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Neutrophil extracellular traps (NETs) are complex structures released by
activated neutrophils and composed by double-stranded DNA associated with
histones and an arsenal of proteases and proteins. NETs are reported to be
present in tumors and blood of cancer patients where they can directly or
indirectly modulate different functions of cancer cells. Here, we will summarize
the current evidences indicating that NETs can drive tumor growth and
metastatic dissemination through different signaling pathways. Many studies
reported that NETs can enhance cancer cell proliferation and promote
colonization of distant sites by circulating cancer cells, especially in the
presence of sepsis and surgical stress. However, there are scattered reports on
the ability of NETs to induce epithelial-mesenchymal transition (EMT) in different
contexts. In this minireview, we will focus especially on the studies investigating
the induction of EMT by NETs trying to highlight the involvement of specific
signaling pathways. The results of these studies delineate an intricate scenario in
which NETs stay at the crossroad between inflammation and cancer playing a
leading role in metastatic dissemination by inducing EMT through different
signaling pathways.
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Introduction

Neutrophil extracellular traps (NETs) are filamentous structures released by activated
neutrophils to entrap and kill pathogens (1). Beyond this primary function, it has been
progressively clear that these extracellular particles have multiple functions in a number of
pathological states including autoimmunity (2, 3), wound healing (4), thrombotic disease
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(5, 6); and cancer progression (7, 8). The multifaceted effects of
NETs rely upon their complex structure that includes a backbone of
double-stranded DNA associated with histones and an arsenal of
proteases such as myeloperoxidase (MPO), neutrophil elastase
(NE), matrix metalloproteinase-9 (MMP-9), cathepsin G (CG)
and pentraxin 3 (PTX3). NETs are released not only in response
to many different pathogens but also in sterile conditions in
response to inflammatory mediators such as interleukin-8,
CXCL1 and other chemokines (9), granulocyte colony-stimulating
factor (G-CSF) (10) and cathepsin C (11).

Phorbol myristate acetate, calcium ionophores and
lipopolysaccharyde are experimental inducers of NET formation
(12). The process leading to NET formation requires ROS
production triggered by the majority of NET stimulators,
followed by peptidylarginine deiminase 4 (PAD4)-mediated
histone citrullination and chromatin decondensation induced by
activated neutrophil elastase (NE) and myeloperoxidase (MPO)
(Figure 1A) (13). The subsequent step is the disruption of nuclear
membrane and fusion of the nuclear content with the cytotoxic
arsenal released from the cytoplasmatic granules. Following the
disruption of the plasma membrane involving gasdermin-D
polymerization (14), NETs are released into the extracellular
space. The final step of this process usually implies the lytic death
of neutrophil, termed netosis. However, in some circumstances,
NETs can be generated by the extrusion of chromatin and granular
proteins through vesicular transport without the production of ROS
and disruption of plasma membrane. This process termed vital
netosis leaves the neutrophil without nucleus but alive (15).

In the last decade, an increasing number of studies evaluated the
role of NETs in human cancers based on the consideration that they
may mediate the cross-talk between cancer cells and tumor
microenvironment. Here we will summarize the evidences
indicating their function in driving tumor growth and metastatic
dissemination of cancer cells with a special focus on the ability of
NETs to induce the epithelial-mesenchymal transition.

NETs as drivers of tumor growth

NETs have been detected in the extracellular space of primary
tumors and metastatic sites of human cancers as well as in the blood
of cancer patients and they have been reported to contribute directly
or indirectly to cancer growth and progression. Several observations
indicate that NETs can affect cancer cell proliferation by protease
ECM remodelling and consequent release of growth factors or
activation of ligands for specific receptors (11, 16). For instance,
NET-derived NE and MMP-9 degraded laminin in the ECM
causing the exposure of an epitope that can bind to integrin 031
on dormant cancer cells with the consequent activation of
downstream signaling pathways and induction of proliferation.
Also, the DNA component was reported to enhance cancer cell
proliferation by interacting with DNA receptors. Yang et al.
reported that NETs can bind to cancer cells through CCDC25
receptor and activate the integrin linked kinase (ILK)-B-PARVIN-
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RAC1-CDC42 cascade in breast cancer cells thus enhancing
motility, invasion and proliferation (17).

NETs induced a significant increase of the proliferation rate in
diffuse large B-cell lymphoma cells through the activation of TLR9
receptor and downstream NFkB, STAT3 and p38 signaling
pathways (18). These effects on proliferation were abrogated by
NETs digestion with DNase I or pre-treatment of neutrophils with
NE inhibitors. A dose-dependent enhancement of proliferation was
observed in Panc02 murine pancreatic cancer cells exposed to NET
supernatant (19). Furthermore, in a murine subcutaneous tumor
model, NETs caused stellate pancreatic cells proliferation and
protease secretion through activation of RAGE signaling (19).

An additional structural component of NETs is the protein
High Mobility Group Box 1 (HMGBI). Glioblastoma cells exposed
to NETs showed an enhanced proliferation rate due to the
interaction of NET-derived HMGB1 with RAGE (20).
Furthermore, in colorectal cancer cells, NET-derived HMGB1 was
shown to interact with TLR9 with the subsequent activation of
MAP kinase pathway (21).

In murine models, subcutaneous or intrasplenic injection of
colorectal cancer cells caused a more rapid development of tumors
and liver metastases in wild type animals than in PAD4-KO mice
that are not able to induce NETosis (22). In the same study, the
authors showed that these effects were due to the activation of TLR4
on cancer cells by NET-derived neutrophil elastase causing PGClo.
upregulation and enhanced mitochondrial biogenesis.

NETs as drivers of metastatic
dissemination

NETs were initially thought to promote the development of distant
metastases by mechanically entrapment of circulating tumor cells. In
an animal model of sepsis, the deposition of NETs within hepatic
sinusoidal spaces was associated with an increased number of hepatic
micrometastases that evolved in gross metastatic lesions following the
intrasplenic injection of cancer cells (23). Subsequent studies showed
that the binding of cancer cells to NET's was not simply mechanical but
was mediated by the interaction of NET-DNA to the CCDC25 receptor
(17) or the binding of NET-associated fibronectin to beta 1 integrins
expressed on the plasma membrane of cancer cells (24, 25).

Furthermore, in an ischemia and reperfusion murine model,
surgical stress caused NET formation that in turn promoted the
development of liver metastases of colorectal cancer cells through the
binding of NET-derived HMGBI to TLRY and activation of MAP
kinases pathway (21). Similarly, in a murine model of surgical stress,
the systemic injection of colorectal cancer cells caused a 3-fold higher
number of lung metastases than in the control group (26). In this
study, surgical stress caused NET's formation and deposition in lung
microvasculature as well as platelet activation with the formation of
platelet-tumor cell aggregates that facilitated NET-mediated
entrapment of cancer cells in lung tissue. Blocking platelet
activation by inhibiting the ERK5-GPIIb/IIIa integrin-dependent
pathway or knocking out TLR4 avoided lung metastases formation.
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FIGURE 1

(A) Schematic representation of lytic NETosis. NET formation can be triggered by many natural agents including pathogens, cytokines/chemokines,
granulocyte colony-stimulating factor and cathepsin C as well as by chemical compounds such as phorbol myristate acetate, calcium ionophores
and lipopolysaccharide. The process of NET formation requires ROS production followed by PAD4-mediated histone citrullination and chromatin
decondensation induced by NE and MPO. The subsequent steps are the disassembly of nuclear membrane and fusion of the nuclear content with
the cytotoxic agents released from the cytoplasmatic granules followed by the disruption of the plasma membrane involving gasdermin-D
polymerization. (B) Signaling pathways involved in the activation of epithelial-mesenchymal transition. The signaling pathways that are reported to
activate the epithelial-mesenchymal transition program include WNT, Hedgehog, NOTCH, TGFB, tyrosine kinase receptors and cytokine receptors
downstream signaling cascades. The specific binding of several ligands to membrane receptors triggers intracellular signals converging on a pool of
transcription factors including Zeb family members, Snail, Slug and Twist 1 that orchestrate a series of events ultimately resulting in loss of epithelial

characteristics and acquisition of a mesenchymal phenotype.

Additional studies showed that NETs promote migration and
invasion of cancer cells thus facilitating both the intravasation and
extravasation of cancer cells. Co-culturing breast cancer cells with
neutrophils enhanced cell invasion in vitro and this effect was
abrogated by treatment with DNase I or inhibitors of NET
formation (27). In the same study, treatment with nanoparticles
coated with DNase I strongly reduced the formation of lung
metastases in mice.
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NETs as drivers of epithelial-
mesenchymal transition

The epithelial-mesenchymal transition (EMT) is a reversible
biological process in which epithelial cells lose their peculiar
characteristics and acquire a mesenchymal phenotype. It is not a
binary process but a progressive transition through all possible
states between epithelial and mesenchymal phenotypes (28). EMT
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is physiologically required in different steps of embryogenesis, tissue
morphogenesis during fetal development and wound healing (29).
Furthermore, the activation of the EMT program in carcinoma cells
is responsible for cell detachment from the primary tumor and
acquisition of their invasive and migratory ability to distant sites.

EMT consists of a series of events orchestrated by a pool of
transcription factors (EMT-TFs) including Zeb family members,
Snail, Slug and Twist 1. These transcription factors induce
downregulation of epithelial markers such as E-cadherin,
occludins and cytocheratins while cause upregulation of
mesenchymal markers such as vimentin, N-cadherin and
fibronectin (30). These changes in gene expression will lead to
loss of cell polarity, disassembly of cell-cell junctions, disruption of
basal membrane and acquisition of enhanced migratory and
invasive properties.

A number of molecules can activate the EMT program in cancer
cells through the specific binding to membrane receptors that
triggers signals to the nucleus with the consequent upregulation
of EMT-TFs (Figure 1B). The signaling pathways that are known to
activate EMT include WNT, Hedgehog, NOTCH, TGEFp, tyrosine
kinase receptors and cytokine receptors downstream pathways (31).
A cross-talk and cooperation between these pathways is also
possible. Furthermore, stromal components of tumor
microenvironment can secrete a variety of cytokines, chemokines
and growth factors that can activate specific signaling pathways and
induce EMT in cancer cells. Specific ligands such as TGFp, IL6,
VEGF, TNF can be released by stromal cells and promote the
acquisition of a mesenchymal state by cancer cells.

NETs have been tested as EMT inducers in different normal and
malignant cancer cells (Table 1). Pieterse et al. (32) showed that the
exposure of microvascular and macrovascular endothelial cells to
NETs caused a rapid loss of VE-cadherin followed by disassembly of
cell-cell junctions and release of junctional 3 catenin. These events
are elastase-dependent since they are inhibited by selective elastase
inhibitors and are associated with the gradual development of a
mesenchymal-like state in endothelial cells. Furthermore, the same
authors showed that 3 catenin was translocated to the nucleus and
caused upregulation of Snaill, one of the EMT-TFs. These
observations were confirmed in a murine model of lupus
nephritis and in kidney biopsies of patients with lupus nephritis
concluding that NETs are major pathogenetic factors of this disease
causing EMT in glomerular endothelial cells and consequent
proteinuria, due to the loss of cell-cell junctions.

In agreement with these findings, Martins-Cardoso et al.
reported that incubation of MCF-7 breast cancer cells with NETs
caused drastic morphological changes, reduction of cell adhesion
and enhancement of cell migration (33). Quantitative RT-PCR
showed an enhanced transcription of Snai 1, Snai 2 and Zeb 1
genes in response to NETs exposure while immunocytochemistry
analysis revealed a reduction of E-cadherin levels and an increased
expression of fibronectin and B catenin. The same authors
investigated the ability of NETs to induce changes in the
expression of stem cell markers in MCF-7 cells and found that
CD24 levels were decreased while CD44 expression was enhanced
by NET exposure. Furthermore, the expression of a panel of
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proinflammatory cytokines including IL-1f3, IL6 and IL-8 was
enhanced in MCF-7 treated with NETs. Finally, using TGCA
database, the authors found a positive correlation between the
neutrophil-related signature gene expression with Snai 1 and 8
catenin genes.

In another study, Pandolfi et al. investigated the ability of NETs
to induce EMT in lung epithelial cells (34). Based on the
observations that bronchoalveolar lavage of severe COVID-19
patients contains high levels of NETs and that lung biopsies
showed the expression of mesenchymal and epithelial markers in
subgroups of pneumocytes, the authors co-culture A549 lung
cancer cells with PMA-activated neutrophils or isolated NETs.
After 24 h, they found upregulation of aSMA, a mesenchymal
marker, and downregulation of E-cadherin. The same authors
developed an in vitro airway model using the same cancer cell
line co-cultured with human neutrophils, alveolar macrophages and
infected with SARS-CoV2. They concluded that the activation of
EMT program in lung cancer cells required SARS-CoV2 infection
and the presence of both neutrophils and alveolar macrophages.
These observations may have important implications for the
pathogenesis of complications after SARS-CoV?2 infection but also
may shed light on NET-dependent induction of EMT in lung
cancer cells.

Zhu et al. reported that exposure of gastric cancer cells to NET's
caused downregulation of E-cadherin and upregulation of vimentin
(35) along with an enhanced migratory ability. These effects were
inhibited by DNase I and PAD4 inhibitor. Furthermore, the same
authors developed a post—surgical residual tumor xenograft models
and showed that xenografts of untreated mice contained NETs
while animals treated with DNase I and PAD4 inhibitor did not
show detectable levels of NETs. Furthermore, tumors of untreated
mice showed the expression of vimentin and reduction of E-
cadherin levels.

Further evidences came from Stehr et al. who examined the
presence and intratumoral distribution of NETs in 85 samples of
human colon cancer (36). They found that NETs were present in
higher grade tumors often with loco-regional metastases and with
increased local invasion. They also reported that DLD1 and SW480
colon cancer cell lines incubated with NETs showed cell
morphology changes and alterations of the actin cytoskeleton. In
addition, SW480 cells showed upregulation of vimentin,
fibronectin, Zeb 1 and Slug whereas levels of E-cadherin and
epithelial cell adhesion molecule (EPCAM) were decreased. The
exposure of DLD1 cells to NETs enhanced the expression of
fibronectin and Zeb 1. The induction of EMT in DLD1 cells was
associated with an increased migratory capacity in wound
healing assay.

Other authors addressed the issue whether postoperative
abdominal infectious complications (AIC) can promote recurrence
or metastases after radical gastrectomy for cancer through the release
of NETs both in the peripheral blood and in the abdominal cavity
(37). They found higher levels of NET's in serum, plasma and ascites
fluid from patients with AIC than in patients without AIC.
Furthermore, MKN-45 and MGC-803 gastric cancer cells co-
cultured with neutrophils from AIC group showed enhanced
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TABLE 1 Main experimental evidences and mechanisms of NET-induced EMT in different biological systems.
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Experimental system Observations Signaling Pathways Inhibitors Ref.
- X « Loss of cell-cell contacts and impaired endothelial
Human umbilical vein ) inteerit
monolayer integri
endothelial cells (HUVECs) one _y?, esrity . . .
. R i « Acquisition of a spindle-shaped mesenchymal -like Nuclear translocation of i o
and conditionally immortalized . . . Neutrophil elastase inhibitor (32)
. phenotype junctional P - catenin
glomerular endothelial cells .
(iGEnCs) « | VE- cadherin
ciGEnCs
« | CD31
« More elongated fibroblast-like shape
« Reduction of cell adhesion, and enhanced migratory
i
Breast cancer cells MCF-7 properties . ND None (33)
« | E- cadherin
« 1 N-cadherin, fibronectin, B - catenin
« |CD24 and 1CD44
o | E- cadherin
Non-small cell lung cancer cells | « 1 aSMA
TGEF- N 34
A549 « 1'TGF-B, IL-1B and IL-8 in the presence of alveolar GF-p one o
macrophages
« Enhanced migratory properties
Gastric cancer cells AGS « | E- cadherin ND DNase I, PAD4 inhibitor (35)
o T Vimentin
« Formation of pseudopodia
Colo-rectal cancer cells DLD1 « Alterations o.f the actin cyt0§keleton
« Enhanced migratory properties ND None (36)
and SW480 K
« | E- cadherin, EPCAM
« 1 Vimentin, FN1, Zeb1, Slug
Gastric cancer cells MKN-45 « Enhanced rr‘ligration and invasion TGF—B inhibitor, P1§D4
« | E- cadherin TGF-p inhibitor, Neutrophil elastase (37)
and MGC-803 . S
« 1 N- cadherin, p-smad2 inhibitor, DNase I
o | E- cadherin, IncRNA MIR503HG
Non-small cell lung cancer cells | « 1 Vimentin, N- cadherin
NF-kB D I, MI Hi
A549 and SK-MES-1 « 1 NLRP3, caspase 1, IL-1b, IL-18 Nase I, MIRS03HG 8)
« Increased phosphorylation of NF-kB
« Reduction of cell adhesion and enhanced migratory
EGFR-driven non-small lung properties
cancer cells (HCC827 and « Loss of epitl"lelial phenotype NOTCH 1 DNase I 39)
H1975) and breast cancer cells « | E- cadherin
(MCEF-7) « 1 Vimentin, Zeb 1, Slug, Snail, Twist 1
« TNotch 1 and cleaved-Notch 1
o1 f dopodia-like trusi
Pancreatic ductal EI:;:;S;;) rr[: iserl:ati(:)[r)l oa:::l ilnea[; ir;)nrusmns ILK inhibitor and knockdown,
adenocarcinoma cells MIA Pa- 1Snai 1, S i d Zeb 1 v ITGBI-ILK axis DNase I, ITGBI blocking Ab, (40)
« 1Snai 1, Snai 2 and Ze
Ca-2 and KPCY CCDC25 silenci
s an « Increased GTP-CDC42 and GTP-RAC1 sfencing

1, decrease; 1, increase.

proliferation, migration and invasion compared to those co-cultured
with neutrophils from control or non AIC group both in vitro and in
animal models. Also, a lower level of epithelial marker E-cadherin
and higher level of mesenchymal marker N-cadherin were found in
MKN-45 and MGC-803 gastric cancer cells when co-cultured with
neutrophils from AIC group as compared to those co-cultured with
control or non-AIC group. These observations were confirmed in
animal models and in liver and peritoneal metastases of gastric cancer
patients. The main driver of these effects was found to be TGFJ since
NETs mediated E-cadherin downregulation, N-cadherin and p-
Smad2 (nuclear) upregulation were abrogated by treatment with a
TGFp inhibitor such as LY2157299.

Wang et al. investigated the ability of NETs derived from non-
small lung cancer (NSCLC) patients to induce EMT and the role of
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long non-coding RNA MIR503HG in modulating such process (38).
They found that A549 and SK-MES-1 cells when treated with NETs
expressed lower levels of E-cadherin and higher levels of N-cadherin
and vimentin. In addition, their migratory and invasive abilities were
enhanced. To test whether some long non-coding RNAs (IncRNAs)
were involved in EMT induction, they performed a trascriptome RNA
microarray analysis of A549 cells treated with NETs. They found a
large panel of IncRNAs that were upregulated or downregulated upon
cell exposure to NETs. In particular, the expression of IncRNA
MIR503HG was dramatically reduced by 12 h treatment with NETs.
Therefore, authors focused their attention on the overexpression or
silencing IncRNA MIR503HG in NSCLC cells and found that this
IncRNA inhibited the activation of EMT by NETs and reduced the
formation of lung metastases in animal models. By analysing the
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differentially expressed genes induced by NETs, the authors found that
several genes associated with inflammation were upregulated by NET's
and these included NLRP3, Caspasel, IL-1b, and IL-18. Since NLRP3
and pro-IL-1 protein expression is upregulated by activation of NF-kB
pathway, they tested whether NET' can activate the NF-kB pathway in
A549 and SK-MES-1 cells and found increased levels of p50, phospho-
P50, p65 and phospho-p65 after NET treatment. The activation of NF-
kB pathway was inhibited by overexpression of IncRNA MIR503HG.

In a recent study (39), our group investigated the role of NETs
as an adhesion substrate for a panel of cancer cell lines and the
ability of NETs to induce EMT in the same cell lines. This study
showed that cell adhesion to NETs was enhanced in all cancer cell
lines and was mediated by the binding of a5B1 integrin and
CCDC25 receptor expressed on the plasma membranes of cancer
cells to fibronectin and DNA, respectively, included in the structure
of NETs. Furthermore, the prolonged exposure of oncogene-driven
lung cancer cell lines to NETs caused the activation of EMT
program with reduction of E-cadherin expression and increased
levels of vimentin, Zeb 1, Slug, Snail and Twist 1. In the same cell
lines, a significant enhancement of cell migration was also observed.
Then, in the effort to identify the signaling pathway involved in the
activation of EMT, levels of Notch 1 and cleaved Notch 1 were
tested in untreated and NET-treated lung cancer cells and increased
levels of both molecules were found, indicating the central role of
Notch 1 in NET-dependent activation of EMT especially in
oncogene-driven lung cancer cell lines.

A more recent study reported the identification of NET-related
gene expression signatures in human samples of pancreatic ductal
carcinomas (40). In particular, the overexpression of NET-related genes
containing several genes involved in integrin-actin cytoskeleton
organization and activation of epithelial mesenchymal transition
identified a subgroup of patients with very poor prognosis.
Furthermore, exposure of pancreatic ductal adenocarcinoma cells
(MIA Pa-Ca-2 and KCPY) to NETs enhanced cell migration and
invasion and these effects were inhibited by DNase I, shtRNA-mediated
suppression of CCDC25 expression, antibodies targeting ITGB1 and
ILK inhibitors. Exposure to NETs also resulted in a dose-dependent
increase of EMT transcription factors including Snai 1, Snai 2 and Zeb
1 that was abrogated by silencing ILK. These findings highlighted the
role of CCDC25-ITGB1-ILK signaling in NET-dependent activation of
EMT program.

Conclusions

A growing body of evidences indicates that NETs can induce
EMT both in normal and malignant cells. This process is dependent
from NET-associated neutrophil elastase and integrity of NET’s
DNA backbone since neutrophil elastase inhibitors and degradation
of DNA with DNase I prevent or reduce the occurrence of EMT in
NET-treated cells. In cancer cells, NET-dependent activation of
EMT program is associated with their enhanced ability to migrate,
invade and disseminate at distant sites. Not all cancer cells when
exposed to NET's showed activation of EMT program and this may
depend on the differential sensitivity of cancer cells to the action of
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NETs that in turn may depend on the permissive status of their
signaling network.

The signaling pathways involved in the activation of EMT in
cancer cells exposed to NETSs are not completely elucidated but, as
reported above, several evidences indicate the involvement of B
catenin, certain cytokines, TGFf, NF-kB, Notch 1 and ITGB1-ILK
axis that may act independently or synergistically (Figure 2). The
involvement of multiple pathways and mediators is not surprising
since EMT can be activated by different ligands and receptor
pathways. What is surprising is that NETs contain in their
complex structure a number of molecules that can trigger directly
or indirectly EMT.

The composition of NETs can vary depending on several factors
including the stimulus inducing NET formation, the disease status
and even changes of physiological conditions of neutrophil donor
(41, 42). Although the main structural components of NETs remain
the same, the presence and the relative abundance of certain
proteins can vary in different conditions. For instance, NETs
generated by different stimuli through NADPH oxidase-
dependent and -independent pathways may have different
composition (42) and may trigger EMT with different intensity or
through different signaling pathways. A comparative proteomic
analysis showed divergences in protein composition of LPS-
induced and spontaneously released NETs whereas PMA- and
A23187-induced NETs showed a similar composition (43).
Therefore, the heterogeneity in composition of NETs may explain
their different ability to induce EMT in different studies and also the
variability in the effectiveness of protease inhibitors in blocking
NET functions.

In addition to the well-known protein markers of NET's such as
citrullinated histones, neutrophil elastase and MPO, studies using
proteomic analysis allowed to identify a large panel of proteins
inside the structure of NETs. Urban et al. (44) reported a list of 24
proteins that have a nuclear, granular or cytoplasmatic localization
in unstimulated neutrophils. In this study the authors focused on
the functional activity of calprotectin as an inflammatory marker
and anti-fungal NET-bound protein. More recent proteomic studies
identified up to 2364 proteins (45) among which the most abundant
were MPO, calcium and zinc-binding proteins, calprotectin and a
group of RNA-binding proteins. Based on these studies reporting
the enrichment of different groups of proteins belonging to different
cellular compartments of activated neutrophils, it is likely that
additional pathways may be found to be involved directly or
indirectly in the activation of EMT program by NETs.

In addition to tumor associated neutrophils, other tumor
microenvironmental components contribute synergistically to the
activation of EMT program in cancer cells. The role of cancer
associated fibroblasts (CAFs) has been well characterized and
relies upon the secretion of high levels of various growth
factors, cytokines and enzymes including TGFf, matrix
metalloproteinases, hepatocyte growth factor and urokinase-type
plasminogen activator especially at the invasive front of tumors (46,
47). Similarly, activated tumor associated macrophages (TAM:s) are
able to induce EMT through the secretion of TGFf and chemokine
CCL18 (48, 49). The synergistic effect of these stromal cells is
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FIGURE 2

NET-induced signaling pathways and related cross-talk in cancer cells. Schematic graph illustrating the main signaling pathways engaged by NETs

and how they can act independently or synergistically.

multiplied by the fact that some of the secreted factors may induce
release of NET's from tumor associated neutrophils thus realizing a
positive loop of interactions.

The studies reported here provide solid evidences that NETs can
activate the EMT program in both normal and malignant cells.
However, several aspects remains to be elucidated. For instance, it is
unclear whether normal and malignant cells are equally responsive to
NETs and whether the signaling pathways involved are the same.
Similarly, not all epithelial cancer cell lines are equally sensitive to NET-
dependent induction of EMT and despite the reported involvement of
several signaling pathways, the interconnections among different
signaling networks were not fully elucidated. Furthermore, the role of
NETs in cancer should be evaluated taking into account the function of
other components of tumor microenvironment such as cancer-
associated fibroblasts, tumor associated macrophages and immune
cells thus providing an integrated picture of the events occurring in
tumor microenvironment. This integrated vision can contribute to
identify the optimal therapeutic strategy to counteract NETs function.

NETs by inducing a mesenchymal state in cancer cells can
determine their destiny. As drivers of EMT, NETs enhance the
migratory and invasive properties of cancer cells promoting their
dissemination at distant sites. Although incomplete, the
mesenchymal state increases the heterogeneity of tumors and
enhances their resistance to conventional anticancer therapies
(47). In addition to the direct modulation of immune cells by
NETs in tumor stroma (50), the acquisition of a mesenchymal state
by tumor cells is associated with immune evasion and suppression
through diverse mechanisms (51). In particular overexpression of
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Zeb 1 in response to an EMT inducer suppresses miR-200
expression that in turn causes upregulation of PD-L1 on cancer
cells and T cell exhaustion (52, 53). Furthermore, the mesenchymal
state is associated to upregulation and secretion of growth
factors and other ligands that support the recruitment of
immunosuppressive cells such as MDSC in tumor stroma (54).
Induction of EMT by NETs seems to occur through highly
complex and redundant mechanisms thus posing a difficult
challenge to the development of treatment strategies targeting
NET-dependent EMT. Prevention of NET formation using PAD4
or neutrophil elastase inhibitors may deserve attention for future
clinical applications. Alternatively, the disruption of NET structure
by DNase I may be explored as treatment strategy in combination
with standard anti-cancer therapies. Furthermore, the development
of more selective targeted therapies may require the knowledge of
specific signaling pathways activated by NETs in individual tumors.
In conclusion, NETSs seem to have a leading role at the crossroad
between inflammation and cancer with many important clinical
implications and unraveling the complex network of their
interactions with cancer, stromal and immune cells can provide
suitable targets for preventing metastatic dissemination and
increasing tumor response to chemotherapy and immune therapy.
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