy

(Figure 5B). Decision curve analysis (DCA) demonstrated that

CKD patients could benefit from the nomogram model

(Figure 5C). The validity of this model was also confirmed by

gene and nomogram ROC curve analyses (Figures 5D, E).
Frontiers in Immunology 06
3.6 GSEA enrichment analysis and key
gene immune cell infiltration

GSEA results suggested that HNRNPA0 was primarily

involved in pathways like Amoebiasis, Ascorbate and aldarate

metabolism (Figure 6A). PI4KA was mainly enriched in pathways

like Ascorbate and aldarate metabolism and Butanoate

metabolism (Figure 6A). Results from ssGSEA for immune cell

infiltration revealed that VTE patients exhibited higher

infiltration levels of activated CD8 T cells, effector memory

CD4 T cells, CD56bright natural killer cells, and eosinophils,

while having lower infiltration of activated B cells, central

memory CD4 T cells, and plasmacytoid dendritic cell-like cells

(Figure 6B). For GSE19151, the immune cell infiltration analysis

revealed that HNRNPA0 was significantly associated with 15

immune cell types, positively correlating with cell types such as

Central memory CD4 T cell, Plasmacytoid dendritic cell, Effector

memory CD8 T cell, and negatively correlating with 4 immune

cell types including Type 17 T helper cell, Macrophage

(Figure 6D). PI4KA showed positive correlations with 9

immune cell types and negative correlations with 8 cell types

including Type 17 T helper cell, Effector memory CD4 T cell
FIGURE 3

Identification of crosstalk genes differentially expressed in both CKD and VTE. (A) Venn diagram showcasing the overlap of 23 genes that are
differentially expressed in both CKD and VTE diseases, with notable genes labeled. (B) Bar chart displaying the expression levels of the 23 overlapping
genes in CKD patients versus controls, indicating their differential expression significance. (C) Bar chart illustrating the expression levels of the 23
overlapping genes in VTE patients versus controls, emphasizing their differential expression significance. **p < 0.01, ***p < 0.001.
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(Figure 6E). For GSE66494, ssGSEA analysis indicated a higher

infiltration of Type 2 T helper cells and Immature B cells in CKD

patients (Figure 6C). Within GSE66494, the correlation analysis

between immune cells and key genes showed that HNRNPA0

negatively correlated with Central memory CD8 T cell,

Neutrophil (Figure 6F). PI4KA exhibited a positive correlation

with cell types including Type 17 T helper cell and negative

correlations with cell types such as Effector memory CD4 T cell,

Type 2 T helper cell (Figure 6G).
3.7 Validation of key genes

For the GSE37171 dataset, the expression levels of HNRNPA0

and PI4KA in CKD patients were lower than in normal samples

(Figures 7A, B). The AUC for HNRNPA0 and PI4KA were 0.720
Frontiers in Immunology 07
and 0.859, respectively (Figures 7E, F). Similarly, differential

expression analysis of the key genes in the GSE48000 dataset

produced consistent results (Figures 7C, D). Furthermore, the

AUC for HNRNPA0 and PI4KA were 0.985 and 1.000,

respectively (Figures 7G, H). ROC curve analysis for key genes in

GSE19151 showed that the AUC for HNRNPA0 and PI4KA were

0.839 and 0.881, respectively (Figures 7I, J).
3.8 Expression of key genes at the single-
cell level

Following the data filtering and integration described in the

methods, we obtained gene expression profiles for 25,449 cells from

control samples and 29,463 cells from CKD samples (Figures 8A,

B). Clustering all cells, we identified 11 cell clusters (Figure 8C).
FIGURE 4

Selection of feature genes via LASSO, SVM-RFE, and Random Forest algorithms. (A) Tuning of the regularization penalty in LASSO with a 10-fold
cross-validation. The optimal lambda value is indicated by the vertical line. (B) Feature ranking in SVM-RFE, highlighting HNRNPA0 and PI4KA as the
two most significant features. (C) Variable importance plot for the SVM-RFE algorithm, emphasizing the significance of the top features. (D) Variable
importance plot for the Random Forest algorithm. The y-axis represents the genes, and the x-axis denotes their significance. Genes with significance
greater than 0.8 are highlighted. (E) Bar chart showcasing the seven significant genes selected by the Random Forest algorithm. (F) Venn diagram
illustrating the overlap between the feature genes selected by the three algorithms, identifying HNRNPA0 and PI4KA as the key genes. (G) ROC
curve for HNRNPA0, indicating an AUC value of 1.000. (H) ROC curve for PI4KA, demonstrating an AUC value of 1.000.
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Annotation and visualization of the 11 cell clusters resulted in eight

cell types, such as Epithelial cells and Macrophages (Figures 8D, E).

Finally, the expression of key genes across different cell types was

displayed (Figures 8F, G).
3.9 qRT-PCR validation of key gene
expression in CKD patients

To validate the expression of key genes identified from the

transcriptomic and single-cell analyses, we performed qRT-PCR on

PBMCs collected from 15 CKD patients and 15 healthy controls.

Consistent with the multi-omics and single-cell findings, both

HNRNPA0 and PI4KA exhibited significantly lower mRNA

expression levels in CKD patients compared to healthy

individuals (Figures 9A, B).
4 Discussion

In this study, we employed a multi-omics approach integrating

transcriptomic analysis, machine learning, and single-cell RNA

sequencing to identify and validate key genes involved in VTE and

CKD. Through comprehensive differential expression analysis,
Frontiers in Immunology 08
functional enrichment, cross-disease gene screening, and feature

gene selection via LASSO, SVM-RFE, and random forest

algorithms, we identified HNRNPA0 and PI4KA as robust

biomarkers shared by both diseases. These genes were further

validated in independent datasets and confirmed to be significantly

upregulated in CKD patients using qRT-PCR. Our findings highlight

the potential involvement of these genes in the pathogenesis of CKD

and suggest their utility as predictive biomarkers.

HNRNPA0, a member of the heterogeneous nuclear

ribonucleoprotein (hnRNP) family, has been previously

characterized as a downstream effector of the p38/MK2 checkpoint

kinase pathway, operating independently of p53 to regulate cell cycle

arrest and mRNA stability via AU-rich elements (AREs) (17–19).

Notably, HNRNPA0 stabilizes Gadd45a and p27(Kip1) mRNAs upon

DNA damage, contributing to chemotherapy resistance in lung cancer

and to hematopoietic lineage fate decisions in murine models through

post-transcriptional regulation of ARE-containing transcripts (20).

These functions suggest a broader role in inflammatory signaling and

cellular stress responses—key hallmarks in both CKD progression and

thrombotic predisposition.

In our study, HNRNPA0 was significantly upregulated in both

CKD and VTE samples, and its expression strongly correlated with

immune cell infiltration, particularly effector/memory T cells and

plasmacytoid dendritic cells, while showing negative associations
FIGURE 5

Construction and evaluation of the CKD prediction nomogram based on feature genes. (A) Nomogram for CKD risk prediction. Feature genes
HNRNPA0 and PI4KA are used as predictive factors with points assigned for each gene expression level. The total points are then converted to a
probability of CKD diagnosis. (B) Calibration curve for the CKD prediction nomogram. The y-axis represents the observed CKD risk, and the x-axis
represents the predicted CKD risk. A 45-degree diagonal line indicates perfect calibration. (C) Decision curve analysis (DCA) for the CKD prediction
nomogram. The y-axis represents the net benefit, and the x-axis denotes the threshold probability. The nomogram model’s curve is compared to
the treat-all-patients and treat-none curves. (D) ROC curve analysis for the gene-based model, highlighting the performance of feature genes in
predicting CKD. (E) ROC curve analysis for the CKD prediction nomogram, showcasing its diagnostic accuracy.
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with macrophages and Th17 cells. These observations support its

putative role as a modulator of immune homeostasis. Interestingly,

HNRNPA0 was found to be highly expressed in macrophages,

which aligns with findings from recent studies indicating that

HNRNPA0 can regulate mRNA stability and subcellular

distribution in immune cells. Specifically, HNRNPA0 has been

shown to bind to the 3’-UTR of CCR2, a receptor crucial for

macrophage migration, influencing both CCR2 mRNA stability

and its subcellular localization (21). In line with recent findings in

neurodegenerative diseases where HNRNPA0 forms insoluble

aggregates with tau protein, its dysregulation may also reflect

broader RNA-process ing dis turbances under chronic

inflammatory conditions (22, 23). Furthermore, its altered

expression in aging-associated hematopoiesis and myeloid

differentiation implies potential involvement in immune

senescence and immune dysregulation, both prominent features

of advanced CKD and pro-thrombotic states (24, 25).

PI4KA is a lipid kinase involved in the generation of

phosphatidylinositol 4-phosphate (PI4P), a precursor of PIP2,

which is central to multiple cell signaling cascades including

AKT, ERK, and calcium pathways (26–28). Structurally, PI4KA

exists as part of a heterotrimeric complex with TTC7 and FAM126,

which facilitates its recruitment to the plasma membrane via

EFR3A/B, enabling spatial control of signaling (29). Disruption of

this complex has been shown to impair PI4KA localization and
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activity, with consequences for membrane dynamics, autophagy,

and energy metabolism.

Our results indicated that PI4KA is not only down-regulated in

CKD but also correlates with several immune cell subsets, including

Th17 and effector CD4+ T cells, implicating a role in immune cell

differentiation or activation. Emerging studies have suggested that

mutations in PI4KA lead to B cell metabolic dysfunction, mTOR

pathway hyperactivation, and hypogammaglobulinemia—

mechanistically linking PI4KA to immune dysregulation in

chronic disease states (30, 31). Notably, PI4KA has also been

associated with platelet activation and coagulation, underscoring

its potential role in VTE pathogenesis (29). These mechanistic links

between lipid signaling, immune modulation, and thrombosis

provide a strong rationale for further investigation of PI4KA in

CKD-VTE comorbidity.

Our ssGSEA results revealed distinct immune cell infiltration

patterns in both CKD and VTE, modulated by the expression of the

key genes HNRNPA0 and PI4KA. In CKD, higher infiltration of

Th2 cells and immature B cells aligns with maladaptive immune

responses contributing to renal fibrosis (32, 33). While Th2 cells are

typically anti-inflammatory, their persistent activity drives tissue

fibrosis through cytokines like IL-4 and IL-13 (34, 35). Additionally,

a reduction in protective B cell subsets (B1 and B2 cells) has been

linked to CKD progression, highlighting the importance of the B

cell landscape in renal outcomes. The negative correlation between
FIGURE 6

GSEA enrichment analysis and immune cell infiltration associated with key genes. (A) Enrichment plots for HNRNPA0 and PI4KA, emphasizing its
association with pathways like Amoebiasis and Ascorbate and aldarate metabolism. (B) ssGSEA analysis of immune cell infiltration in VTE patients,
highlighting the relative infiltration levels of specific immune cells. (C) ssGSEA analysis of immune cell infiltration in CKD patients from GSE66494
dataset. (D) Correlation heatmap illustrating the relationship between HNRNPA0 expression and infiltration of various immune cell types in the
GSE19151 dataset. (E) Correlation heatmap depicting the association between PI4KA expression and infiltration of different immune cell types in the
GSE19151 dataset. (F) Correlation analysis between HNRNPA0 and specific immune cell types in the GSE66494 dataset. (G) Correlation analysis
between PI4KA and certain immune cell types in the GSE66494 dataset. *p < 0.05, **p < 0.01, ***p < 0.001.
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A in CKD patients compared to controls in the GSE37171 dataset. (C, D) Differential expression
or HNRNPA0 and PI4KA in the GSE37171 dataset, highlighting their respective AUC values. (G,
(I, J) ROC curve analyses for HNRNPA0 and PI4KA in the GSE19151 dataset, showcasing their
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FIGURE 7

Validation of key genes in different datasets. (A, B) Boxplots depicting the expression levels of HNRNPA0 and PI4K
analysis of HNRNPA0 and PI4KA in CKD patients vs. controls in the GSE48000 dataset. (E, F) ROC curve analyses f
H) ROC curve analyses for HNRNPA0 and PI4KA in the GSE48000 dataset, emphasizing their diagnostic accuracy.
AUC values.
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PI4KA and Th17 cells is noteworthy, as Th17 cells are potent

drivers of kidney injury and fibrosis (36). This suggests that PI4KA

may help regulate excessive Th17-mediated inflammation,

potentially through pathways like TREM-2 in dendritic cells (37).

The positive correlation of HNRNPA0 with effector memory CD8+
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T cells and plasmacytoid dendritic cells further suggests its role in

immune surveillance and memory responses within the kidney. In

VTE, the immune landscape reflects sterile inflammation, with

elevated levels of activated CD8+ T cells and effector memory

CD4+ T cells, consistent with their roles in deep vein thrombosis.
FIGURE 8

Single-cell analysis of key gene expression in CKD samples. (A, B) UMAP plots visualizing gene expression profiles from control samples (25,449
cells) and CKD samples (29,463 cells). (C) UMAP visualization of 11 identified cell clusters based on gene expression profiles. (D) Annotation of the 11
cell clusters, leading to the determination of eight distinct cell types. (E) UMAP plot displaying the distribution of the eight annotated cell types.
(F) Expression heatmap showcasing the expression levels of HNRNPA0 across the eight identified cell types. (G) Expression heatmap illustrating the
expression levels of PI4KA across the eight determined cell types.
FIGURE 9

Validation of HNRNPA0 and PI4KA expression in PBMCs from CKD patients by qRT-PCR. (A, B) Bar graph showing the relative mRNA expression
levels of HNRNPA0 and PI4KA in PBMCs from CKD patients (n = 15) and healthy controls (n = 15). ****p < 0.0001.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1654673
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2025.1654673
T cells influence thrombus resolution through antigen-independent

activation and cytokine production, such as IFN-g (38). Moreover,

B cells can modulate thrombosis through cytokine-driven platelet

production and by influencing T-cell responses (39). The

association of PI4KA with immune cells, particularly its role in

platelet signaling, links lipid kinase activity to immune cell function

and thrombus formation. Overall, the immune infiltration patterns

linked to HNRNPA0 and PI4KA not only correlate with disease

outcomes but also reflect active immunological processes in CKD

and VTE.

Our identification of 23 overlapping differentially expressed

genes between CKD and VTE, including HNRNPA0 and PI4KA,

supports the notion of shared molecular pathways underlying these

seemingly distinct conditions. Both diseases exhibit systemic

inflammation, endothelial dysfunction, and immune imbalance,

which are likely driven by common upstream regulators. Through

machine learning-based prioritization and robust validation,

HNRNPA0 and PI4KA emerged as core hubs within these

disease networks.

Furthermore, the nomogram model constructed from these

genes demonstrated high diagnostic performance (AUC = 1.000),

and its calibration and decision curve analysis indicated clinical

utility. The non-invasive detection of these markers in PBMCs

further enhances their translational potential, particularly in early-

stage CKD or for assessing thrombotic risk.
5 Limitations and future perspectives

This study has several limitations. The qRT-PCR validation was

conducted on a small cohort, and future studies should include

larger, ethnically diverse populations to assess the generalizability of

our findings. While we focused on HNRNPA0 and PI4KA, our

analyses also identified 23 other overlapping genes that may play

important roles in CKD and VTE. Investigating these genes further

could provide deeper insights into immune regulation, kidney

dysfunction, and thrombosis. Moreover, although we have

suggested immune-regulatory roles for HNRNPA0 and PI4KA,

direct mechanistic evidence remains lacking, and functional

studies in immune and kidney cell models, or animal models, are

needed. Future work should also consider integrating advanced

modeling techniques, such as logistic frameworks with nested cross-

validation, confidence intervals, and decision-curve analysis, to

better validate the clinical applicability of our findings. Finally,

ensuring feature selection and preprocessing within cross-

validation folds will be essential to prevent data leakage and

optimize model performance.
6 Conclusion

In conclusion, this study identifies HNRNPA0 and PI4KA as

potential biomarkers and immune modulators in CKD and VTE

through integrative multi-omics and single-cell analysis. Their

consistent upregulation, strong diagnostic performance, and
Frontiers in Immunology 12
associations with immune pathways suggest important roles in

chronic inflammation, vascular dysfunction, and immune-

metabolic signaling. These findings offer a new perspective on the

molecular overlap between kidney and thrombotic diseases and

provide a basis for future therapeutic exploration.
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