

OPEN ACCESS

EDITED BY Anders Elm Pedersen, Roskilde University, Denmark

REVIEWED BY
Sotiris Lozidis,
Bank of Cyprus Oncology Center, Cyprus
Antonia Syrnioti,
Aristotle University of Thessaloniki, Greece

*CORRESPONDENCE
Paulo Rodrigues-Santos
paulo.santos@fmed.uc.pt

RECEIVED 26 June 2025 ACCEPTED 02 October 2025 PUBLISHED 15 October 2025

CITATION

Syeda MF, Santos RA, Sousa LM, Paiva AR, Castelo Branco N, Cunha Pereira T, Sousa G and Rodrigues-Santos P (2025) Immune monitoring of neoadjuvant chemo-immunotherapy for triple-negative breast cancer. *Front. Immunol.* 16:1654748. doi: 10.3389/fimmu.2025.1654748

COPYRIGHT

© 2025 Syeda, Santos, Sousa, Paiva,
Castelo Branco, Cunha Pereira, Sousa and
Rodrigues-Santos. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Immune monitoring of neoadjuvant chemo-immunotherapy for triplenegative breast cancer

Munnawara Fatima Syeda^{1,2}, Rita Antunes Santos³, Luana Madalena Sousa^{1,2}, Ana Raquel Paiva⁴, Noémia Castelo Branco⁵, Tatiana Cunha Pereira³, Gabriela Sousa³ and Paulo Rodrigues-Santos^{2,6,7,8,9,10}*

¹Laboratory of Immunology and Oncology, Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal, ²Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal, ³Medical Oncology Department, Portuguese Institute of Oncology of Coimbra Francisco Gentil (IPOCFG EPE), Coimbra, Portugal, ⁴Clinical Pathology Department, Portuguese Institute of Oncology of Coimbra Francisco Gentil (IPOCFG EPE), Coimbra, Portugal, ³Anatomic Pathology Service, Portuguese Institute of Oncology of Coimbra Francisco Gentil (IPOCFG EPE), Coimbra, Portugal, ⁶Institute of Immunology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal, ⁷Research Centre in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Portugal, ⁸Coimbra Institute for Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal, ⁹Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal, ¹⁰Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal,

Triple-negative breast cancer (TNBC) is an aggressive subtype defined by the absence of estrogen receptor, progesterone receptor, and HER2 expression. It accounts for 10-20% of breast cancer cases, predominantly affecting younger women, and is associated with poor prognosis due to high recurrence rates and limited therapeutic options. Past treatment strategies relied solely on chemotherapy, but challenges such as metastatic potential and chemoresistance persisted. Recent advancements in neoadjuvant chemo-immunotherapy aim to address these limitations by combining chemotherapy with immune checkpoint inhibitors, with promising clinical trial results demonstrating improved response rates and survival outcomes. A central focus is placed on biomarker-based immune monitoring strategies, encompassing both tissue-based biomarkerssuch as programmed cell death ligand 1 (PD-L1) expression, microsatellite instability, tumor mutational burden, tumor-infiltrating lymphocytes (TILs), and gene expression signatures—and blood-based biomarkers, including gene expression profiling, comprehensive immunophenotyping, and cytokine profiling. In addition, an emerging role of advanced imaging technologies, such as immuno-positron emission tomography (immuno-PET) and radiomics, could permit real-time immune monitoring. This review aims to provide a comprehensive overview of the current landscape of immune monitoring in TNBC, highlighting its challenges, predictive and prognostic value, and potential to quide clinical decision-making. By addressing key immune response

biomarkers, technical limitations, and emerging technologies, we seek to outline strategies for optimizing treatment and enhancing personalized medicine approaches for TNBC patients. Future integration of innovative monitoring techniques holds promise for improving patient outcomes.

KEYWORDS

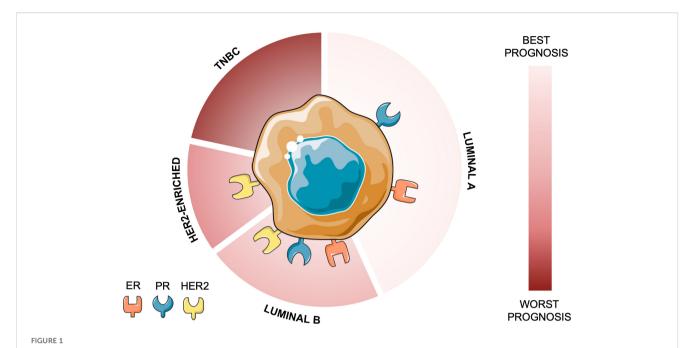
triple-negative breast cancer, neoadjuvant therapy, chemotherapy, cancer immunotherapy, immune monitoring

1 Introduction

1.1 Definition and characteristics

Triple-negative breast cancer (TNBC) is defined by the lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. Certain special histological types (TNBC ST) show a more favorable prognosis. Low-grade TNBC STs include salivary gland-like tumors (classic adenoid-cystic, low-grade mucoepidermoid, secretory carcinomas), mucinous cystadenocarcinoma, tall cell carcinoma with reversed polarity, and low-grade metaplastic carcinomas. High-grade TNBC STs, including high-grade adenoid-cystic, polymorphous, and high-grade metaplastic carcinomas, are more aggressive. HER2-negative apocrine carcinomas have uncertain prognosis. Low-grade TNBC STs and LAR or BL1 subtypes often exhibit better clinical outcomes than classic TNBC (1). TNBC is a heterogeneous disease, not only histopathologically but also at the molecular level. Lehmann et al. (2) classified into four distinct subtypes with therapeutic implications. The basal-like 1 (BL1) subtype is enriched in DNA damage response pathways and shows high sensitivity to platinum chemotherapy and poly (ADP-ribose) polymerase (PARP) inhibitors. Basal-like 2 (BL2) displays growth factor signaling and glycolytic activity, with limited chemotherapy response. The mesenchymal (M) subtype is characterized by epithelialmesenchymal transition (EMT) and stemness pathways, suggesting vulnerability to phosphatidylinositol 3-kinase/ mammalian target of rapamycin (PI3K/mTOR) pathway inhibition. Finally, the luminal androgen receptor (LAR) subtype exhibits androgen-driven signaling, responsive to anti-androgen therapies. TNBC is characterized by its distinctive molecular profile, aggressiveness, different metastatic patterns, and absence of targeted therapy (Figure 1). TNBC accounts for ~10-20% of invasive breast cancers (BC), with an estimated 170,000 instances worldwide (3, 4).

In contrast to hormone receptor (HR)-positive or HER2-positive disease, TNBC has a significantly more aggressive clinical evolution, characterized by an earlier onset of symptoms, a larger propensity for metastasis, and poorer clinical outcomes, as seen by elevated rates of relapse and decreased survival rates (5, 6).


According to histological findings, most TNBCs are of ductal origin; however, numerous other aggressive phenotypes appear to be over-represented, including metaplastic, apocrine, and adenoid cystic (7). A histological examination of basal-like tumors, all of which were ER/HER2 negative, revealed a significant rise in mitotic count, geographic necrosis, invasion borders, and stromal lymphocytic response (8).

1.2 Epidemiology

A particularly significant fact is that African American women and carriers of germline BRCA and PALB2 mutations are disproportionately affected by triple-negative breast malignancies. The risk of death from TNBC is still almost twice as high for African Americans with the disease, even after adjusting for socioeconomic status, stage, and delays in treatment (9). Epidemiologic research, such as the Carolina Breast Cancer Study, indicates that basal-like tumors, compared to luminal A tumors, are more prevalent among women with early menarche, higher parity, younger age at full-term pregnancy, shorter breastfeeding duration, higher body mass index, and higher waist-to-hip ratio, particularly in premenopausal patients (10). Additionally, Bauer et al. identified that younger, non-Hispanic Black and Hispanic women with TNBC exhibit more aggressive tumors and poorer survival rates, regardless of stage, with non-Hispanic Black women with late-stage TNBC having the lowest survival rates (11).

In comparison to the luminal subtype, several studies have consistently demonstrated that basal-like BC, including TNBC, has a worse prognosis and worse BC-specific survival (10, 12). In comparison to individuals without TNBC, those with TNBC had a greater risk of mortality and distant recurrence, according to a recent Canadian study including over 1,500 women (6). Research has consistently shown that, in contrast to ER-positive BC, TNBC is linked to more aggressive relapses in visceral and soft tissues, while relapses in the bone are less frequent (13).

A retrospective study of 33,654 female patients with TNBC identified key prognostic factors and highlighted the benefits of primary tumor surgery. Younger age, white race, married status, lower tumor grade and stage, and undergoing surgery were associated with better outcomes. A predictive nomogram

Classification of main molecular subtypes of breast cancer based on receptor status. Luminal A (ER+ and PR+, HER2-, low Ki-67), is hormone receptor-positive and typically responsive to endocrine therapy; Luminal B (ER+ and/or PR+, HER2+/- or high Ki-67), may also benefit from HER2-targeted therapies; HER2-Enriched (ER-/PR-, HER2+), is characterized by high HER2 expression and sensitivity to HER2-targeted therapies; and Triple-Negative Breast Cancer (TNBC) (ER-, PR-, HER2-), an aggressive subtype lacking hormone and HER2 receptors, often requiring chemotherapy as the primary treatment option. This classification is critical for determining appropriate therapeutic strategies. ER – estrogen receptor; HER2 – Human epidermal growth factor 2; PR – progesterone receptor.

developed from the study demonstrated high accuracy. Notably, surgery improved cancer-specific survival across all risk groups, suggesting its potential benefit in TNBC treatment strategies (14).

1.3 Current treatment strategies

TNBC is an aggressive subtype distinguished by the absence of ER, PR, and HER2 expression, limiting the availability of targeted therapy and making chemotherapy the primary therapeutic option (15).

TNBC usually responds effectively to chemotherapy (16), especially in neoadjuvant or adjuvant settings, with anthracyclineand taxane-based regimens accomplishing pathological complete response (pCR) in 30-40% of early-stage cases (17-19). Anthracyclines such as doxorubicin and epirubicin cause DNA damage and apoptosis (20-23) but are associated with cardiotoxicity (24-26); however, epirubicin has a better toxicity profile (27-29). Taxanes, such as paclitaxel and docetaxel, disrupt mitosis by stabilizing microtubules and are more effective when coupled with platinum drugs, however resistance may develop in BRCA1-mutated cancers (30). Platinum compounds, such as carboplatin, form DNA cross-links that cause apoptosis and are particularly beneficial when combined with neoadjuvant regimens, as seen in studies such as KEYNOTE-522 and BrighTNess (28-35). These drugs improve pCR and event-free survival (EFS). In the KEYNOTE-522 trial, the addition of pembrolizumab to neoadjuvant chemotherapy resulted in a significantly higher pCR rate—64.8% versus 51.2% with chemotherapy alone—representing a 13.6% absolute increase (p < 0.001). This benefit translated into improved long-term outcomes, with an estimated overall survival (OS) at 60 months of 86.6% (95% confidence interval [CI], 84.0 to 88.8) in the pembrolizumab–chemotherapy group, compared with 81.7% (95% CI, 77.5 to 85.2) in the placebo–chemotherapy group (p = 0.002) (36).

Radiotherapy is indicated in TNBC patients of all ages who have undergone lumpectomy and/or present with positive axillary lymph node evaluation, as it improves locoregional control and overall survival (OS) (37–42).

Targeted strategies are transforming the TNBC therapy landscape (43), beginning with PARP inhibitors such as olaparib and talazoparib, which exploit homologous recombination repair deficits in BRCA-mutated cancers, resulting in tumor cell death (44–52). Synthetic lethality is a concept in which the simultaneous disruption of two genes leads to cell death, whereas the loss of either gene alone is tolerated. This approach offers a targeted therapeutic strategy in TNBC, by exploiting specific genetic vulnerabilities such as BRCA mutations - using PARP inhibitors. While successful in BRCA-mutated TNBC, these drugs have limited efficacy in BRCA wild-type instances and may experience resistance, urging the investigation of combination strategies with agents such as carboplatin. CDK4/6 inhibitors, which have been beneficial in HRpositive malignancies, have the potential to treat TNBC's luminal androgen receptor subtype by targeting abnormal cell cycle progression (53-56). Similarly, many TNBCs, particularly the basal-like subtype, overexpress EGFR, which is a target for tyrosine kinase inhibitors like gefitinib and monoclonal antibodies like cetuximab (57). Although dual inhibition strategies have

proven ineffective, combining EGFR-targeted medicines with platinum chemotherapy has increased survival rates (58–63). However, these targeted approaches are currently not recommended by major clinical guidelines, including ESMO and NCCN, outside of clinical trials.

Given TNBC's high programmed cell death ligand 1 (PD-L1) expression and abundance of tumor-infiltrating lymphocytes (TILs), immunotherapy has grown in importance (64-70). Immune checkpoint inhibitors (ICIs), such as pembrolizumab, have improved outcomes when combined with chemotherapy, as shown in trials like KEYNOTE-522 —where PD-L1 status is not a criterion for use-leading to FDA approval for pembrolizumab in high-risk, early-stage, TNBC (71). These treatments increase the risk of immune-related side effects, especially during the neoadjuvant phase. Combination regimens that combine ICIs with DNA repair inhibitors such as PARP inhibitors have demonstrated synergistic effects, boosting anti-tumor immunity, particularly in homologous recombination-deficient cancers (72-77). However, the combination of the two drugs is not yet in clinical practice. Antibody-drug conjugates (ADCs), such as sacituzumab govitecan, which targets Trop-2, provides strong cytotoxins directly to tumor cells and have shown efficacy in both metastatic and neoadjuvant settings, providing prolonged survival with controlled toxicity (78-80).

Despite these developments, TNBC is still challenging to treat due to its heterogeneity, lack of prognostic biomarkers, and high recurrence rate. Continued research is required to maximize the use of innovative drugs, uncover biomarkers for patient stratification, and devise reasonable combination methods that improve efficacy while limiting toxicity.

The combination of immunotherapy, targeted medicines, and ADCs broadens the therapeutic arsenal and has the potential for more tailored, long-lasting treatment outcomes in TNBC.

2 Neoadjuvant chemoimmunotherapy in TNBC

2.1 Rationale for neoadjuvant therapy

Neoadjuvant therapy in BC pertains to the administration of systemic therapy before the surgical intervention. The treatment aims to downstage and downsize, to reduce the size of unresectable tumors, to allow conservative surgeries and to address micrometastases. Neoadjuvant chemotherapy (NAC) has gained significant acceptance as the established therapeutic approach for early TNBC to proactively anticipate tumor response and administer appropriate adjuvant therapies (81). Multiple studies have shown that TNBC exhibits significantly higher pCR rates following NAC compared to hormone receptor-positive BC, with pCR being strongly associated with better outcomes. A large study from the MD Anderson Cancer Center, involving 1,118 patients treated between 1985 and 2004, found that the pCR rate in TNBC was double that of non-TNBC (22% vs. 11%). Despite this, TNBC patients had poorer 3-year PFS and OS rates compared to non-

TNBC patients. However, TNBC patients who achieved a pCR had similar 3-year OS rates to non-TNBC patients (94% vs. 98%), while those with residual disease after treatment had significantly worse outcomes. These findings highlight the importance of achieving pCR in improving long-term survival for TNBC patients, as those with residual disease face a higher risk of recurrence and death (82).

In addition, the pooled analysis by Cortazar and Geyer (83), which included 11,955 patients across 12 international neoadjuvant trials, reinforced the prognostic value of pCR in breast cancer. The study demonstrated that achieving pCR was strongly associated with improved event-free survival and overall survival, particularly in aggressive subtypes such as TNBC and HER2-positive tumors, whereas its prognostic significance was limited in luminal A disease. Importantly, this analysis provided large-scale validation that pCR can serve as a surrogate endpoint for long-term outcomes in clinical trials, highlighting its utility as both a prognostic biomarker and a measure of therapeutic efficacy in TNBC.

Neoadjuvant chemotherapy is the recommended method for treating stage II or III TNBC. In the context of early-stage high-risk TNBC, the inclusion of pembrolizumab in taxane platinum-based chemotherapy, followed by an anthracycline, resulted in a notable enhancement in pCR rates and an improvement in event-free survival (EFS) (84). In KEYNOTE-522, pembrolizumab was incorporated not only during the taxane/platinum phase but also in the subsequent anthracycline-cyclophosphamide regimen, underscoring its integration across the entire neoadjuvant treatment course.

In a recent comprehensive meta-analysis, von Minckwitz et al. analyzed data from 6,377 patients with operable or locally advanced, non-metastatic BC treated with neoadjuvant anthracyclines and taxanes, with or without trastuzumab (18). The objective of this study was to validate different definitions of pCR and to evaluate its prognostic significance in terms of disease-free survival (DFS) and OS across various BC subtypes. The study concluded that pCR should be conservatively defined as ypT0 ypN0, excluding ductal carcinoma *in situ*. Furthermore, pCR was found to be a reliable surrogate marker for survival in patients with luminal B (HER2-negative), HER2-positive (non-luminal), and TNBC subtypes, but not for those with luminal A or luminal B/HER2-positive subtypes.

Additionally, Huober et al. observed that TNBC tumors often demonstrate a rapid response to neoadjuvant therapy, with significant tumor reduction evident after only two treatment cycles (85). This finding highlights the critical importance of neoadjuvant chemotherapy in treatment of TNBC.

2.2 Neoadjuvant chemotherapy and immunotherapy strategies: current evidence and clinical trials

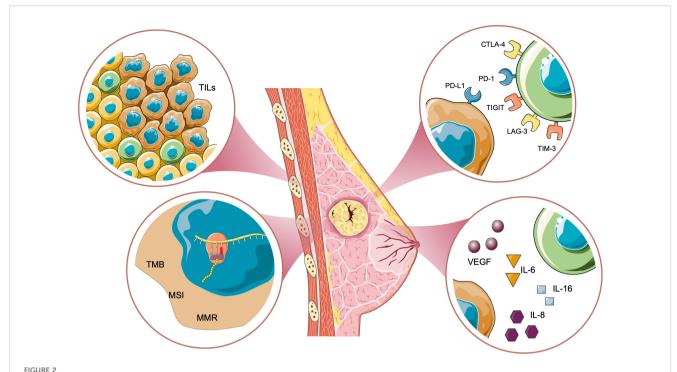
Despite advances in targeted and biological therapies, cytotoxic chemotherapy remains the cornerstone of neoadjuvant treatment for TNBC (86). Anthracycline/taxane-based regimens are widely employed and supported by retrospective analyses and subgroup

TABLE 1 Neoadjuvant chemoimmunotherapy clinical trials and efficacy in triple-negative breast cancer.

Trial name	Phase	Intervention	Comparator	Primary outcome	Results summary	
KEYNOTE-522	III	Pembrolizumab + chemotherapy	Placebo pCR rate pCR: 64.8% in pembrolizumab group placebo group		pCR: 64.8% in pembrolizumab group vs. 51.2% in placebo group	
GeparNuevo	II	Durvalumab + chemotherapy	Placebo + chemotherapy	pCR rate	pCR: 53.4% in durvalumab group vs. 44.2% in placebo group	
NeoTRIPaPDL1	III	Atezolizumab + nab-paclitaxel	Placebo + nab-paclitaxel	EFS	No significant difference in pCR rates between groups	
IMpassion031	III	Atezolizumab + chemotherapy	Placebo + chemotherapy	pCR rate	pCR: 57.6% in atezolizumab group vs. 41.1% in placebo group	
BrightTNess	III	Veliparib + carboplatin + standard chemotherapy	Standard chemotherapy alone	pCR rate	pCR: 53% in veliparib group vs. 31% in control group	
CALGB 40603	II	Chemotherapy + carboplatin ± bevacizumab	Standard chemotherapy	pCR rate	Both carboplatin and bevacizumab improved pCR rates	

EFS, event-free survival, pCR, complete pathologic response.

data from trials predating 2010 (87). For instance, anthracyclines alone have yielded pCR rates between 14–47%, while sequential regimens combining anthracyclines with taxanes report pCR rates ranging from 17–39% (88–92). Notably, the GeparTrio trial reported pCR rates up to 57% with neoadjuvant anthracyclines, cyclophosphamide, and taxanes (85).


To enhance these outcomes, numerous strategies have been pursued to increase pCR rates, which serve as an intermediate surrogate for improved long-term survival. These include the incorporation of DNA-damaging agents, particularly platinum compounds like carboplatin, given the DNA repair deficiencies frequently found in TNBC. Several clinical trials have assessed this approach (46, 93, 94). The GeparSixto trial showed a significant improvement in pCR rates from 36.9% to 53.2% when carboplatin was added, albeit with increased hematologic toxicity (46, 93, 94). Similarly, the BrighTNess trial demonstrated that the observed improvements in pCR and event-free survival (EFS) were attributable to carboplatin rather than the PARP inhibitor veliparib (95). In contrast, CALGB 40603, which also evaluated the addition of carboplatin to a standard AC-T regimen, did not find a statistically significant improvement in EFS despite a numerically higher pCR (96). Collectively, these findings support the use of platinum-based regimens in selected patients, particularly those with stage II-III TNBC, while highlighting the need to balance efficacy with tolerability.

Beyond chemotherapy, immunotherapy has recently emerged as a pivotal component in the neoadjuvant management of TNBC (71), with the rationale rooted in the immunogenic potential of this subtype. Standard chemotherapeutics can modulate the tumor microenvironment (TME), enhancing antigen presentation, promoting T cell infiltration (97), and reducing immunosuppression (98). This primes the immune

system for checkpoint inhibition and supports the integration of ICIs with chemotherapy.

The KEYNOTE-522 trial exemplifies this strategy. In this phase III study, pembrolizumab—a PD-1 inhibitor—was added to a neoadjuvant regimen of carboplatin, paclitaxel, anthracycline, and cyclophosphamide in patients with stage II–III TNBC (71, 71, 84). The trial demonstrated a statistically significant increase in pCR rates, from 51.2% in the placebo group to 64.8% in the pembrolizumab group (a 13.6% absolute increase; p < 0.001). Furthermore, EFS improved by 7% at 3 years, with a hazard ratio of 0.63 (95% CI 0.48–0.82). These benefits were observed regardless of PD-L1 status, suggesting that PD-L1 may hold prognostic but not predictive value in early TNBC. Importantly, patients with residual disease after neoadjuvant therapy also derived benefit from continued pembrolizumab in the adjuvant setting, further validating this approach as a new standard of care for highrisk TNBC.

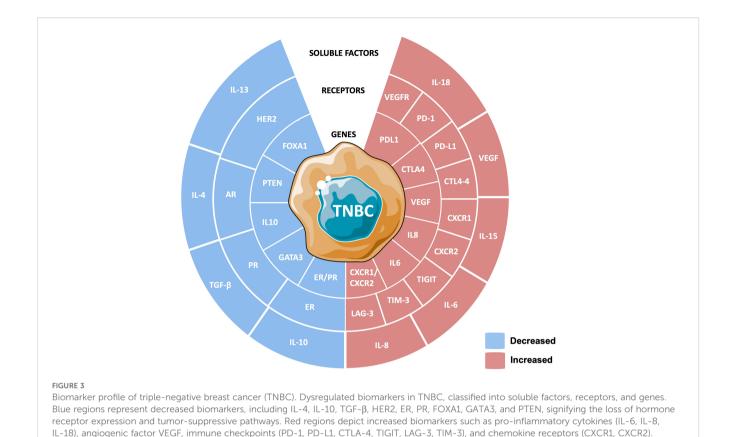
Other notable trials have also explored the role of ICIs in the neoadjuvant setting (Table 1). The IMpassion031 trial investigated atezolizumab (anti–PD-L1) with chemotherapy and showed an increased pCR rate but no EFS benefit (99). The NeoTRIP trial evaluated atezolizumab combined with carboplatin and nabpaclitaxel in high-risk early TNBC. While pCR rates were not significantly improved with atezolizumab versus chemotherapy alone (43.5% vs 40.8%, OR 1.11, 95% CI 0.69–1.79), updated analyses suggested a trend toward improved 5-year event-free survival (62% vs 57%; HR 0.81, 95% CI 0.52–1.27), although not statistically significant (100). By contrast, GeparNuevo assessed durvalumab in combination with chemotherapy and, while the increase in pCR was modest and not statistically significant (53.4% vs 44.2%; Δ 9.2%, p=0.287), long-term follow-up revealed a marked survival advantage. At 3 years, durvalumab significantly

Immune response in triple-negative breast cancer. This schematic illustrates key biomarkers and immune mechanisms in triple-negative breast cancer (TNBC). Tumor-infiltrating lymphocytes (TILs) represent immune activity within the tumor microenvironment. Genomic biomarkers include tumor mutational burden (TMB), microsatellite instability (MSI), and mismatch repair deficiency (MMR), which contribute to tumor progression and immune recognition. Cytokines and soluble factors such as VEGF, IL-6, and IL-8 promote angiogenesis and immune suppression. Immune checkpoint pathways, including PD-L1/PD-1, CTLA-4/B7, and TIGIT, LAG3, TIM3 interactions, mediate immune evasion.

improved invasive disease–free survival (iDFS; HR 0.48, 95% CI 0.24–0.97), distant disease–free survival (DDFS; HR 0.46, 95% CI 0.23–0.92), and OS (HR 0.24, 95% CI 0.08–0.72), underscoring that survival gains may emerge independently of pCR improvements (101). These discrepancies underscore the importance of trial design, backbone chemotherapy regimens, and biomarker selection when interpreting ICI efficacy in early TNBC.

The NeoSTAR Arm A2 trial (102) evaluated neoadjuvant sacituzumab govitecan (SG) combined with pembrolizumab in 50 patients with early-stage TNBC. Patients received SG (10 mg/kg, days 1 and 8) plus pembrolizumab (200 mg, day 1) for four 21-day cycles. The pCR rate after SG/pembrolizumab alone was 34%, increasing to 50% overall after additional neoadjuvant chemotherapy. Response rate (CR + PR) was 66%. Among five patients with pathogenic BRCA mutations, 60% achieved pCR with SG/pembrolizumab. The regimen was generally well tolerated; grade ≥3 adverse events occurred in 40%, mainly nausea, alopecia, fatigue, and diarrhea. These results support further investigation of ADC–ICI combinations in early TNBC.

In conclusion, the integration of platinum agents and immunotherapy into standard neoadjuvant regimens has reshaped the therapeutic landscape of TNBC. Carboplatin offers a modest but meaningful increase in pCR, particularly in BRCA-deficient or homologous recombination-deficient tumors. The addition of pembrolizumab, as demonstrated in KEYNOTE-522, represents a major advancement, combining improved pCR and


EFS without reliance on PD-L1 expression. These findings strongly support chemoimmunotherapy as the new standard in the neoadjuvant treatment of early-stage TNBC.

3 Biomarker-based immune monitoring strategies

A comprehensive understanding of the tumor-immune interface in TNBC requires the integration of diverse biomarker classes that span tissues, blood, imaging, and dynamic temporal signatures. Tissue-based biomarkers have historically served as the foundation for assessing and predicting immunotherapy response. These include well-established targets such as PD-L1, microsatellite instability (MSI), tumor mutational burden (TMB), and various tumor gene expression signatures (Figure 2).

Together, they provide a valuable framework for evaluating tumor immunogenicity and potential responsiveness to immune checkpoint blockade (ICB) therapies (103–105). Their relevance in neoadjuvant chemo-immunotherapy for TNBC is rapidly evolving as we deepen our understanding of tumor-immune interactions in this particularly aggressive BC subtype (36, 106).

The tumor microenvironment plays a crucial role in progression, influenced by a balance of immune-suppressive and immune-activating factors. The illustration in Figure 3 captures the complexity of TNBC by showcasing key genes, receptors, and soluble factors that shape immune responses.

3.1 Tissue-based biomarkers

3.1.1 Programmed death-ligand 1

PD-1 is a critical immune checkpoint receptor that plays a central role in regulating immune responses and maintaining self-tolerance by limiting T-cell activity in peripheral tissues. PD-1 binds two ligands: PD-L1 and PD-L2, which have distinct expression profiles across various tumor types. PD-L1 expression is regulated by several mechanisms, including oncogenic signaling pathways, loss or silencing of PTEN, and activation of the PI3K pathway (107, 108). Monoclonal antibodies targeting PD-1 or PD-L1 can block this inhibitory axis, thereby reactivating anti-tumor immune responses by lifting T-cell suppression.

PD-L1 is among the most extensively studied biomarkers in cancer immunotherapy and has gained regulatory approval to guide the use of PD-1/PD-L1 inhibitors in multiple malignancies (109, 110). In clinical settings, PD-L1 expression is most assessed using immunohistochemistry (IHC) and is quantified using the Tumor Proportion Score (TPS) or the Combined Positive Score (CPS) (111). While TPS evaluates the proportion of PD-L1-positive tumor cells, CPS incorporates both tumor and immune cell staining to provide a broader measure of immune engagement. Higher TPS and CPS scores have been correlated with improved responses to anti-PD-1/PD-L1 therapies in various cancers, including non-small cell lung cancer (109, 110).

In TNBC, the role of PD-L1 as a biomarker is more nuanced. PD-L1 expression has been detected on both tumor and immune

cells in TNBC, but its assessment is complicated by spatial heterogeneity and temporal dynamics of expression (111). Studies have shown that PD-L1 levels can vary depending on tumor stage (primary vs. metastatic), site of disease, and technical variables such as antibody clones and scoring thresholds (112). Despite this complexity, PD-L1 remains an active focus of investigation in TNBC, particularly as a candidate biomarker for patient stratification in neoadjuvant immunotherapy trials.

Checkpoint inhibitors targeting PD-1/PD-L1 have shown promising efficacy in early-stage TNBC. In this context, the KEYNOTE-522 trial was the first phase III study to demonstrate a significant improvement in clinical outcomes with the addition of immunotherapy. Patients receiving neoadjuvant chemotherapy plus pembrolizumab showed a 13.6% absolute increase in pCR compared to those receiving chemotherapy alone (64.8% vs. 51.2%) (71). Notably, this benefit was observed regardless of PD-L1 status, indicating that PD-L1 expression may not be a definitive predictor of response in early TNBC (85). This finding aligns with data from phase II trials showing that tumors lacking PD-L1 expression can still respond to immune checkpoint blockade (88). Nevertheless, PD-L1 positivity has been associated with favorable prognostic indicators such as higher pCR rates, improved metastasis-free survival, and OS in TNBC (101, 111, 112).

3.1.2 Microsatellite instability

Another critical tissue-based biomarker is microsatellite instability (MSI), which reflects defects in the DNA mismatch

repair (MMR) machinery. Tumors with high levels of MSI (MSI-H) typically harbor elevated mutational loads and generate abundant neoantigens, enhancing their visibility to the immune system. MSI-H is very rare in breast cancer, with reported prevalence of approximately 0.6–2% (113, 114). Nevertheless, MSI-H status has been associated with robust responses to PD-1 blockade, as shown in the KEYNOTE-158 trial, which led to FDA approval of pembrolizumab for MSI-H/dMMR cancers regardless of tumor origin (128–120) (115).

A study investigated mismatch repair and microsatellite instability in TNBC by analyzing tissue samples from 440 patients. The results showed that mismatch repair deficiency was rare, with only one sample identified as deficient and no cases of high-frequency microsatellite instability. Most samples had either no microsatellite instability or low-frequency instability. Additionally, no significant correlations were found between mismatch repair or microsatellite instability status and clinicopathological features, PD-1/PD-L1 expression, or survival. The findings suggest that mismatch repair and microsatellite instability are infrequent in TNBC and may have limited prognostic value, highlighting the need for further research into alternative biomarkers for immunotherapy (116).

Nonetheless, its conceptual importance lies in establishing a mechanistic link between genomic instability and immune sensitivity, a principle that continues to inform biomarker discovery in BC and beyond (116).

3.1.3 Tumor mutational burden

TMB represents another biomarker of interest, defined as the number of non-synonymous somatic mutations per megabase of coding DNA. A high TMB is thought to correlate with increased neoantigen presentation and subsequent T-cell priming, thereby enhancing susceptibility to immunotherapy (117, 118). However, there is a scarcity of data on the actual therapeutic significance of this biomarker in BC settings (119).

In BC, the predictive value of TMB remains controversial due to limited data. While high TMB is observed in up to 3% of primary BC tumors and 11% of metastatic cases, these tumors show greater sensitivity to checkpoint inhibitors. However, high TMB has not been associated with improved OS in BC patients receiving immunotherapy (120, 121). In June 2020, the FDA granted approval for pembrolizumab in cases of TMB high (≥10 mut/Mb), unresectable, or metastatic cancer (122).

Evidence from the KEYNOTE-158 trial has demonstrated improved objective response rates (ORR) and PFS in patients with high TMB across multiple tumor types (123). While data specific to TNBC remain limited, the general principles of immunogenicity conferred by high TMB are being explored in ongoing BC trials. Importantly, TMB should not be viewed in isolation. Rather, it is increasingly clear that integrating TMB with other immunological parameters—such as immune infiltrate composition, T-cell receptor clonality, and expression of immune modulatory genes—can provide a more comprehensive and accurate prediction of therapeutic outcomes (124).

3.1.4 Tumor-infiltrating lymphocytes

Tumor-infiltrating lymphocytes (TILs) are a heterogeneous population of immune cells, mainly composed of T cells, with smaller fractions of B cells and natural killer (NK) cells, that localize in the tumor microenvironment (125). TILs are present either in the tumor stroma or directly within tumor cell nests, and they play a central role in mediating antitumor immunity. Their infiltration reflects the immunogenicity of the tumor and the host immune response. In addition to general lymphocyte populations, immune regulators such as FOXP3+ regulatory T cells (Tregs), TIM3, LAG3, and TIGIT are often expressed on TILs. LAG3 is an inhibitory immune checkpoint receptor expressed on activated T cells, NK cells, B cells, and plasmacytoid dendritic cells (pDCs), and binds to MHC class II molecules. In TNBC mouse models, dual blockade of LAG3 and PD-1 elicits a more potent anti-tumor effect than monotherapy. TIM3, another checkpoint molecule, is expressed on Tregs, dendritic cells, and subsets of lymphocytes and monocytes (126).

TILs have been broadly recognized as prognostic and predictive biomarkers in cancer. Their prevalence varies among BC subtypes, with TNBC and HER2+ subtypes showing higher TIL infiltration compared to luminal-like tumors (127). In the broader oncology setting, higher TIL levels have been correlated with improved response to chemotherapy and immunotherapy, reduced recurrence, and longer survival. Tumors with abundant TILs are often classified as "hot" or inflamed and are more likely to respond to ICIs (128). Interestingly, aggressive BC subtypes with poor prognosis—such as ER-negative, PR-negative, or node-positive tumors—also tend to have elevated TIL levels (128, 129).

In TNBC specifically, TILs serve as key indicators of tumor immune microenvironmental activity. Their abundance is associated with reduced proliferation, metastasis, and therapy resistance (16). Salgado et al. reported that intratumoral lymphocytes significantly predicted pCR to neoadjuvant chemotherapy in both training and validation cohorts (P = 0.012 and P = 0.001) (130). In lymphocyte-predominant breast cancers, pCR rates reached 40-42%, versus only 3-7% in TIL-low tumors. Adams et al. confirmed that higher stromal TIL (sTIL) scores were linked to better prognosis and lower recurrence in two national clinical trials involving 481 TNBC patients (131). Moreover, PD-L1 expression on TILs—rather than on tumor cells—has been linked to improved clinical outcomes, likely reflecting adaptive immune activation. Sugie et al. showed that PD-L1 on immune cells strongly correlates with CD8+ T-cell infiltration and total TIL content in TNBC, supporting its role as a surrogate marker of Tcell-inflamed tumors (130, 132).

Evidence from large, pooled analyses has further strengthened the prognostic and predictive role of TILs. Denkert et al. (97) analyzed data from over 2,500 early-stage TNBC patients across multiple neoadjuvant trials and confirmed that each 10% increase in sTILs was associated with a proportional increase in pCR rates and improved DFS and OS. Similarly, Loi et al. (133) performed a pooled analysis of TNBC cohorts from clinical trials and demonstrated that high sTILs consistently predicted improved

outcomes, including OS, independent of chemotherapy regimen or nodal status. These large-scale data underscore that TIL quantification is a robust biomarker for treatment planning and risk stratification.

Clinical trial data further demonstrate the impact of TILs on immunotherapy efficacy. In the phase III IMpassion130 trial, atezolizumab combined with nab-paclitaxel led to prolonged progression-free survival (PFS) in patients with tumors harboring ≥10% stromal TILs, with greater benefit observed in PD-L1-positive cases (134). Furthermore, higher proportions of CD8+TILs have been associated with improved responses to ICIs in TNBC patients (135, 136). Elevated TIL levels in TNBC also correlate with a greater likelihood of pCR to chemotherapy—a surrogate marker of long-term survival (137). Conversely, low TIL infiltration or absence of immune markers may signal poor responsiveness, necessitating alternative therapeutic strategies.

While most studies indicate improved outcomes in patients with elevated sTILs, a few have noted that post-chemotherapy TIL enrichment may signal relapse risk in certain TNBC subgroups (138). Nevertheless, the bulk of evidence—including several large prognostic analyses—demonstrates that higher sTIL levels consistently predict better short- and long-term outcomes (139, 140). These beneficial effects are largely attributed to the presence of CD4+ and CD8+ effector T cells, which mediate anti-tumor activity and correlate with immunotherapy benefit (140, 141).

3.1.5 Gene expression signatures

In addition to PD-L1, MSI, and TMB, gene expression signatures derived from tumor transcriptomes are emerging as powerful tools for immune monitoring. Among these, interferongamma (IFN-y)-associated signatures have garnered significant attention. IFN- γ is a key effector cytokine produced by activated T cells and NK cells, and its downstream signaling orchestrates a cascade of immune-stimulatory effects, including upregulation of MHC molecules, chemokine production, and antigen presentation machinery (142). In melanoma, IFN- γ gene signatures have been successfully used to stratify patients in neoadjuvant immunotherapy trials, such as the DONIMI study, where they predicted response to PD-1 and CTLA-4 blockade (143). In breast cancer, Heimes et al. (144) reported that high IFN-γ expression correlated with improved disease-free and overall survival, supporting its role as a prognostic biomarker. Although less studied in TNBC, these signatures offer a promising avenue for selecting patients most likely to benefit from neoadjuvant immunebased therapies, particularly in immunologically "cold" tumors that may require priming or combination strategies to initiate effective immune responses.

3.2 Blood-based biomarkers

Beyond tumor tissues, peripheral blood offers a non-invasive window into the systemic immune state of cancer patients. Liquid biopsies can be repeatedly sampled over time, enabling longitudinal monitoring of treatment effects and immune dynamics. Among the blood-based biomarkers, soluble immune proteome profiling stands out for its ability to capture real-time fluctuations in cytokines, chemokines, and soluble checkpoint molecules. These circulating analytes provide insight into the activation status, regulatory balance, and effector function of the immune system throughout the course of therapy. For example, elevated levels of proinflammatory cytokines such as IL-6, TNF- α , or IFN- γ may indicate an active anti-tumor immune response or, conversely, immune-related toxicity (145, 146).

3.2.1 Immune-related gene expression profiling

Another informative blood-based modality is immune-related gene (IRG) expression profiling. By assessing mRNA transcripts in peripheral blood mononuclear cells (PBMCs) or circulating tumor cells (CTCs), researchers can monitor immune activation or suppression in response to therapy. This technique allows for the detection of gene expression patterns associated with cytotoxicity, antigen presentation, T-cell exhaustion, and regulatory immune networks (105).

3.2.2 Comprehensive immunophenotyping

Comprehensive immunophenotyping plays a critical role in monitoring immune responses during neoadjuvant chemoimmunotherapy for TNBC, providing detailed insights into immune cell dynamics in both the peripheral blood and tumor microenvironment. Using advanced technologies such as multiparametric flow cytometry and mass cytometry (CyTOF), researchers can analyze dozens of markers at the single-cell level to assess cell lineage, activation status, differentiation, and exhaustion (147). In TNBC, treatment response has been associated with increased frequencies of activated effector CD8+ T cells and decreased regulatory T cells (Tregs), as well as modulation of myeloid populations and antigen-presenting cells (111). Wang et al. (148) demonstrated that longitudinal single-cell profiling can identify early immune signatures predictive of pathological complete response, including expansion of specific cytotoxic Tcell subsets and reduction of immunosuppressive myeloid populations. These phenotypic changes reflect the evolving tumor-immune interaction under therapeutic pressure. Longitudinal immunophenotyping allows for temporal tracking of immune reconstitution and may reveal early predictors of pCR (147). Integration with transcriptomics or spatial imaging further enhances biomarker discovery. Integration with transcriptomics or spatial imaging further enhances biomarker discovery. As TNBC is highly immunologically heterogeneous, immunophenotyping is indispensable for personalizing treatment and informing early decision-making in clinical trials. Thus, comprehensive immune profiling supports both mechanistic understanding and translational implementation of immunotherapy in TNBC.

3.2.3 Cytokine profiling

Inflammation is essential for the immune system's defense against pathogens like viruses and bacteria, and it is also involved in tumor development, angiogenesis, and metastasis (149). Oncogenic changes, hypoxia, cytokines, and chemokines attract

inflammatory cells to the tumor microenvironment, which includes immune cells and activated fibroblasts that secrete factors promoting tumor growth (150). Recent research highlights that inflammation signaling, particularly through the IL-6/JAK2/Stat3 pathway, is significant in maintaining the stem cell-like properties of BC (151). Although most studies have reported higher cytokine levels in BC patients, one study involving 90 BC patients and 15 healthy volunteers found no significant difference in baseline cytokine levels between the two groups, as indicated by plasma concentrations of IL-1β, IL-6, IL-8, IL-10, IL-12, and TNF-α. However, a direct link between inflammatory cytokine levels and clinical outcomes in BC patients has not been clearly established (152). Angiogenesis, driven by factors like vascular endothelial growth factor (VEGF), is crucial for cancer growth and metastasis. VEGF, particularly elevated in TNBC, not only promotes tumor progression but also serves as a key target in anti-angiogenic therapies, improving survival rates when combined with chemotherapy, as demonstrated in metastatic colorectal cancer (153). Beyond chemotherapy, combining VEGF inhibition with immunotherapy has shown promise in other malignancies. In advanced endometrial carcinoma, the combination of lenvatinib (a VEGF receptor inhibitor) and pembrolizumab led to significantly longer PFS and OS compared to chemotherapy alone (154). Similarly, in clear cell renal cell carcinoma, combining VEGF inhibition with ICIs has demonstrated improved outcomes (155). These findings suggest that integrating VEGF-targeted therapies with immunotherapy could enhance treatment efficacy in various cancers. The significance of VEGF in TNBC is underscored by its notably higher expression levels three times greater than in ER/PRpositive tumors and 1.5 times higher than in HER2-positive tumors

—making it a critical biomarker for prognosis and treatment (156– 158). Similarly, IL-8 is highly expressed in the stroma of TNBC, significantly contributing to tumor growth and metastasis by promoting angiogenesis, proliferation, and migration of tumor cells. The interaction of IL-8 with its receptors, CXCR1 and CXCR2, is crucial for TNBC progression, making these molecules promising therapeutic targets. Studies demonstrate that blocking the IL-8 signaling pathway can effectively reduce TNBC cell proliferation and migration, highlighting its importance in developing treatment strategies (159, 160). In addition to IL-8, other cytokines like IL-15 and IL-18 play pivotal roles in the tumor microenvironment. IL-15 shows potential in enhancing NK cellmediated anti-tumor activity (161, 162), while IL-18 is associated with poor survival outcomes due to its role in increasing immunosuppressive NK cells and upregulating PD-1 expression. Together, these cytokines underscore the complexity of the TNBC microenvironment (163, 164).

In parallel, recent research has explored blood cytokine profiles in TNBC patients to identify biomarkers that could predict treatment outcomes. This study identified five cytokines —IL-1α, TRAIL, SCF, CCL5, and IL-16—linked to favorable clinical outcomes, with their levels decreasing during chemotherapy and rebounding afterward. Notably, patients with consistently high levels of these cytokines throughout treatment experienced better outcomes. These findings suggest that monitoring cytokine levels over time could enhance the precision of TNBC treatment, paving the way for more personalized therapeutic approaches (165).

The data regarding immune response biomarkers in TNBC is summarized in Table 2.

TABLE 2 Immune response biomarkers in cancer immunotherapy.

Biomarker	Role	Clinical significance	Predictive/prognostic value	
PD-L1	Immune checkpoint ligand inhibiting T-cell activity.	Associated with response to immune checkpoint inhibitors.	Linked to improved survival; may not predict response in early-stage TNBC.	
CTLA-4	Inhibits T-cell activation, maintaining immune homeostasis.	High expression correlates with metastasis.	Elevated expression in 50% of breast tumors, associated with poor prognosis.	
TILs	Indicates ongoing immune response in tumors.	High TILs improve response to ICIs.	Predictive of better survival in metastatic TNBC.	
LAG3	Inhibitory receptor on T and NK cells.	Enhanced response when combined with PD-1 blockade.	Potential target in combination therapies.	
TIM3	Inhibits various immune cells.	Regulates immune responses.	Explored as a co-target with other checkpoints.	
TMB	Quantifies mutation burden in tumors.	High TMB linked to ICI sensitivity.	Limited value in TNBC; high TMB in 3% of primary and 11% of metastatic cases.	
MSI	Results from DNA replication errors.	Rare in TNBC.	Limited clinical utility in TNBC.	
Cytokines (e.g., IL-8, VEGF)	Modulate tumor growth and immune response.	High VEGF and IL-8 promote tumor progression.	Serve as prognostic markers; potential therapeutic targets.	
Blood Cytokine Profile	Includes IL-1α, TRAIL, SCF, CCL5, IL-16.	Levels correlate with treatment outcomes.	Predictive of better outcomes when high during treatment.	

MSI, microsatellite instability; TILs, tumor-infiltrating lymphocytes; TMB, tumor mutational burden.

3.3 Advanced imaging technologies

In parallel with molecular and cellular biomarkers, advanced imaging technologies are increasingly employed to spatially map immune responses within tumors. Multispectral imaging platforms, such as AstroPath, combine traditional histology with quantitative measurement of multiple immune and tumor markers *in situ*. This spatial resolution allows for the identification of key microanatomical features—such as the presence of immune cell niches, tumor-immune boundaries, or exclusion zones—that may influence immunotherapy efficacy. Such insights are critical for interpreting treatment-induced remodeling of the tumor microenvironment in TNBC (166).

3.3.1 Immuno-positron emission tomography

Immuno-positron emission tomography (immuno-PET) represents a complementary strategy to evaluate immune responses non-invasively. By radiolabeling therapeutic antibodies such as pembrolizumab (⁸⁹Zr-pembrolizumab), researchers can visualize *in vivo* binding of the antibody to PD-1-expressing cells within tumors or lymphoid tissues. Early studies in NSCLC and melanoma have demonstrated the feasibility of this approach, and its translation to BC is currently under investigation (167).

3.3.2 Radiomics and delta radiomics

Radiomics and delta radiomics further expand the landscape of imaging-based biomarkers by analyzing subtle changes in texture, shape, and intensity within CT or PET scans using artificial intelligence tools. These features, invisible to the human eye, can reflect underlying biological processes such as immune infiltration, fibrosis, or necrosis. Machine learning algorithms trained on radiomic datasets have shown promise in predicting treatment response in various cancers (168). In the context of TNBC, delta radiomics could provide an early, non-invasive readout of immunological changes induced by neoadjuvant therapies, potentially guiding therapy adjustments.

3.3.3 Advanced spatial tissue profiling

Complementing systemic imaging, advanced spatial profiling techniques allow high-resolution characterization of the tumor immune microenvironment directly within tissue architecture. Multiplex immunofluorescence (mIF) enables simultaneous detection of multiple proteins on the same tissue section, providing quantitative insights into the spatial organization and interactions of immune cells. Spatial transcriptomics approaches, such as 10x Genomics Visium or NanoString GeoMx, map gene expression across defined tissue coordinates, capturing localized immune signatures and stromal-immune crosstalk. Highly multiplexed imaging platforms, including CODEX and digital pathology workflows, allow comprehensive mapping of dozens of markers while preserving tissue context. Together, these technologies reveal functional niches, immune exclusion zones, and cellular neighborhoods that cannot be resolved by conventional IHC or bulk molecular assays. Integration of spatial

profiling with immuno-PET and radiomics offers a multidimensional view, linking systemic imaging with tissue-level cellular and molecular architecture, ultimately enhancing the precision of immune monitoring and patient stratification in TNBC immunotherapy trials.

3.4 Temporal biomarker sampling

The temporal aspect of immune monitoring is equally crucial. Immune responses evolve dynamically over the course of treatment, necessitating longitudinal sampling strategies. In responders to neoadjuvant chemo-immunotherapy, early immunological events often include a surge in effector T-cell activity, increased IFN- γ signaling, and reprogramming of macrophages toward a proinflammatory phenotype (167). These changes are typically accompanied by reductions in tumor burden and the development of immunological memory. In contrast, non-responders may exhibit persistent immunosuppressive features, such as sustained presence of regulatory myeloid populations, impaired antigen presentation, or T-cell exclusion from the tumor core. Serial monitoring through tissue biopsies, blood sampling, or imaging enables the detection of these divergent trajectories, informing timely therapeutic modifications (169, 170).

3.5 Patient-derived models

To support real-time functional precision medicine, novel platforms such as zebrafish avatars are being developed. In this model, patient-derived tumor cells are engrafted into immunocompromised zebrafish embryos, which then serve as rapid screening platforms for therapeutic efficacy. Initial studies in colorectal cancer have demonstrated high concordance between zebrafish responses and patient outcomes to chemotherapy (171). Extending this approach to TNBC may offer insights into potential treatment responses, including immunotherapy or combinatorial regimens, but clinical validation remains limited. Key challenges include scalability for larger patient cohorts, standardization of engraftment and readout protocols, and ensuring reproducibility across laboratories.

Similarly, the TRIPLEX study (172) is investigating the feasibility of generating patient-derived tumor organoids (PDTOs) from TNBC biopsies to assess their ability to predict clinical response to chemotherapy and immune checkpoint blockade. While these models provide a promising ex vivo platform to interrogate tumor biology, several limitations remain: the generation and maintenance of PDTOs can be labor-intensive, time-consuming, and technically demanding; variability between organoids derived from different patients may affect generalizability; and integration of PDTO-derived data into clinical decision-making pathways is not yet established. Consequently, these platforms are currently better suited for exploratory studies and mechanistic investigations rather than routine clinical use.

In conclusion, while zebrafish avatars and PDTOs represent innovative tools for functional precision oncology, their current clinical utility in TNBC is still largely investigational. Integration of these models with tissue-based, blood-derived, imaging-driven, and temporally resolved biomarkers provides a multidimensional perspective of the immune response to therapy (Table 3). Future efforts should focus on rigorous validation, optimization for scalability, and establishing standardized pipelines to facilitate translation into personalized treatment strategies. Complementary incorporation of advanced multiplex technologies, artificial intelligence, and integrative modeling will be essential to refine predictive frameworks and improve patient outcomes in this aggressive BC subtype.

4 Future directions and emerging techniques

Immune monitoring involves evaluating the function, activity, and state of the immune system by analyzing immune cells, cytokines, and biomarkers. This is crucial for understanding disease progression, response to therapies, and predicting outcomes. Traditional immune monitoring methods, such as flow cytometry and ELISA, have been foundational. However, recent

innovations have significantly expanded the capability to assess immune responses with greater precision and detail.

4.1 Single-cell sequencing

Single-cell sequencing is a next-generation sequencing (NGS) method that examines the genomes or transcriptomes of individual cells, providing a high-resolution view of cell-to-cell variation (176). In cancer, the process of sequencing the DNA of individual cells can provide valuable insights about the mutations that are present in isolated cell groups. The sequencing of RNAs produced by individual cells throughout development can provide valuable understanding of the presence and characteristics of various cell types (177).

Profiles of gene expression in bulk tumors reveal the characteristics of non-tumor compartments, which, in the case of BC, are marked by a significant combination of stromal, immunological, and endothelial cell infiltration. The admixtures constitute the tumor microenvironment and have a crucial function in the initiation, development, and resistance to therapy of tumors. Prognostic values of micro-environmental gene expression profiles may exist independently of the underlying tumor subtype (178–180). The primary cellular components of the cancer

TABLE 3 Biomarker-based immune monitoring strategies in cancer immunotherapy.

Biomarker type	Specific biomarker	Function / Use	Application in TNBC	Key references
Tissue-based	PD-L1 (TPS/CPS)	Immune checkpoint ligand; predictive of ICB response	Approved for use in selecting patients for anti–PD-1/PD-L1 therapy	(98, 104)
	MSI/dMMR	Reflects genomic instability and neoantigen load	Rare in TNBC; predicts strong ICB response when present	(113, 116)
	Tumor Mutational Burden (TMB)	Measures somatic mutations per Mb of DNA; proxy for neoantigen load	High TMB may correlate with ICB response in select patients	(118, 123)
	IFN-γ Gene Signatures	Measures IFN-γ pathway activation; immunogenicity marker	Potential to stratify responders to neoadjuvant immunotherapy	(105, 143)
Blood-based	Cytokines & Soluble Proteins	Track systemic immune activation / toxicity	Dynamic, longitudinal monitoring of therapy effects	(145)
	Immune-related Gene Expression	Transcriptomic analysis of PBMCs / CTCs	Monitors immune activation, exhaustion, or suppression	(105)
	Comprehensive Immunophenotyping	Deep immune profiling (CyTOF, flow cytometry)	Tracks immune reconstitution and correlates with response/non-response	(147)
Imaging-based	Multispectral Imaging (AstroPath)	Spatial resolution of immune-tumor architecture	Identifies immune niches, exclusion zones	(166)
	ImmunoPET	In vivo tracking of PD-1/PD-L1 expression	Non-invasive biomarker of immune dynamics	(173)
	Radiomics / Delta Radiomics	AI-driven analysis of CT/PET image features	Early prediction of immunologic changes and treatment response	(168)
Temporal profiling	oral profiling Serial biopsies & blood sampling Captures dy treatment		Differentiates responders vs. non- responders; supports adaptive therapy	(167, 170)
Functional models Zebrafish avatars		Rapid <i>in vivo</i> drug screening using patient-derived xenografts	Forecasts individual responses; emerging in TNBC	(171)

CPS, Combined Positive Score; CTC, circulating tumor cells; CyTOF, Cytometry by Time-of-Flight; ICB, immune checkpoint blockade; Immuno-Pesitron emission tomography; MSI, microsatellite instability; MMR, DNA mismatch repair; PBMCs; peripheral blood mononuclear cells; TPS, Tumor Proportion Score.

microenvironment consist of cancer-associated fibroblasts and immune cells. The cancer microenvironment comprises cancer-associated fibroblasts and diverse complement of immune cells. In general, tumor-associated macrophages (TAMs) facilitate the proliferation and spread of tumors, whereas CD8+ cytotoxic T cells and CD4+ Th1 cells provide support for the immune response against tumors (181). There is a correlation between regulatory or exhausted T cells and unsuccessful anticancer responses. Despite the potential contribution of certain B cells to the advancement of tumors, a significant abundance of B cells within the tumor area is linked to a positive prognosis (182, 183). Fundamentally, the tumor microenvironment is influenced by the interactions between these heterogeneous cells and cancer cells.

Single-cell genome analysis is anticipated to play a significant role in cancer treatment. It can aid in non-invasive monitoring of circulating tumor cells, assessing tumor heterogeneity, detecting small recurrent tumors early, and monitoring rare cell populations in difficult-to-treat cancers. Understanding transcriptome heterogeneity and accurately characterizing gene expression in tumors and their microenvironments may help identify more effective molecular targets for prognosis and treatment (184). Characterizing tumor heterogeneity could lead to targeted therapies, while profiling tumor-infiltrating immune cells may offer new strategies to combat immune suppression and enhance immune surveillance (185).

TNBC exhibits significant intra- and inter-tumor heterogeneity, complicating treatment and prognosis. Single-cell sequencing (SCS) has been instrumental in identifying distinct TNBC cell types, such as basal and other epithelial cells, which are linked to poor survival outcomes. SCS also reveals genetic mutations and clonal evolution within TNBC, helping to understand tumor resistance during chemotherapy and uncover new treatment targets. Moreover, SCS has exposed the heterogeneity of cancer-associated fibroblasts (CAFs) and immune cells, crucial in tumor progression and drug resistance. This technique also supports the exploration of combination therapies and personalized approaches, offering potential strategies to reduce recurrence, metastasis, and treatment resistance in TNBC (186).

4.2 Circulating tumor DNA and liquid biopsy

Liquid biopsy is a minimally invasive technique that has gained significant attention in recent years for its utility in cancer diagnostics, prognosis, and treatment monitoring. It involves the analysis of peripheral blood or other bodily fluids to detect tumor-derived components such as circulating tumor cells (CTCs), cell-free DNA (cfDNA), and circulating tumor DNA (ctDNA). Notably, ctDNA represents a tumor-derived fraction of the total cfDNA. Unlike traditional tissue biopsy, liquid biopsy can be performed repeatedly with minimal discomfort, making it a valuable tool for real-time and longitudinal assessment of tumor dynamics (187). ctDNA, a form of circulating nucleic acid derived from cancer cells, is typically released through apoptosis, necrosis, or active secretion.

Apoptosis is the most common mechanism, producing nucleosome-protected DNA fragments approximately 140–180 base pairs in length (188, 189). Additionally, nucleic acids may circulate as free fragments or encapsulated within extracellular vesicles, offering a window into the molecular characteristics of both primary and metastatic tumors.

In the broader oncology landscape, ctDNA and CTCs—collectively referred to as the "circulome"—are increasingly recognized as biomarkers for disease progression, treatment resistance, and measurable residual disease (MRD). High levels of ctDNA have been correlated with aggressive disease phenotypes and relapse across multiple cancer types. Moreover, circulating DNA fragments have been associated with tumor size and lymph node involvement, indicating their utility for staging and risk stratification (190, 191). In advanced cancers, liquid biopsy enables molecular characterization of therapy-resistant clones, helping clinicians tailor treatments in a personalized manner (192, 193). As such, liquid biopsies serve as a complementary tool to traditional tissue biopsies, offering additional, dynamic insights into the tumor's genetic evolution.

In TNBC, where tumor heterogeneity and lack of targeted therapies pose significant challenges, ctDNA and liquid biopsy offer promising avenues for disease monitoring and precision oncology. An increase in ctDNA levels has been linked to aggressive subtypes and poorer prognoses. One large study involving 130 TNBC patients measured ctDNA levels within seven months post-treatment and found that 7.7% had detectable ctDNA, signifying residual disease. Notably, among patients who had undergone neoadjuvant therapy but did not achieve pCR, the presence of ctDNA was associated with shorter PFS, highlighting the prognostic value of ctDNA in identifying high-risk patients (194). These findings underscore the benefit of integrating ctDNA monitoring with tissue-based response to refine post-treatment surveillance and decision-making in TNBC.

Further, ctDNA has shown promise as a dynamic biomarker during neoadjuvant therapy. Riva et al. investigated the use of TP53 mutation-based digital PCR assays to monitor ctDNA in early-stage TNBC patients (195). ctDNA was detectable in 75% of patients at baseline, with levels decreasing throughout treatment, except in one patient who exhibited disease progression. Interestingly, although ctDNA levels did not correlate directly with clinical response or pCR, the absence of ctDNA post-surgery suggested favorable outcomes. The limited sensitivity in this study was likely due to tracking a single mutation. In contrast, a follow-up study by Cavallone et al. enhanced ctDNA detection by targeting an average of five mutations per patient (196). In this cohort, ctDNA was detectable in 96% of patients at baseline, and pre-surgical ctDNA positivity was associated with residual disease and inferior long-term outcomes. Conversely, patients with undetectable ctDNA before surgery had improved relapse-free and overall survival, reinforcing the predictive and prognostic value of multiplexed ctDNA monitoring in TNBC (196).

Importantly, clinical trials have now applied ctDNA monitoring to guide early detection of recurrence and treatment adaptation. The c-TRAK TN trial (174) demonstrated that serial ctDNA

assessment post-neoadjuvant therapy could identify MRD prior to clinical relapse, with ctDNA-positive patients showing a significantly higher risk of recurrence. Similarly, the ZEST trial (175) confirmed that ctDNA dynamics could guide adjuvant treatment decisions, with early clearance associated with improved relapse-free survival. These studies highlight the growing utility of ctDNA as a predictive and prognostic biomarker and support its integration into personalized surveillance strategies in TNBC immunotherapy trials (Table 4).

5 Limitations and controversies of key tissue biomarkers and clinical implications for TNBC

Despite their extensive investigation, PD-L1, TMB, and MSI each present important limitations that diminish their ability to function as reliable stand-alone predictive biomarkers in TNBC.

PD-L1 illustrates both technical and biological heterogeneity. Different immunohistochemical assays (such as 22C3, SP142, and SP263) employ non-equivalent scoring systems—tumor proportion score, combined positive score, or immune cell scoring—leading to discordant classifications of the same tumor. A specimen considered "positive" by one assay may be deemed "negative" by another (69, 100). Beyond these analytical inconsistencies, PD-L1 expression is highly variable within the same tumor, between primary and metastatic lesions, and is subject to dynamic regulation by therapy and inflammatory cues. As a result, reliance on a single archival biopsy may not accurately capture the current biological state of the disease (106). This variability translates into significant clinical consequences. In metastatic TNBC, PD-L1 status is routinely used to guide the use of ICIs, as in KEYNOTE-355 where pembrolizumab was restricted to CPS-positive disease. In contrast, in the neoadjuvant setting, KEYNOTE-522 demonstrated benefit from pembrolizumab regardless of PD-L1 expression, creating uncertainty about the biomarker's role in treatment selection at earlier disease stages (71, 84). In practice, such inconsistencies risk both undertreatment, by denying effective therapy to some patients, and overtreatment, by exposing others to toxicity without clear evidence of benefit.

TMB faces a different set of challenges. Measurement varies depending on sequencing approach, bioinformatics pipeline, and the genomic territory interrogated, whether whole exome or targeted panels. These methodological inconsistencies lead to divergent mutational burden estimates and complicate the establishment of universal thresholds (118). Although the FDA's pan-tumor approval of pembrolizumab for TMB \geq 10 mut/Mb, based on KEYNOTE-158, provided a proof-of-concept for its utility, subsequent data revealed limited reproducibility across tumor types and very little evidence specific to TNBC (123). In breast cancer overall, high TMB is rare, and when present, does not consistently predict durable responses to checkpoint blockade (120, 124). Consequently, TMB alone provides limited clinical

confidence. Its potential value lies in integration with other features of the immune landscape, such as tumor-infiltrating lymphocytes, interferon-gamma-related gene expression signatures, and clonal architecture of the tumor.

MSI or mismatch repair deficiency is another theoretically appealing biomarker because MSI-high tumors are strongly immunogenic and respond well to PD-1 blockade across multiple cancers (113, 114). However, MSI-H status is exceedingly rare in breast cancer, and particularly in TNBC, with a prevalence below 2% (115, 116). This rarity sharply limits its clinical utility as a broad biomarker in this disease. Moreover, MSI detection itself is not straightforward, discordance can occur between testing methods, including immunohistochemistry for mismatch repair proteins, PCR-based microsatellite panels, and NGS-derived MSI calls. In a low-prevalence context, even modest rates of false positives or false negatives carry disproportionate clinical consequences. While MSI positivity should always prompt consideration of PD-1 therapy regardless of tumor origin, routine MSI screening in all TNBC cases has limited yield.

Taken together, these three biomarkers share fundamental limitations. Pre-analytic factors such as tissue handling, fixation, and ischemia time can influence results, while intratumoral heterogeneity and sample type further complicate interpretation. A single static biomarker measurement fails to reflect the evolving interaction between the tumor and immune system during therapy. Lack of assay harmonization across platforms prevents direct comparability between studies and undermines reproducibility. These weaknesses have practical clinical implications: in metastatic disease, reliance on PD-L1 to determine eligibility for immunotherapy may exclude some patients who could benefit, while in early TNBC the proven efficacy of immunotherapy regardless of PD-L1 status makes such selection criteria questionable. Similar risks arise with TMB and MSI, where methodological or prevalence-related limitations may lead to inappropriate treatment denial or unwarranted exposure to toxicity.

Addressing these challenges requires pragmatic strategies. The use of drug-specific, validated assays and cutoffs is essential for clinical decision-making. Testing should be performed on the most relevant sample, ideally the most recent and representative of the disease stage being treated. Overreliance on any single biomarker should be avoided in favor of integrative approaches that combine PD-L1 status with tumor-infiltrating lymphocytes, immune-related gene signatures, and liquid biopsy markers such as circulating tumor DNA. Longitudinal and repeated sampling in the trial setting may help to capture dynamic biomarker changes, while ongoing efforts in assay harmonization and cross-platform benchmarking will be critical to improving comparability between studies. Ultimately, progress in TNBC immunotherapy will depend on the development of composite, multimodal biomarker frameworks that integrate spatial, transcriptomic, and circulating immune readouts, offering a more accurate reflection of tumorimmune interactions and greater predictive precision than any single analyte can provide.

TABLE 4 Overview of landmark neoadjuvant chemoimmunotherapy trials in TNBC: trial design, biomarker integration, and outcome measures.

Trial	Phase	ICI / agent & schedule	PD-L1 assay / cutoff	TILs	ctDNA results	Primary outcomes (pCR/ EFS/OS)	Reference
KEYNOTE-522	III	Pembrolizumab with neoadjuvant chemo and adjuvant continuation	22C3 CPS (exploratory); benefit irrespective of CPS	Higher TILs associated with higher pCR	Exploratory analyses ongoing	pCR 64.8% vs 51.2%; 36-mo EFS HR 0.63; 60-mo OS 86.6% vs 81.7%	(71, 84, 36, 36)
IMpassion031	III	Atezolizumab with neoadjuvant chemo (perioperative)	SP142; ≥1% immune cells considered positive	TIL-rich tumors showed greater benefit trends	Not primary endpoint; exploratory analyses reported	pCR 58% vs 41%; no mature EFS benefit	(99)
NeoTRIP Michelangelo	III	Atezolizumab with carboplatin + nab- paclitaxel (pre-AC)	Assays varied; exploratory analyses	Biomarker context affected response; TILs informative	Exploratory	pCR 48.6% vs 44.4% (NS)	(100)
GeparNuevo	II	Durvalumab (window then with chemo)	PD-L1 and TILs analyzed; serial biopsies	Higher baseline TILs correlated with response; dynamic changes informative	Subset analyses	Modest pCR increase; follow-up showed improved iDFS/DDFS in some analyses	(101)
BrighTNess	III	Veliparib + carboplatin vs carboplatin alone vs control (no veliparib)	N/A (not ICI primary)	BRCA/HRD tumors had higher benefit from carboplatin	Exploratory	Carboplatin improved pCR and EFS; veliparib did not add benefit	(95)
KEYNOTE-173	Ib	Pembrolizumab with various neoadjuvant regimens	22C3 CPS and TILs assessed	Higher TILs and PD-L1 correlated with higher pCR in exploratory cohorts	Exploratory correlative work	Promising pCR rates in several cohorts; informed KEYNOTE-522 design	(71)
IMpassion130	III	Atezolizumab + nab-paclitaxel (first- line metastatic)	SP142 on immune cells; PD-L1+ defined as IC≥1%	PD-L1+ / TIL-rich tumors derived more PFS benefit	Exploratory analyses	PFS benefit in PD-L1+ subgroup; OS benefit subject to follow-up and regulatory considerations	(111)
NeoSTAR (Arm A2)	II	Sacituzumab govitecan (10 mg/kg d1,8) + pembrolizumab (200 mg d1) ×4 cycles; ANACT allowed	Exploratory; BRCA subgroup reported	Activity observed across biomarker subgroups; higher in some immune-active tumors	Not primary endpoint; biomarker work planned	pCR after SG+P alone 34%; overall pCR 50% after ANACT; 60% pCR in BRCA-mutant subset (3/5)	(102)
c-TRAK TN	II	Intervention triggered by ctDNA detection (varies)	Not directly applicable	NA	Serial ctDNA detected MRD prior to clinical relapse; ctDNA+ associated with higher recurrence risk	Study focused on MRD detection and feasibility of intervention; ctDNA preceded relapse in many cases	(174)
ZEST	III	Niraparib vs placebo guided by ctDNA status (adjuvant)	NA	NA	Design uses ctDNA to guide adjuvant therapy; early reports indicate ctDNA dynamics associate with outcomes	Ongoing; presented as abstract at SABCS 2024	(175)

AC, Anthracycline-cyclophosphamide; ANACT, Anthracycline-containing neoadjuvant chemotherapy; BRCA, Breast cancer gene (BRCA1/2); ctDNA, Circulating tumor DNA; DDFS, Distant disease-free survival; EFS, Event-free survival; HER2-, Human epidermal growth factor receptor 2 negative; iDFS, Invasive disease-free survival; ICI, Immune checkpoint inhibitor; MRD, Minimal residual disease; NA, not applicable; NACT, Neoadjuvant chemotherapy; nab paclitaxel , Nanoparticle albumin-bound paclitaxel; OS, Overall survival; PD-L1+, Programmed death-ligand 1 positive; pCR0, Pathologic complete response; PFS, Progression-free survival; SG, Sacituzumab govitecan; TNBC, Triple-negative breast cancer; d1, d8, Day 1, Day 8 of treatment cycle; I, Ib, II, III, Clinical trial phases.

6 Conclusion

Immune monitoring has become an important strategy that can further elucidate neoadjuvant chemo-immunotherapy responses in TNBC, a tumor type with limited therapeutic options and generally characterized by a poor prognosis. By evaluating immune markers such as TILs, cytokine profiles, and immune checkpoint expression, clinicians gain real-time insights into how the immune system interacts with the tumor, guiding adjustments to treatment strategies and improving outcomes. For example, higher levels of TILs have been associated with better responses, therefore underlining the importance of a strong immune presence in enhancing the efficacy of chemo-immunotherapy.

The combination of chemotherapy and immunotherapy holds significant promise due to their complementary mechanisms of action. Chemotherapy induces tumor cell death, releasing antigens that can stimulate the immune system, while immunotherapy enhances the immune response by preventing immune evasion. Immune monitoring can track the effectiveness of this synergy, ensuring that both arms of therapy are functioning optimally.

Despite its potential, immune monitoring in TNBC faces several challenges. Tumors can evolve rapidly, and immune markers may fluctuate, complicating long-term predictions. The pronounced biological heterogeneity of TNBC—encompassing variations in tumor-intrinsic features, immune microenvironments, and patient-specific factors—makes it particularly difficult to develop universal biomarkers that reliably predict responses across all patients. In addition, practical limitations—including high costs of advanced assays, variability in assay reproducibility, and limited access to high-throughput technologies and specialized expertise—pose barriers to routine clinical implementation.

Emerging technologies like next-generation sequencing and single-cell analysis are beginning to unravel this complexity, paving the way for more personalized and accurate immune monitoring. While there are still hurdles to overcome, ongoing research and technological advancements are likely to refine immune monitoring techniques, enhancing their predictive power and clinical utility. As our understanding of the immune system's role in cancer therapy deepens, immune monitoring is expected to play an increasingly central role in the management of TNBC and other cancers, ultimately leading to better patient care and improved survival outcomes.

Author contributions

MS: Writing – review & editing, Writing – original draft. RS: Writing – review & editing, Writing – original draft. LS: Writing – review & editing, Writing – original draft. AP: Writing – review & editing, Writing – original draft. NC: Writing – original draft, Writing – review & editing. TC: Writing – original draft, Writing – review & editing. GS: Writing – review & editing, Writing – original draft. PR: Writing – review & editing, Resources, Formal Analysis, Funding acquisition, Project administration, Writing – original draft, Visualization, Methodology, Conceptualization, Data curation, Investigation, Software, Supervision, Validation.

Funding

The author(s) declare financial support was received for the research and/or publication of this article. This work was supported by FEDER Funds through the Operational Programme Competitiveness and Internationalisation – COMPETE 2020, and by National Funds through the Fundação para a Ciência e a Tecnologia (FCT) under the Strategic Project references POCI-01-0145-FEDER-007440, UIDB/04539/2020, UIDP/04539/2020, and LA/P/0058/2020. LS acknowledges funding from FCT through the PhD scholarship 2023.02511.BD from FCT and the European Social Fund (ESF). We also acknowledge the support provided by the Noémia Afonso Research Award, promoted by the Portuguese Society for Senology (SPS).

Acknowledgments

We would like to acknowledge our colleagues from the Laboratory of Immunology and Oncology (CNC), the Institute of Immunology (FMUC), and the Coimbra Institute for Biomedical Research (iCBR) for their valuable scientific input and support throughout this work. We also thank the teams from the Medical Oncology, Clinical Pathology, and Anatomic Pathology Departments of the Portuguese Institute of Oncology of Coimbra (IPOCFG EPE) for their collaboration and assistance in sample collection and clinical data. Our gratitude extends to the Research Centre in Environment, Genetics and Oncobiology (CIMAGO), the Centre for Innovation in Biomedicine and Biotechnology (CIBB), and the Clinical Academic Center of Coimbra (CACC) for their institutional support and contribution to the development of this research.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

- 1. Grosse C, Noack P, Grosse A, Preuss CI, Schwarz HK, Gitter T, et al. Prognostic impact of histological subtyping in triple-negative breast cancer. *Hum Pathol.* (2024) 152:105640. doi: 10.1016/j.humpath.2024.105640
- 2. Lehmann BD, Jovanović B, Chen X, Estrada MV, Johnson KN, Shyr Y, et al. Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. *PloS One.* (2016) 11:e0157368. doi: 10.1371/journal.pone.0157368
- 3. Perou CM. Molecular stratification of triple-negative breast cancers. *Oncologist* (2011). (2011) 16:61–70. doi: 10.1634/theoncologist.2011-S1-61
- 4. O'Toole SA, Beith JM, Millar EK, West R, McLean A, Cazet A, et al. Therapeutic targets in triple negative breast cancer. *J Clin Pathol.* (2013) 66:530–42. doi: 10.1136/jclinpath-2012-201361
- 5. Brown M, Tsodikov A, Bauer KR, Parise CA, Caggiano V. The role of human epidermal growth factor receptor 2 in the survival of women with estrogen and progesterone receptor-negative, invasive breast cancer: the California Cancer Registry, 1999-2004. Cancer. (2008) 112:737–47. doi: 10.1002/cncr.23243
- 6. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, et al. Triplenegative breast cancer: clinical features and patterns of recurrence. *Clin Cancer Res.* (2007) 13:4429–34. doi: 10.1158/1078-0432.CCR-06-3045
- 7. Reis-Filho JS, Milanezi F, Steele D, Savage K, Simpson PT, Nesland JM, et al. Metaplastic breast carcinomas are basal-like tumours. *Histopathology*. (2006) 49:10–21. doi: 10.1111/j.1365-2559.2006.02467.x
- 8. Livasy CA, Karaca G, Nanda R, Tretiakova MS, Olopade OI, Moore DT, et al. Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. *Mod Pathol.* (2006) 19:264–71. doi: 10.1038/modpathol.3800528
- 10. Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, et al. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. *JAMA*. (2006) 295:2492–502. doi: 10.1001/jama.295.21.2492
- 11. Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer Registry. *Cancer.* (2007) 109:1721-8. doi: 10.1002/cncr.22618
- 12. Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. *Proc Natl Acad Sci U S A.* (2001) 98:10869–74. doi: 10.1073/pnas.191367098
- 13. Smid M, Wang Y, Zhang Y, Sieuwerts AM, Yu J, Klijn JG, et al. Subtypes of breast cancer show preferential site of relapse. *Cancer Res.* (2008) 68:3108–14. doi: 10.1158/0008-5472.CAN-07-5644
- 14. Zhou HL, Chen DD. Prognosis of patients with triple-negative breast cancer: A population-based study from SEER database. *Clin Breast Cancer*. (2023) 23:e85–94. doi: 10.1016/j.clbc.2023.01.002
- 15. Mandapati A, Lukong KE. Triple negative breast cancer: approved treatment options and their mechanisms of action. *J Cancer Res Clin Oncol.* (2023) 149:3701–19. doi: 10.1007/s00432-022-04189-6
- 16. Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. *Nat Rev Clin Oncol.* (2016) 13:674–90. doi: 10.1038/nrclinonc.2016.66
- 17. Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. *Clin Cancer Res.* (2007) 13:2329–34. doi: 10.1158/1078-0432.CCR-06-1109
- 18. von Minckwitz G, Untch M, Blohmer JU, Costa SD, Eidtmann H, Fasching PA, et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. *J Clin Oncol.* (2012) 30:1796–804. doi: 10.1200/JCO.2011.38.8595
- 19. Korde LA, Somerfield MR, Carey LA, Crews JR, Denduluri N, Hwang ES, et al. Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: ASCO guideline. *J Clin Oncol.* (2021) 39:1485–505. doi: 10.1200/JCO.20.03399
- 20. A'Hern RP, Smith IE, Ebbs SR. Chemotherapy and survival in advanced breast cancer: the inclusion of doxorubicin in Cooper type regimens. *Br J Cancer.* (1993) 67:801–5. doi: 10.1038/bjc.1993.146
- 21. Paridaens R, Biganzoli L, Bruning P, Klijn JG, Gamucci T, Houston S, et al. Paclitaxel versus doxorubicin as first-line single-agent chemotherapy for metastatic breast cancer: a European Organization for Research and Treatment of Cancer Randomized Study with cross-over. *J Clin Oncol.* (2000) 18:724–33. doi: 10.1200/ ICO.2000.18.4.724
- 22. Rivankar S. An overview of doxorubic in formulations in cancer therapy. J Cancer Res Ther. (2014) $10{:}853{-}8.$ doi: $10.4103/0973{-}1482.139267$
- $23.\ Sobczuk\ P,\ Czerwińska\ M,\ Kleibert\ M,\ Cudnoch-Jędrzejewska\ A.\ Anthracycline-induced\ cardiotoxicity\ and\ renin-angiotensin-aldosterone\ system-from\ molecular$

- mechanisms to therapeutic applications. Heart Fail Rev. (2022) 27:295-319. doi: 10.1007/s10741-020-09977-1
- 24. Ajzashokouhi AH, Bostan HB, Jomezadeh V, Hayes AW, Karimi G. A review on the cardioprotective mechanisms of metformin against doxorubicin. *Hum Exp Toxicol*. (2020) 39:237–48. doi: 10.1177/0960327119888277
- 25. Rawat PS, Jaiswal A, Khurana A, Bhatti JS, Navik U. Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. *BioMed Pharmacother*. (2021) 139:111708. doi: 10.1016/j.biopha.2021.111708
- 26. Doroshow JH. Mechanisms of anthracycline-enhanced reactive oxygen metabolism in tumor cells. *Oxid Med Cell Longev*. (2019) 2019:9474823. doi: 10.1155/2019/9474823
- 27. Findlay B, Tonkin K, Crump M, Norris B, Trudeau M, Blackstein M, et al. A dose escalation trial of adjuvant cyclophosphamide and epirubicin in combination with 5-fluorouracil using G-CSF support for premenopausal women with breast cancer involving four or more positive nodes. *Ann Oncol.* (2007) 18:1646–51. doi: 10.1093/apnporc/mdm277
- 28. Khasraw M, Bell R, Dang C. Epirubicin: is it like doxorubicin in breast cancer? A clinical review. *Breast.* (2012) 21:142–9. doi: 10.1016/j.breast.2011.12.012
- 29. Burnell M, Levine MN, Chapman JA, Bramwell V, Gelmon K, Walley B, et al. Cyclophosphamide, epirubicin, and Fluorouracil versus dose-dense epirubicin and cyclophosphamide followed by Paclitaxel versus Doxorubicin and cyclophosphamide followed by Paclitaxel in node-positive or high-risk node-negative breast cancer. *J Clin Oncol.* (2010) 28:77–82. doi: 10.1200/JCO.2009.22.1077
- 30. Postigo-Corrales F, Beltrán-Videla A, Lázaro-Sánchez AD, Hurtado AM, Conesa-Zamora P, Arroyo AB, et al. Docetaxel resistance in breast cancer: current insights and future directions. *Int J Mol Sci.* (2025) 26:7119. doi: 10.3390/ijms26157119
- 31. Bookman MA, Brady MF, McGuire WP, Harper PG, Alberts DS, Friedlander M, et al. Evaluation of new platinum-based treatment regimens in advanced-stage ovarian cancer: a Phase III Trial of the Gynecologic Cancer Intergroup. *J Clin Oncol.* (2009) 27:1419–25. doi: 10.1200/JCO.2008.19.1684
- 32. Wheate NJ, Day AI, Blanch RJ, Arnold AP, Cullinane C, Collins JG. Multinuclear platinum complexes encapsulated in cucurbit[n]uril as an approach to reduce toxicity in cancer treatment. *Chem Commun (Camb)*. (2004) 12):1424–5. doi: 10.1039/b404358h
- 33. Wheate NJ, Collins JG. Multi-nuclear platinum drugs: a new paradigm in chemotherapy. Curr Med Chem Anticancer Agents. (2005) 5:267–79. doi: 10.2174/1568011053765994
- 34. Schmid P, Cortes J, Dent R, Pusztai L, McArthur H, Kümmel S, et al. VP7-2021: KEYNOTE-522: Phase III study of neoadjuvant pembrolizumab + chemotherapy vs. placebo + chemotherapy, followed by adjuvant pembrolizumab vs. placebo for early-stage TNBC. *Ann Oncol.* (2021) 32:1198–200. doi: 10.1016/j.annonc.2021.06.014
- 35. Loibl S, Sikov W, Huober J, Rugo HS, Wolmark N, O'Shaughnessy J, et al. 1190 Event-free survival (EFS), overall survival (OS), and safety of adding veliparib (V) plus carboplatin (Cb) or carboplatin alone to neoadjuvant chemotherapy in triple-negative breast cancer (TNBC) after 24 years of follow-up: BrighTNess, a randomized phase III trial. Ann Oncol. (2021) 32:S408. doi: 10.1016/j.annonc.2021.08.400
- 36. Schmid P, Cortes J, Dent R, McArthur H, Pusztai L, Kümmel S, et al. Overall survival with pembrolizumab in early-stage triple-negative breast cancer. N Engl J Med. (2024) 391:1981–91. doi: $10.1056/{\rm NEJMoa2409932}$
- 37. He MY, Rancoule C, Rehailia-Blanchard A, Espenel S, Trone JC, Bernichon E, et al. Radiotherapy in triple-negative breast cancer: Current situation and upcoming strategies. *Crit Rev Oncol Hematol.* (2018) 131:96–101. doi: 10.1016/j.critrevonc.2018.09.004
- 38. Wickberg Å, Magnuson A, Holmberg I, Adami HO, Liljegren G. Influence of the subtype on local recurrence risk of breast cancer with or without radiation therapy. *Breast.* (2018) 42:54–60. doi: 10.1016/j.breast.2018.08.097
- 39. Sjöström M, Lundstedt D, Hartman L, Holmberg E, Killander F, Kovács A, et al. Response to radiotherapy after breast-conserving surgery in different breast cancer subtypes in the swedish breast cancer group 91 radiotherapy randomized clinical trial. *J Clin Oncol.* (2017) 35:3222–9. doi: 10.1200/JCO.2017.72.7263
- 40. Kunkler IH, Williams LJ, Jack WJ, Cameron DA, Dixon JM, PRIME II investigators. Breast-conserving surgery with or without irradiation in women aged 65 years or older with early breast cancer (PRIME II): a randomised controlled trial. *Lancet Oncol.* (2015) 16:266–73. doi: 10.1016/S1470-2045(14)71221-5
- 41. Zhai Z, Zheng Y, Yao J, Liu Y, Ruan J, Deng Y, et al. Evaluation of adjuvant treatments for T1 N0 M0 triple-negative breast cancer. *JAMA Netw Open.* (2020) 3: e2021881. doi: 10.1001/jamanetworkopen.2020.21881
- 42. Algan O, Zhao YD, Herman T. Radiotherapy in patients 70 years and older with triple-negative breast cancer. *Clin Breast Cancer*. (2016) 16:e99–e106. doi: 10.1016/j.clbc.2016.05.011
- 43. Zhu S, Wu Y, Song B, Yi M, Yan Y, Mei Q, et al. Recent advances in targeted strategies for triple-negative breast cancer. *J Hematol Oncol.* (2023) 16:100. doi: 10.1186/s13045-023-01497-3

- 44. Li T, Wang X, Qin S, Chen B, Yi M, Zhou J. Targeting PARP for the optimal immunotherapy efficiency in gynecologic Malignancies. *BioMed Pharmacother*. (2023) 162:114712. doi: 10.1016/j.biopha.2023.114712
- 45. Yi M, Dong B, Qin S, Chu Q, Wu K, Luo S. Advances and perspectives of PARP inhibitors. Exp Hematol Oncol. (2019) 8:29. doi: 10.1186/s40164-019-0154-9
- 46. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. *J Clin Invest.* (2011) 121:2750–67. doi: 10.1172/ICI45014
- 47. Liu YR, Jiang YZ, Xu XE, Yu KD, Jin X, Hu X, et al. Comprehensive transcriptome analysis identifies novel molecular subtypes and subtype-specific RNAs of triple-negative breast cancer. *Breast Cancer Res.* (2016) 18:33. doi: 10.1186/s13058-016-0690-8
- 48. Eikesdal HP, Yndestad S, Elzawahry A, Llop-Guevara A, Gilje B, Blix ES, et al. Olaparib monotherapy as primary treatment in unselected triple negative breast cancer. *Ann Oncol.* (2021) 32:240–9. doi: 10.1016/j.annonc.2020.11.009
- 49. Robson M, Im SA, Senkus E, Xu B, Domchek SM, Masuda N, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. $N\ Engl\ J\ Med.$ (2017) 377:523–33. doi: 10.1056/NEJMoa1706450
- 50. Litton JK, Scoggins ME, Hess KR, Adrada BE, Murthy RK, Damodaran S, et al. Neoadjuvant talazoparib for patients with operable breast cancer with a germline BRCA pathogenic variant. *J Clin Oncol.* (2020) 38:388–94. doi: 10.1200/JCO.19.01304
- 51. Beniey M, Hubert A, Haque T, Cotte AK, Béchir N, Zhang X, et al. Sequential targeting of PARP with carboplatin inhibits primary tumour growth and distant metastasis in triple-negative breast cancer. *Br J Cancer*. (2023) 128:1964–75. doi: 10.1038/s41416-023-02226-w
- 52. Bianchini G, De Angelis C, Licata L, Gianni L. Treatment landscape of triple-negative breast cancer expanded options, evolving needs. *Nat Rev Clin Oncol.* (2022) 19:91–113. doi: 10.1038/s41571-021-00565-2
- 53. Bury M, Le Calvé B, Ferbeyre G, Blank V, Lessard F. New insights into CDK regulators: novel opportunities for cancer therapy. *Trends Cell Biol.* (2021) 31:331–44. doi: 10.1016/j.tcb.2021.01.010
- 54. Beykou M, Arias-Garcia M, Roumeliotis TI, Choudhary JS, Moser N, Georgiou P, et al. Proteomic characterisation of triple negative breast cancer cells following CDK4/6 inhibition. *Sci Data*. (2022) 9:395. doi: 10.1038/s41597-022-01512-1
- 55. Asghar US, Barr AR, Cutts R, Beaney M, Babina I, Sampath D, et al. Single-cell dynamics determines response to CDK4/6 inhibition in triple-negative breast cancer. *Clin Cancer Res.* (2017) 23:5561–72. doi: 10.1158/1078-0432.CCR-17-0369
- 56. Abdelmalak M, Singh R, Anwer M, Ivanchenko P, Randhawa A, Ahmed M, et al. The renaissance of CDK inhibitors in breast cancer therapy: an update on clinical trials and therapy resistance. *Cancers (Basel).* (2022) 14:5388. doi: 10.3390/cancers14215388
- 57. Sobande F, Dušek L, Matějková A, Rozkoš T, Laco J, Ryška A. EGFR in triple negative breast carcinoma: significance of protein expression and high gene copy number. *Cesk Patol.* (2015) 51:80–6.
- 58. Talukdar S, Emdad L, Das SK, Fisher PB. EGFR: An essential receptor tyrosine kinase-regulator of cancer stem cells. *Adv Cancer Res.* (2020) 147:161–88. doi: 10.1016/bs.acr.2020.04.003
- 59. Sabbah DA, Hajjo R, Sweidan K. Review on epidermal growth factor receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors. *Curr Top Med Chem.* (2020) 20:815–34. doi: 10.2174/1568026620666200303123102
- 60. Eccles SA. The epidermal growth factor receptor/Erb-B/HER family in normal and Malignant breast biology. *Int J Dev Biol.* (2011) 55:685–96. doi: 10.1387/ijdb.113396se
- 61. Corkery B, Crown J, Clynes M, O'Donovan N. Epidermal growth factor receptor as a potential therapeutic target in triple-negative breast cancer. *Ann Oncol.* (2009) 20:862–7. doi: 10.1093/annonc/mdn710
- 62. Baselga J, Gómez P, Greil R, Braga S, Climent MA, Wardley AM, et al. Randomized phase II study of the anti-epidermal growth factor receptor monoclonal antibody cetuximab with cisplatin versus cisplatin alone in patients with metastatic triple-negative breast cancer. *J Clin Oncol.* (2013) 31:2586–92. doi: 10.1200/JCO.2012.46.2408
- 63. Carey LA, Rugo HS, Marcom PK, Mayer EL, Esteva FJ, Ma CX, et al. TBCRC 001: randomized phase II study of cetuximab in combination with carboplatin in stage IV triple-negative breast cancer. *J Clin Oncol.* (2012) 30:2615–23. doi: 10.1200/JCO.2010.34.5579
- 64. Tsai HF, Hsu PN. Cancer immunotherapy by targeting immune checkpoints: mechanism of T cell dysfunction in cancer immunity and new therapeutic targets. *J BioMed Sci.* (2017) 24:35. doi: 10.1186/s12929-017-0341-0
- 65. Vikas P, Borcherding N, Zhang W. The clinical promise of immunotherapy in triple-negative breast cancer. *Cancer Manag Res.* (2018) 10:6823–33. doi: 10.2147/CMAR.S185176
- 66. Sun C, Mezzadra R, Schumacher TN. Regulation and function of the PD-L1 checkpoint. *Immunity*. (2018) 48:434–52. doi: 10.1016/j.immuni.2018.03.014
- 67. Dai M, Liu M, Yang H, Küçük C, You H. New insights into epigenetic regulation of resistance to PD-1/PD-L1 blockade cancer immunotherapy: mechanisms and

the rapeutic opportunities. Exp Hematol Oncol. (2022) 11:101. doi: 10.1186/s40164-022-00356-0

- 68. Liu Z, Yu X, Xu L, Li Y, Zeng C. Current insight into the regulation of PD-L1 in cancer. *Exp Hematol Oncol.* (2022) 11:44. doi: 10.1186/s40164-022-00297-8
- 69. Ali HR, Glont SE, Blows FM, Provenzano E, Dawson SJ, Liu B, et al. PD-L1 protein expression in breast cancer is rare, enriched in basal-like tumours and associated with infiltrating lymphocytes. *Ann Oncol.* (2015) 26:1488–93. doi: 10.1093/annonc/mdv192
- 70. Mittendorf EA, Philips AV, Meric-Bernstam F, Qiao N, Wu Y, Harrington S, et al. PD-L1 expression in triple-negative breast cancer. *Cancer Immunol Res.* (2014) 2:361–70. doi: 10.1158/2326-6066.CIR-13-0127
- 71. Schmid P, Cortes J, Pusztai L, McArthur H, Kümmel S, Bergh J, et al. Pembrolizumab for early triple-negative breast cancer. *N Engl J Med.* (2020) 382:810–21. doi: 10.1056/NEJMoa1910549
- 72. Shah M, Osgood CL, Amatya AK, Fiero MH, Pierce WF, Nair A, et al. FDA approval summary: pembrolizumab for neoadjuvant and adjuvant treatment of patients with high-risk early-stage triple-negative breast cancer. *Clin Cancer Res.* (2022) 28:5249–53. doi: 10.1158/1078-0432.CCR-22-1110
- 73. Yi M, Zheng X, Niu M, Zhu S, Ge H, Wu K. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. *Mol Cancer.* (2022) 21:28. doi: 10.1186/s12943-021-01489-2
- 74. Zhu S, Zhang T, Zheng L, Liu H, Song W, Liu D, et al. Combination strategies to maximize the benefits of cancer immunotherapy. *J Hematol Oncol.* (2021) 14:156. doi: 10.1186/s13045-021-01164-5
- 75. Wu SY, Xu Y, Chen L, Fan L, Ma XY, Zhao S, et al. Combined angiogenesis and PD-1 inhibition for immunomodulatory TNBC: concept exploration and biomarker analysis in the FUTURE-C-Plus trial. *Mol Cancer*. (2022) 21:84. doi: 10.1186/s12943-022-01536-6
- 76. Zhu L, Liu J, Chen J, Zhou Q. The developing landscape of combinatorial therapies of immune checkpoint blockade with DNA damage repair inhibitors for the treatment of breast and ovarian cancers. *J Hematol Oncol.* (2021) 14:206. doi: 10.1186/s13045-021-01218-8
- 77. Wang Z, Sun K, Xiao Y, Feng B, Mikule K, Ma X, et al. Niraparib activates interferon signaling and potentiates anti-PD-1 antibody efficacy in tumor models. *Sci Rep.* (2019) 9:1853. doi: 10.1038/s41598-019-38534-6
- 78. Vinayak S, Tolaney SM, Schwartzberg L, Mita M, McCann G, Tan AR, et al. Open-label clinical trial of niraparib combined with pembrolizumab for treatment of advanced or metastatic triple-negative breast cancer. *JAMA Oncol.* (2019) 5:1132–40. doi: 10.1001/jamaoncol.2019.1029
- 79. Chu Y, Zhou X, Wang X. Antibody-drug conjugates for the treatment of lymphoma: clinical advances and latest progress. *J Hematol Oncol.* (2021) 14:88. doi: 10.1186/s13045-021-01097-z
- 80. Very compelling" Results for ADC in TNBC trial. Cancer Discov. (2022) 12:280–1. doi: 10.1158/2159-8290.CD-NB2021-0407
- 81. Tufano AM, Teplinsky E, Landry CA. Updates in neoadjuvant therapy for triple negative breast cancer. *Clin Breast Cancer*. (2021) 21:1–9. doi: 10.1016/j.clbc.2020.07.001
- 82. Guarneri V, Broglio K, Kau SW, Cristofanilli M, Buzdar AU, Valero V, et al. Prognostic value of pathologic complete response after primary chemotherapy in relation to hormone receptor status and other factors. *J Clin Oncol.* (2006) 24:1037–44. doi: 10.1200/JCO.2005.02.6914
- 83. Cortazar P, Geyer CE Jr. Pathological complete response in neoadjuvant treatment of breast cancer. *Ann Surg Oncol.* (2015) 22:1441–6. doi: 10.1245/s10434-015-4404-8
- 84. Schmid P, Cortes J, Dent R, Pusztai L, McArthur H, Kümmel S, et al. Event-free survival with pembrolizumab in early triple-negative breast cancer. *N Engl J Med.* (2022) 386:556–67. doi: 10.1056/NEJMoa2112651
- 85. Huober J, von Minckwitz G, Denkert C, Tesch H, Weiss E, Zahm DM, et al. Effect of neoadjuvant anthracycline-taxane-based chemotherapy in different biological breast cancer phenotypes: overall results from the GeparTrio study. *Breast Cancer Res Treat.* (2010) 124:133–40. doi: 10.1007/s10549-010-1103-9
- 86. Isakoff SJ. Triple-negative breast cancer: role of specific chemotherapy agents. Cancer J. (2010) 16:53–61. doi: 10.1097/PPO.0b013e3181d24ff7
- 87. Oakman C, Viale G, Di Leo A. Management of triple negative breast cancer. Breast. (2010) 19:312–21. doi: 10.1016/j.breast.2010.03.026
- 88. Liedtke C, Mazouni C, Hess KR, André F, Tordai A, Mejia JA, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. *J Clin Oncol.* (2008) 26:1275–81. doi: 10.1200/JCO.2007.14.4147
- 89. Fernández-Morales LA, Seguí MA, Andreu X, Dalmau E, Sáez A, Pericay C, et al. Analysis of the pathologic response to primary chemotherapy in patients with locally advanced breast cancer grouped according to estrogen receptor, progesterone receptor, and HER2 status. Clin Breast Cancer. (2007) 7:559–64. doi: 10.3816/CBC.2007.n.012
- 90. Keam B, Im SA, Kim HJ, Oh DY, Kim JH, Lee SH, et al. Prognostic impact of clinicopathologic parameters in stage II/III breast cancer treated with neoadjuvant docetaxel and doxorubicin chemotherapy: paradoxical features of the triple negative breast cancer. *BMC Cancer.* (2007) 7:203. doi: 10.1186/1471-2407-7-203

- 91. Esserman LJ, Berry DA, DeMichele A, Carey L, Davis SE, Buxton M, et al. Pathologic complete response predicts recurrence-free survival more effectively by cancer subset: results from the I-SPY 1 TRIAL-CALGB 150007/150012, ACRIN 6657. *J Clin Oncol.* (2012) 30:3242–9. doi: 10.1200/JCO.2011.39.2779
- 92. Straver ME, Glas AM, Hannemann J, Wesseling J, van de Vijver MJ, Rutgers EJ, et al. The 70-gene signature as a response predictor for neoadjuvant chemotherapy in breast cancer. *Breast Cancer Res Treat*. (2010) 119:551–8. doi: 10.1007/s10549-009-0333-1
- 93. Tutt A, Tovey H, Cheang MCU, Kernaghan S, Kilburn L, Gazinska P, et al. Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: the TNT Trial. *Nat Med.* (2018) 24:628–37. doi: 10.1038/s41591-018-0009-7
- 94. von Minckwitz G, Schneeweiss A, Loibl S, Salat C, Denkert C, Rezai M, et al. Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): a randomised phase 2 trial. *Lancet Oncol.* (2014) 15:747–56. doi: 10.1016/S1470-2045(14)70160-3
- 95. Loibl S, O'Shaughnessy J, Untch M, Sikov WM, Rugo HS, McKee MD, et al. Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrighTNess): a randomised, phase 3 trial. *Lancet Oncol.* (2018) 19:497–509. doi: 10.1016/S1470-2045 (18)30111-6
- 96. Sikov WM, Berry DA, Perou CM, Singh B, Cirrincione CT, Tolaney SM, et al. Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-perweek paclitaxel followed by dose-dense doxorubicin and cyclophosphamide on pathologic complete response rates in stage II to III triple-negative breast cancer: CALGB 40603 (Alliance). *J Clin Oncol*. (2015) 33:13–21. doi: 10.1200/ ICO.2014.57.0572
- 97. Denkert C, von Minckwitz G, Darb-Esfahani S, Lederer B, Heppner BI, Weber KE, et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. *Lancet Oncol.* (2018) 19:40–50. doi: 10.1016/S1470-2045(17)30904-X
- 98. Galluzzi I., Buqué A, Kepp O, Zitvogel I., Kroemer G. Immunological effects of conventional chemotherapy and targeted anticancer agents. *Cancer Cell.* (2015) 28:690–714. doi: 10.1016/j.ccell.2015.10.012
- 99. Mittendorf EA, Zhang H, Barrios CH, Saji S, Jung KH, Hegg R, et al. Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): a randomised, double-blind, phase 3 trial. *Lancet.* (2020) 396:1090–100. doi: 10.1016/S0140-6736(20) 31953-X
- 100. Gianni L, Huang CS, Egle D, Bermejo B, Zamagni C, Thill M, et al. Pathologic complete response (pCR) to neoadjuvant treatment with or without atezolizumab in triple-negative, early high-risk and locally advanced breast cancer: NeoTRIP Michelangelo randomized study. *Ann Oncol.* (2022) 33:534–43. doi: 10.1016/j.annonc.2022.02.004
- 101. Loibl S, Untch M, Burchardi N, Huober J, Sinn BV, Blohmer JU, et al. A randomised phase II study investigating durvalumab in addition to an anthracycline taxane-based neoadjuvant therapy in early triple-negative breast cancer: clinical results and biomarker analysis of GeparNuevo study. *Ann Oncol.* (2019) 30:1279–88. doi: 10.1093/annonc/mdz158
- 102. Spring LM, Tolaney SM, Fell G, Bossuyt V, Abelman RO, Wu B, et al. Response-guided neoadjuvant sacituzumab govitecan for localized triple-negative breast cancer: results from the NeoSTAR trial. *Ann Oncol.* (2024) 35:293–301. doi: 10.1016/j.annonc.2023.11.018
- 103. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. *Nature.* (2017) 541:321–30. doi: 10.1038/nature21349
- 104. Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. *Nat Rev Cancer*. (2016) 16:275–87. doi: 10.1038/nrc.2016.36
- 105. Cristescu R, Mogg R, Ayers M, Albright A, Murphy E, Yearley J, et al. Pantumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. *Science.* (2018) 362:eaar3593. doi: 10.1126/science.aar3593
- 106. Emens LA. Breast cancer immunotherapy: facts and hopes. Clin Cancer Res. (2018) 24:511–20. doi: 10.1158/1078-0432.CCR-16-3001
- 107. Castaneda CA, Mittendorf E, Casavilca S, Wu Y, Castillo M, Arboleda P, et al. Tumor infiltrating lymphocytes in triple negative breast cancer receiving neoadjuvant chemotherapy. *World J Clin Oncol.* (2016) 7:387–94. doi: 10.5306/wjco.v7.i5.387
- 108. Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. <code>EMBO J.</code> (1992) 11:3887–95. doi: 10.1002/j.1460-2075.1992.tb05481.x
- 109. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. (2016) 375:1823–33. doi: $10.1056/\rm NEJMoa1606774$
- 110. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. *N Engl J Med.* (2015) 372:2018–28. doi: 10.1056/NEJMoa1501824
- 111. Emens LA, Adams S, Barrios CH, Diéras V, Iwata H, Loi S, et al. First-line atezolizumab plus nab-paclitaxel for unresectab le, locally advanced, or metastatic

- triple-negative breast cancer: IMpassion130 final overall survival analysis. *Ann Oncol.* (2021) 32:983–93. doi: 10.1016/j.annonc.2021.05.355
- 112. Patel SP, Kurzrock R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. *Mol Cancer Ther.* (2015) 14:847–56. doi: 10.1158/1535-7163.MCT-14-0983
- 113. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. *N Engl J Med.* (2015) 372:2509–20. doi: 10.1056/NEJMoa1500596
- 114. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. *Science.* (2017) 357:409–13. doi: 10.1126/science.aan6733
- 115. Ren XY, Song Y, Wang J, Chen LY, Pang JY, Zhou LR, et al. Mismatch repair deficiency and microsatellite instability in triple-negative breast cancer: A retrospective study of 440 patients. *Front Oncol.* (2021) 11:570623. doi: 10.3389/fonc.2021.570623
- 116. Bonneville R, Krook MA, Kautto EA, Miya J, Wing MR, Chen HZ, et al. Landscape of microsatellite instability across 39 cancer types. *JCO Precis Oncol.* (2017) 2017;PO.17.00073. doi: 10.1200/PO.17.00073
- 117. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. *Nature.* (2013) 500:415–21. doi: 10.1038/nature12477
- 118. Chan TA, Yarchoan M, Jaffee E, Swanton C, Quezada SA, Stenzinger A, et al. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. *Ann Oncol.* (2019) 30:44–56. doi: 10.1093/annonc/mdy495
- 119. Barroso-Sousa R, Pacífico JP, Sammons S, Tolaney SM. Tumor mutational burden in breast cancer: current evidence, challenges, and opportunities. *Cancers (Basel).* (2023) 15:3997. doi: 10.3390/cancers15153997
- 120. Bertucci F, Ng CKY, Patsouris A, Droin N, Piscuoglio S, Carbuccia N, et al. Genomic characterization of metastatic breast cancers. *Nature.* (2019) 572:E7. doi: 10.1038/s41586-019-1380-3
- 121. Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. *Nat Genet*. (2019) 51:202–6. doi: 10.1038/s41588-018-0312-8
- 122. Marcus L, Fashoyin-Aje LA, Donoghue M, Yuan M, Rodriguez L, Gallagher PS, et al. FDA approval summary: pembrolizumab for the treatment of tumor mutational burden-high solid tumors. *Clin Cancer Res.* (2021) 27:4685–9. doi: 10.1158/1078-0432.CCR-21-0327
- 123. Marabelle A, Fakih M, Lopez J, Shah M, Shapira-Frommer R, Nakagawa K, et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. *Lancet Oncol.* (2020) 21:1353–65. doi: 10.1016/S1470-2045(20)30445-9
- 124. Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM, Miller V, et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. *Mol Cancer Ther.* (2017) 16:2598–608. doi: 10.1158/1535-7163.MCT-17-0386
- 125. Prall F, Dührkop T, Weirich V, Ostwald C, Lenz P, Nizze H, et al. Prognostic role of CD8+ tumor-infiltrating lymphocytes in stage III colorectal cancer with and without microsatellite instability. *Hum Pathol.* (2004) 35:808–16. doi: 10.1016/j.humpath.2004.01.022
- 126. Yi H, Li Y, Tan Y, Fu S, Tang F, Deng X. Immune checkpoint inhibition for triple-negative breast cancer: current landscape and future perspectives. *Front Oncol.* (2021) 11:648139. doi: 10.3389/fonc.2021.648139
- 127. Jama M, Tabana Y, Barakat KH. Targeting cytotoxic lymphocyte antigen 4 (CTLA-4) in breast cancer. Eur J Med Res. (2024) 29:353. doi: 10.1186/s40001-024-01901-9
- 128. Wein L, Savas P, Luen SJ, Virassamy B, Salgado R, Loi S. Clinical validity and utility of tumor-infiltrating lymphocytes in routine clinical practice for breast cancer patients: current and future directions. *Front Oncol.* (2017) 7:156. doi: 10.3389/fonc.2017.00156
- 129. Muraro E, Martorelli D, Turchet E, Miolo G, Scalone S, Comaro E, et al. A different immunologic profile characterizes patients with HER-2-overexpressing and HER-2-negative locally advanced breast cancer: implications for immune-based therapies. *Breast Cancer Res.* (2011) 13:R117. doi: 10.1186/bcr3060
- 130. Huang W, Ran R, Shao B, Li H. Prognostic and clinicopathological value of PD-L1 expression in primary breast cancer: a meta-analysis. *Breast Cancer Res Treat.* (2019) 178:17–33. doi: 10.1007/s10549-019-05371-0
- 131. Adams S, Gray RJ, Demaria S, Goldstein L, Perez EA, Shulman LN, et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. *J Clin Oncol.* (2014) 32:2959–66. doi: 10.1200/JCO.2013.55.0491
- 132. Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. *Clin Cancer Res.* (2014) 20:5064–74. doi: 10.1158/1078-0432.CCR-13-3271
- 133. Loi S, Drubay D, Adams S, Pruneri G, Francis PA, Lacroix-Triki M, et al. Tumor-infiltrating lymphocytes and prognosis: A pooled individual patient analysis of early-stage triple-negative breast cancers. *J Clin Oncol.* (2019) 37:559–69. doi: 10.1200/JCO.18.01010

- 134. Wang X, Collet L, Rediti M, Debien V, De Caluwé A, Venet D, et al. Predictive biomarkers for response to immunotherapy in triple negative breast cancer: promises and challenges. *J Clin Med.* (2023) 12:953. doi: 10.3390/jcm12030953
- 135. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. *Nature*. (2014) 515:563–7. doi: 10.1038/nature14011
- 136. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. *Nature*. (2014) 515:568–71. doi: 10.1038/nature13954
- 137. Faur IF, Dobrescu A, Clim AI, Pasca P, Prodan-Barbulescu C, Gherle BD, et al. The value of tumor infiltrating lymphocytes (TIL) for predicting the response to neoadjuvant chemotherapy (NAC) in breast cancer according to the molecular subtypes. *Biomedicines*. (2023) 11:3037. doi: 10.3390/biomedicines11113037
- 138. Giacchetti S, Faucheux L, Gardair C, Cuvier C, de Roquancourt A, Campedel L, et al. Negative relationship between post-treatment stromal tumor-infiltrating lymphocyte (TIL) and survival in triple-negative breast cancer patients treated with dose-dense dose-intense neoAdjuvant chemotherapy. *Cancers (Basel)*. (2022) 14:1331. doi: 10.3390/cancers14051331
- 139. de Jong VMT, Wang Y, Ter Hoeve ND, Opdam M, Stathonikos N, Jóźwiak K, et al. Prognostic value of stromal tumor-infiltrating lymphocytes in young, nodenegative, triple-negative breast cancer patients who did not receive (neo)Adjuvant systemic therapy. *J Clin Oncol.* (2022) 40:2361–74. doi: 10.1200/JCO.21.01536
- 140. Park JH, Jonas SF, Bataillon G, Criscitiello C, Salgado R, Loi S, et al. Prognostic value of tumor-infiltrating lymphocytes in patients with early-stage triple-negative breast cancers (TNBC) who did not receive adjuvant chemotherapy. *Ann Oncol.* (2019) 30:1941–9. doi: 10.1093/annonc/mdz395
- 141. Sun X, Zhai J, Sun B, Parra ER, Jiang M, Ma W, et al. Effector memory cytotoxic CD3+/CD8+/CD45RO+ T cells are predictive of good survival and a lower risk of recurrence in triple-negative breast cancer. *Mod Pathol.* (2022) 35:601–8. doi: 10.1038/s41379-021-00973-w
- 142. Jorgovanovic D, Song M, Wang L, Zhang Y. Roles of IFN- γ in tumor progression and regression: a review. *biomark Res.* (2020) 8:49. doi: 10.1186/s40364-020-00228-x
- 143. Reijers ILM, Rao D, Versluis JM, Menzies AM, Dimitriadis P, Wouters MW, et al. IFN-γ signature enables selection of neoadjuvant treatment in patients with stage III melanoma. *J Exp Med.* (2023) 220:e20221952. doi: 10.1084/jem.20221952
- 144. Heimes AS, Härtner F, Almstedt K, Krajnak S, Lebrecht A, Battista MJ, et al. Prognostic significance of interferon-γ and its signaling pathway in early breast cancer depends on the molecular subtypes. *Int J Mol Sci.* (2020) 21:7178. doi: 10.3390/iims21197178
- 145. Blank CU, Haanen JB, Ribas A, Schumacher TN. CANCER IMMUNOLOGY. The "cancer immunogram. *Science*. (2016) 352:658–60. doi: 10.1126/science.aaf2834
- 146. Wang M, Zhai X, Li J, Guan J, Xu S, Li Y, et al. The role of cytokines in predicting the response and adverse events related to immune checkpoint inhibitors. *Front Immunol.* (2021) 12:670391. doi: 10.3389/fimmu.2021.670391
- 147. Savas P, Virassamy B, Ye C, Salim A, Mintoff CP, Caramia F, et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. *Nat Med.* (2018) 24:986–93. doi: 10.1038/s41591-018-0078-7
- 148. Wang K, Zerdes I, Johansson HJ, Sarhan D, Sun Y, Kanellis DC, et al. Longitudinal molecular profiling elucidates immunometabolism dynamics in breast cancer. *Nat Commun.* (2024) 15:3837. doi: 10.1038/s41467-024-47932-y
- 149. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. (2010) 140:883–99. doi: 10.1016/j.cell.2010.01.025
- 150. Morla-Barcelo PM, Melguizo-Salom L, Roca P, Nadal-Serrano M, Sastre-Serra J, Torrens-Mas M. Obesity-related inflammation reduces treatment sensitivity and promotes aggressiveness in luminal breast cancer modulating oxidative stress and mitochondria. *Biomedicines.* (2024) 12:2813. doi: 10.3390/biomedicines12122813
- 151. Badve S, Dabbs DJ, Schnitt SJ, Baehner FL, Decker T, Eusebi V, et al. Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists. *Mod Pathol.* (2011) 24:157–67. doi: 10.1038/modpathol.2010.200
- 152. Pusztai L, Mendoza TR, Reuben JM, Martinez MM, Willey JS, Lara J, et al. Changes in plasma levels of inflammatory cytokines in response to paclitaxel chemotherapy. *Cytokine*. (2004) 25:94–102. doi: 10.1016/j.cyto.2003.10.004
- 153. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. *N Engl J Med.* (2004) 350:2335–42. doi: 10.1056/NEJMoa032691
- 154. Marth C, Moore RG, Bidziński M, Pignata S, Ayhan A, Rubio MJ, et al. First-line lenvatinib plus pembrolizumab versus chemotherapy for advanced endometrial cancer: A randomized, open-label, phase III trial. *J Clin Oncol.* (2025) 43:1083–100. doi: 10.1200/JCO-24-01326
- 155. McDermott DF, Huseni MA, Atkins MB, Motzer RJ, Rini BI, Escudier B, et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. *Nat Med.* (2018) 24:749–57. doi: 10.1038/s41591-018-0053-3
- 156. Yu T, Di G. Role of tumor microenvironment in triple-negative breast cancer and its prognostic significance. *Chin J Cancer Res.* (2017) 29:237–52. doi: 10.21147/j.issn.1000-9604.2017.03.10

- 157. Linderholm BK, Hellborg H, Johansson U, Elmberger G, Skoog L, Lehtiö J, et al. Significantly higher levels of vascular endothelial growth factor (VEGF) and shorter survival times for patients with primary operable triple-negative breast cancer. *Ann Oncol.* (2009) 20:1639–46. doi: 10.1093/annonc/mdp062
- 158. Bender RJ, Mac Gabhann F. Expression of VEGF and semaphorin genes define subgroups of triple negative breast cancer. *PloS One*. (2013) 8:e61788. doi: 10.1371/journal.pone.0061788
- 159. Jin K, Pandey NB, Popel AS. Crosstalk between stromal components and tumor cells of TNBC via secreted factors enhances tumor growth and metastasis. *Oncotarget.* (2017) 8:60210–22. doi: 10.18632/oncotarget.19417
- 160. Long X, Ye Y, Zhang L, Liu P, Yu W, Wei F, et al. IL-8, a novel messenger to cross-link inflammation and tumor EMT via autocrine and paracrine pathways (Review). *Int J Oncol.* (2016) 48:5–12. doi: 10.3892/ijo.2015.3234
- 161. Waldmann TA. The shared and contrasting roles of IL2 and IL15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy. *Cancer Immunol Res.* (2015) 3:219–27. doi: 10.1158/2326-6066.CIR-15-0009
- 162. Cornish GH, Sinclair LV, Cantrell DA. Differential regulation of T-cell growth by IL-2 and IL-15. *Blood.* (2006) 108:600–8, doi: 10.1182/blood-2005-12-4827
- 163. Wawrocki S, Druszczynska M, Kowalewicz-Kulbat M, Rudnicka W. Interleukin 18 (IL-18) as a target for immune intervention. *Acta Biochim Pol.* (2016) 63:59–63. doi: 10.18388/abp.2015_1153
- 164. Fabbi M, Carbotti G, Ferrini S. Context-dependent role of IL-18 in cancer biology and counter-regulation by IL-18BP. *J Leukoc Biol.* (2015) 97:665–75. doi: 10.1189/ilb.5RU0714-360RR
- 165. Saldajeno DP, Kawaoka S, Masuda N, Tanaka S, Bando H, Nishimura T, et al. Time-series blood cytokine profiles correlate with treatment responses in triplenegative breast cancer patients. *Br J Cancer.* (2024) 130:1023–35. doi: 10.1038/s41416-023-02527-0
- 166. Berry S, Giraldo NA, Green BF, Cottrell TR, Stein JE, Engle EL, et al. Analysis of multispectral imaging with the AstroPath platform informs efficacy of PD-1 blockade. *Science.* (2021) 372:eaba2609. doi: 10.1126/science.aba2609
- 167. Zemek RM, Anagnostou V, Pires da Silva I, Long GV, Lesterhuis WJ. Exploiting temporal aspects of cancer immunotherapy. *Nat Rev Cancer*. (2024) 24:480–97. doi: 10.1038/s41568-024-00699-2
- 168. Ligero M, Gielen B, Navarro V, Cresta Morgado P, Prior O, Dienstmann R, et al. A whirl of radiomics-based biomarkers in cancer immunotherapy, why is large scale validation still lacking? *NPJ Precis Oncol.* (2024) 8:42. doi: 10.1038/s41698-024-00534-9
- 169. Kohrt HE, Tumeh PC, Benson D, Bhardwaj N, Brody J, Formenti S, et al. Immunodynamics: a cancer immunotherapy trials network review of immune monitoring in immuno-oncology clinical trials. *J Immunother Cancer.* (2016) 4:15. doi: 10.1186/s40425-016-0118-0
- 170. Holder AM, Dedeilia A, Sierra-Davidson K, Cohen S, Liu D, Parikh A, et al. Defining clinically useful biomarkers of immune checkpoint inhibitors in solid tumours. *Nat Rev Cancer.* (2024) 24:498–512. doi: 10.1038/s41568-024-00705-7
- 171. Costa B, Estrada MF, Gomes A, Fernandez LM, Azevedo JM, Póvoa V, et al. Zebrafish Avatar-test forecasts clinical response to chemotherapy in patients with colorectal cancer. *Nat Commun.* (2024) 15:4771. doi: 10.1038/s41467-024-49051-0
- 172. Divoux J, Florent R, Jacobs M, Lequesne J, Grellard JM, San C, et al. The TRIPLEX study: use of patient-derived tumor organoids as an innovative tool for precision medicine in triple-negative breast cancer. *BMC Cancer.* (2023) 23:883. doi: 10.1186/s12885-023-11362-8
- 173. Niemeijer AN, Leung D, Huisman MC, Bahce I, Hoekstra OS, van Dongen GAMS, et al. Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer. *Nat Commun*. (2018) 9:4664. doi: 10.1038/s41467-018-07131-v
- 174. Turner NC, Swift C, Jenkins B, Kilburn L, Coakley M, Beaney M, et al. Results of the c-TRAK TN trial: a clinical trial utilising ctDNA mutation tracking to detect molecular residual disease and trigger intervention in patients with moderate- and high-risk early-stage triple-negative breast cancer. *Ann Oncol.* (2023) 34:200–11. doi: 10.1016/j.annonc.2022.11.005
- 175. Turner N, Pimentel I, Cescon D, Iwata H, Janni W, Lacko A, et al. Circulating tumor DNA surveillance in ZEST, a randomized, phase 3, double-blind study of niraparib or placebo in patients with triple-negative breast cancer or HER2-, BRCA-mutated breast cancer with molecular residual disease after de!nitive therapy. Clin Cancer Res. (2025) 31(12):GS3-01. doi: 10.1158/1557-3265.SABCS24-GS3-01
- 176. Wu SZ, Al-Eryani G, Roden DL, Junankar S, Harvey K, Andersson A, et al. A single-cell and spatially resolved atlas of human breast cancers. *Nat Genet.* (2021) 53:1334–47. doi: 10.1038/s41588-021-00911-1
- 177. Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state of the science. *Nat Rev Genet.* (2016) 17:175–88. doi: 10.1038/nrg.2015.16
- 178. Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. *Ann Oncol.* (2015) 26:259–71. doi: 10.1093/annonc/mdu450
- 179. Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, et al. Stromal gene expression predicts clinical outcome in breast cancer. *Nat Med.* (2008) 14:518–27. doi: 10.1038/nm1764

180. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. *Science*. (2006) 313:1960–4. doi: 10.1126/science.1129139

- 181. Luo Y, Zhou H, Krueger J, Kaplan C, Lee SH, Dolman C, et al. Targeting tumor-associated macrophages as a novel strategy against breast cancer. *J Clin Invest.* (2006) 116:2132–41. doi: 10.1172/JCI27648
- 182. Schwartz M, Zhang Y, Rosenblatt JD. B cell regulation of the anti-tumor response and role in carcinogenesis. *J Immunother Cancer*. (2016) 4:40. doi: 10.1186/s40425-016-0145-x
- 183. Mahmoud SM, Lee AH, Paish EC, Macmillan RD, Ellis IO, Green AR. The prognostic significance of B lymphocytes in invasive carcinoma of the breast. *Breast Cancer Res Treat.* (2012) 132:545–53. doi: 10.1007/s10549-011-1620-1
- 184. Kim KT, Lee HW, Lee HO, Kim SC, Seo YJ, Chung W, et al. Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells. *Genome Biol.* (2015) 16:127. doi: 10.1186/s13059-015-0692-3
- 185. Navin NE. Delineating cancer evolution with single-cell sequencing. *Sci Transl Med.* (2015) 7:296fs29. doi: 10.1126/scitranslmed.aac8319
- 186. Li M, Yan T, Wang M, Cai Y, Wei Y. Advances in single-cell sequencing technology and its applications in triple-negative breast cancer. *Breast Cancer (Dove Med Press).* (2022) 14:465–74. doi: 10.2147/BCTT.S388534
- 187. Bortolini Silveira A, Bidard FC, Tanguy ML, Girard E, Trédan O, Dubot C, et al. Multimodal liquid biopsy for early monitoring and outcome prediction of chemotherapy in metastatic breast cancer. *NPJ Breast Cancer*. (2021) 7:115. doi: 10.1038/s41523-021-00319-4
- 188. De Rubis G, Rajeev Krishnan S, Bebawy M. Liquid biopsies in cancer diagnosis, monitoring, and prognosis. *Trends Pharmacol Sci.* (2019) 40:172–86. doi: 10.1016/j.tips.2019.01.006

- 189. Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. *Nat Rev Cancer.* (2017) 17:223–38. doi: 10.1038/nrc.2017.7
- 190. Fabisiewicz A, Szostakowska-Rodzos M, Zaczek AJ, Grzybowska EA. Circulating tumor cells in early and advanced breast cancer; biology and prognostic value. *Int J Mol Sci.* (2020) 21:1671. doi: 10.3390/ijms21051671
- 191. Hashad D, Sorour A, Ghazal A, Talaat I. Free circulating tumor DNA as a diagnostic marker for breast cancer. *J Clin Lab Anal.* (2012) 26:467–72. doi: 10.1002/jcla.21548
- 192. Ramos-Medina R, López-Tarruella S, Del Monte-Millán M, Massarrah T, Martín M. Technical challenges for CTC implementation in breast cancer. *Cancers* (*Basel*). (2021) 13:4619. doi: 10.3390/cancers13184619
- 193. Ivanova E, Ward A, Wiegmans AP, Richard DJ. Circulating tumor cells in metastatic breast cancer: from genome instability to metastasis. *Front Mol Biosci.* (2020) 7:134. doi: 10.3389/fmolb.2020.00134
- 194. Zaikova E, Cheng BYC, Cerda V, Kong E, Lai D, Lum A, et al. Circulating tumour mutation detection in triple-negative breast cancer as an adjunct to tissue response assessment. *NPJ Breast Cancer*. (2024) 10:3. doi: 10.1038/s41523-023-00607-1
- 195. Riva F, Bidard FC, Houy A, Saliou A, Madic J, Rampanou A, et al. Patient-specific circulating tumor DNA detection during neoadjuvant chemotherapy in triplenegative breast cancer. *Clin Chem.* (2017) 63:691–9. doi: 10.1373/clinchem.2016.262337
- 196. Cavallone L, Aguilar-Mahecha A, Lafleur J, Brousse S, Aldamry M, Roseshter T, et al. Prognostic and predictive value of circulating tumor DNA during neoadjuvant chemotherapy for triple negative breast cancer. *Sci Rep.* (2020) 10:14704. doi: 10.1038/s41598-020-71236-y