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Breast cancer remains the most frequently diagnosed malignancy and a leading

cause of cancer-related mortality among women worldwide. Increasing

evidence underscores the pivotal yet paradoxical roles of innate immune cells

and their associated cytokines in orchestrating the dynamic landscape of the

breast tumor immune microenvironment (TIME). Innate immune effectors,

including tumor-associated macrophages (TAMs) and natural killer (NK) cells,

exert dual functions by either initiating robust antitumor responses or facilitating

immune evasion, metastatic dissemination, and therapeutic resistance. For

instance, MDSCs suppress T and NK cell activity via STAT3/NF-kB signaling and

modulate the cytokine milieu through IL-10 and TGF-b. Similarly, M2-polarized

TAMs promote angiogenesis, epithelial–mesenchymal transition, and

chemoresistance via IL-10/STAT3/Bcl-2 pathways. In contrast, NK cells and

CD103+ DCs mediate tumor cell cytolysis and prime antigen-specific

immunity, though their activity is frequently compromised in advanced disease.

Moreover, key cytokines and chemokines, including IL-6, IL-10, IL-8, TNF-a,
TGF-b, and CCL2/5, demonstrate subtype-specific and context-dependent

effects, acting as both tumor-promoting and tumor-suppressing agents

through complex signaling networks. This review highlights the dualistic nature

of innate immune components in breast cancer, discusses their prognostic and

therapeutic implications, and proposes novel intervention strategies, such as

TAM repolarization, and cytokine modulation, to reprogram the TIME and restore

effective immune surveillance, particularly in aggressive subtypes like triple-

negative breast cancer.
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1 Introduction

Breast cancer is the most prevalent malignancy and primary

cause of cancer-related death in women worldwide (1, 2). Recent

advances in immunotherapy have shown significant potential in

improving treatment outcomes and survival rates (3, 4). A

comprehensive analysis of the tumor immune microenvironment

could optimize immunotherapeutic approaches for breast cancer

(5). Studies indicate that immune cells and mediators within this

microenvironment not only combat tumors but also promote

immune evasion, facilitating cancer progression (6, 7). Shared

signaling pathways between immune and oncogenic processes

regulate cell proliferation, apoptosis, and angiogenesis (8–11).

Early in tumor development, malignant cells manipulate immune

components to avoid detection, while advanced tumors establish an

immunosuppressive niche, resisting immune-mediated

destruction (12).

Effector T cells play a critical role in antitumor immunity, yet

their function is often suppressed in breast cancer (13). Meanwhile,

innate immune cells including macrophages, natural killer (NK)

cells, and myeloid-derived suppressor cells (MDSCs), and

mediators exhibit remarkable functional plasticity, exerting either

tumoricidal or tumor-promoting effects depending on

microenvironmental cues (14–16). The diversity of these immune

components varies by tumor subtype and stage, offering diagnostic

and prognostic value (17, 18). This review explores the mechanisms

of innate immune cells and mediators in breast cancer progression,

highlighting their clinical implications.
2 Innate immune cells in the breast
cancer immune microenvironment

2.1 NK cells mediate direct antitumor
cytotoxicity

NK cells are glycolipid-reactive lymphocytes with intrinsic

cytotoxic capacity against tumor cells. Studies have demonstrated

that activation of NK cells enhances antitumor immunity and

survival in murine models of postoperative metastatic breast

cancer (19, 20). Chemotherapeutic agents such as gemcitabine

and cyclophosphamide may facilitate NK cell recruitment to the

primary tumor site, and in combination with NK cell activation,

significantly improve antitumor efficacy and reduce recurrence rates

(21–23). In HER2-positive patients receiving adjuvant

chemotherapy, the tumor microenvironment exhibited increased

infiltration of NK cells and regulatory T cells, with this population

showing reduced chemotherapy-related pathological responses

(24–26). The increase in regulatory T cells may be associated with

NK cell-mediated inhibition of tumor stem cell proliferation,

reversal of MDSC-induced immunosuppression, and restoration

of T cell proliferation (27, 28). Moreover, distinct NK cell subsets

are associated with different stages of breast cancer progression. For

instance, CD56brightCD16+ and CD56dimCD16− NK cell

populations are significantly elevated in the peripheral blood of
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patients with progressive invasive breast cancer (29). Intratumoral

CD56+ NK cell density is positively correlated with tumor grade and

stage, and although a lower level of CD56+ NK cells is generally

indicative of favorable prognosis, no clear association has been

established with overall survival (30). However, the cytotoxic

activity of NK cells is often impaired in advanced-stage breast

cancer due to multiple tumor-induced immunosuppressive

mechanisms (31). Notably, transforming growth factor-beta

(TGF-b), abundantly present in the tumor microenvironment,

downregulates the expression of key NK cell–activating receptors

such as NKG2D and NKp30, thereby compromising tumor cell

recognition and cytolytic function (32–36). Additionally, MDSCs

inhibit NK cell cytotoxicity by producing reactive oxygen species,

particularly hydrogen peroxide, and immunosuppressive cytokines

like TGF-b, which further dampen NK cell activation and IFN-g
production (37, 38). These suppressive pathways collectively lead to

NK cell exhaustion, reduced granzyme B/perforin secretion, and

impaired tumor control (39, 40). Understanding the mechanisms

behind their functional impairment, particularly receptor

downregulation and MDSC-mediated suppression, may yield

valuable insights for diagnostic and therapeutic innovation.
2.2 Dendritic cells present tumor antigens
to activate antigen-specific T cells

DCs, as pivotal antigen-presenting cells in adaptive immunity,

play a central role in antitumor responses by promoting the

expression of both exogenous and endogenous major

histocompatibility complex (MHC) class I and II molecules (41,

42). They facilitate tumor antigen trafficking to draining lymph

nodes, cross-present antigens to activate cytotoxic T lymphocytes

(CTLs), and orchestrate T cell differentiation and activation (43–

45). Among DC subsets, CD103+ conventional type 1 dendritic cells

(cDC1s) are uniquely equipped for antigen cross-presentation, a

process by which exogenous tumor-derived antigens are processed

and presented on MHC class I molecules (46, 47). This activation

relies on key components such as the Sec22b vesicle trafficking

protein, the BATF3 transcription factor, and cross-priming signals

via the STING and type I interferon pathways (48–50). Upon

migration to lymph nodes, CD103+ DCs engage CD8+ T cells

through MHC-I–peptide complexes and co-stimulatory molecules

such as CD80/CD86, ultimately inducing tumor-specific cytotoxic

responses (51). However, the frequency and functional competence

of CD103+ DCs are often reduced in advanced breast cancer,

leading to impaired priming of effector CD8+ T cells (52, 53).

Tumor-derived suppressive cytokines such as IL-10, and TGF-b, as
well as hypoxic conditions, inhibit CD103+ DC differentiation and

antigen-presenting capacity (54, 55). Additionally, elevated

expression of PD-L1 on dysfunctional DCs can further suppress

T cell activation. These alterations in CD103+ DC function

contribute to ineffective antitumor immunity, enhanced immune

evasion, and poor therapeutic outcomes. Recent studies have shown

that CD103+ DCs are capable of delivering intact tumor antigens to

peripheral lymph nodes, thereby priming tumor-specific CD8+ T
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cells and locally suppressing PD-L1 activity (52, 56). However,

current research on DCs in the breast cancer context remains

limited, and further mechanistic studies are warranted.
2.3 MDSCs promote breast cancer
progression and affect prognosis through
multiple signaling pathways and
immunomodulatory factors

MDSCs comprise a heterogeneous population of myeloid

progenitor cells, including immature granulocytic (G-MDSC) and

monocytic (M-MDSC) subsets (57, 58). Clinical data indicate a

close association between MDSC levels and breast cancer stage,

tumor burden in metastatic disease, and chemotherapy efficacy

(59). Elevated MDSC levels are linked to increased risk of

postoperative recurrence and metastasis, whereas patients with

lower MDSC counts demonstrate higher rates of pathological

complete response (60, 61). In stage IV breast cancer patients,

high levels of HLA-DRneg/low, CD33+, CD11b+ MDSCs are

associated with significantly reduced survival (62). Furthermore,

MDSCs can promote the production of IL-1b and IL-17, reducing

the efficacy of chemotherapeutic agents such as 5-fluorouracil and

gemcitabine, thereby adversely affecting prognosis (63, 64).

Mechanistically, MDSCs in the breast tumor microenvironment

promote invasion and metastasis via pathways such as STAT3-NF-

kB-IDO, STAT3/IRF-8, and PTEN/Akt (65), involving both

inhibitory and stimulatory cytokines. These pathways drive

MDSC expansion and lead to downstream functional

consequences that impair antitumor immunity. For instance,

activation of STAT3 induces expression of arginase-1 and iNOS,

resulting in depletion of L-arginine and accumulation of reactive

oxygen species (ROS), which in turn inhibit CD8+ T cell receptor z-
chain expression and induce T cell anergy (66–68). Concurrently,

IL-2 production suppression further impairs T cell proliferation and

effector function (69). The PTEN/AKT axis supports MDSC

resistance to apoptosis and enhances their immunosuppressive

capacity through sustained IL-10 and TGF-b secretion (65).

Collectively, these mechanisms contribute to immune evasion,

tumor progression, and treatment resistance.

On one hand, cytokines such as TGF-b and Flt3L induce CD11b+

MDSC differentiation, while IL-6 and IL-18 promote CD33+ MDSC

proliferation (70). Chemokines including CXCL5/CXCR2 are

essential for MDSC recruitment in 4T1 BALB/c murine tumor

models, while CCL1, CCL2, CCL5, GM-CSF, and G-CSF facilitate

MDSC expansion and aggregation in the tumor milieu (71–73). On

the other hand, MDSCs suppress antitumor immune responses by

modulating the cytokine environment and cellular interactions. For

example, MDSCs induce Th17 differentiation, mediate crosstalk

between macrophages and tumor cells, and reshape the local

microenvironment to favor tumor cell growth and metastasis (74).

They also secrete IL-10 and TGF-b to promote regulatory T cell

expansion, and enhance Treg activation through argininemetabolism
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and TGF-b–mediated pathways, contributing to immune

suppression (75, 76). Additionally, MDSCs downregulate NK cell

activation by producing TGF-b and hydrogen peroxide, which

suppress the expression of NK cell-activating receptors such as

NKG2D, NKp46, and NKp44 (76). Some MDSC subsets,

particularly under hypoxic conditions, upregulate PD-L1 expression

via HIF-1a activation; however, this phenomenon is not universal

across all MDSC populations (77). In summary, MDSC accumulation

in the breast cancer microenvironment may compromise surgical and

chemotherapeutic efficacy. Targeting MDSC recruitment and

immunosuppressive functions via multiple regulatory pathways

holds promise for enhancing therapeutic outcomes.
2.4 TAMs mediate broad
immunosuppressive effects through
multiple mechanisms

Tumor-associated macrophages (TAMs) originate from

circulating monocytes that infiltrate the tumor microenvironment

and subsequently undergo polarization into either classically

activated M1 or alternatively activated M2 phenotypes (78). The

recruitment of TAMs is driven by chemokines such as CCL2 and

cytokines like CSF-1 and VEGF, which establish a permissive

environment for macrophage infiltration (79–81). Once recruited,

macrophage polarization is largely dictated by local signals.

Hypoxic conditions, IL-4, IL-10, and TGF-b collectively promote

the differentiation of macrophages into the M2 phenotype, which is

closely associated with immunosuppressive and tumor-promoting

functions (82–85). M2-polarized TAMs play key roles in tumor

angiogenesis, epithelial–mesenchymal transition (EMT), metastasis,

and tissue remodeling (86). The S1PR1 gene in TAMs inhibits

pulmonary metastasis and lymphangiogenesis in murine breast

cancer models by downregulating inflammatory component

NLRP3 (87). COX2+ TAMs induce MMP-9 expression and

promote EMT in the breast tumor microenvironment. The

COX2/PGE2 axis also enhances IL-6 secretion from macrophages,

exacerbating inflammation and further promoting tumor

progression (88). Under hypoxic conditions, TAMs upregulate

VEGF and HIF-1a expression to stimulate tumor angiogenesis

(89). In triple-negative breast cancer, TAMs are recruited from

peripheral circulation and, upon classical or alternative activation,

contribute to tumor progression by suppressing cytokine

production, impairing TILs function, promoting Treg expansion,

and modulating PD-1 expression in the tumor milieu (90).

Regarding chemoresistance, paclitaxel efficacy has been linked to

M2 TAM depletion (91). Moreover, TAM-induced resistance is

mediated by increased expression of Bcl-2 and STAT3, enhancing

IL-10 secretion via the IL-10/STAT3/Bcl-2 signaling cascade to

suppress antitumor immunity (85). In conclusion, TAMs exert

multifaceted immunosuppressive effects within the breast cancer

microenvironment by promoting angiogenesis, metastasis, immune

evasion, and therapeutic resistance (Figure 1).
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3 Innate immune factors in the tumor
immune microenvironment of breast
cancer

3.1 Dual roles of interleukins in breast
cancer

Interleukins comprise a diverse family of lymphokines with

pleiotropic biological activities. Their roles in breast cancer are

highly context-dependent and vary by subtype. IL-6, for instance, is

upregulated in over half of breast cancer patients, with elevated

levels particularly noted in early-stage or high-grade tumors (92). In

estrogen receptor (ER) positive breast cancer cell lines, IL-6

generally exhibits tumor-suppressive properties, while no

significant effect has been observed in ER-negative cell lines (93,

94). Mechanistically, IL-6 promotes phosphorylation of JAK/

STAT3 via interaction with its homodimeric or heterodimeric

receptor complexes, thereby activating transcriptional programs.

The feedback loop further enhances IL-6 expression via activated

STAT3, rendering IL-6 less effective in breast cancer cells with low
Frontiers in Immunology 04
STAT3 expression (95). IL-8, a proinflammatory chemokine-like

cytokine, is associated with poor survival in ER-negative patients

(96). It promotes lymph node metastasis and is elevated in

advanced-stage tumors. Nonetheless, some studies suggest its

involvement in immune activation under certain conditions,

illustrating its duality (97–99). IL-10 is generally considered an

immunosuppressive cytokine and is associated with poor prognosis

in breast cancer. Its expression is regulated primarily through the

STAT3 and SOCS3 pathways, where STAT3 silencing markedly

reduces IL-10 levels, while SOCS3 silencing enhances its expression

(100). The IL-10/STAT3/Bcl-2 axis plays a pivotal role in mediating

TAM-induced breast cancer cell survival and paclitaxel resistance.

Inhibition of IL-10 receptor signaling enhances CD8+ T cell

responses and upregulates IL-12 and intratumoral dendritic cells,

thereby improving chemotherapy efficacy (101).

IL-11 exerts its effects through binding to IL-11 receptor alpha

(IL-11Ra) and gp130, activating JAK kinases and downstream

STAT3 and SOCS3. These pathways regulate tumor cell

proliferation, survival, motility, and invasion (102). In breast

cancer patients with bone metastases, elevated IL-11 mRNA and

increased expression of p38, p-c-Jun, and p-STAT3 have been
FIGURE 1

Roles of innate immune cells and cytokines in shaping the breast cancer microenvironment.
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observed, highlighting its predictive value for bone metastatic

potential (103). IL-15 primarily exerts indirect antitumor effects

in the TIME. Through activation of PI3K signaling, IL-15 selectively

stimulates T lymphocytes and enhances vaccine-like antitumor

responses in combination with MEK inhibitors (104). It also

potentiates NK cell-mediated cytotoxicity against CD44+CD24-

breast cancer stem-like cells and augments cetuximab efficacy

(105). In a study by Gillgrass et al. (106), C57BL/6 mice receiving

IL-15 via intravenous injection or harboring IL-15 transgenes

exhibited a tenfold reduction in breast cancer metastasis

compared to controls, likely due to enhanced NK cell cytotoxicity.

Collectively, ILs exert tumor-promoting or tumor-suppressing

effects in breast cancer primarily through engagement with

specific receptors and activation of downstream signaling

cascades. Deciphering their mechanistic roles may offer

prognostic biomarkers and therapeutic targets (Supplementary

Table S1).
3.2 Chemokines promote breast cancer
cell invasion and metastasis

A growing body of clinical evidence supports the pivotal role of

chemokines in breast cancer metastatic dissemination, and prognosis

(107, 108). CCL2 and CCL5 are among the most extensively studied

chemokines in the breast cancer microenvironment. In estrogen-rich

conditions, both enhance tumor cell dissemination (109). Notably,

levels of CCL2 and CCL5 are significantly elevated in the blood of

breast cancer patients, particularly those with ER-positive tumors,

and positively correlate with TAM infiltration (110). Persistent

expression of CCL2 by mammary epithelial cells promotes chronic

low-grade inflammation, increases glandular density, and elevates

cancer risk (111). CCL2 may also modulate monocyte–macrophage

crosstalk within the tumor niche (112). ELISA results indicate

genotype-dependent differences in CCL2 expression across breast

cancer cell suspensions, with an inverse correlation to ER and PR

status. Kaplan–Meier analysis further associates low CCL2 levels with

favorable prognosis (112). CCL5 enhances GLUT1 expression on

tumor cells, promoting glucose uptake andmetabolic reprogramming

to support proliferation (113). In CCL5-deficient mice, both primary

tumor burden and pulmonary metastases are markedly reduced. This

may be attributed to CCR3 activation, Gfi1 expression, and Th2

polarization, which collectively establish a pre-metastatic niche

conducive to myeloid cell recruitment (114). CCL18, CCL20, and

CCL25 similarly contribute to prognosis prediction and promote

TAM infiltration, angiogenesis, and metastatic progression (115–

117). Serum CCL18 levels are significantly higher in breast cancer

patients than in those with benign tumors or healthy controls,

correlating with advanced clinical stage and poor survival (118).

CCL20 facilitates tumor invasion and MMP-2/9 secretion in basal-

like TNBC, with high CCL20 expression predicting reduced

metastasis-free and overall survival (119). CCL25 promotes EMT

via the CCL25/CCR9 axis, enhancing invasiveness and metastatic

potential (120). Besides, CXCL1 expression in the tumor stroma is

associated with tumor grade and recurrence, likely due to its negative
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regulation by TGF-b (121). CXCL13 transcription correlates with

pathological complete response rates and favorable immune

responses in breast cancer, possibly through activation of TFH13

cells and differentiation of germinal center memory B cells, thereby

shifting from regulatory T cell–mediated suppression toward effective

humoral immunity (122, 123).
3.3 TNF-a: a double-edged sword in breast
cancer progression

TNF-a, a proinflammatory cytokine, orchestrates tissue

homeostasis by regulating cytokine production, cell survival, and

apoptosis (124). On one hand, TNF-a induces cell cycle arrest in

ER-positive breast cancer cells at the G0/G1 phase, impeding DNA

synthesis and exerting tumor-suppressive effects. On the other

hand, it activates the NF-kB pathway and facilitates RIP1

ubiquitination, thereby stimulating JNK/ROS signaling and

promoting tumor cell proliferation, enhancing the cytotoxic

effects of chemotherapy and radiotherapy both in vitro and in

vivo (125). Clinical data suggest that TNF-a levels are negative

associated with breast cancer progression risk (126). However,

TNF-a can also promote tumor growth, migration, and invasion,

potentially through activation of the Wnt pathway and

establishment of a tumor-permissive niche (127). Notably, the

interpretation of TNF-a’s dual roles is limited by heterogeneity in

immune status, inflammation levels, and disease stage across

studies, necessitating further investigation (128).
3.4 TGF-b promotes breast cancer cell
proliferation and metastasis

TGF-b, primarily synthesized by platelets, monocytes/

macrophages, lymphocytes, fibroblasts, and epithelial cells, plays a

central role in tumor progression, with TGF-b1 as the predominant

isoform (129). TGF-b1 stimulates angiogenesis and enhances tumor

cell affinity, invasiveness, and adhesion, while inhibiting normal

mammary epithelial cell proliferation (130). Current research

implicates the Smad signaling pathway as a major mediator of

TGF-b-induced distant metastasis in breast cancer (131). TGF-b
also suppresses IL-2 production and impairs T cell antitumor activity

(132, 133). Additionally, it upregulates local cytokine expression,

activates infiltrating immune cells, inhibits granzyme and perforin

expression, downregulates MHC class I on tumor cells, and

diminishes NK cell–mediated cytotoxicity (134). Importantly, TGF-

b signaling has been shown to facilitate EMT and endow breast

cancer cells with stem cell–like properties (135, 136). This dual role

not only promotes tumor invasion and metastasis but also

contributes to immune evasion through induction of an

immunosuppressive microenvironment. Mechanistically, TGF-b
activates EMT through canonical Smad-mediated transcriptional

reprogramming and MAPK signaling pathways (137). Recent

studies demonstrate that FAP/VCAN enhances the expression of

EMT-associated transcription factors, further driving mesenchymal
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transition and increasing tumor cell plasticity (138). Moreover, TGF-

b–induced PI3K/Akt activation promotes the expression of stemness

markers like ALDH1 and CD44^high/CD24^low, enabling tumor-

initiating capacity and resistance to chemotherapy (139). This

signaling crosstalk between PI3K/Akt and Smad pathways

orches tra tes both immune suppress ion and ce l lu lar

reprogramming, allowing breast cancer cells to evade immune

surveillance while acquiring aggressive phenotypes. Through PI3K/

Akt signaling, TGF-b can further induce EMT, thereby enhancing

tumor growth and dissemination (140, 141).
4 Conclusion

The breast cancer immune microenvironment is profoundly

shaped by the dual roles of innate immune cells and cytokines,

which can either support antitumor immunity or promote immune

evasion and disease progression. MDSCs and TAMs are central

mediators of immunosuppression through pathways such as

STAT3/NF-kB and IL-10/STAT3/Bcl-2, while NK cells and

dendritic cells retain critical, yet often impaired, antitumor

functions. Additionally, cytokines such as IL-6, IL-8, IL-10, TNF-

a, and TGF-b demonstrate context-dependent activities, intricately

regulating immune responses, tumor growth, and metastasis. The

functional plasticity of these innate components highlights both the

complexity and therapeutic potential of targeting the innate

immune axis in breast cancer. Particularly in subtypes like triple-

negative breast cancer, which lack effective targeted therapies,

strategies aimed at reprogramming innate immune cells, blocking

suppressive cytokines, or restoring cytotoxic activity could

significantly enhance clinical outcomes. A deeper mechanistic

understanding of innate immunity will not only advance

prognostic biomarker development but also enable the design of

rational combination therapies that synergize immunomodulation

with conventional and emerging treatment modalities.
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