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Introduction: Galectin-9 is a b-galactoside-binding lectin that functions as a

critical pattern recognition receptor (PRR) in the host immune system, initiating

immune defense responses by recognizing and binding to pathogen-associated

molecular patterns (PAMPs) on the surface of microorganisms. In this study, we

identified and characterized a novel galectin-9 cDNA, designated CcGal-9, from

Yellow River carp (Cyprinus carpio haematopterus).

Methods: The full-length CcGal-9 cDNA was cloned and sequenced, and its

structural features were analyzed. Tissue distribution of CcGal-9 mRNA was

examined by quantitative real-time PCR. Expression changes following

Aeromonas hydrophila and Staphylococcus aureus infections were evaluated.

Recombinant CcGal-9 (rCcGal-9) was expressed in Escherichia coli BL21 (DE3),

purified, and assessed for binding to various PAMPs and microorganisms.

Agglutination assays and survival experiments were conducted to determine

functional roles in immune defense.

Results: The CcGal-9 cDNA is 963 bp in length and encodes a 320-amino acid

protein with two distinct carbohydrate recognition domains (CRDs),

characteristic of tandem-repeat type galectins. CcGal-9 mRNA was

predominantly expressed in the spleen, testicle, and head kidney, with lower

levels in the liver and intestine. Upon bacterial infection, CcGal-9 expression was

significantly upregulated in multiple immune-related tissues. Purified rCcGal-9

bound LPS, PGN, mannan, and both Gram-positive and Gram-negative bacteria,

and exhibited broad-spectrum agglutination activity. Administration of rCcGal-9

markedly improved the survival rate of carp challenged with A. hydrophila.

Discussion: These findings indicate that CcGal-9 is an important PRR in C. carpio,

contributing to immune defense against pathogenic microorganisms through

PAMP recognition and microbial agglutination. This study enhances our

understanding of galectin-mediated immunity in teleost fish.
KEYWORDS

galectin-9, Cyprinus carpio haematopterus, innate immunity, agglutinating activity,
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1 Introduction

Galectins are a family of b-galactoside-binding lectins

characterized by the presence of a conserved carbohydrate

recognit ion domain (CRD) that specifical ly binds to

polysaccharides containing b-galactosides. This structural feature

underpins the functional roles of these sugar-binding proteins in

various biological processes (1, 2). Galectins are involved in a wide

range of biological processes, including the regulation of embryonic

development, tissue repair, adipogenesis, cancer progression, cell

adhesion, apoptosis, inflammatory responses and the maintenance

of immune homeostasis (3–6). The galectin protein family is

defined by two key features: a high degree of amino acid sequence

conservation and a strong affinity for b-galactosides. The

mammalian galectins are classified into three structural subtypes:

prototype galectins, which contain a single CRD; tandem-repeat

galectins, which possess two distinct CRDs within a single

polypeptide; and galectin-3, the sole chimeric galectin, which

consists of a CRD linked to a non-lectin N-terminal domain (7).

Galectin-9 (Gal-9), also known as LGALS9, was first identified in

rat embryonic kidney tissue in 1997 (8). As a member of the galectin

family, Gal-9 is a soluble protein that is ubiquitously expressed across

various tissues and exhibits a wide range of biological functions,

particularly in immune regulation. It functions as a pattern

recognition receptor (PRR) capable of recognizing pathogen-

associated molecular patterns (PAMPs), and is involved in several

critical immune processes, including opsonization, agglutination,

phagocytosis, and microbial killing (9).Additionally, Gal-9 serves as

an eosinophil chemoattractant by facilitating their recruitment via T

cell activation, thereby enhancing immune responses. It plays a

central role in modulating the Th17/Treg axis, contributing to both

immunosuppression and T cell differentiation (10). Gal-9 exerts

many of its immunomodulatory effects via binding to its ligand, T-

cell immunoglobulin and mucin-domain containing molecule-3

(TIM-3), forming the Gal-9/TIM-3 signaling pathway (11).

Moreover, Gal-9 has demonstrated tumor-suppressive properties

through multiple mechanisms, including the induction of

apoptosis, modulation of immune responses, and regulation of

hematopoiesis (12–14). Beyond its roles in immunity and oncology,

Gal-9 has also shown broad-spectrum antiviral activity against several

clinically relevant viruses, including dengue virus, herpes simplex

virus, hepatitis B virus, hepatitis C virus, HIV-1 and influenza

virus (15).

Although substantial progress has been made in the study of

galectin-9 in mammals, research on its function in fish remains

limited. To date, galectin-9 have been identified and characterized

in only a few teleost species. To date, Gal-9 has been reported in

these fish species, such as Trachidermus fasciatus (16), Micropterus

salmoides (17), Boleophthalmus pectinirostris (18), Nibea albiflora

(19), Planiliza haematocheilus (20), Oreochromis niloticus (21) and

so on. Previous studies have shown that galectin-9 is broadly

distributed across various tissues in teleost fish. During bacterial

or parasitic infections, galectin-9 functions as an acute-phase

protein that responds rapidly, thereby playing a crucial role in

host defense against microbial invasion (16–22). In teleosts,
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galectin-9 not only exhibits hemocoagulant activity but also

directly binds bacterial glycans through its CRD, thereby

facilitating the agglutination of both Gram-positive and Gram-

negative bacteria. This interaction can result in disruption of

bacterial cell walls and enhance macrophage-mediated

phagocytosis, as well as promote the transcriptional upregulation

of anti-inflammatory cytokines (16–22).

The Yellow River carp (Cyprinus carpio haematopterus) is one

of the most widely farmed freshwater fish species in China, with

considerable economic significance. However, the frequent

occurrence of infectious diseases has led to a substantial reduction

in its aquaculture productivity. As lower vertebrates, fish possess a

relatively underdeveloped adaptive immune system; thus,

advancing our understanding of their innate immune

mechanisms is crucial for improving disease resistance. A.

hydrophila is one of the most prevalent and virulent opportunistic

bacterial pathogens in global freshwater aquaculture. It poses a

substantial threat to aquaculture operations across regions

including the Americas, Southeast Asia, and Africa. Characterized

by rapid disease progression and high mortality rates, infections

caused by A. hydrophila have resulted in considerable economic

losses (23, 24). The molecular features of galectins, particularly

galectin-9, remain largely unexplored in C. carpio. The aim of this

study was to identify and characterize a galectin-9 homolog (CcGal-

9) in C. carpio, and to investigate its molecular features, expression

patterns, and immunological functions. We analyzed the gene

sequence, protein structure, and tissue-specific expression of

CcGal-9 under normal and pathogenic conditions. We also

evaluated the agglutination and binding activity of recombinant

CcGal-9 (rCcGal-9) toward various bacterial strains, and assessed

its in vivo protective effect against bacterial infection. These findings

provide novel immunological insights and a scientific foundation

for the development of effective disease management strategies

in aquaculture.
2 Methods and materials

2.1 Fish and bacterial infection

Healthy C. carpio individuals (37 ± 2 g,17 ± 2 cm) were obtained

from Tianhe Aquatic Products Co., Ltd., Yanjin, Xinxiang, Henan

Province, China. Prior to injection, all fish were acclimated in

freshwater in plastic aquaria (90 L; 67× 47×34 cm) at a controlled

temperature of 20 ± 2°C, maintained using an automatic aquarium

heater. The fish were fed commercial pellets twice daily. Individuals

displaying signs of physical damage, abnormal behavior, or visible

symptoms of disease were excluded from the study. For tissue

distribution analysis, thirteen tissues were collected, including the

kidney, head kidney, liver, skin, spleen, gill, heart, intestine, testis,

ovary, swim bladder, brain, and muscle. Bacterial strains were

inoculated at a 1:100 dilution into Luria-Bertani (LB) broth and

incubated at 37°C with shaking at 180 rpm for 14-16 h until

reaching the logarithmic growth phase. The cultures were then

harvested by centrifugation and resuspended in sterile 0.65% NaCl
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to the desired concentration for subsequent experiments. In the A.

hydrophila challenge group, each fish was injected with 200 mL of A.
hydrophila in 0.65% NaCl (2×107 CFU/mL) (25). In the S. aureus

challenge group, each fish received 200 mL of S. aureus in 0.65%

NaCl (4×107 CFU/mL) (26). The control group was injected with an

equivalent volume of 0.65% NaCl. Fish from both the control and

challenge groups (5 per time point) were sampled at 3, 6, 12, 24, 48

and 72 hours post-injection (hpi). Tissues including the liver,

spleen, kidney, head kidney, intestine and gill were collected. All

samples were immediately flash-frozen in liquid nitrogen and

stored at -80°C until RNA extraction.
2.2 Total RNA extraction and cDNA
synthesis

Total RNA was extracted from the spleen of C. carpio using

TRIzol reagent (TaKaRa, Japan, Cat# 9109) according to the

manufacturer’s instructions. The RNA concentration and integrity

were assessed as previously described (20, 26). First-strand cDNAwas

synthesized using the PrimeScript™ RT Reagent Kit with gDNA

Eraser (TaKaRa, Japan, Cat# RR047A) according to the

manufacturer’s protocol. The synthesized cDNA was stored at -20°C.
2.3 Gene cloning of CcGal-9

The open reading frame (ORF) of CcGal-9 in C. carpio was

identified by screening the NCBI database. Specific primers (CcGal-

9-F and CcGal-9-R, as detailed in Table 1), which included EcoR I

and Xho I (Cat# 1040S, 1094S) restriction sites, were designed to

amplify the ORF according to the protocol for Ex Taq® DNA

Polymerase (Takara Biotech, Beijing, China, Cat# RR01A). PCR

amplification was performed as follows: an initial denaturation step

at 98°C for 5 min, followed by 30 cycles consisting of denaturation

at 98°C for 10 s, annealing at 55°C for 30 s and extension at 72°C for

1 min, with a final extension step at 72°C for 3 min. The CcGal-9

ORF was subsequently cloned into the pMD-19T vector (TaKaRa,

Japan, Cat# 6013) and transformed into DH5a (Biomed, China,

Cat# BC116-01). Positive clones were selected and sequenced by

Sangon Biotech (Shanghai, China).
Frontiers in Immunology 03
2.4 Bioinformatics analysis

Homology analysis was performed using the National Center

for Biotechnology Information (NCBI) BLAST tool (http://

blast.ncbi.nlm.nih.gov/Blast.cgi). The conserved domains were

analyzed using SMART (http://smart.embl-heidelberg.de/smart/

set_mode.cgi?NORMAL=1). The signal peptide was predicted

using SignalP 4.1 (http://www.cbs.dtu.dk/services/SignalP/). The

tertiary structure was predicted using Phyre2 (http://

www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index). Amino acid

sequences of CcGal-9 were compared with those of other species

using the Clustal X multiple alignment program. A phylogenetic

tree was constructed based on the neighbor-joining method using

MEGA 11.0, with 2000 bootstrap resampling.
2.5 CcGal-9 expression by quantitative
real-time PCR analysis

Quantitative real-time polymerase chain reaction (qRT-PCR) was

employed to evaluate the expression levels of CcGal-9 in healthy fish

and to characterize its expression profiles following infection with A.

hydrophila and S. aureus. QRT-PCR was conducted using an Applied

Biosystems QuantStudio 5 Real-Time PCR System (Applied

Biosystems, USA) with 2×Universal SYBR® Green Fast qPCR Mix

(ABclonal Biotechnology, China, Cat# RK21203), following the

manufacturer’s protocols. The thermal cycling conditions were as

follows: an initial denaturation at 95°C for 3 min, followed by 40

cycles of 95°C for 5 s and annealing at 60°C for 30 s. Specific primers

(qCcGal-9-F and qCcGal-9-R, as listed in Table 1) were used to amplify

the CcGal-9 fragments, along with a reference gene, b-actin (b-actin-F
and b-actin-R, also in Table 1). The relative expression of mRNA was

quantified using the 2-DDCt method (27).
2.6 Expression and purification of rCcGal-9

Primers containing EcoR I and Xho I restriction sites, namely

CcGal-9-F and CcGal-9-R (as listed in Table 1), were specifically

designed to amplify the ORF of the CcGal-9 gene. Recombinant

plasmids pET-32a-CcGal-9 and pET-32a were transformed into
TABLE 1 Primers used in the present study.

Primer name Sequence (5′-3′) Purpose Product size

CcGal-9-F TCCGAATTCATGGCTTTTTATCAGCAACAA ORF
amplification

963bp
CcGal-9-R GTGCTCGAGTTAAGCCTGCACTAAAGTC

qCcGal-9-F GGTTCCCAGCATACCCATCT

qRT-PCR analysis

300bp
qCcGal-9-R AGGGATTGCAGGAGATGTTGAC

b-actin-F GAGTGATGGTTGGCATGGGA
120bp

b-actin-R CCCAGTTGGTCACAATACCGT
Enzyme restriction sites of EcoR I (GAATTC) and Xho I (CTCGAG) are underlined.
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E. coli BL21 (DE3) competent cells following the protocol described in

a previously published study (28). The transformed cells were

subsequently inoculated at a 1:100 dilution into LB medium

containing ampicillin and cultured at 37°C until the optical density

at 600 nm (OD600) reached 0.6-0.8. Protein expressionwas induced by

adding 0.5 mM isopropyl b-D-1-thiogalactopyranoside (IPTG).

Following incubation at 37°C with shaking at 220 rpm for 6 h, the

bacterial cells were harvested by centrifugation at 10,000 rpm and 4°C

for 30 min to obtain the cell pellet. The pellet was washed three times

with PBS, resuspended in PBS, and subjected to ultrasonic disruption

on ice for 30 min. Subsequently, the lysate was centrifuged at 10,000

rpm and 4°C for 20 min to separate the supernatant from the cellular

debris. SDS-PAGE analysis revealed that rCcGal-9 was expressed

predominantly as inclusion bodies. The recombinant protein was

then purified using the HyPur T Ni-NTA 6FF (His-Tag) PrePacked

Gravity ColumnKit (Sangon Biotech, Cat# C600332-0001) according

to the manufacturer’s protocol. To facilitate protein refolding, dialysis

was conducted at 4°C for 4–6 h using a stepwise urea gradient buffer

containing 20 mM Tris-HCl, 300 mM NaCl, 10% glycerol, 1 mM

reduced glutathione (GSH), 0.1mMoxidized glutathione (GSSG), and

sequentially decreasing concentrations of urea (6 M to 0 M). The

dialyzed protein was subsequently concentrated by sucrose overlay at

4°C to obtain the desired final concentration. The concentration of the

purified recombinant protein was quantified using the BCA assay.

Western blot analysis was conducted to confirm the specificity of the

6×His-tag polyclonal antibody (Proteintech) against rCcGal-9.

Additionally, the Trx-pET-32a recombinant protein (rTrx) was

expressed and purified for use in subsequent experiments (28–30).
2.7 Bacterial agglutination assay

Gram-positive bacteria (Micrococcus lysodeikticus, Bacillus subtilis,

S. aureus and Streptococcus suis) and Gram-negative bacteria (A.

hydrophila, Aeromonas veronii, Escherichia coli, Klebsiella

pneumoniae, Pseudomonas aeruginosa, Vibrio fluvialis and

Salmonella Pullorum) were used for the bacterial agglutination assay.

Briefly, bacteria cultured overnight were harvested and resuspended in

TBS to a final concentration of 1×108 CFU/mL. Subsequently, 20 µL of

the bacterial suspension was mixed with 20 µL of rCcGal-9 (50 µg/mL)

prepared in TBS. The mixture was incubated at 4°C for 2 h, after which

agglutination was examined using oil immersion microscopy.
2.8 Binding analysis of rCcGal-9 with
bacteria by Western blot

To evaluate the binding activity of rCcGal-9 to pathogenic

bacteria identified in the preceding agglutination assay, Western

blot analysis was performed according to the protocol described in a

previous study (31). The specific procedure was as follows: bacteria

cultured overnight were harvested, washed three times with TBS,

and resuspended in TBS to an OD600 of approximately 1.0.

Subsequently, 300 µL of the bacterial suspension (1×108 CFU/

mL) was mixed with 300 µL of rCcGal-9 (0.5 mg/mL) and
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incubated at 37°C with shaking at 180 rpm for 1 h. The bacteria

were subsequently centrifuged to collect the pellet, which was

resuspended and washed four times with TBS. Subsequently, 7%

SDS was added, and the mixture was vortexed vigorously for 1 min

to elute the proteins. Five times concentrated protein loading buffer

(5×) was then added to the eluate, followed by heating the sample in

a boiling water bath for 10 min. Protein samples were separated by

12% SDS-PAGE, followed by Western blot analysis using a 6×His

tag antibody to assess the binding of rCcGal-9 to the bacteria.

Purified rCcGal-9 served as a positive control in the assay.
2.9 Binding analysis of rCcGal-9 with
bacteria and carbohydrates by ELISA

The binding of rCcGal-9 to S. aureus and A. hydrophila was

assessed using the ELISA method to detect bacterial binding (29, 32).

Briefly, 96-well plates were coated with 10 µg/mL of

lipopolysaccharides (LPS), peptidoglycans (PGN) and mannan

(Macklin Reagent) in a coating buffer consisting of 15 mM

Na2CO3 and 35 mM NaHCO3. Plates were coated by adding 100

µL of solution per well and incubated at 4°C. Following removal of

the coating solution, wells were blocked with PBS containing 0.25%

BSA and 0.5% skim milk powder at 37°C for 2 h. After three washes,

20 µg of rCcGal-9, 20 µg of rTrx, or PBS were added to the wells and

incubated at 25°C for 3 h. The primary antibody was a mouse anti-

His antibody diluted 1:5000, and the secondary antibody was a

horseradish peroxidase (HRP)-conjugated goat anti-mouse IgG

antibody diluted 1:10,000 (SouthernBiotech). Following five washes,

color development was initiated by adding a substrate solution

containing 0.5 mg/mL tetramethylbenzidine (TMB) and 0.03%

hydrogen peroxide (H2O2). The reaction was terminated by adding

2 M H2SO4, and the absorbance was measured at 450 nm using a

microplate reader (Thermo Fisher Scientific).

In the polysaccharide inhibition assay, a fixed amount of rCcGal-9

protein (20 µg) was preincubated with various polysaccharides, including

LPS, PGN and mannan, each at 10 mg/mL, for 3 h. The mixtures were

subsequently incubated inmicrotiter wells coated with either S. aureus or

A. hydrophila (100 µL, 1×107 CFU/mL) for an additional 3 h. Antibody

incubation, color development, and absorbance measurements were

carried out as described above. Additionally, different concentrations of

L-rhamnose, L-fucose, D-mannose, D-glucose, D-galactose, N-acetyl-D-

mannosamine, D-xylose, sucrose and N-acetyl-D-glucosamine were

preincubated with rCcGal-9 protein (20 µg) for 3 h, respectively.

Subsequently, the mixtures were incubated in microtiter wells coated

with S. aureus or A. hydrophila for an additional 3 h, followed by the

procedures described above.
2.10 Effect of recombinant protein on
survival rate of C. carpio infected with
A. hydrophila

Healthy C. carpio individuals, averaging 20 g in weight, were

randomly assigned to five groups, each containing 10 fish. A
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0.65% NaCl solution was used for the dilution of rCcGal-9.

Following purification, rCcGal-9 was diluted in physiological

saline and administered intraperitoneally at graded doses of 1.00,

0.33, and 0.11 mg/g body weight per fish (33). Prior to injection,

the bacterial suspension and recombinant protein were mixed in

equal volumes (1:1). The negative control consisted of an equal-

volume mixture of bacteria and 0.65% NaCl, while the positive

control group received an injection of rCcGal-9 at a dose of 1 µg/

g body weight. For intraperitoneal injection, five experimental

groups were established: Group 1 received 200 µL of A.

hydrophila bacterial suspension mixed with 0.65% NaCl;

Group 2 received rCcGal-9 protein at a dose of 1 µg/g body

weight; Group 3 received 200 µL of A. hydrophila suspension

combined with 1 µg/g rCcGal-9 protein; Group 4 received 200 µL

of A. hydrophila suspension mixed with 0.33 µg/g rCcGal-9

protein; and Group 5 received 200 µL of A. hydrophila

suspension mixed with 0.11 µg/g rCcGal-9 protein. The

activity status of C. carpio was monitored over a 72 hpi, and

mortality rates were recorded.
2.11 Statistical analysis

All experiments were performed in triplicate. Statistical analyses

were conducted using SPSS 17.0 software, with significance set at

P < 0.05. Differences among groups were evaluated by one-way

analysis of variance (ANOVA) followed by two-tailed Student’s

t-tests. Figures were generated using GraphPad Prism 9.0.
Frontiers in Immunology 05
3 Result

3.1 Cloning and sequence analysis of
CcGal-9

The full-length cDNA of CcGal-9 identified in C. carpio is 963 bp

in length and encodes a polypeptide of 320 amino acid residues, with a

predicted molecular weight of 36.25 kDa and an isoelectric point of

8.26 (Figure 1A). No signal peptide or transmembrane domain was

identified in the CcGal-9 protein. In situ motif analysis using the

SMART program revealed that CcGal-9 contains two distinct CRDs,

located at the N-terminus (residues 14-147) and C-terminus (residues

192-320), respectively (Figure 1). Each CRD contains distinct

conserved motifs—HFNPR, WGSEEC, HYNPR and WGTEER—

that are essential for b-galactoside binding. BLAST analysis showed

that the CcGal-9 protein shares a high degree of sequence identity with

galectin-9 proteins from Carassius gibelio (XP_052472718. 1, 88.44%),

Ctenopharyngodon idella (XP_051717390. 1, 83.13%) and Carassius

auratus (XP_026137648. 1, 82.81%) (Figure 2 and Table 2). To

investigate their phylogenetic relationships, a phylogenetic tree was

constructed using MEGA 11.0, based on multiple sequence alignment

results (Figure 3). Phylogenetic analysis revealed that CcGal-9 clusters

closely with Gal-9 proteins from other teleost species.

3.2 Expression of CcGal-9 in different
tissues

QRT-PCR was employed to analyze the mRNA expression

profile of CcGal-9 across 13 tissues of C. carpio, using b-actin as
FIGURE 1

The sequences and predicted structure of CcGal-9. (A) The CRD are highlighted in green. Conserved motifs, including HFNPR, WGSEEC, HYNPR,
and WGTEER, are underlined. The conserved cysteines are highlighted in boxes, and the stop codon is indicated by an asterisk (*). (B) Protein
domains (N-CRD and C-CRD) of CcGal-9 predicted via SMART database.The hexagon and diamond represent CRDs. (C) CcGal-9 tertiary structure.
Sugar binding motifs (HFNPR, WGSEEC HYNPR and WGTEER) are marked with arrows.
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FIGURE 2

The multiple alignments. The boxes indicate the sugar-binding motifs (H-NPR and WG-EER) and the GenBank accession numbers of the amino acid
sequences of the species are listed in Table 2.
TABLE 2 Biochemical properties of Gal-9 from C. carpio and other fish species.

Accession number Species Length (aa) MW (KDa) PI Similarity (%)

XM_042739736.1 Cyprinus carpio 963 36.25 8.26 100

XP_052472718.1 Carassius gibelio 320 36.14 8.84 88.44

XP_051717390.1 Ctenopharyngodon idella 320 36.11 9.21 83.13

XP_026137648.1 Carassius auratus 310 35.07 7.79 82.81

NP_956366.1 Danio rerio 310 34.86 8.49 78.44

XP_054429155.1 Pelmatolapia mariae 355 39.38 9.48 56.36

XP_031602524.1 Oreochromis aureus 330 36.18 9.23 55.76

XP_017346983.1 Lctalurus punctatus 281 31.77 6.66 54.83

XP_010754381.2 Larimichthys crocea 343 37.49 9.1 53.35

XP_048063348.1
Megalobrama
amblycephala

287 32.51 9.17 50.47

XP_059187938.1 Centropristis striata 367 40.13 9.54 50.14

XP_062393334.1 Sardina pilchardus 310 34.38 9.42 49.53

XP_029547510.1 Salmo trutta 337 38.04 9.82 48.97

XP_062342172.1 Osmerus eperlanus 317 35.06 8.89 47.35

XP_059990138.1 Lagenorhynchus albirostris 246 26.90 9.02 31.68
F
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the internal reference gene. As shown in Figure 4A, CcGal-9mRNA

transcripts were detected in all examined tissues, with the highest

expression observed in the spleen, followed by moderate levels in

the testicle, head kidney and kidney. Relatively high expression

levels were also observed in the brain, muscle, ovary, swim bladder

and intestine, whereas the lowest expression was detected in

the liver.
3.3 Temporal expression patterns of
CcGal-9 after A. hydrophila and S. aureus
infection

To explore the role of CcGal-9 in the immune response to

bacterial infections, qRT-PCR was conducted to evaluate its

expression in key immune-related tissues—including the spleen,

head kidney and kidney—as well as in gill tissues, following

infection with A. hydrophila and S. aureus (Figure 4B). Following

exposure to A. hydrophila, CcGal-9 mRNA expression was

significantly upregulated in the liver, spleen, head kidney and gill

tissues. In the liver, CcGal-9 transcript levels progressively increased

from 12 to 72 hpi, with a peak observed at 24 hpi compared to the

control group. In the spleen, a continuous increase in CcGal-9
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transcript levels was observed from 6 to 72 hpi, reaching a peak at

48 hpi. In the kidney, CcGal-9 expression was significantly

upregulated at 24, 48 and 72 hpi, while a notable downregulation

was detected at 6 hpi. In the gill tissue, a significant upregulation of

CcGal-9 expression was observed between 24 and 48 hpi, with the

peak expression occurring at 24 hpi. Conversely, CcGal-9 mRNA

expression was downregulated in both kidney and intestinal tissues

(P < 0.05). In vivo studies in the kidney showed a significant

upregulation of CcGal-9 transcripts at 3, 12, 24, 48 and 72 hpi,

with a notable downregulation observed at 6 hpi. Similarly, no

significant changes in CcGal-9 expression were observed in the

intestine during the first 3 hpi. At 6 and 12 hpi, CcGal-9 expression

was downregulated, whereas it was significantly upregulated at 24

and 48 hpi, with the peak expression occurring at 24 hpi.

As shown in Figure 4B, following the challenge with S. aureus,

CcGal-9 mRNA expression was significantly increased in the liver,

spleen, kidney, head kidney and intestinal tissues, reaching peak

levels at different time points. Notably, CcGal-9 mRNA expression

was downregulated in the intestinal tract. In the gill, CcGal-9

expression remained at baseline levels at 3, 6 and 72 hpi, while a

significant downregulation was observed at 12 hpi. In contrast,

CcGal-9 expression was significantly upregulated at 24 and 48 hpi,

with the highest expression recorded at 48 hpi.
FIGURE 3

Phylogenetic tree analysis based on amino acids sequences from CcGal-9 and other Gal-9. The reliability of each node is estimated by
bootstrapping with 2000 replications in MEGA 11.0. Homo sapiens (NP_001317092. 1), Bos taurus (NP_001015570. 1), Dama (XP_060998864. 1),
Mesoplodon densirostris (XP_059936771. 1), Kogia breviceps (XP_058903876. 1), Xenopus laevis (XP_018109166. 1).
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3.4 Recombinant CcGal-9 expression,
purification and Western blot analysis

To investigate the biological function of CcGal-9, this study

successfully expressed recombinant CcGal-9 (rCcGal-9) using

a prokaryotic expression system. As shown in Figure 5, the
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plasmid pET-32a-CcGal-9 was transformed into E. coli BL21

and subsequently purified using a Ni-NTA gravity column.

Recombinant CcGal-9 was obtained in the form of inclusion

bodies. Protein analysis via 12% SDS-PAGE revealed a prominent

band corresponding to an approximate molecular weight of 54 kDa

(Figure 5A, lane 7).
FIGURE 4

Expression profiles of CcGal-9 transcripts. The mRNA expression level of CcGal-9 relative to b-actin was analyzed using the 2-DDCt method. All data were
expressed as mean ± SEM (n=5). n, the number of the experiment was performed. (A) Tissue distribution of CcGal-9 in healthy C. carpio; a, b and c
indicate the Duncan grouping in SPSS (P < 0.05). (B) Temporal expression patterns of CcGal-9 in liver, spleen, kidney, head kidney, intestine and gill
challenged with (A) hydrophila and S. aureus. The CcGal-9 expression level in the control group at the same time point was chosen as calibrator (set as
1). Significant differences in the expression between the infected and control groups at the same time point were indicated with (*P < 0.05), Time points
without significance markers indicate that the expression levels were not significantly different from those of the control group.
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3.5 Bacterial agglutination activity of
rCcGal-9

The agglutination activity of rCcGal-9 against various bacterial

strains was evaluated by co-incubation using the oil immersion

method. The tested strains included both Gram-positive

(M. lysodeikticus, B. subtilis, S. aureus and S. suis) and Gram-negative

bacteria (A. hydrophila, A. veronii, E. coli, K. pneumoniae, P. aeruginosa,

V. fluvialis and S. Pullorum). The results demonstrated that rCcGal-9

effectively agglutinated all tested bacterial strains, with the exception of

M. lysodeikticus, P. aeruginosa and V. fluvialis. Additionally, no

agglutination was observed in the rTrx control group (Figure 6). The

minimum agglutination concentration of rCcGal-9 was summarized

in Table 3.
3.6 Bacterial binding activity of rCcGal-9

To investigate whether rCcGal-9 could directly bind to

pathogens, binding activity assays were performed. Direct binding

assays were conducted to evaluate the ability of rCcGal-9 to interact

with both Gram-positive and Gram-negative bacterial strains.

Western blot analysis was performed, with TBS used as the final

washing solution. The 7% SDS eluate represented the supernatant

collected after elution with 7% SDS, while the bacterial precipitates

were referred to as “bacteria”. The detection of recombinant protein

in the bacterial precipitate indicated strong bacterial binding,

whereas weak bands observed in the 7% SDS eluate suggested

limited binding activity. The results demonstrated that rCcGal-9

bound to all tested microorganisms. Notably, rCcGal-9 exhibited

weak binding activity towards A. veronii, E. coli, A. hydrophila and
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S. suis, whereas it showed strong affinity for the other seven bacterial

strains (Figure 7).
3.7 Identification of rCcGal-9 binding to
carbohydrates

Bacterial aggregation and binding assays revealed that rCcGal-9

is capable of agglutinating and binding both Gram-positive and

Gram-negative bacteria. To further elucidate the specific pathogen-

associated molecular patterns (PAMPs) involved, an ELISA was

performed to assess the interaction between rCcGal-9 and various

PAMPs. As shown in Figure 8A, rCcGal-9 exhibits a dose-

dependent binding activity towards PAMPs present on bacterial

cell walls, including LPS, PGN and mannan, suggesting

that rCcGal-9 can bind to these components. Furthermore,

competitive ELISA analysis revealed that the binding activity of

rCcGal-9 to bacteria is significantly affected by the presence of LPS,

PGN and mannan. Specifically, the presence of these PAMPs

significantly reduced the binding of rCcGal-9 to S. aureus and

A. hydrophila compared to the control groups (Figure 8B).

Additional competitive ELISA assays demonstrated that specific

concentrations of N-acetyl-D-mannosamine, L-fucose, D-mannose,

D-glucose, D-galactose, D-xylose, sucrose, N-acetyl-D-glucosamine

and L-rhamnose were capable of inhibiting both rCcGal-9 and

bacterial binding activity (Figure 8C). Notably, N-acetyl-D-

glucosamine and L-rhamnose were identified as significant

ligands of rCcGal-9, as demonstrated by their pronounced

inhibitory effects on its binding activity. These findings validate

the biological activity of the purified rCcGal-9 and highlight its

pivotal role in pattern recognition.
FIGURE 5

Expression and purification of rCcGal-9. (A) SDS-PAGE profile of rCcGal-9. Lane M, protein marker; Lane 1, pET-32a (non-induced); Lane 2, pET-32a
(induced); Lane 3, pET-32a-CcGal-9 (non-induced); Lane 4, pET-32a-CcGal-9 (induced); Lane 5, pET-32a-CcGal-9 (supernatant protein induced);
Lane 6, pET-32a-CcGal-9 (inclusion body protein induced); Lane 7, the purified rCcGal-9. (B) Western blot analysis of antibody against rCcGal-9.
Lane M, protein marker; Lane 1, target band: anti-6 × His-tag antibody to bind rCcGal-9 in Western blot analysis.
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3.8 In vivo administration of rCcGal-9
promotes the defense of A.hydrophila
infection

To assess the antibacterial function of rCcGal-9, different

concentrations of rCcGal-9 were administered to C. carpio infected

with A. hydrophila, and the fish’s recovery was subsequently

monitored. As shown in Figure 9, supplementation with different

concentrations of rCcGal-9 led to varying degrees of improvement in
Frontiers in Immunology 10
the survival rate of C. carpio infected with A. hydrophila, with the

most pronounced effect observed at a concentration of 1 µg/g. These

results further support the protective and regulatory role of rCcGal-9

in host defense against bacterial infections.

4 Discussion

Galectin-9 is an evolutionarily conserved member of the galectin

family, characterized by two distinct CRDs, each containing
FIGURE 6

Microbial agglutination activity of rCcGal-9. (A) The agglutination of Gram-positive bacteria. (B) The agglutination of Gram-negative bacteria.
Agglutinating activity were observed under a light microscope (10 × 100).
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conserved motifs (HxNPR and WGxEE) (34, 35). These conserved

CRDs are essential for the carbohydrate-binding activity of galectin-

9 (22, 36, 37). The HxNPR and WGxEE motifs play a crucial role in

b-galactoside binding and are highly conserved among galectin-9

proteins across different species (38). In this study, a tandem repeat

form of galectin-9, designated CcGal-9, was identified in C. carpio.

The derived amino acid sequence of CcGal-9 encompasses all the key

characteristics of tandem repeat galectins, with its 320 amino acids

containing two distinct CRDs. Notably, the WG-EER sequence at

the C-terminal end has been modified to WG-EEC, suggesting that

CcGal-9 may exhibit conserved binding characteristics similar to its

homologs, while potentially possessing unique biological functions

that warrant further investigation. Studies on teleost galectin-9 have

indicated that CaGal-9 lacks both signal peptides and

transmembrane domains (39). The amino acid sequence of CcGal-

9 shows a similarity ranging from 31.68% to 88.44% with that of

other invertebrate galectin-9 proteins. Phylogenetic analysis further
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demonstrates that CcGal-9 clusters with other teleost galectin-9

proteins, reinforcing its classification within conventional

taxonomic frameworks.

In teleosts, galectin-9 transcripts are widely distributed across

various tissues, with expression patterns differing among species

(21, 22, 39–45). In the present study, CcGal-9 was found to be

broadly expressed in all examined tissues, highlighting its versatility,

which is consistent with previous findings (46, 47). Notably,

CcGal-9 mRNA exhibited high expression levels in the spleen,

testicle, head kidney and kidney, while moderate expression was

observed in the skin, gill, brain, muscle, ovary and heart. The

pronounced expression in the spleen may be attributed to the

high density of immune cells, including B cells, T cells and

macrophages, underscoring its role in cellular immunity. This

abundant expression in immune-related organs is consistent with

the galectin-9 levels observed in Korean rose bitterling and Japanese

flounder (37, 41). The elevated expression of CcGal-9 in immune

tissues such as the spleen, head kidney and kidney, as well as in

reproductive organs like the testicle and ovary, suggests a

specialized or unique role for CcGal-9 in the immunity of C. carpio.

To further investigate the immune function of CcGal-9, several

immune-related tissues of C. carpio—including the liver, spleen,

kidney, head kidney, intestine and gill—were selected for analysis.

The expression levels of CcGal-9 were then assessed following

exposure to A. hydrophila and S. aureus. The results revealed a

significant upregulation of CcGal-9 in A. hydrophila-infected

C. carpio, which is consistent with previous findings regarding

TfGal-9 in T. fasciatus infected with LPS (16). Unexpectedly, CcGal-

9 expression was downregulated in both the kidney and gill tissues

following stimulation with A. hydrophila and S. aureus, respectively.

This downregulation parallels the response of human macrophage-

derived galectin-9 to M. tuberculosis infection, as well as the

expression pattern of LcGal-9 in L. crocea in response to Poly I:C

and Vibrio stimulation (40, 48). Variations in the results may be

attributed to two primary factors. First, differences in bacterial

dosage and host genetic background can influence immune

responses, as pathogens employ diverse strategies to evade host

defenses. Another potential factor is the immune evasion strategies
FIGURE 7

Bacterial binding activity of rCcGal-9. Bacteria as the bacterial pellet, 7% SDS eluate as the supernatant after 7% SDS elution, and TBS as the final
wash solution. rCcGal-9 was incubated with bacteria as positive control.
TABLE 3 Minimum agglutinating concentration of rCcGal-9
against bacteria.

Microorganisms

Minimum agglutinating
concentration (µg/mL)

rCcGal-9

Gram-positive bacteria

B. subtilis 3.125

S. aureus 6.25

S. suis 6.25

Gram-negative bacteria

A. hydrophila 3.125

E. coli 12.5

K. pneumoniae 12.5

A. veronii 6.25

S. Pullorum 3.125
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employed by A. hydrophila, as supported by evidence indicating

that V. parahaemolyticus adapts to the hostile intracellular

environment of macrophages (49). Following administration of S.

aureus to the fish, CcGal-9 expression levels were assessed in various
Frontiers in Immunology 12
tissues, including the liver (12 to 72 hpi), spleen (3 to 72 hpi), kidney

(3 and 72 hpi), head kidney (3 to 72 hpi), intestine (6 to 72 hpi) and

gill (24 to 48 hpi). This significant upregulation suggests the

occurrence of a bacterial-induced inflammatory response during
FIGURE 8

Detection of rCcGal-9 binding to bacteria and carbohydrates. (A) Binding of polysaccharides (LPS, PGN and mannan) to rCcGal-9 at varying
concentrations was detected by ELISA. (B) Effects of different types of polysaccharides on rCcGal-9 binding to microorganisms. (C) The effects of
different types of sugars on rCcGal-9 binding to microorganisms were analyzed by ELISA. The x-axis in (C) represents different types of sugars. Error
bars represent SD (n=3), and a significant difference is indicated by asterisks (*P < 0.05, **P < 0.01).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1654890
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1654890
the post-infection period. These results indicate that CcGal-9,

functioning as a PRR, plays a crucial role in the immune response

to bacterial infections.

Galectins exhibit agglutination activity, a hallmark feature that

enables them to aggregate viruses, bacteria, protozoa and fungi

through binding to glycans present on their surfaces (37). In

teleosts, recombinant galectin-9 has demonstrated the ability to

aggregate a broad spectrum of microorganisms, including Gram-

positive and Gram-negative bacteria, as well as fungi (41, 42, 50). In

C. carpio, rCcGal-9 exhibited agglutination activity against all tested

microorganisms, including both Gram-positive and Gram-negative

bacteria. This finding indicates that rCcGal-9 possesses broad

aggregation capabilities against a wide range of detected

microorganisms. This observation was consistent with previous

studies, in which rCaGal-9 from C. auratus was shown to

aggregate all identified bacterial strains, including three Gram-

positive strains (B. subtilis, S. aureus, and S. suis) and five Gram-

negative strains (A. hydrophila, E. coli, K. pneumoniae, A. veronii

and S. Pullorum) (42).

The agglutination activity of rCcGal-9 is mediated by its direct

interaction with microorganisms. To elucidate the underlying

mechanism, we evaluated the binding activity of rCcGal-9 toward

various microbial species. These findings are consistent with

previous studies (43), for instance, rPfGAL9 exhibits selective

binding to microorganisms. In contrast, our results demonstrate

that rCcGal-9 is capable of binding to all tested microbial species,

albeit with differing binding activities. The observed variation in

binding correlates with the size of aggregates formed by

agglutinated bacteria, suggesting that the broad-spectrum affinity

and specificity of rCcGal-9 may be attributed to its highly conserved

sugar-binding sites and the presence of two structurally distinct
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CRDs. Binding and agglutination assays demonstrated that rCcGal-

9 is capable of binding to P. aeruginosa and V. fluvialis, although it

does not induce agglutination. This observation is consistent with

findings for FcLec4 from Chinese white shrimp (51) and TfCTL1

from T. fasciatus (52). We hypothesize that the weak binding

between the lectin and these bacteria may be insufficient to

induce aggregation. Consequently, further investigations are

necessary to elucidate the detailed mechanisms underlying the

interaction between rCcGal-9 and bacteria.

Galectin-9 is known to recognize exogenous glycans on the

surface of microorganisms, facilitating their aggregation by binding

to individual glycans or glycan complexes, thereby promoting

microbial clearance (37, 53). This protein plays a critical role in

pattern recognition by interacting with a broad spectrum of microbial

surface carbohydrates, a process essential for the host’s innate

immune response. In the present study, we demonstrate that

rCcGal-9 can bind to LPS, PGN and mannan, findings that are

consistent with previous reports in C. auratus and Crassostrea gigas

(54). Our results further reveal that rCcGal-9 exhibits broad binding

specificity, interacting with nine distinct saccharides, with a notably

higher affinity for L-fucose and D-mannose. These observations are

consistent with the reported functionalities of mammalian galectin-9,

suggesting evolutionary conservation of carbohydrate recognition

across phylogenetically distant species (55, 56). Lectins serve as

crucial components of PRRs, recognizing specific carbohydrate

moieties on the surfaces of pathogenic cells. Through this

recognition, lectins promote pathogen agglutination and enhance

their susceptibility to phagocytosis, thereby playing a key role in the

host’s innate immune defense (57). Moreover, several lectins have

been shown to exhibit potent antimicrobial activity by binding

specific carbohydrate structures on microbial surfaces (35, 58). In
FIGURE 9

Effect of rCcGal-9 on the survival probability of A. hydrophila infected C. carpio (10 fish for each group). Group survival rates for each treatment
were analyzed by the log-rank test in GraphPad Prism9 software. A.hydrophila+0.65%NaCl VS 1mg/g rCcGal-9: P=0.0172; A.hydrophila+0.65%NaCl
VS A.hydrophila+1mg/g rCcGal-9: P=0.0953; A.hydrophila+0.65%NaCl VS A.hydrophila+0.33mg/g rCcGal-9: P=0.3696; A.hydrophila+0.65%NaCl VS
A.hydrophila+0.11mg/g rCcGal-9: P=0.8214.
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the present study, we observed that elevated concentrations of

rCcGal-9 exerted significant antibacterial effects against S. aureus

and A. hydrophila in vitro, consistent with findings previously

reported in Nile tilapia (34). The antibacterial mechanism of

CcGal-9 appears to resemble that of certain antimicrobial peptides,

involving interactions with bacterial cell wall components, which

disrupt membrane integrity, promote pore formation, and lead to the

leakage of intracellular contents (59, 60).

In vivo experiments revealed that supplementation with

rCcGal-9 significantly enhanced the survival rate of C. carpio

following A. hydrophila infection. This protective effect is

presumably mediated by the potent immune response induced

upon rCcGal-9 administration.

In conclusion, a tandem-repeat type galectin-9, named CcGal-9,

was identified in C. carpio. CcGal-9 contains two distinct CRDs and

is widely expressed across various tissues, with the highest

expression observed in the spleen. Following challenge with S.

aureus and A. hydrophila, the transcriptional levels of CcGal-9

exhibited significant fluctuations in several immune-related organs,

including the liver, spleen, kidney, head kidney, intestine and gill.

These findings suggest that CcGal-9 plays a pivotal role in the innate

immune response of C. carpio against bacterial infections. The

rCcGal-9 exhibits potent microbial agglutination activity, effectively

agglutinating eight distinct bacterial strains. Furthermore, rCcGal-9

was shown to bind a broad range of PAMPs as well as all tested

microbial species. Collectively, these results suggest that rCcGal-9

functions as a key PRR in the innate immune defense of C. carpio,

mediating the recognition of PAMPs on the surfaces of pathogenic

microorganisms. This study provides valuable insights into the

immunological role of galectin-9 in teleost fish, underscoring its

significance in host-pathogen interactions.
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