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Differential gene expression
profiling and machine learning-
based discovery of key genetic
markers in VTE and CKD

Hui Li, Cai Lin* and Junjie Kuang*

Emergency Department, Huizhou First Hospital, Huizhou, Guangdong, China

Introduction: Venous thromboembolism (VTE) and chronic kidney disease (CKD)
are multifactorial disorders characterized by complex genetic and molecular
mechanisms. However, their shared genetic signatures and potential
interrelations remain poorly understood. This study aimed to identify key genes
and molecular pathways linking VTE and CKD through comprehensive
transcriptomic and machine learning analyses.

Methods: Gene expression profiles from patients with VTE and CKD, along with
corresponding controls, were analyzed to identify differentially expressed genes
(DEGs). Functional enrichment analyses were performed using Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The
intersection of DEGs between VTE and CKD was used for feature selection via
three machine learning algorithms: Least Absolute Shrinkage and Selection
Operator (LASSO), Support Vector Machine—Recursive Feature Elimination
(SVM-RFE), and Random Forest (RF). A diagnostic nomogram was constructed
based on key genes, followed by receiver operating characteristic (ROC) curve
analysis, gene set enrichment analysis (GSEA), and immune infiltration
assessment. Validation was performed using independent datasets (GSE37171
and GSE48000) and single-cell RNA sequencing data.

Results: A total of 637 DEGs (413 upregulated and 224 downregulated) were
identified in VTE patients, and 671 DEGs (99 upregulated and 572 downregulated)
were identified in CKD patients. Enrichment analyses revealed that VTE DEGs
were primarily involved in cytoplasmic translation, immune activation, and
oxidative phosphorylation, while CKD DEGs were enriched in muscle
contraction regulation, ATPase activity, and vascular smooth muscle
contraction. Twenty-three overlapping DEGs were found between CKD and
VTE, including CCNL2, HNRNPAO, PI4KA, FOS, and HBD. Machine learning
analyses identified HNRNPAO and PI4KA as the most robust feature genes,
both exhibiting excellent diagnostic performance (AUC = 1.000). A diagnostic
nomogram based on these genes showed strong predictive accuracy and
calibration. GSEA and immune infiltration analyses revealed their involvement
in immune-related and metabolic pathways. Validation in external datasets
confirmed significantly lower expression of HNRNPAO and PI4KA in CKD
samples. Single-cell RNA sequencing further delineated their expression across
11 cellular clusters corresponding to eight major cell types.
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Discussion: This study identifies HNRNPAO and PI4KA as key genes shared
between VTE and CKD, providing new insights into their genetic and
immunological links. The diagnostic model based on these genes offers a
promising tool for CKD prediction and highlights potential targets for future
mechanistic and therapeutic investigations.

VTE (venous thromboembolism), CKD (chronic kidney disease), differential gene
expression, machine learning algorithms, diagnostic nomogram

1 Introduction

Venous thromboembolism (VTE) and chronic kidney disease
(CKD) are two complex and multifactorial diseases that have
profound impacts on global public health (1, 2). Both diseases,
individually, have been the focus of extensive research over the past
decades due to their high prevalence, significant morbidity, and
mortality (2, 3). However, the precise molecular mechanisms
underlying their pathogenesis remain elusive.

VTE, which encompasses both deep vein thrombosis (DVT) and
pulmonary embolism (PE), is a critical condition arising from the
formation of blood clots in the deep veins, particularly of the legs (4, 5).
It poses a significant health threat, with millions of individuals affected
worldwide. If untreated, these clots can break off and travel to the lungs,
resulting in a potentially fatal pulmonary embolism (6). The intricate
nature of VTE, with its multifactorial origin encompassing genetic,
environmental, and behavioral factors, makes its diagnosis and
treatment challenging (7, 8). Although genetic markers like Factor V
Leiden mutation are well-known for their association with VTE (9), a
comprehensive genetic landscape detailing the interaction of multiple
genes remains to be uncovered.

Chronic kidney disease is another grave health concern that
affects a significant portion of the global population (10). CKD
gradually leads to a loss of kidney function over time and can
culminate in kidney failure (11). Like VTE, the development and
progression of CKD are influenced by a myriad of factors, both
genetic and environmental (12, 13). While the genetic
predispositions of certain populations to CKD are known, the
vast network of genetic interactions and their impact on disease
progression and severity remain an area rife for exploration.

Given the complexities associated with VTE and CKD, a
molecular-level understanding is paramount. The advent of advanced
genomic technologies, especially next-generation sequencing, has
offered a profound insight into the genetic underpinnings of various
diseases (14). By utilizing such cutting-edge techniques, researchers
have the tools necessary to decipher the intricate gene networks and
pathways associated with these diseases. A holistic understanding can
guide clinicians in early detection, prognosis assessment, and
personalized treatment approaches, offering a paradigm shift from
the traditional one-size-fits-all model.
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The intersection of genetics and computational methods has
ushered in the era of genomics-driven personalized medicine (15).
Machine learning, a subfield of artificial intelligence, has
demonstrated immense potential in decoding the vast amounts of
genomic data (16). By employing algorithms that can ‘learn’ from
and make decisions based on data, machine learning can facilitate
the identification of genetic markers and predictive modeling for
diseases like VTE and CKD. This convergence of genomics and
computational methodologies offers a promise to elucidate
previously unrecognized genetic interactions and networks
integral to the pathophysiology of these conditions.

Considering the abovementioned background and the potential
of an integrated approach, this study was conceived. Our primary
aim was to delve deep into the genetic landscape of VIE and CKD,
identify differentially expressed genes (DEGs), and employ machine
learning algorithms to pinpoint key genetic markers. By shedding
light on these markers, we hoped to pave the way for a better
understanding of disease mechanisms, early detection strategies,
and possibly, more targeted therapeutic interventions.

2 Methods
2.1 Data retrieval

Gene expression data associated with CKD and VTE were obtained
from the Gene Expression Omnibus (GEO) database. For CKD, the
GSE66494 dataset, based on the GPL6480 platform, included placenta
samples from 48 CKD patients and 5 healthy controls, and the
GSE37171 dataset, based on GPL570, contained 75 CKD samples
and 40 healthy controls, which was used to validate diagnostic
efficiency and the robustness of simulated gene expression results.
For VTE, the GSE19151 dataset, based on the GPL571 platform,
comprised 70 VTE patient and 63 healthy control blood samples,
and the GSE48000 dataset, based on GPL10558, including 15 VTE and
11 healthy control samples, served as an independent validation set.
Additionally, single-cell RNA sequencing data for CKD (GSE198621)
incorporating samples from 3 CKD cases and 3 normal controls were
utilized to validate the expression levels of key genes at the single-cell
level. All datasets were retrieved in accordance with the GEO repository
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protocols. Prior to analysis, expression data were processed for quality
control and normalized, and batch effect correction was performed
using the ComBat method to reduce heterogeneity arising from
different platforms and experimental conditions.

2.2 Identification and enrichment analysis
of differentially expressed genes

Differentially expressed genes (DEGs) were identified using the
“limma” R package for both CKD and VTE datasets. For the
GSE19151 dataset, genes with [log2 fold change (FC)| > 0.5 and
p < 0.05 were considered differentially expressed, while for the
GSE66494 dataset, the threshold was set at [log2FC| > 1 and p <
0.05. The different thresholds were selected considering the sample
sizes and variability in each dataset, consistent with previously
published studies. To minimize potential bias due to platform
differences, all datasets were subjected to batch effect correction
prior to DEG analysis. Functional enrichment analysis was
conducted using the “clusterProfiler” package, including Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment. Pathways with p < 0.05 were
considered significantly enriched. For validation at the single-cell
level, key DEGs were mapped to the CKD single-cell dataset to
confirm their expression patterns across different cell types.

2.3 ldentification of crosstalk genes

The crosstalk genes for the two diseases were obtained by
hybridizing the DEGs of CKD with those of VTE. To reduce the
high false discovery rate, these genes were further screened using the
Wilcoxon test (p < 0.05) between CKD and control samples, and a
similar analysis was carried out between VTE and control samples.

2.4 Establishment of the diagnostic model

To identify key gene features for the diagnostic model, we
utilized three machine learning algorithms: LASSO (Least Absolute
Shrinkage and Selection Operator), Random Forest, and SVM-RFE
(Support Vector Machine Recursive Feature Elimination). For
LASSO, we employed Cox proportional hazards regression using
the “glmnet” R package. Cross-validation was applied to optimize
the regularization parameter (L) via 10-fold cross-validation, where
the A value that minimized the mean cross-validation error was
selected. The coxnet option was used to perform survival analysis,
with 100 iterations to ensure model stability.

For Random Forest, we used the randomForest R package to
rank the importance of CKD-related marker genes. The model was
configured with 500 trees, which is the default setting, and the
number of variables at each split was set to the square root of the
total number of features. To minimize overfitting, a 5-fold cross-
validation was performed, and genes with an importance score
greater than 0.8, as determined by the mean decrease in Gini index,
were considered for further analysis.
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SVM-REFE was implemented using the e1071 R package with a
linear kernel. The cost parameter (C) was set to 1 to balance the
trade-off between maximizing the margin and minimizing
classification errors. The algorithm was run for 10 iterations to
identify the most relevant features, with genes ranked based on the
average performance across all iterations. A 10-fold cross-validation
approach was used to assess the optimal number of features to
retain, focusing on accuracy and error rates.

In the final step, a hybrid approach was adopted, combining the
results from LASSO, Random Forest, and SVM-RFE. This
consensus approach helped to identify a set of robust and reliable
gene features for further validation. The diagnostic performance of
these marker genes was evaluated using Receiver Operating
Characteristic (ROC) curve analysis, and the Area Under the
Curve (AUC) was calculated to assess their ability to distinguish
CKD samples. To validate the diagnostic potential, the expression
profiles of the selected genes were analyzed in external datasets,
including GSE37171, GSE19151, and GSE48000.

2.5 Modeling and validation of PE
diagnostic nomogram

The diagnostic nomogram was created using the “rms”
R package. Patient scores were calculated based on the expression
of individual core genes, with the total risk score defined as the sum
of risk scores for all individual genes. The dCA curve, calibration
curve, and ROC curve were utilized to evaluate the diagnostic value
of the nomogram for CKD.

2.6 Enrichment analysis of key genes and
immune cell infiltration

GSEA was used to analyze the biological function of the key
genes. Based on the gene sets of 28 immune-related cells, the
ssGSEA algorithm from the R package “GSVA” was employed to
assess the immune activity for each sample. Differences in
immune infiltration between the CKD and VTE groups were
analyzed. Additionally, the correlation between immune
infiltration levels and the expression of key genes in the two
diseases was investigated.

2.7 scRNA-seq analysis

For single-cell characterization studies, the scRNA-seq dataset
GSE198621 was analyzed using the standard protocol of “Seurat”.
Cells with fewer than 100 genes, more than 5000 total genes, and
mitochondrial gene content exceeding 20% were further filtered
out. The R package “Harmony” was employed to mitigate batch
effects between samples. The “FindVariableFeatures” function was
used to identify the top 2000 variably expressed genes. Cells were
annotated using “SingleR”, and the expression of key genes in
different cell types was subsequently validated.
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2.8 Quantitative real-time PCR validation
of key genes

Peripheral blood samples were collected from 15 patients with
clinically diagnosed CKD (stage 3-4) and 15 age- and sex-matched
healthy controls at Huizhou First People’s Hospital, following
approval by the institutional Ethics Committee and acquisition of
written informed consent from all participants.

Peripheral blood mononuclear cells (PBMCs) were isolated from
whole blood using Ficoll-Paque density gradient centrifugation
according to standard protocols. Total RNA was extracted from
PBMCs using the FastPure Cell/Tissue Total RNA Isolation Kit
(Vazyme, China) following the manufacturer’s instructions. RNA
concentration and purity were assessed by NanoDrop
spectrophotometry. Reverse transcription was performed using the
ReverTra Ace qPCR RT Master Mix with gDNA Remover (Toyobo,
Japan) to synthesize complementary DNA (cDNA).

qRT-PCR was conducted using SYBR Premix Ex Taq II (Takara,
Japan) on a real-time PCR system. The thermocycling conditions were
as follows: initial denaturation at 95 °C for 10 minutes, followed by 45
cycles of 95 °C for 5 seconds and 60 °C for 30 seconds. The
housekeeping gene GAPDH was used as the internal control. Primer
sequences are listed in Supplementary File 1.

10.3389/fimmu.2025.1654673

2.9 Statistical analysis

All statistical analyses were performed using R (version 4.3.2) and
GraphPad Prism 9.0. Differential expression was determined with the
“limma” package, and p values were adjusted using the Benjamini-
Hochberg method. Comparisons between two groups were analyzed
using Student’s t-test or the Wilcoxon rank-sum test as appropriate.
Correlations were assessed by Spearman’s method. Diagnostic
performance was evaluated by ROC curve analysis, and qRT-PCR
results were calculated using the 2A-AACt method. A two-tailed p < 0.05
was considered statistically significant. In figures, significance is indicated
as follows: p < 0.05 (*), p <0.01 (**), p < 0.001 (***),and p < 0.0001 (****).

3 Results

3.1 Identification of differentially expressed
genes

Differential analysis revealed that between VTE patients and the
control group, there were 637 differentially expressed genes, of
which 224 were downregulated and 413 were upregulated
(Figures 1A, C). Analysis of differences between CKD patients
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FIGURE 1

Differential gene expression profiles in VTE and CKD patients compared to controls. (A) Upset plot showing the number of downregulated (224) and
upregulated (413) genes in VTE patients versus control. (B) Upset plot illustrating the number of downregulated (572) and upregulated (99) genes in
CKD patients versus control. (C) Heatmap representing the expression profiles of the differentially expressed genes in VTE patients compared to
controls. Red indicates upregulated genes, and blue indicates downregulated genes. (D) Heatmap showcasing the expression profiles of the
differentially expressed genes in CKD patients compared to controls. Red denotes upregulated genes, while blue indicates downregulated genes.
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FIGURE 2

GO and KEGG enrichment analyses of differentially expressed genes in VTE and CKD. (A) Bar chart illustrating the top GO enrichment terms for
differentially expressed genes in VTE patients, highlighting cytoplasmic translation, cell activation in the immune response, and ribosomal subunits.
(B) Bar chart demonstrating the top GO enrichment terms for differentially expressed genes in CKD patients, emphasizing the regulation of muscle
contraction, cation-transporting ATPase complex, and endopeptidase inhibitor activity. (C) Bar chart depicting the top KEGG pathways enriched in
VTE differentially expressed genes, with a focus on oxidative phosphorylation, reactive oxygen species related to chemical carcinogenesis, and 2019
coronavirus disease signaling pathways. (D) Bar chart revealing the top KEGG pathways enriched in CKD differentially expressed genes, highlighting
pancreatic secretion, protein digestion and absorption, and vascular smooth muscle contraction.

and the control group showed 671 differentially expressed genes,
including 572 downregulated genes and 99 upregulated genes
(Figures 1B, D).

3.2 Enrichment analysis of differentially
expressed genes

The biological functions of differentially expressed genes in
different diseases were explored through GO and KEGG
enrichment analyses. Differentially expressed genes in VTE
patients were mainly enriched in cytoplasmic translation, cell
activation involved in the immune response, and ribosomal
subunits (Figure 2A). KEGG enrichment analysis showed that
VTE differentially expressed genes were mainly enriched in
oxidative phosphorylation, reactive oxygen species associated with
chemical carcinogenesis, and signaling pathways of the 2019
coronavirus disease (Figure 2C). Differentially expressed genes in
CKD patients were primarily enriched in regulation of muscle
contraction, cation-transporting ATPase complex, and
endopeptidase inhibitor activity (Figure 2B). KEGG enrichment
analysis showed that CKD differentially expressed genes were
primarily enriched in signaling pathways such as pancreatic
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secretion, protein digestion and absorption, and vascular smooth
muscle contraction (Figure 2D).

3.3 Identification of crosstalk genes

Venn diagram results identified 23 overlapping genes
differentially expressed in both CKD and VTE diseases, including
CCNL2, HNRNPAO, PI4KA, FOS, HBD, TSC22D3, DUSPI, and
ZNF692 (Figure 3A). Results from the Wilcoxon test indicated that
these 23 genes were significantly differentially expressed in both
CKD and VTE diseases (Figures 3B, C).

3.4 Feature gene selection using LASSO,
random forest, and SVM-RFE algorithms

Upon performing 10-fold cross-validation, the optimal lambda
for the LASSO algorithm was determined to be 0.002. The penalty
parameter (1) corresponding to the minimal partial likelihood
deviance was selected, yielding 5 feature genes: CCNL2,
HNRNPAO, PI4KA, FOS, and HBD (Figures 4A). In contrast, for
SVM-REFE, the model classifier with the highest accuracy and the
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FIGURE 3

Identification of crosstalk genes differentially expressed in both CKD and VTE. (A) Venn diagram showcasing the overlap of 23 genes that are
differentially expressed in both CKD and VTE diseases, with notable genes labeled. (B) Bar chart displaying the expression levels of the 23 overlapping
genes in CKD patients versus controls, indicating their differential expression significance. (C) Bar chart illustrating the expression levels of the 23
overlapping genes in VTE patients versus controls, emphasizing their differential expression significance. **p < 0.01, ***p < 0.001.

lowest error had 2 features: HNRNPAO and PI4KA (Figures 4B, C).
The random forest algorithm selected 7 genes with significance
greater than 0.8, including HNRNPAO, FOS, PI4KA, DLST, NGRN,
CCNL2, and SEC16A (Figures 4D, E). Based on the aforementioned
three machine learning algorithms, two key genes were selected:
HNRNPAO and PI4KA (Figure 4F). The AUC for the key genes
HNRNPAO and PI4KA were both 1.000 (Figures 4G, H).

3.5 Construction and testing of the CKD
prediction nomogram based on feature
genes

The “rms” R package was used to construct a nomogram model
for RM diagnosis based on the feature genes (HNRNPAO and
PI4KA) (Figure 5A). Calibration curves indicated a minimal
discrepancy between the predicted CKD risk and the actual CKD
risk, suggesting that the nomogram model has high accuracy
(Figure 5B). Decision curve analysis (DCA) demonstrated that
CKD patients could benefit from the nomogram model
(Figure 5C). The validity of this model was also confirmed by
gene and nomogram ROC curve analyses (Figures 5D, E).
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3.6 GSEA enrichment analysis and key
gene immune cell infiltration

GSEA results suggested that HNRNPAO was primarily
involved in pathways like Amoebiasis, Ascorbate and aldarate
metabolism (Figure 6A). PI4KA was mainly enriched in pathways
like Ascorbate and aldarate metabolism and Butanoate
metabolism (Figure 6A). Results from ssGSEA for immune cell
infiltration revealed that VTE patients exhibited higher
infiltration levels of activated CD8 T cells, effector memory
CD4 T cells, CD56bright natural killer cells, and eosinophils,
while having lower infiltration of activated B cells, central
memory CD4 T cells, and plasmacytoid dendritic cell-like cells
(Figure 6B). For GSE19151, the immune cell infiltration analysis
revealed that HNRNPAO was significantly associated with 15
immune cell types, positively correlating with cell types such as
Central memory CD4 T cell, Plasmacytoid dendritic cell, Effector
memory CD8 T cell, and negatively correlating with 4 immune
cell types including Type 17 T helper cell, Macrophage
(Figure 6D). PI4KA showed positive correlations with 9
immune cell types and negative correlations with 8 cell types
including Type 17 T helper cell, Effector memory CD4 T cell
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FIGURE 4

Selection of feature genes via LASSO, SVM-RFE, and Random Forest algorithms. (A) Tuning of the regularization penalty in LASSO with a 10-fold
cross-validation. The optimal lambda value is indicated by the vertical line. (B) Feature ranking in SVM-RFE, highlighting HNRNPAO and PI4KA as the
two most significant features. (C) Variable importance plot for the SVM-RFE algorithm, emphasizing the significance of the top features. (D) Variable
importance plot for the Random Forest algorithm. The y-axis represents the genes, and the x-axis denotes their significance. Genes with significance
greater than 0.8 are highlighted. (E) Bar chart showcasing the seven significant genes selected by the Random Forest algorithm. (F) Venn diagram
illustrating the overlap between the feature genes selected by the three algorithms, identifying HNRNPAO and PI4KA as the key genes. (G) ROC
curve for HNRNPAQO, indicating an AUC value of 1.000. (H) ROC curve for PI4KA, demonstrating an AUC value of 1.000.

(Figure 6E). For GSE66494, ssGSEA analysis indicated a higher
infiltration of Type 2 T helper cells and Immature B cells in CKD
patients (Figure 6C). Within GSE66494, the correlation analysis
between immune cells and key genes showed that HNRNPAO
negatively correlated with Central memory CD8 T cell,
Neutrophil (Figure 6F). PI4KA exhibited a positive correlation
with cell types including Type 17 T helper cell and negative
correlations with cell types such as Effector memory CD4 T cell,
Type 2 T helper cell (Figure 6G).

3.7 Validation of key genes
For the GSE37171 dataset, the expression levels of HNRNPAOQ

and PI4KA in CKD patients were lower than in normal samples
(Figures 7A, B). The AUC for HNRNPAO and PI4KA were 0.720
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and 0.859, respectively (Figures 7E, F). Similarly, differential
expression analysis of the key genes in the GSE48000 dataset
produced consistent results (Figures 7C, D). Furthermore, the
AUC for HNRNPAO and PI4KA were 0.985 and 1.000,
respectively (Figures 7G, H). ROC curve analysis for key genes in
GSE19151 showed that the AUC for HNRNPAO and PI4KA were
0.839 and 0.881, respectively (Figures 71, J).

3.8 Expression of key genes at the single-
cell level

Following the data filtering and integration described in the
methods, we obtained gene expression profiles for 25,449 cells from
control samples and 29,463 cells from CKD samples (Figures 8A,
B). Clustering all cells, we identified 11 cell clusters (Figure 8C).
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Construction and evaluation of the CKD prediction nomogram based on feature genes. (A) Nomogram for CKD risk prediction. Feature genes
HNRNPAO and PI4KA are used as predictive factors with points assigned for each gene expression level. The total points are then converted to a
probability of CKD diagnosis. (B) Calibration curve for the CKD prediction nomogram. The y-axis represents the observed CKD risk, and the x-axis
represents the predicted CKD risk. A 45-degree diagonal line indicates perfect calibration. (C) Decision curve analysis (DCA) for the CKD prediction
nomogram. The y-axis represents the net benefit, and the x-axis denotes the threshold probability. The nomogram model's curve is compared to
the treat-all-patients and treat-none curves. (D) ROC curve analysis for the gene-based model, highlighting the performance of feature genes in
predicting CKD. (E) ROC curve analysis for the CKD prediction nomogram, showcasing its diagnostic accuracy.

Annotation and visualization of the 11 cell clusters resulted in eight
cell types, such as Epithelial cells and Macrophages (Figures 8D, E).
Finally, the expression of key genes across different cell types was
displayed (Figures 8F, G).

3.9 qRT-PCR validation of key gene
expression in CKD patients

To validate the expression of key genes identified from the
transcriptomic and single-cell analyses, we performed qRT-PCR on
PBMC:s collected from 15 CKD patients and 15 healthy controls.
Consistent with the multi-omics and single-cell findings, both
HNRNPAO and PI4KA exhibited significantly lower mRNA
expression levels in CKD patients compared to healthy
individuals (Figures 9A, B).

4 Discussion

In this study, we employed a multi-omics approach integrating
transcriptomic analysis, machine learning, and single-cell RNA
sequencing to identify and validate key genes involved in VTE and
CKD. Through comprehensive differential expression analysis,
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functional enrichment, cross-disease gene screening, and feature
gene selection via LASSO, SVM-RFE, and random forest
algorithms, we identified HNRNPAO and PI4KA as robust
biomarkers shared by both diseases. These genes were further
validated in independent datasets and confirmed to be significantly
upregulated in CKD patients using qRT-PCR. Our findings highlight
the potential involvement of these genes in the pathogenesis of CKD
and suggest their utility as predictive biomarkers.

HNRNPAO, a member of the heterogeneous nuclear
ribonucleoprotein (hnRNP) family, has been previously
characterized as a downstream effector of the p38/MK2 checkpoint
kinase pathway, operating independently of p53 to regulate cell cycle
arrest and mRNA stability via AU-rich elements (AREs) (17-19).
Notably, HNRNPAO stabilizes Gadd450. and p27(Kip1) mRNAs upon
DNA damage, contributing to chemotherapy resistance in lung cancer
and to hematopoietic lineage fate decisions in murine models through
post-transcriptional regulation of ARE-containing transcripts (20).
These functions suggest a broader role in inflammatory signaling and
cellular stress responses—key hallmarks in both CKD progression and
thrombotic predisposition.

In our study, HNRNPAO was significantly upregulated in both
CKD and VTE samples, and its expression strongly correlated with
immune cell infiltration, particularly effector/memory T cells and
plasmacytoid dendritic cells, while showing negative associations
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immune cell types in the GSE66494 dataset. (G) Correlation analysis
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with macrophages and Th17 cells. These observations support its
putative role as a modulator of immune homeostasis. Interestingly,
HNRNPAQ was found to be highly expressed in macrophages,
which aligns with findings from recent studies indicating that
HNRNPAO can regulate mRNA stability and subcellular
distribution in immune cells. Specifically, HNRNPAOQ has been
shown to bind to the 3’-UTR of CCR2, a receptor crucial for
macrophage migration, influencing both CCR2 mRNA stability
and its subcellular localization (21). In line with recent findings in
neurodegenerative diseases where HNRNPAO forms insoluble
aggregates with tau protein, its dysregulation may also reflect
broader RNA-processing disturbances under chronic
inflammatory conditions (22, 23). Furthermore, its altered
expression in aging-associated hematopoiesis and myeloid
differentiation implies potential involvement in immune
senescence and immune dysregulation, both prominent features
of advanced CKD and pro-thrombotic states (24, 25).

PI4KA is a lipid kinase involved in the generation of
phosphatidylinositol 4-phosphate (PI4P), a precursor of PIP2,
which is central to multiple cell signaling cascades including
AKT, ERK, and calcium pathways (26-28). Structurally, PI4KA
exists as part of a heterotrimeric complex with TTC7 and FAM126,
which facilitates its recruitment to the plasma membrane via
EFR3A/B, enabling spatial control of signaling (29). Disruption of
this complex has been shown to impair PI4KA localization and
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activity, with consequences for membrane dynamics, autophagy,
and energy metabolism.

Our results indicated that PI4KA is not only down-regulated in
CKD but also correlates with several immune cell subsets, including
Th17 and effector CD4+ T cells, implicating a role in immune cell
differentiation or activation. Emerging studies have suggested that
mutations in PI4KA lead to B cell metabolic dysfunction, mTOR
pathway hyperactivation, and hypogammaglobulinemia—
mechanistically linking PI4KA to immune dysregulation in
chronic disease states (30, 31). Notably, PI4KA has also been
associated with platelet activation and coagulation, underscoring
its potential role in VTE pathogenesis (29). These mechanistic links
between lipid signaling, immune modulation, and thrombosis
provide a strong rationale for further investigation of PI4KA in
CKD-VTE comorbidity.

Our ssGSEA results revealed distinct immune cell infiltration
patterns in both CKD and VTE, modulated by the expression of the
key genes HNRNPAO and PI4KA. In CKD, higher infiltration of
Th2 cells and immature B cells aligns with maladaptive immune
responses contributing to renal fibrosis (32, 33). While Th2 cells are
typically anti-inflammatory, their persistent activity drives tissue
fibrosis through cytokines like IL-4 and IL-13 (34, 35). Additionally,
a reduction in protective B cell subsets (Bl and B2 cells) has been
linked to CKD progression, highlighting the importance of the B
cell landscape in renal outcomes. The negative correlation between
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PI4KA and Th17 cells is noteworthy, as Th17 cells are potent T cells and plasmacytoid dendritic cells further suggests its role in
drivers of kidney injury and fibrosis (36). This suggests that PI4KA  immune surveillance and memory responses within the kidney. In
may help regulate excessive Thl7-mediated inflammation, VTE, the immune landscape reflects sterile inflammation, with
potentially through pathways like TREM-2 in dendritic cells (37).  elevated levels of activated CD8+ T cells and effector memory
The positive correlation of HNRNPAO with effector memory CD8+  CD4+ T cells, consistent with their roles in deep vein thrombosis.
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FIGURE 9
Validation of HNRNPAO and PI4KA expression in PBMCs from CKD patients by gRT-PCR. (A, B) Bar graph showing the relative mRNA expression
levels of HNRNPAO and PI4KA in PBMCs from CKD patients (n = 15) and healthy controls (n = 15). ****p < 0.0001.
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T cells influence thrombus resolution through antigen-independent
activation and cytokine production, such as IFN-y (38). Moreover,
B cells can modulate thrombosis through cytokine-driven platelet
production and by influencing T-cell responses (39). The
association of PI4KA with immune cells, particularly its role in
platelet signaling, links lipid kinase activity to immune cell function
and thrombus formation. Overall, the immune infiltration patterns
linked to HNRNPAO and PI4KA not only correlate with disease
outcomes but also reflect active immunological processes in CKD
and VTE.

Our identification of 23 overlapping differentially expressed
genes between CKD and VTE, including HNRNPAO and PI4KA,
supports the notion of shared molecular pathways underlying these
seemingly distinct conditions. Both diseases exhibit systemic
inflammation, endothelial dysfunction, and immune imbalance,
which are likely driven by common upstream regulators. Through
machine learning-based prioritization and robust validation,
HNRNPAO and PI4KA emerged as core hubs within these
disease networks.

Furthermore, the nomogram model constructed from these
genes demonstrated high diagnostic performance (AUC = 1.000),
and its calibration and decision curve analysis indicated clinical
utility. The non-invasive detection of these markers in PBMCs
further enhances their translational potential, particularly in early-
stage CKD or for assessing thrombotic risk.

5 Limitations and future perspectives

This study has several limitations. The qRT-PCR validation was
conducted on a small cohort, and future studies should include
larger, ethnically diverse populations to assess the generalizability of
our findings. While we focused on HNRNPAO and PI4KA, our
analyses also identified 23 other overlapping genes that may play
important roles in CKD and VTE. Investigating these genes further
could provide deeper insights into immune regulation, kidney
dysfunction, and thrombosis. Moreover, although we have
suggested immune-regulatory roles for HNRNPAO and PI4KA,
direct mechanistic evidence remains lacking, and functional
studies in immune and kidney cell models, or animal models, are
needed. Future work should also consider integrating advanced
modeling techniques, such as logistic frameworks with nested cross-
validation, confidence intervals, and decision-curve analysis, to
better validate the clinical applicability of our findings. Finally,
ensuring feature selection and preprocessing within cross-
validation folds will be essential to prevent data leakage and

optimize model performance.

6 Conclusion

In conclusion, this study identifies HNRNPAO and PI4KA as
potential biomarkers and immune modulators in CKD and VTE
through integrative multi-omics and single-cell analysis. Their
consistent upregulation, strong diagnostic performance, and
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associations with immune pathways suggest important roles in
chronic inflammation, vascular dysfunction, and immune-
metabolic signaling. These findings offer a new perspective on the
molecular overlap between kidney and thrombotic diseases and
provide a basis for future therapeutic exploration.
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