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Triple-negative breast cancer (TNBC) is an aggressive subtype defined by the

absence of estrogen receptor, progesterone receptor, and HER2 expression. It

accounts for 10–20% of breast cancer cases, predominantly affecting younger

women, and is associated with poor prognosis due to high recurrence rates and

limited therapeutic options. Past treatment strategies relied solely on

chemotherapy, but challenges such as metastatic potential and chemoresistance

persisted. Recent advancements in neoadjuvant chemo-immunotherapy aim to

address these limitations by combining chemotherapy with immune checkpoint

inhibitors, with promising clinical trial results demonstrating improved response

rates and survival outcomes. A central focus is placed on biomarker-based

immune monitoring strategies, encompassing both tissue-based biomarkers—

such as programmed cell death ligand 1 (PD-L1) expression, microsatellite

instability, tumor mutational burden, tumor-infiltrating lymphocytes (TILs), and

gene expression signatures—and blood-based biomarkers, including gene

expression profiling, comprehensive immunophenotyping, and cytokine

profiling. In addition, an emerging role of advanced imaging technologies, such

as immuno-positron emission tomography (immuno-PET) and radiomics, could

permit real-time immune monitoring. This review aims to provide a

comprehensive overview of the current landscape of immune monitoring in

TNBC, highlighting its challenges, predictive and prognostic value, and potential

to guide clinical decision-making. By addressing key immune response
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biomarkers, technical limitations, and emerging technologies, we seek to outline

strategies for optimizing treatment and enhancing personalized medicine

approaches for TNBC patients. Future integration of innovative monitoring

techniques holds promise for improving patient outcomes.
KEYWORDS

triple-negative breast cancer, neoadjuvant therapy, chemotherapy, cancer
immunotherapy, immune monitoring
1 Introduction

1.1 Definition and characteristics

Triple-negative breast cancer (TNBC) is defined by the lack of

estrogen receptor (ER), progesterone receptor (PR), and human

epidermal growth factor receptor 2 (HER2) expression. Certain

special histological types (TNBC ST) show a more favorable

prognosis. Low-grade TNBC STs include salivary gland-like

tumors (classic adenoid-cystic, low-grade mucoepidermoid,

secretory carcinomas), mucinous cystadenocarcinoma, tall cell

carcinoma with reversed polarity, and low-grade metaplastic

carcinomas. High-grade TNBC STs, including high-grade

adenoid-cystic, polymorphous, and high-grade metaplastic

carcinomas, are more aggressive. HER2-negative apocrine

carcinomas have uncertain prognosis. Low-grade TNBC STs and

LAR or BL1 subtypes often exhibit better clinical outcomes than

classic TNBC (1). TNBC is a heterogeneous disease, not only

histopathologically but also at the molecular level. Lehmann et al.

(2) classified into four distinct subtypes with therapeutic

implications. The basal-like 1 (BL1) subtype is enriched in DNA

damage response pathways and shows high sensitivity to platinum

chemotherapy and poly (ADP-ribose) polymerase (PARP)

inhibitors. Basal-like 2 (BL2) displays growth factor signaling and

glycolytic activity, with limited chemotherapy response. The

mesenchymal (M) subtype is characterized by epithelial-

mesenchymal transition (EMT) and stemness pathways,

suggesting vulnerability to phosphatidylinositol 3-kinase/

mammalian target of rapamycin (PI3K/mTOR) pathway

inhibition. Finally, the luminal androgen receptor (LAR) subtype

exhibits androgen-driven signaling, responsive to anti-androgen

therapies. TNBC is characterized by its distinctive molecular

profile, aggressiveness, different metastatic patterns, and absence

of targeted therapy (Figure 1). TNBC accounts for ~10-20% of

invasive breast cancers (BC), with an estimated 170,000 instances

worldwide (3, 4).

In contrast to hormone receptor (HR)-positive or HER2-

positive disease, TNBC has a significantly more aggressive clinical

evolution, characterized by an earlier onset of symptoms, a larger

propensity for metastasis, and poorer clinical outcomes, as seen by

elevated rates of relapse and decreased survival rates (5, 6).
02
According to histological findings, most TNBCs are of ductal

origin; however, numerous other aggressive phenotypes appear to

be over-represented, including metaplastic, apocrine, and adenoid

cystic (7). A histological examination of basal-like tumors, all of

which were ER/HER2 negative, revealed a significant rise in mitotic

count, geographic necrosis, invasion borders, and stromal

lymphocytic response (8).
1.2 Epidemiology

A particularly significant fact is that African American women

and carriers of germline BRCA and PALB2 mutations are

disproportionately affected by triple-negative breast malignancies.

The risk of death from TNBC is still almost twice as high for African

Americans with the disease, even after adjusting for socioeconomic

status, stage, and delays in treatment (9). Epidemiologic research,

such as the Carolina Breast Cancer Study, indicates that basal-like

tumors, compared to luminal A tumors, are more prevalent among

women with early menarche, higher parity, younger age at full-term

pregnancy, shorter breastfeeding duration, higher body mass index,

and higher waist-to-hip ratio, particularly in premenopausal

patients (10). Additionally, Bauer et al. identified that younger,

non-Hispanic Black and Hispanic women with TNBC exhibit more

aggressive tumors and poorer survival rates, regardless of stage, with

non-Hispanic Black women with late-stage TNBC having the lowest

survival rates (11).

In comparison to the luminal subtype, several studies have

consistently demonstrated that basal-like BC, including TNBC, has

a worse prognosis and worse BC-specific survival (10, 12). In

comparison to individuals without TNBC, those with TNBC had

a greater risk of mortality and distant recurrence, according to a

recent Canadian study including over 1,500 women (6). Research

has consistently shown that, in contrast to ER-positive BC, TNBC is

linked to more aggressive relapses in visceral and soft tissues, while

relapses in the bone are less frequent (13).

A retrospective study of 33,654 female patients with TNBC

identified key prognostic factors and highlighted the benefits of

primary tumor surgery. Younger age, white race, married status,

lower tumor grade and stage, and undergoing surgery were

associated with better outcomes. A predictive nomogram
frontiersin.org
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developed from the study demonstrated high accuracy. Notably,

surgery improved cancer-specific survival across all risk groups,

suggesting its potential benefit in TNBC treatment strategies (14).
1.3 Current treatment strategies

TNBC is an aggressive subtype distinguished by the absence of

ER, PR, and HER2 expression, limiting the availability of targeted

therapy and making chemotherapy the primary therapeutic

option (15).

TNBC usually responds effectively to chemotherapy (16),

especially in neoadjuvant or adjuvant settings, with anthracycline-

and taxane-based regimens accomplishing pathological complete

response (pCR) in 30-40% of early-stage cases (17–19).

Anthracyclines such as doxorubicin and epirubicin cause DNA

damage and apoptosis (20–23) but are associated with

cardiotoxicity (24–26); however, epirubicin has a better toxicity

profile (27–29). Taxanes, such as paclitaxel and docetaxel, disrupt

mitosis by stabilizing microtubules and are more effective when

coupled with platinum drugs, however resistance may develop in

BRCA1-mutated cancers (30). Platinum compounds, such as

carboplatin, form DNA cross-links that cause apoptosis and are

particularly beneficial when combined with neoadjuvant regimens,

as seen in studies such as KEYNOTE-522 and BrighTNess (28–35).

These drugs improve pCR and event-free survival (EFS). In the

KEYNOTE-522 trial, the addition of pembrolizumab to

neoadjuvant chemotherapy resulted in a significantly higher pCR

rate—64.8% versus 51.2% with chemotherapy alone—representing
Frontiers in Immunology 03
a 13.6% absolute increase (p < 0.001). This benefit translated into

improved long-term outcomes, with an estimated overall survival

(OS) at 60 months of 86.6% (95% confidence interval [CI], 84.0 to

88.8) in the pembrolizumab–chemotherapy group, compared with

81.7% (95% CI, 77.5 to 85.2) in the placebo–chemotherapy group

(p = 0.002) (36).

Radiotherapy is indicated in TNBC patients of all ages who have

undergone lumpectomy and/or present with positive axillary lymph

node evaluation, as it improves locoregional control and overall

survival (OS) (37–42).

Targeted strategies are transforming the TNBC therapy

landscape (43), beginning with PARP inhibitors such as olaparib

and talazoparib, which exploit homologous recombination repair

deficits in BRCA-mutated cancers, resulting in tumor cell death

(44–52). Synthetic lethality is a concept in which the simultaneous

disruption of two genes leads to cell death, whereas the loss of either

gene alone is tolerated. This approach offers a targeted therapeutic

strategy in TNBC, by exploiting specific genetic vulnerabilities -

such as BRCA mutations - using PARP inhibitors. While successful

in BRCA-mutated TNBC, these drugs have limited efficacy in

BRCA wild-type instances and may experience resistance, urging

the investigation of combination strategies with agents such as

carboplatin. CDK4/6 inhibitors, which have been beneficial in HR-

positive malignancies, have the potential to treat TNBC's luminal

androgen receptor subtype by targeting abnormal cell cycle

progression (53–56). Similarly, many TNBCs, particularly the

basal-like subtype, overexpress EGFR, which is a target for

tyrosine kinase inhibitors like gefitinib and monoclonal antibodies

like cetuximab (57). Although dual inhibition strategies have
FIGURE 1

Classification of main molecular subtypes of breast cancer based on receptor status. Luminal A (ER+ and PR+, HER2-, low Ki-67), is hormone
receptor-positive and typically responsive to endocrine therapy; Luminal B (ER+ and/or PR+, HER2+/- or high Ki-67), may also benefit from HER2-
targeted therapies; HER2-Enriched (ER-/PR-, HER2+), is characterized by high HER2 expression and sensitivity to HER2-targeted therapies; and
Triple-Negative Breast Cancer (TNBC) (ER-, PR-, HER2-), an aggressive subtype lacking hormone and HER2 receptors, often requiring chemotherapy
as the primary treatment option. This classification is critical for determining appropriate therapeutic strategies. ER – estrogen receptor; HER2 –

Human epidermal growth factor 2; PR – progesterone receptor.
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proven ineffective, combining EGFR-targeted medicines with

platinum chemotherapy has increased survival rates (58–63).

However, these targeted approaches are currently not

recommended by major clinical guidelines, including ESMO and

NCCN, outside of clinical trials.

Given TNBC's high programmed cell death ligand 1 (PD-L1)

expression and abundance of tumor-infiltrating lymphocytes

(TILs), immunotherapy has grown in importance (64–70).

Immune checkpoint inhibitors (ICIs), such as pembrolizumab,

have improved outcomes when combined with chemotherapy, as

shown in trials like KEYNOTE-522 —where PD-L1 status is not a

criterion for use— leading to FDA approval for pembrolizumab in

high-risk, early-stage, TNBC (71). These treatments increase the

risk of immune-related side effects, especially during the

neoadjuvant phase. Combination regimens that combine ICIs

with DNA repair inhibitors such as PARP inhibitors have

demonstrated synergistic effects, boosting anti-tumor immunity,

particularly in homologous recombination-deficient cancers (72–

77). However, the combination of the two drugs is not yet in clinical

practice. Antibody-drug conjugates (ADCs), such as sacituzumab

govitecan, which targets Trop-2, provides strong cytotoxins directly

to tumor cells and have shown efficacy in both metastatic and

neoadjuvant settings, providing prolonged survival with controlled

toxicity (78–80).

Despite these developments, TNBC is still challenging to treat

due to its heterogeneity, lack of prognostic biomarkers, and high

recurrence rate. Continued research is required to maximize the use

of innovative drugs, uncover biomarkers for patient stratification,

and devise reasonable combination methods that improve efficacy

while limiting toxicity.

The combination of immunotherapy, targeted medicines, and

ADCs broadens the therapeutic arsenal and has the potential for

more tailored, long-lasting treatment outcomes in TNBC.
2 Neoadjuvant chemo-
immunotherapy in TNBC

2.1 Rationale for neoadjuvant therapy

Neoadjuvant therapy in BC pertains to the administration of

systemic therapy before the surgical intervention. The treatment

aims to downstage and downsize, to reduce the size of unresectable

tumors, to allow conservative surgeries and to address

micrometastases. Neoadjuvant chemotherapy (NAC) has gained

significant acceptance as the established therapeutic approach for

early TNBC to proactively anticipate tumor response and

administer appropriate adjuvant therapies (81). Multiple studies

have shown that TNBC exhibits significantly higher pCR rates

following NAC compared to hormone receptor-positive BC, with

pCR being strongly associated with better outcomes. A large study

from the MD Anderson Cancer Center, involving 1,118 patients

treated between 1985 and 2004, found that the pCR rate in TNBC

was double that of non-TNBC (22% vs. 11%). Despite this, TNBC

patients had poorer 3-year PFS and OS rates compared to non-
Frontiers in Immunology 04
TNBC patients. However, TNBC patients who achieved a pCR had

similar 3-year OS rates to non-TNBC patients (94% vs. 98%), while

those with residual disease after treatment had significantly worse

outcomes. These findings highlight the importance of achieving

pCR in improving long-term survival for TNBC patients, as those

with residual disease face a higher risk of recurrence and death (82).

In addition, the pooled analysis by Cortazar and Geyer (83),

which included 11,955 patients across 12 international neoadjuvant

trials, reinforced the prognostic value of pCR in breast cancer. The

study demonstrated that achieving pCR was strongly associated

with improved event-free survival and overall survival, particularly

in aggressive subtypes such as TNBC and HER2-positive tumors,

whereas its prognostic significance was limited in luminal A disease.

Importantly, this analysis provided large-scale validation that pCR

can serve as a surrogate endpoint for long-term outcomes in clinical

trials, highlighting its utility as both a prognostic biomarker and a

measure of therapeutic efficacy in TNBC.

Neoadjuvant chemotherapy is the recommended method for

treating stage II or III TNBC. In the context of early-stage high-risk

TNBC, the inclusion of pembrolizumab in taxane platinum-based

chemotherapy, followed by an anthracycline, resulted in a notable

enhancement in pCR rates and an improvement in event-free

survival (EFS) (84). In KEYNOTE-522, pembrolizumab was

incorporated not only during the taxane/platinum phase but also

in the subsequent anthracycline–cyclophosphamide regimen,

underscoring its integration across the entire neoadjuvant

treatment course.

In a recent comprehensive meta-analysis, von Minckwitz et al.

analyzed data from 6,377 patients with operable or locally

advanced, non-metastatic BC treated with neoadjuvant

anthracyclines and taxanes, with or without trastuzumab (18).

The objective of this study was to validate different definitions of

pCR and to evaluate its prognostic significance in terms of disease-

free survival (DFS) and OS across various BC subtypes. The study

concluded that pCR should be conservatively defined as ypT0 ypN0,

excluding ductal carcinoma in situ. Furthermore, pCR was found to

be a reliable surrogate marker for survival in patients with luminal B

(HER2-negative), HER2-positive (non-luminal), and TNBC

subtypes, but not for those with luminal A or luminal B/HER2-

positive subtypes.

Additionally, Huober et al. observed that TNBC tumors often

demonstrate a rapid response to neoadjuvant therapy, with

significant tumor reduction evident after only two treatment

cycles (85). This finding highlights the critical importance of

neoadjuvant chemotherapy in treatment of TNBC.
2.2 Neoadjuvant chemotherapy and
immunotherapy strategies: current
evidence and clinical trials

Despite advances in targeted and biological therapies, cytotoxic

chemotherapy remains the cornerstone of neoadjuvant treatment

for TNBC (86). Anthracycline/taxane-based regimens are widely

employed and supported by retrospective analyses and subgroup
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data from trials predating 2010 (87). For instance, anthracyclines

alone have yielded pCR rates between 14–47%, while sequential

regimens combining anthracyclines with taxanes report pCR rates

ranging from 17–39% (88–92). Notably, the GeparTrio trial

reported pCR rates up to 57% with neoadjuvant anthracyclines,

cyclophosphamide, and taxanes (85).

To enhance these outcomes, numerous strategies have been

pursued to increase pCR rates, which serve as an intermediate

surrogate for improved long-term survival. These include the

incorporation of DNA-damaging agents, particularly platinum

compounds like carboplatin, given the DNA repair deficiencies

frequently found in TNBC. Several clinical trials have assessed this

approach (46, 93, 94). The GeparSixto trial showed a significant

improvement in pCR rates from 36.9% to 53.2% when carboplatin

was added, albeit with increased hematologic toxicity (46, 93, 94).

Similarly, the BrighTNess trial demonstrated that the observed

improvements in pCR and event-free survival (EFS) were

attributable to carboplatin rather than the PARP inhibitor

veliparib (95). In contrast, CALGB 40603, which also evaluated

the addition of carboplatin to a standard AC-T regimen, did not

find a statistically significant improvement in EFS despite a

numerically higher pCR (96). Collectively, these findings support

the use of platinum-based regimens in selected patients, particularly

those with stage II–III TNBC, while highlighting the need to balance

efficacy with tolerability.

Beyond chemotherapy, immunotherapy has recently emerged

as a pivotal component in the neoadjuvant management of

TNBC (71), with the rationale rooted in the immunogenic

potential of this subtype. Standard chemotherapeutics can

modulate the tumor microenvironment (TME), enhancing

antigen presentation, promoting T cell infiltration (97), and

reducing immunosuppression (98). This primes the immune
Frontiers in Immunology 05
system for checkpoint inhibition and supports the integration of

ICIs with chemotherapy.

The KEYNOTE-522 trial exemplifies this strategy. In this phase

III study, pembrolizumab—a PD-1 inhibitor—was added to a

neoadjuvant regimen of carboplatin, paclitaxel, anthracycline, and

cyclophosphamide in patients with stage II–III TNBC (71, 71, 84).

The trial demonstrated a statistically significant increase in pCR

rates, from 51.2% in the placebo group to 64.8% in the

pembrolizumab group (a 13.6% absolute increase; p < 0.001).

Furthermore, EFS improved by 7% at 3 years, with a hazard ratio

of 0.63 (95% CI 0.48–0.82). These benefits were observed regardless

of PD-L1 status, suggesting that PD-L1 may hold prognostic but not

predictive value in early TNBC. Importantly, patients with residual

disease after neoadjuvant therapy also derived benefit from

continued pembrolizumab in the adjuvant setting, further

validating this approach as a new standard of care for high-

risk TNBC.

Other notable trials have also explored the role of ICIs in the

neoadjuvant setting (Table 1). The IMpassion031 trial investigated

atezolizumab (anti–PD-L1) with chemotherapy and showed an

increased pCR rate but no EFS benefit (99). The NeoTRIP trial

evaluated atezolizumab combined with carboplatin and nab-

paclitaxel in high-risk early TNBC. While pCR rates were not

significantly improved with atezolizumab versus chemotherapy

alone (43.5% vs 40.8%, OR 1.11, 95% CI 0.69–1.79), updated

analyses suggested a trend toward improved 5-year event-free

survival (62% vs 57%; HR 0.81, 95% CI 0.52–1.27), although not

statistically significant (100). By contrast, GeparNuevo assessed

durvalumab in combination with chemotherapy and, while the

increase in pCR was modest and not statistically significant (53.4%

vs 44.2%; D 9.2%, p=0.287), long-term follow-up revealed a

marked survival advantage. At 3 years, durvalumab significantly
TABLE 1 Neoadjuvant chemoimmunotherapy clinical trials and efficacy in triple-negative breast cancer.

Trial name Phase Intervention Comparator Primary
outcome

Results summary

KEYNOTE-522 III Pembrolizumab
+ chemotherapy

Placebo
+ chemotherapy

pCR rate pCR: 64.8% in pembrolizumab group vs. 51.2% in
placebo group

GeparNuevo II Durvalumab
+ chemotherapy

Placebo
+ chemotherapy

pCR rate pCR: 53.4% in durvalumab group vs. 44.2% in placebo
group

NeoTRIPaPDL1 III Atezolizumab
+ nab-paclitaxel

Placebo
+ nab-paclitaxel

EFS No significant difference in pCR rates between groups

IMpassion031 III Atezolizumab
+ chemotherapy

Placebo
+ chemotherapy

pCR rate pCR: 57.6% in atezolizumab group vs. 41.1% in placebo
group

BrightTNess III Veliparib
+ carboplatin
+ standard
chemotherapy

Standard chemotherapy
alone

pCR rate pCR: 53% in veliparib group vs. 31% in control group

CALGB 40603 II Chemotherapy
+ carboplatin
± bevacizumab

Standard chemotherapy pCR rate Both carboplatin and bevacizumab improved pCR rates
EFS, event-free survival, pCR , complete pathologic response.
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improved invasive disease–free survival (iDFS; HR 0.48, 95% CI

0.24–0.97), distant disease–free survival (DDFS; HR 0.46, 95% CI

0.23–0.92), and OS (HR 0.24, 95% CI 0.08–0.72), underscoring

that survival gains may emerge independently of pCR

improvements (101). These discrepancies underscore the

importance of trial design, backbone chemotherapy regimens,

and biomarker selection when interpreting ICI efficacy in

early TNBC.

The NeoSTAR Arm A2 trial (102) evaluated neoadjuvant

sacituzumab govitecan (SG) combined with pembrolizumab in 50

patients with early-stage TNBC. Patients received SG (10 mg/kg,

days 1 and 8) plus pembrolizumab (200 mg, day 1) for four 21-day

cycles. The pCR rate after SG/pembrolizumab alone was 34%,

increasing to 50% overall after additional neoadjuvant

chemotherapy. Response rate (CR + PR) was 66%. Among five

patients with pathogenic BRCA mutations, 60% achieved pCR with

SG/pembrolizumab. The regimen was generally well tolerated;

grade ≥3 adverse events occurred in 40%, mainly nausea,

alopecia, fatigue, and diarrhea. These results support further

investigation of ADC–ICI combinations in early TNBC.

In conclusion, the integration of platinum agents and

immunotherapy into standard neoadjuvant regimens has

reshaped the therapeutic landscape of TNBC. Carboplatin offers a

modest but meaningful increase in pCR, particularly in BRCA-

deficient or homologous recombination-deficient tumors. The

addition of pembrolizumab, as demonstrated in KEYNOTE-522,

represents a major advancement, combining improved pCR and
Frontiers in Immunology 06
EFS without reliance on PD-L1 expression. These findings strongly

support chemoimmunotherapy as the new standard in the

neoadjuvant treatment of early-stage TNBC.
3 Biomarker-based immune
monitoring strategies

A comprehensive understanding of the tumor-immune

interface in TNBC requires the integration of diverse biomarker

classes that span tissues, blood, imaging, and dynamic temporal

signatures. Tissue-based biomarkers have historically served as the

foundation for assessing and predicting immunotherapy response.

These include well-established targets such as PD-L1, microsatellite

instability (MSI), tumor mutational burden (TMB), and various

tumor gene expression signatures (Figure 2).

Together, they provide a valuable framework for evaluating

tumor immunogenicity and potential responsiveness to immune

checkpoint blockade (ICB) therapies (103–105). Their relevance in

neoadjuvant chemo-immunotherapy for TNBC is rapidly evolving

as we deepen our understanding of tumor-immune interactions in

this particularly aggressive BC subtype (36, 106).

The tumor microenvironment plays a crucial role in

progression, influenced by a balance of immune-suppressive and

immune-activating factors. The illustration in Figure 3 captures the

complexity of TNBC by showcasing key genes, receptors, and

soluble factors that shape immune responses.
FIGURE 2

Immune response in triple-negative breast cancer. This schematic illustrates key biomarkers and immune mechanisms in triple-negative breast
cancer (TNBC). Tumor-infiltrating lymphocytes (TILs) represent immune activity within the tumor microenvironment. Genomic biomarkers include
tumor mutational burden (TMB), microsatellite instability (MSI), and mismatch repair deficiency (MMR), which contribute to tumor progression and
immune recognition. Cytokines and soluble factors such as VEGF, IL-6, and IL-8 promote angiogenesis and immune suppression. Immune
checkpoint pathways, including PD-L1/PD-1, CTLA-4/B7, and TIGIT, LAG3, TIM3 interactions, mediate immune evasion.
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3.1 Tissue-based biomarkers

3.1.1 Programmed death-ligand 1
PD-1 is a critical immune checkpoint receptor that plays a

central role in regulating immune responses and maintaining self-

tolerance by limiting T-cell activity in peripheral tissues. PD-1 binds

two ligands: PD-L1 and PD-L2, which have distinct expression

profiles across various tumor types. PD-L1 expression is regulated

by several mechanisms, including oncogenic signaling pathways,

loss or silencing of PTEN, and activation of the PI3K pathway (107,

108). Monoclonal antibodies targeting PD-1 or PD-L1 can block

this inhibitory axis, thereby reactivating anti-tumor immune

responses by lifting T-cell suppression.

PD-L1 is among the most extensively studied biomarkers in

cancer immunotherapy and has gained regulatory approval to guide

the use of PD-1/PD-L1 inhibitors in multiple malignancies (109,

110). In clinical settings, PD-L1 expression is most assessed using

immunohistochemistry (IHC) and is quantified using the Tumor

Proportion Score (TPS) or the Combined Positive Score (CPS)

(111). While TPS evaluates the proportion of PD-L1-positive tumor

cells, CPS incorporates both tumor and immune cell staining to

provide a broader measure of immune engagement. Higher TPS

and CPS scores have been correlated with improved responses to

anti-PD-1/PD-L1 therapies in various cancers, including non-small

cell lung cancer (109, 110).

In TNBC, the role of PD-L1 as a biomarker is more nuanced.

PD-L1 expression has been detected on both tumor and immune
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cells in TNBC, but its assessment is complicated by spatial

heterogeneity and temporal dynamics of expression (111). Studies

have shown that PD-L1 levels can vary depending on tumor stage

(primary vs. metastatic), site of disease, and technical variables such

as antibody clones and scoring thresholds (112). Despite this

complexity, PD-L1 remains an active focus of investigation in

TNBC, particularly as a candidate biomarker for patient

stratification in neoadjuvant immunotherapy trials.

Checkpoint inhibitors targeting PD-1/PD-L1 have shown

promising efficacy in early-stage TNBC. In this context, the

KEYNOTE-522 trial was the first phase III study to demonstrate

a significant improvement in clinical outcomes with the addition of

immunotherapy. Patients receiving neoadjuvant chemotherapy plus

pembrolizumab showed a 13.6% absolute increase in pCR

compared to those receiving chemotherapy alone (64.8% vs.

51.2%) (71). Notably, this benefit was observed regardless of PD-

L1 status, indicating that PD-L1 expression may not be a definitive

predictor of response in early TNBC (85). This finding aligns with

data from phase II trials showing that tumors lacking PD-L1

expression can still respond to immune checkpoint blockade (88).

Nevertheless, PD-L1 positivity has been associated with favorable

prognostic indicators such as higher pCR rates, improved

metastasis-free survival, and OS in TNBC (101, 111, 112).

3.1.2 Microsatellite instability
Another critical tissue-based biomarker is microsatellite

instability (MSI), which reflects defects in the DNA mismatch
FIGURE 3

Biomarker profile of triple-negative breast cancer (TNBC). Dysregulated biomarkers in TNBC, classified into soluble factors, receptors, and genes.
Blue regions represent decreased biomarkers, including IL-4, IL-10, TGF-b, HER2, ER, PR, FOXA1, GATA3, and PTEN, signifying the loss of hormone
receptor expression and tumor-suppressive pathways. Red regions depict increased biomarkers such as pro-inflammatory cytokines (IL-6, IL-8,
IL-18), angiogenic factor VEGF, immune checkpoints (PD-1, PD-L1, CTLA-4, TIGIT, LAG-3, TIM-3), and chemokine receptors (CXCR1, CXCR2).
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repair (MMR) machinery. Tumors with high levels of MSI (MSI-H)

typically harbor elevated mutational loads and generate abundant

neoantigens, enhancing their visibility to the immune system. MSI-

H is very rare in breast cancer, with reported prevalence of

approximately 0.6–2% (113, 114). Nevertheless, MSI-H status has

been associated with robust responses to PD-1 blockade, as shown

in the KEYNOTE-158 trial, which led to FDA approval of

pembrolizumab for MSI-H/dMMR cancers regardless of tumor

origin (128–120) (115).

A study investigated mismatch repair and microsatellite

instability in TNBC by analyzing tissue samples from 440

patients. The results showed that mismatch repair deficiency was

rare, with only one sample identified as deficient and no cases of

high-frequency microsatellite instability. Most samples had either

no microsatellite instability or low-frequency instability.

Additionally, no significant correlations were found between

mismatch repair or microsatellite instability status and

clinicopathological features, PD-1/PD-L1 expression, or survival.

The findings suggest that mismatch repair and microsatellite

instability are infrequent in TNBC and may have limited

prognostic value, highlighting the need for further research into

alternative biomarkers for immunotherapy (116).

Nonetheless, its conceptual importance lies in establishing a

mechanistic link between genomic instability and immune

sensitivity, a principle that continues to inform biomarker

discovery in BC and beyond (116).

3.1.3 Tumor mutational burden
TMB represents another biomarker of interest, defined as the

number of non-synonymous somatic mutations per megabase of

coding DNA. A high TMB is thought to correlate with increased

neoantigen presentation and subsequent T-cell priming, thereby

enhancing susceptibility to immunotherapy (117, 118). However,

there is a scarcity of data on the actual therapeutic significance of

this biomarker in BC settings (119).

In BC, the predictive value of TMB remains controversial due to

limited data. While high TMB is observed in up to 3% of primary

BC tumors and 11% of metastatic cases, these tumors show greater

sensitivity to checkpoint inhibitors. However, high TMB has not

been associated with improved OS in BC patients receiving

immunotherapy (120, 121). In June 2020, the FDA granted

approval for pembrolizumab in cases of TMB high (≥10 mut/

Mb), unresectable, or metastatic cancer (122).

Evidence from the KEYNOTE-158 trial has demonstrated

improved objective response rates (ORR) and PFS in patients

with high TMB across multiple tumor types (123). While data

specific to TNBC remain limited, the general principles of

immunogenicity conferred by high TMB are being explored in

ongoing BC trials. Importantly, TMB should not be viewed in

isolation. Rather, it is increasingly clear that integrating TMB with

other immunological parameters—such as immune infiltrate

composition, T-cell receptor clonality, and expression of immune

modulatory genes—can provide a more comprehensive and

accurate prediction of therapeutic outcomes (124).
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3.1.4 Tumor-infiltrating lymphocytes
Tumor-infiltrating lymphocytes (TILs) are a heterogeneous

population of immune cells, mainly composed of T cells, with

smaller fractions of B cells and natural killer (NK) cells, that localize

in the tumor microenvironment (125). TILs are present either in the

tumor stroma or directly within tumor cell nests, and they play a

central role in mediating antitumor immunity. Their infiltration

reflects the immunogenicity of the tumor and the host immune

response. In addition to general lymphocyte populations, immune

regulators such as FOXP3+ regulatory T cells (Tregs), TIM3, LAG3,

and TIGIT are often expressed on TILs. LAG3 is an inhibitory

immune checkpoint receptor expressed on activated T cells, NK

cells, B cells, and plasmacytoid dendritic cells (pDCs), and binds to

MHC class II molecules. In TNBC mouse models, dual blockade of

LAG3 and PD-1 elicits a more potent anti-tumor effect than

monotherapy. TIM3, another checkpoint molecule, is expressed

on Tregs, dendritic cells, and subsets of lymphocytes and

monocytes (126).

TILs have been broadly recognized as prognostic and predictive

biomarkers in cancer. Their prevalence varies among BC subtypes,

with TNBC and HER2+ subtypes showing higher TIL infiltration

compared to luminal-like tumors (127). In the broader oncology

setting, higher TIL levels have been correlated with improved

response to chemotherapy and immunotherapy, reduced

recurrence, and longer survival. Tumors with abundant TILs are

often classified as “hot” or inflamed and are more likely to respond

to ICIs (128). Interestingly, aggressive BC subtypes with poor

prognosis—such as ER-negative, PR-negative, or node-positive

tumors—also tend to have elevated TIL levels (128, 129).

In TNBC specifically, TILs serve as key indicators of tumor

immune microenvironmental activity. Their abundance is

associated with reduced proliferation, metastasis, and therapy

resistance (16). Salgado et al. reported that intratumoral

lymphocytes significantly predicted pCR to neoadjuvant

chemotherapy in both training and validation cohorts (P = 0.012

and P = 0.001) (130). In lymphocyte-predominant breast cancers,

pCR rates reached 40–42%, versus only 3–7% in TIL-low tumors.

Adams et al. confirmed that higher stromal TIL (sTIL) scores were

linked to better prognosis and lower recurrence in two national

clinical trials involving 481 TNBC patients (131). Moreover, PD-L1

expression on TILs—rather than on tumor cells—has been linked to

improved clinical outcomes, likely reflecting adaptive immune

activation. Sugie et al. showed that PD-L1 on immune cells

strongly correlates with CD8+ T-cell infiltration and total TIL

content in TNBC, supporting its role as a surrogate marker of T-

cell–inflamed tumors (130, 132).

Evidence from large, pooled analyses has further strengthened

the prognostic and predictive role of TILs. Denkert et al. (97)

analyzed data from over 2,500 early-stage TNBC patients across

multiple neoadjuvant trials and confirmed that each 10% increase in

sTILs was associated with a proportional increase in pCR rates and

improved DFS and OS. Similarly, Loi et al. (133) performed a

pooled analysis of TNBC cohorts from clinical trials and

demonstrated that high sTILs consistently predicted improved
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outcomes, including OS, independent of chemotherapy regimen or

nodal status. These large-scale data underscore that TIL

quantification is a robust biomarker for treatment planning and

risk stratification.

Clinical trial data further demonstrate the impact of TILs on

immunotherapy efficacy. In the phase III IMpassion130 trial,

atezolizumab combined with nab-paclitaxel led to prolonged

progression-free survival (PFS) in patients with tumors harboring

≥10% stromal TILs, with greater benefit observed in PD-L1–

positive cases (134). Furthermore, higher proportions of CD8+

TILs have been associated with improved responses to ICIs in

TNBC patients (135, 136). Elevated TIL levels in TNBC also

correlate with a greater likelihood of pCR to chemotherapy—a

surrogate marker of long-term survival (137). Conversely, low TIL

infiltration or absence of immune markers may signal poor

responsiveness, necessitating alternative therapeutic strategies.

While most studies indicate improved outcomes in patients

with elevated sTILs, a few have noted that post-chemotherapy TIL

enrichment may signal relapse risk in certain TNBC subgroups

(138). Nevertheless, the bulk of evidence—including several large

prognostic analyses—demonstrates that higher sTIL levels

consistently predict better short- and long-term outcomes (139,

140). These beneficial effects are largely attributed to the presence of

CD4+ and CD8+ effector T cells, which mediate anti-tumor activity

and correlate with immunotherapy benefit (140, 141).

3.1.5 Gene expression signatures
In addition to PD-L1, MSI, and TMB, gene expression

signatures derived from tumor transcriptomes are emerging as

powerful tools for immune monitoring. Among these, interferon-

gamma (IFN-g)-associated signatures have garnered significant

attention. IFN-g is a key effector cytokine produced by activated

T cells and NK cells, and its downstream signaling orchestrates a

cascade of immune-stimulatory effects, including upregulation of

MHC molecules, chemokine production, and antigen presentation

machinery (142). In melanoma, IFN-g gene signatures have been

successful ly used to strati fy patients in neoadjuvant

immunotherapy trials, such as the DONIMI study, where they

predicted response to PD-1 and CTLA-4 blockade (143). In breast

cancer, Heimes et al. (144) reported that high IFN-g expression

correlated with improved disease-free and overall survival,

supporting its role as a prognostic biomarker. Although less

studied in TNBC, these signatures offer a promising avenue for

selecting patients most likely to benefit from neoadjuvant immune-

based therapies, particularly in immunologically “cold” tumors that

may require priming or combination strategies to initiate effective

immune responses.
3.2 Blood-based biomarkers

Beyond tumor tissues, peripheral blood offers a non-invasive

window into the systemic immune state of cancer patients. Liquid

biopsies can be repeatedly sampled over time, enabling longitudinal

monitoring of treatment effects and immune dynamics. Among the
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blood-based biomarkers, soluble immune proteome profiling stands

out for its ability to capture real-time fluctuations in cytokines,

chemokines, and soluble checkpoint molecules. These circulating

analytes provide insight into the activation status, regulatory

balance, and effector function of the immune system throughout

the course of therapy. For example, elevated levels of pro-

inflammatory cytokines such as IL-6, TNF-a, or IFN-g may

indicate an active anti-tumor immune response or, conversely,

immune-related toxicity (145, 146).

3.2.1 Immune-related gene expression profiling
Another informative blood-based modality is immune-related

gene (IRG) expression profiling. By assessing mRNA transcripts in

peripheral blood mononuclear cells (PBMCs) or circulating tumor

cells (CTCs), researchers can monitor immune activation or

suppression in response to therapy. This technique allows for the

detection of gene expression patterns associated with cytotoxicity,

antigen presentation, T-cell exhaustion, and regulatory immune

networks (105).

3.2.2 Comprehensive immunophenotyping
Comprehensive immunophenotyping plays a critical role in

monitoring immune responses during neoadjuvant chemo-

immunotherapy for TNBC, providing detailed insights into

immune cell dynamics in both the peripheral blood and tumor

microenvironment. Using advanced technologies such as

multiparametric flow cytometry and mass cytometry (CyTOF),

researchers can analyze dozens of markers at the single-cell level

to assess cell lineage, activation status, differentiation, and

exhaustion (147). In TNBC, treatment response has been

associated with increased frequencies of activated effector CD8+ T

cells and decreased regulatory T cells (Tregs), as well as modulation

of myeloid populations and antigen-presenting cells (111). Wang

et al. (148) demonstrated that longitudinal single-cell profiling can

identify early immune signatures predictive of pathological

complete response, including expansion of specific cytotoxic T-

cell subsets and reduction of immunosuppressive myeloid

populations. These phenotypic changes reflect the evolving

tumor–immune interaction under therapeutic pressure.

Longitudinal immunophenotyping allows for temporal tracking of

immune reconstitution and may reveal early predictors of pCR

(147). Integration with transcriptomics or spatial imaging further

enhances biomarker discovery. Integration with transcriptomics or

spatial imaging further enhances biomarker discovery. As TNBC is

highly immunologically heterogeneous, immunophenotyping is

indispensable for personalizing treatment and informing early

decision-making in clinical trials. Thus, comprehensive immune

profiling supports both mechanistic understanding and

translational implementation of immunotherapy in TNBC.

3.2.3 Cytokine profiling
Inflammation is essential for the immune system's defense

against pathogens like viruses and bacteria, and it is also involved

in tumor development, angiogenesis, and metastasis (149).

Oncogenic changes, hypoxia, cytokines, and chemokines attract
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inflammatory cells to the tumor microenvironment, which includes

immune cells and activated fibroblasts that secrete factors

promoting tumor growth (150). Recent research highlights that

inflammation signaling, particularly through the IL-6/JAK2/Stat3

pathway, is significant in maintaining the stem cell-like properties

of BC (151). Although most studies have reported higher cytokine

levels in BC patients, one study involving 90 BC patients and 15

healthy volunteers found no significant difference in baseline

cytokine levels between the two groups, as indicated by plasma

concentrations of IL-1b, IL-6, IL-8, IL-10, IL-12, and TNF-a.
However, a direct link between inflammatory cytokine levels and

clinical outcomes in BC patients has not been clearly established

(152). Angiogenesis, driven by factors like vascular endothelial

growth factor (VEGF), is crucial for cancer growth and

metastasis. VEGF, particularly elevated in TNBC, not only

promotes tumor progression but also serves as a key target in

anti-angiogenic therapies, improving survival rates when combined

with chemotherapy, as demonstrated in metastatic colorectal cancer

(153). Beyond chemotherapy, combining VEGF inhibition with

immunotherapy has shown promise in other malignancies. In

advanced endometrial carcinoma, the combination of lenvatinib

(a VEGF receptor inhibitor) and pembrolizumab led to significantly

longer PFS and OS compared to chemotherapy alone (154).

Similarly, in clear cell renal cell carcinoma, combining VEGF

inhibition with ICIs has demonstrated improved outcomes (155).

These findings suggest that integrating VEGF-targeted therapies

with immunotherapy could enhance treatment efficacy in various

cancers. The significance of VEGF in TNBC is underscored by its

notably higher expression levels three times greater than in ER/PR-

positive tumors and 1.5 times higher than in HER2-positive tumors
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—making it a critical biomarker for prognosis and treatment (156–

158). Similarly, IL-8 is highly expressed in the stroma of TNBC,

significantly contributing to tumor growth and metastasis by

promoting angiogenesis, proliferation, and migration of tumor

cells. The interaction of IL-8 with its receptors, CXCR1 and

CXCR2, is crucial for TNBC progression, making these molecules

promising therapeutic targets. Studies demonstrate that blocking

the IL-8 signaling pathway can effectively reduce TNBC cell

proliferation and migration, highlighting its importance in

developing treatment strategies (159, 160). In addition to IL-8,

other cytokines like IL-15 and IL-18 play pivotal roles in the tumor

microenvironment. IL-15 shows potential in enhancing NK cell-

mediated anti-tumor activity (161, 162), while IL-18 is associated

with poor survival outcomes due to its role in increasing

immunosuppressive NK cells and upregulating PD-1 expression.

Together, these cytokines underscore the complexity of the TNBC

microenvironment (163, 164).

In parallel, recent research has explored blood cytokine

profiles in TNBC patients to identify biomarkers that could

predict treatment outcomes. This study identified five cytokines

—IL-1a, TRAIL, SCF, CCL5, and IL-16—linked to favorable

clinical outcomes, with their levels decreasing during

chemotherapy and rebounding afterward. Notably, patients with

consistently high levels of these cytokines throughout treatment

experienced better outcomes. These findings suggest that

monitoring cytokine levels over time could enhance the

precision of TNBC treatment, paving the way for more

personalized therapeutic approaches (165).

The data regarding immune response biomarkers in TNBC is

summarized in Table 2.
TABLE 2 Immune response biomarkers in cancer immunotherapy.

Biomarker Role Clinical significance Predictive/prognostic value

PD-L1
Immune checkpoint ligand inhibiting T-cell
activity.

Associated with response to immune
checkpoint inhibitors.

Linked to improved survival; may not predict response in
early-stage TNBC.

CTLA-4
Inhibits T-cell activation, maintaining
immune homeostasis.

High expression correlates with
metastasis.

Elevated expression in 50% of breast tumors, associated
with poor prognosis.

TILs
Indicates ongoing immune response in
tumors.

High TILs improve response to ICIs. Predictive of better survival in metastatic TNBC.

LAG3 Inhibitory receptor on T and NK cells.
Enhanced response when combined with
PD-1 blockade.

Potential target in combination therapies.

TIM3 Inhibits various immune cells. Regulates immune responses. Explored as a co-target with other checkpoints.

TMB Quantifies mutation burden in tumors. High TMB linked to ICI sensitivity.
Limited value in TNBC; high TMB in 3% of primary and
11% of metastatic cases.

MSI Results from DNA replication errors. Rare in TNBC. Limited clinical utility in TNBC.

Cytokines
(e.g., IL-8,
VEGF)

Modulate tumor growth and immune
response.

High VEGF and IL-8 promote tumor
progression.

Serve as prognostic markers; potential therapeutic targets.

Blood Cytokine
Profile

Includes IL-1a, TRAIL, SCF, CCL5, IL-16. Levels correlate with treatment outcomes.
Predictive of better outcomes when high during
treatment.
MSI, microsatellite instability; TILs, tumor-infiltrating lymphocytes; TMB, tumor mutational burden.
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3.3 Advanced imaging technologies

In parallel with molecular and cellular biomarkers, advanced

imaging technologies are increasingly employed to spatially map

immune responses within tumors. Multispectral imaging platforms,

such as AstroPath, combine traditional histology with quantitative

measurement of multiple immune and tumor markers in situ. This

spatial resolution allows for the identification of key

microanatomical features—such as the presence of immune cell

niches, tumor-immune boundaries, or exclusion zones—that may

influence immunotherapy efficacy. Such insights are critical for

interpreting treatment-induced remodeling of the tumor

microenvironment in TNBC (166).

3.3.1 Immuno-positron emission tomography
Immuno-positron emission tomography (immuno-PET)

represents a complementary strategy to evaluate immune

responses non-invasively. By radiolabeling therapeutic antibodies

such as pembrolizumab (89Zr-pembrolizumab), researchers can

visualize in vivo binding of the antibody to PD-1-expressing cells

within tumors or lymphoid tissues. Early studies in NSCLC and

melanoma have demonstrated the feasibility of this approach, and

its translation to BC is currently under investigation (167).
3.3.2 Radiomics and delta radiomics
Radiomics and delta radiomics further expand the landscape of

imaging-based biomarkers by analyzing subtle changes in texture,

shape, and intensity within CT or PET scans using artificial

intelligence tools. These features, invisible to the human eye, can

reflect underlying biological processes such as immune infiltration,

fibrosis, or necrosis. Machine learning algorithms trained on

radiomic datasets have shown promise in predicting treatment

response in various cancers (168). In the context of TNBC, delta

radiomics could provide an early, non-invasive readout of

immunological changes induced by neoadjuvant therapies,

potentially guiding therapy adjustments.
3.3.3 Advanced spatial tissue profiling
Complementing systemic imaging, advanced spatial profiling

techniques allow high-resolution characterization of the tumor

immune microenvironment directly within tissue architecture.

Multiplex immunofluorescence (mIF) enables simultaneous

detection of multiple proteins on the same tissue section,

providing quantitative insights into the spatial organization and

interactions of immune cells. Spatial transcriptomics approaches,

such as 10x Genomics Visium or NanoString GeoMx, map gene

expression across defined tissue coordinates, capturing localized

immune signatures and stromal-immune crosstalk. Highly

multiplexed imaging platforms, including CODEX and digital

pathology workflows, allow comprehensive mapping of dozens of

markers while preserving tissue context. Together, these

technologies reveal functional niches, immune exclusion zones,

and cellular neighborhoods that cannot be resolved by

conventional IHC or bulk molecular assays. Integration of spatial
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profi l ing wi th immuno-PET and radiomics offe r s a

multidimensional view, linking systemic imaging with tissue-level

cellular and molecular architecture, ultimately enhancing the

precision of immune monitoring and patient stratification in

TNBC immunotherapy trials.
3.4 Temporal biomarker sampling

The temporal aspect of immune monitoring is equally crucial.

Immune responses evolve dynamically over the course of treatment,

necessitating longitudinal sampling strategies. In responders to

neoadjuvant chemo-immunotherapy, early immunological events

often include a surge in effector T-cell activity, increased IFN-g
signaling, and reprogramming of macrophages toward a

proinflammatory phenotype (167). These changes are typically

accompanied by reductions in tumor burden and the

development of immunological memory. In contrast, non-

responders may exhibit persistent immunosuppressive features,

such as sustained presence of regulatory myeloid populations,

impaired antigen presentation, or T-cell exclusion from the tumor

core. Serial monitoring through tissue biopsies, blood sampling, or

imaging enables the detection of these divergent trajectories,

informing timely therapeutic modifications (169, 170).
3.5 Patient-derived models

To support real-time functional precision medicine, novel

platforms such as zebrafish avatars are being developed. In this

model, patient-derived tumor cells are engrafted into

immunocompromised zebrafish embryos, which then serve as

rapid screening platforms for therapeutic efficacy. Initial studies

in colorectal cancer have demonstrated high concordance between

zebrafish responses and patient outcomes to chemotherapy (171).

Extending this approach to TNBC may offer insights into potential

treatment responses, including immunotherapy or combinatorial

regimens, but clinical validation remains limited. Key challenges

include scalability for larger patient cohorts, standardization of

engraftment and readout protocols, and ensuring reproducibility

across laboratories.

Similarly, the TRIPLEX study (172) is investigating the

feasibility of generating patient-derived tumor organoids

(PDTOs) from TNBC biopsies to assess their ability to predict

clinical response to chemotherapy and immune checkpoint

blockade. While these models provide a promising ex vivo

platform to interrogate tumor biology, several limitations remain:

the generation and maintenance of PDTOs can be labor-intensive,

time-consuming, and technically demanding; variability

between organoids derived from different patients may affect

generalizability; and integration of PDTO-derived data into

clinical decision-making pathways is not yet established.

Consequently, these platforms are currently better suited for

exploratory studies and mechanistic investigations rather than

routine clinical use.
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In conclusion, while zebrafish avatars and PDTOs represent

innovative tools for functional precision oncology, their current

clinical utility in TNBC is still largely investigational. Integration of

these models with tissue-based, blood-derived, imaging-driven, and

temporally resolved biomarkers provides a multidimensional

perspective of the immune response to therapy (Table 3). Future

efforts should focus on rigorous validation, optimization for

scalability, and establishing standardized pipelines to facilitate

translation into personalized treatment strategies. Complementary

incorporation of advanced multiplex technologies, artificial

intelligence, and integrative modeling will be essential to refine

predictive frameworks and improve patient outcomes in this

aggressive BC subtype.
4 Future directions and emerging
techniques

Immune monitoring involves evaluating the function, activity,

and state of the immune system by analyzing immune cells,

cytokines, and biomarkers. This is crucial for understanding

disease progression, response to therapies, and predicting

outcomes. Traditional immune monitoring methods, such as flow

cytometry and ELISA, have been foundational. However, recent
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innovations have significantly expanded the capability to assess

immune responses with greater precision and detail.
4.1 Single-cell sequencing

Single-cell sequencing is a next-generation sequencing (NGS)

method that examines the genomes or transcriptomes of individual

cells, providing a high-resolution view of cell-to-cell variation (176).

In cancer, the process of sequencing the DNA of individual cells can

provide valuable insights about the mutations that are present in

isolated cell groups. The sequencing of RNAs produced by

individual cells throughout development can provide valuable

understanding of the presence and characteristics of various cell

types (177).

Profiles of gene expression in bulk tumors reveal the

characteristics of non-tumor compartments, which, in the case of

BC, are marked by a significant combination of stromal,

immunological, and endothelial cell infiltration. The admixtures

constitute the tumor microenvironment and have a crucial function

in the initiation, development, and resistance to therapy of tumors.

Prognostic values of micro-environmental gene expression profiles

may exist independently of the underlying tumor subtype (178–

180). The primary cellular components of the cancer
TABLE 3 Biomarker-based immune monitoring strategies in cancer immunotherapy.

Biomarker type Specific biomarker Function / Use Application in TNBC
Key
references

Tissue-based
PD-L1 (TPS/CPS)

Immune checkpoint ligand; predictive
of ICB response

Approved for use in selecting patients
for anti–PD-1/PD-L1 therapy

(98, 104)

MSI/dMMR
Reflects genomic instability and
neoantigen load

Rare in TNBC; predicts strong ICB
response when present

(113, 116)

Tumor Mutational Burden (TMB)
Measures somatic mutations per Mb of
DNA; proxy for neoantigen load

High TMB may correlate with ICB
response in select patients

(118, 123)

IFN-g Gene Signatures
Measures IFN-g pathway activation;
immunogenicity marker

Potential to stratify responders to
neoadjuvant immunotherapy

(105, 143)

Blood-based
Cytokines & Soluble Proteins

Track systemic immune activation /
toxicity

Dynamic, longitudinal monitoring of
therapy effects

(145)

Immune-related Gene Expression
Transcriptomic analysis of PBMCs /
CTCs

Monitors immune activation,
exhaustion, or suppression

(105)

Comprehensive Immunophenotyping
Deep immune profiling (CyTOF, flow
cytometry)

Tracks immune reconstitution and
correlates with response/non-response

(147)

Imaging-based
Multispectral Imaging (AstroPath)

Spatial resolution of immune-tumor
architecture

Identifies immune niches, exclusion
zones

(166)

ImmunoPET
In vivo tracking of PD-1/PD-L1
expression

Non-invasive biomarker of immune
dynamics

(173)

Radiomics / Delta Radiomics
AI-driven analysis of CT/PET image
features

Early prediction of immunologic
changes and treatment response

(168)

Temporal profiling
Serial biopsies & blood sampling

Captures dynamic immune shifts during
treatment

Differentiates responders vs. non-
responders; supports adaptive therapy

(167, 170)

Functional models
Zebrafish avatars

Rapid in vivo drug screening using
patient-derived xenografts

Forecasts individual responses;
emerging in TNBC

(171)
CPS, Combined Positive Score; CTC, circulating tumor cells; CyTOF, Cytometry by Time-of-Flight; ICB, immune checkpoint blockade; ImmunoPET, Immuno-positron emission tomography;
MSI , microsatellite instability; MMR, DNA mismatch repair; PBMCs; peripheral blood mononuclear cells; TPS, Tumor Proportion Score.
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microenvironment consist of cancer-associated fibroblasts and

immune cells. The cancer microenvironment comprises cancer-

associated fibroblasts and diverse complement of immune cells. In

general, tumor-associated macrophages (TAMs) facilitate the

proliferation and spread of tumors, whereas CD8+ cytotoxic T

cells and CD4+ Th1 cells provide support for the immune response

against tumors (181). There is a correlation between regulatory or

exhausted T cells and unsuccessful anticancer responses. Despite

the potential contribution of certain B cells to the advancement of

tumors, a significant abundance of B cells within the tumor area is

linked to a positive prognosis (182, 183). Fundamentally, the tumor

microenvironment is influenced by the interactions between these

heterogeneous cells and cancer cells.

Single-cell genome analysis is anticipated to play a significant

role in cancer treatment. It can aid in non-invasive monitoring of

circulating tumor cells, assessing tumor heterogeneity, detecting

small recurrent tumors early, and monitoring rare cell populations

in difficult-to-treat cancers. Understanding transcriptome

heterogeneity and accurately characterizing gene expression in

tumors and their microenvironments may help identify more

effective molecular targets for prognosis and treatment (184).

Characterizing tumor heterogeneity could lead to targeted

therapies, while profiling tumor-infiltrating immune cells may

offer new strategies to combat immune suppression and enhance

immune surveillance (185).

TNBC exhibits significant intra- and inter-tumor heterogeneity,

complicating treatment and prognosis. Single-cell sequencing (SCS)

has been instrumental in identifying distinct TNBC cell types, such

as basal and other epithelial cells, which are linked to poor survival

outcomes. SCS also reveals genetic mutations and clonal evolution

within TNBC, helping to understand tumor resistance during

chemotherapy and uncover new treatment targets. Moreover, SCS

has exposed the heterogeneity of cancer-associated fibroblasts

(CAFs) and immune cells, crucial in tumor progression and drug

resistance. This technique also supports the exploration of

combination therapies and personalized approaches, offering

potential strategies to reduce recurrence, metastasis, and

treatment resistance in TNBC (186).
4.2 Circulating tumor DNA and liquid
biopsy

Liquid biopsy is a minimally invasive technique that has gained

significant attention in recent years for its utility in cancer

diagnostics, prognosis, and treatment monitoring. It involves the

analysis of peripheral blood or other bodily fluids to detect tumor-

derived components such as circulating tumor cells (CTCs), cell-

free DNA (cfDNA), and circulating tumor DNA (ctDNA). Notably,

ctDNA represents a tumor-derived fraction of the total cfDNA.

Unlike traditional tissue biopsy, liquid biopsy can be performed

repeatedly with minimal discomfort, making it a valuable tool for

real-time and longitudinal assessment of tumor dynamics (187).

ctDNA, a form of circulating nucleic acid derived from cancer cells,

is typically released through apoptosis, necrosis, or active secretion.
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Apoptosis is the most common mechanism, producing

nucleosome-protected DNA fragments approximately 140–180

base pairs in length (188, 189). Additionally, nucleic acids may

circulate as free fragments or encapsulated within extracellular

vesicles, offering a window into the molecular characteristics of

both primary and metastatic tumors.

In the broader oncology landscape, ctDNA and CTCs—

collectively referred to as the “circulome”—are increasingly

recognized as biomarkers for disease progression, treatment

resistance, and measurable residual disease (MRD). High levels of

ctDNA have been correlated with aggressive disease phenotypes

and relapse across multiple cancer types. Moreover, circulating

DNA fragments have been associated with tumor size and lymph

node involvement, indicating their utility for staging and risk

stratification (190, 191). In advanced cancers, liquid biopsy

enables molecular characterization of therapy-resistant clones,

helping clinicians tailor treatments in a personalized manner

(192, 193). As such, liquid biopsies serve as a complementary tool

to traditional tissue biopsies, offering additional, dynamic insights

into the tumor’s genetic evolution.

In TNBC, where tumor heterogeneity and lack of targeted

therapies pose significant challenges, ctDNA and liquid biopsy

offer promising avenues for disease monitoring and precision

oncology. An increase in ctDNA levels has been linked to

aggressive subtypes and poorer prognoses. One large study

involving 130 TNBC patients measured ctDNA levels within

seven months post-treatment and found that 7.7% had detectable

ctDNA, signifying residual disease. Notably, among patients who

had undergone neoadjuvant therapy but did not achieve pCR, the

presence of ctDNA was associated with shorter PFS, highlighting

the prognostic value of ctDNA in identifying high-risk patients

(194). These findings underscore the benefit of integrating ctDNA

monitoring with tissue-based response to refine post-treatment

surveillance and decision-making in TNBC.

Further, ctDNA has shown promise as a dynamic biomarker

during neoadjuvant therapy. Riva et al. investigated the use of TP53

mutation-based digital PCR assays to monitor ctDNA in early-stage

TNBC patients (195). ctDNA was detectable in 75% of patients at

baseline, with levels decreasing throughout treatment, except in one

patient who exhibited disease progression. Interestingly, although

ctDNA levels did not correlate directly with clinical response or

pCR, the absence of ctDNA post-surgery suggested favorable

outcomes. The limited sensitivity in this study was likely due to

tracking a single mutation. In contrast, a follow-up study by

Cavallone et al. enhanced ctDNA detection by targeting an

average of five mutations per patient (196). In this cohort, ctDNA

was detectable in 96% of patients at baseline, and pre-surgical

ctDNA positivity was associated with residual disease and inferior

long-term outcomes. Conversely, patients with undetectable ctDNA

before surgery had improved relapse-free and overall survival,

reinforcing the predictive and prognostic value of multiplexed

ctDNA monitoring in TNBC (196).

Importantly, clinical trials have now applied ctDNAmonitoring

to guide early detection of recurrence and treatment adaptation.

The c-TRAK TN trial (174) demonstrated that serial ctDNA
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assessment post-neoadjuvant therapy could identify MRD prior to

clinical relapse, with ctDNA-positive patients showing a

significantly higher risk of recurrence. Similarly, the ZEST trial

(175) confirmed that ctDNA dynamics could guide adjuvant

treatment decisions, with early clearance associated with

improved relapse-free survival. These studies highlight the

growing utility of ctDNA as a predictive and prognostic

biomarker and support its integration into personalized

surveillance strategies in TNBC immunotherapy trials (Table 4).
5 Limitations and controversies of key
tissue biomarkers and clinical
implications for TNBC

Despite their extensive investigation, PD-L1, TMB, and MSI

each present important limitations that diminish their ability to

function as reliable stand-alone predictive biomarkers in TNBC.

PD-L1 illustrates both technical and biological heterogeneity.

Different immunohistochemical assays (such as 22C3, SP142, and

SP263) employ non-equivalent scoring systems—tumor proportion

score, combined positive score, or immune cell scoring—leading to

discordant classifications of the same tumor. A specimen

considered “positive” by one assay may be deemed “negative” by

another (69, 100). Beyond these analytical inconsistencies, PD-L1

expression is highly variable within the same tumor, between

primary and metastatic lesions, and is subject to dynamic

regulation by therapy and inflammatory cues. As a result, reliance

on a single archival biopsy may not accurately capture the current

biological state of the disease (106). This variability translates into

significant clinical consequences. In metastatic TNBC, PD-L1 status

is routinely used to guide the use of ICIs, as in KEYNOTE-355

where pembrolizumab was restricted to CPS-positive disease. In

contrast, in the neoadjuvant setting, KEYNOTE-522 demonstrated

benefit from pembrolizumab regardless of PD-L1 expression,

creating uncertainty about the biomarker’s role in treatment

selection at earlier disease stages (71, 84). In practice, such

inconsistencies risk both undertreatment, by denying effective

therapy to some patients, and overtreatment, by exposing others

to toxicity without clear evidence of benefit.

TMB faces a different set of challenges. Measurement varies

depending on sequencing approach, bioinformatics pipeline, and

the genomic territory interrogated, whether whole exome or

targeted panels. These methodological inconsistencies lead to

divergent mutational burden estimates and complicate the

establishment of universal thresholds (118). Although the FDA’s

pan-tumor approval of pembrolizumab for TMB ≥10 mut/Mb,

based on KEYNOTE-158, provided a proof-of-concept for its

utility, subsequent data revealed limited reproducibility across

tumor types and very little evidence specific to TNBC (123). In

breast cancer overall, high TMB is rare, and when present, does not

consistently predict durable responses to checkpoint blockade (120,

124). Consequently, TMB alone provides limited clinical
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confidence. Its potential value lies in integration with other

features of the immune landscape, such as tumor-infiltrating

lymphocytes, interferon-gamma–related gene expression

signatures, and clonal architecture of the tumor.

MSI or mismatch repair deficiency is another theoretically

appealing biomarker because MSI-high tumors are strongly

immunogenic and respond well to PD-1 blockade across multiple

cancers (113, 114). However, MSI-H status is exceedingly rare in

breast cancer, and particularly in TNBC, with a prevalence below

2% (115, 116). This rarity sharply limits its clinical utility as a broad

biomarker in this disease. Moreover, MSI detection itself is not

straightforward, discordance can occur between testing methods,

including immunohistochemistry for mismatch repair proteins,

PCR–based microsatellite panels, and NGS–derived MSI calls. In

a low–prevalence context, even modest rates of false positives or

false negatives carry disproportionate clinical consequences. While

MSI positivity should always prompt consideration of PD-1 therapy

regardless of tumor origin, routine MSI screening in all TNBC cases

has limited yield.

Taken together, these three biomarkers share fundamental

limitations. Pre-analytic factors such as tissue handling, fixation,

and ischemia time can influence results, while intratumoral

heterogeneity and sample type further complicate interpretation.

A single static biomarker measurement fails to reflect the evolving

interaction between the tumor and immune system during therapy.

Lack of assay harmonization across platforms prevents direct

comparability between studies and undermines reproducibility.

These weaknesses have practical clinical implications: in

metastatic disease, reliance on PD-L1 to determine eligibility for

immunotherapy may exclude some patients who could benefit,

while in early TNBC the proven efficacy of immunotherapy

regardless of PD-L1 status makes such selection criteria

questionable. Similar risks arise with TMB and MSI, where

methodological or prevalence-related limitations may lead to

inappropriate treatment denial or unwarranted exposure to toxicity.

Addressing these challenges requires pragmatic strategies. The

use of drug-specific, validated assays and cutoffs is essential for

clinical decision-making. Testing should be performed on the most

relevant sample, ideally the most recent and representative of the

disease stage being treated. Overreliance on any single biomarker

should be avoided in favor of integrative approaches that combine

PD-L1 status with tumor-infiltrating lymphocytes, immune-related

gene signatures, and liquid biopsy markers such as circulating

tumor DNA. Longitudinal and repeated sampling in the trial

setting may help to capture dynamic biomarker changes, while

ongoing efforts in assay harmonization and cross-platform

benchmarking will be critical to improving comparability between

studies. Ultimately, progress in TNBC immunotherapy will depend

on the development of composite, multimodal biomarker

frameworks that integrate spatial, transcriptomic, and circulating

immune readouts, offering a more accurate reflection of tumor–

immune interactions and greater predictive precision than any

single analyte can provide.
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TABLE 4 Overview of landmark neoadjuvant chemoimmunotherapy trials in TNBC: trial design, biomarker integration, and outcome measures.
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6 Conclusion

Immune monitoring has become an important strategy that can

further elucidate neoadjuvant chemo-immunotherapy responses in

TNBC, a tumor type with limited therapeutic options and generally

characterized by a poor prognosis. By evaluating immune markers

such as TILs, cytokine profiles, and immune checkpoint expression,

clinicians gain real-time insights into how the immune system

interacts with the tumor, guiding adjustments to treatment

strategies and improving outcomes. For example, higher levels of

TILs have been associated with better responses, therefore

underlining the importance of a strong immune presence in

enhancing the efficacy of chemo-immunotherapy.

The combination of chemotherapy and immunotherapy holds

significant promise due to their complementary mechanisms of

action. Chemotherapy induces tumor cell death, releasing antigens

that can stimulate the immune system, while immunotherapy

enhances the immune response by preventing immune evasion.

Immune monitoring can track the effectiveness of this synergy,

ensuring that both arms of therapy are functioning optimally.

Despite its potential, immune monitoring in TNBC faces several

challenges. Tumors can evolve rapidly, and immune markers may

fluctuate, complicating long-term predictions. The pronounced

biological heterogeneity of TNBC—encompassing variations in

tumor-intrinsic features, immune microenvironments, and

patient-specific factors—makes it particularly difficult to develop

universal biomarkers that reliably predict responses across all

patients. In addition, practical limitations—including high costs

of advanced assays, variability in assay reproducibility, and limited

access to high-throughput technologies and specialized expertise—

pose barriers to routine clinical implementation.

Emerging technologies like next-generation sequencing and single-

cell analysis are beginning to unravel this complexity, paving the way for

more personalized and accurate immune monitoring. While there are

still hurdles to overcome, ongoing research and technological

advancements are likely to refine immune monitoring techniques,

enhancing their predictive power and clinical utility. As our

understanding of the immune system’s role in cancer therapy deepens,

immune monitoring is expected to play an increasingly central role in

themanagement of TNBC and other cancers, ultimately leading to better

patient care and improved survival outcomes.
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