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Primary Biliary Cholangitis (PBC) is a chronic autoimmune liver disease

characterized by immune-mediated destruction of intrahepatic bile ducts. This

review synthesizes current knowledge on the critical role of innate immunity,

specifically involving cholangiocytes, bile components, and associated immune

cells. Cholangiocytes function not only as passive targets but also as active

immunomodulators through mechanisms including Toll-like receptor (TLR)

signaling, antigen presentation, and immune cell recruitment. Dysregulated bile

acid signaling via receptors like TGR5 disrupts immune homeostasis, while

apoptosis of biliary epithelial cells releases antigens (e.g., PDC-E2), triggering

aberrant innate and adaptive immune responses. Innate lymphoid cells (ILCs),

natural killer (NK) cells, and macrophages exhibit altered frequencies and

functions in PBC, driving chronic inflammation and fibrosis through cytokine

cascades (e.g., IL-17, IFNg) and interactions within the gut-liver axis. Furthermore,

biliary microbiota dysbiosis exacerbates disease by promoting bacterial

translocation, modifying bile acid metabolism, and activating innate immune

pathways. Current clinical management with ursodeoxycholic acid (UDCA) and

obeticholic acid (OCA) primarily addresses cholestasis. However, the

immunomodulatory effects of these agents remain constrained. Targeted

therapeutic strategies addressing innate immune pathways—exemplified by

RIPK2 (Receptor Interacting Serine/Threonine Kinase 2) inhibition, IL-1

blockade(Canakinumab), and T cell immunoglobulin mucin domain-containing

protein 3 (TIM-3) modulation—alongside cell-based interventions such as

mesenchymal stem cell therapy, demonstrate considerable therapeutic

potential. Advancing these modalities necessitates multidisciplinary integration

to facilitate clinical translation. Additionally, Prognostic indices like the

neutrophil-to-lymphocyte ratio (NLR) and monocyte-to-lymphocyte ratio

(MLR) reflect systemic inflammation and correlate with disease progression.

Achieving therapeutic precision requires deeper elucidation of the gut-biliary-

immune axis, trained immunity mechanisms, and cholangiocyte senescence,

paving the way for targeted interventions in PBC. Establishing a comprehensive

treatment burden assessment system is imperative to facilitate the transition

from investigational platforms to clinical care.
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1 Introduction

Primary Biliary Cholangitis (PBC) is a chronic autoimmune

disorder characterized by immune-mediated destruction of

interlobular and septal bile ducts. Left untreated, this pathological

trajectory evolves through progressive cholestasis and chronic

inflammation, culminating in irreversible hepatic fibrosis and

cirrhosis via sustained fibrogenesis (1, 2). The disease

pathogenesis entails multifactorial interactions among genetic

predisposition (notably HLA class II alleles), epigenetic

alterations, and environmental triggers, collectively initiating

autoimmune targeting of biliary epithelial cells (1, 2). Diagnostic

classification for PBC includes three key parameters: AMA status,

histopathological staging (Ludwig or Nakanishi), and clinical

phenotype (3–5). AMA sensitivity is 90-95%, but AMA-negative

cases require autotaxin levels and cholangiographic imaging for

confirmation (5–7). First-line treatment is UDCA at 13–15 mg/kg/

day, achieving biochemical response in 60-70% of patients via bile

acid modulation and anti-apoptotic mechanisms (8, 9). For UDCA

non-responders (40% of cases), second-line agents like obeticholic

acid and PPAR agonists are implemented to impede progression

(9). Post-liver transplant patients with relapse and poor UDCA

response exhibit elevated mortality risk (10). Clinical trials should

identify and validate surrogate markers as endpoints for evaluating

second-line therapies (11, 12). The Ursodeoxycholic Acid Response

Score (URS) may serve as a predictive tool for long-term clinical

outcomes—such as liver transplantation or death—following 12

months of pre-therapeutic UDCA administration (13, 14).

Specifically, the GLOBE and UK-PBC Risk Scores guide second-

line therapy allocation in practice (15). High-risk patients can be

prioritized for prompt second-line treatments such as obeticholic

acid (16), while Paris II criteria offer standardized patient

stratification for trials (17). With individualized medicine

advancing, models integrating multifactorial data are essential for

optimizing PBC management (18). Although well-validated

prognostic models are applicable to all patients with PBC, their

clinical utility in guiding therapy is most pronounced in individuals

responsive to UDCA. For up to 40% of patients who do not respond

to UDCA as first - line therapy, and considering that a substantial

proportion may also experience failure of second - line treatment

options, the development of therapeutic strategies remains an

unmet clinical requirement.

Autoimmune bile duct lesions may arise following disruption of

tolerance mechanisms mediated by bile duct epithelial cells (19).

Biliary epithelial cells establish a sophisticated interactive network

with diverse hepatic immune cell populations, facilitating leukocyte

recruitment to specific anatomical sites through cytokine and

chemokine expression (20). In cholangiopathies, immune cells—

including monocytes, lymphocytes, neutrophils, and mast cells—

are recruited to the liver. Within this microenvironment, they

interact with biliary epithelial cells and resident Kupffer cells,

collectively influencing disease progression (21).

Crucially, interactions between biliary epithelial cells and

immune cells are pivotal for maintaining homeostasis.

Additionally, biliary epithelial cells can mitigate cholangitis
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development through upregulation of PD-L1 expression, thereby

conferring protection against CD8+T cell-mediated cytotoxicity

(22). During PBC pathogenesis, Damage-associated Molecular

Patterns (DAMPs) released during biliary epithelial cell apoptosis

trigger innate immune responses via activation of Pattern

Recognition Receptors (PRRs), including TLRs and NOD-like

receptors (NLRs) (23). These DAMPs encompass autoantigens

such as the mitochondrial Antigen Pyruvate Dehydrogenase

Complex- E2 (PDC-E2), whose aberrant exposure disrupts

normal immune tolerance (24). Disordered bile acid metabolism

potentiates DAMP release, establishing a pathological positive

feedback loop (25). Activated PRRs induce chemokine secretion

through MyD88-dependent signaling pathways, promoting

infiltration of innate immune cells—including Ly6C+monocytes,

macrophages, and Dendritic Cells (DCs) (26). These cells

subsequently establish the foundation for adaptive immune

responses by presenting PDC-E2 antigen and secreting pro-

inflammatory cytokines (such as IL-12, IL-23) (24). Metabolites

generated during intestinal dysbiosis, such as short-chain fatty

acids, can further perturb Myeloid-derived Suppressor Cell

(MDSC) homeostasis, exacerbating innate immune dysregulation

(27). The innate-adaptive immune crosstalk constitutes a core

immunological principle, facilitating synergistic amplification of

the immune response. Autoantigens presented by innate immune

cells activate CD4+T cells, specifically the CCR5+CD4+T cell subset

(28). IL-15Ra+B cells promote activation and expansion of these T

cells via IL-15 signaling, orchestrating targeted immune attacks

against the biliary epithelium (28).This paradigm emphasizes that

innate immunity functions not merely as an initiator but also as a

critical modulator of adaptive immunity, thereby mediating

dynamic cross-regulation between these two systems.

AMA is the most classic hallmark, but other antibodies such as

elevated serum IgM and specific antinuclear antibodies also play

critical roles in diagnosis and prognosis. Non-AMA autoantibodies,

particularly specific subtypes of antinuclear antibodies (ANA),

including anti-gp210, anti-sp100, and anti-centromere, constitute

an essential component of PBC diagnosis. They are especially

impor tan t in ca se s where AMA is nega t i v e (3–5) .

Immunomodulation constitutes a systemic therapeutic approach.

Despite the presence of characteristic AMA-M2, current

immunomodulatory strategies still lack cellular specificity and

precise targeting. Furthermore, the translational relevance of

animal models remains debatable, as they fail to accurately

identify therapeutic windows or adequately replicate the

spatiotemporal heterogeneity of the immune microenvironment.

Achieving therapeutic efficacy necessitates maintaining a delicate

balance—a critical consideration warranting in-depth investigation.

Therefore, this review provides an overview of biliary tract

innate immunity, focusing on cholangiocytes, bile constituents, and

immune cells in PBC from an immunological perspective (as

illustrated in Figure 1).

We aim to concentrate on the role of innate immune imbalance

in PBC pathogenesis and how addressing these mechanisms might

offer new therapeutic possibilities. The first-line therapy for PBC

remains UDCA. Based on validated prognostic models such as the
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URS, GLOBE, and UK-PBC scores, patients with high-risk PBC are

prioritized candidates for second-line therapies, these established

prognostic markers and treatment strategies are supported by

robust clinical evidence and recommended for use in

international guidelines. However, it is worth noting that

emerging therapeutic approaches including RIPK2 inhibition, IL-

1 blockade, TIM-3 modulation, and MSCs therapy are currently

given the involvement of innate immunity in PBC pathogenesis.

Prognostic indices such as NLR and MLR reflect systemic

inflammation and correlate with disease progression. Moving

forward, achieving therapeutic precision will require deeper

mechanistic insights into the gut-biliary-immune axis, trained

immunity, and cholangiocyte senescence to enable targeted

interventions. Nevertheless, it must be mentioned that these

approaches are currently primarily at the experimental stage, and

their clinical translation necessitates rigorous validation through

further clinical trials to ensure both safety and efficacy as potential

innate immunomodulatory interventions.
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2 The innate immune system of the
biliary tract

2.1 Cell composition, function and
pathways

The biliary tract orchestrates innate immunity through

coordinated interactions between its cellular components,

biochemical mediators, and microbial residents(as shown

in Figure 2).

As the primary defense mechanism, macrophages, dendritic

cells, and innate lymphoid cells strategically localize within portal

tracts and bile ducts, establishing surveillance networks that detect

gastrointestinal-derived pathogens via pattern recognition receptors

(30). These immune effectors collaborate with cholangiocytes—

transcending their structural role—which actively modulate

immune responses through cytokine secretion, antigen

presentation, and secretory IgA production to neutralize invading
FIGURE 1

Innate immune cells in the bile duct environment of PBC. Spatial arrangements and dynamic transformations of cells in biliary duct transport
compartments, organized around Hering tube and bile canaliculi to form a conduit for immune cell trafficking. The initial immunogenic insult (e.g.,
biliary epithelial exposure to PDC-E2, microbial products, or metabolic stressors) induces the recruitment of short-lived innate immune cells (e.g.,
monocytes, macrophages) from peripheral circulation. Within the tissue microenvironment, a complex interplay takes place among long-lived
tissue-resident cells (e.g., macrophages, NK cells, ILCs, dendritic cells), cholangiocytes, and endothelial cells. The sustained release of pro-
inflammatory cytokines, chemokines, antimicrobial peptides, aberrant proliferation, and migratory responses, culminating in the progressive
autoimmune targeting of interlobular bile ducts. Created by BioGDP.com (29). PDC-E2, Pyruvate Dehydrogenase E2; ILCs, Innate lymphoid cells, NK
cells, Natural Killer cells.
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microorganisms (31). Significantly, this cellular interplay is

biochemically regulated by Bile Acids(BAs) via TGR5 receptor

signaling on cholangiocytes. BA-mediated induction of anti-

inflammatory mediators counterbalances pro-inflammatory

signals to maintain mucosal homeostasis. The system’s resilience

further relies on bidirectional crosstalk with the biliary microbiota:

commensal organisms metabolize BAs into immunoregulatory

derivatives, while dysbiosis disrupts this equilibrium, predisposing

to cholangiopathies such as primary biliary cholangitis through

aberrant immune activation (32, 33). Notably, cholangiocyte

viability constitutes a critical determinant—their senescence

impairs antimicrobial defense, whereas apoptosis initiates fibrotic

cascades, thereby delineating how epithelial-immune coordination

governs disease progression (18). Consequently, emerging

therapeutic strategies target this multifaceted network, aiming to

recalibrate BA signaling, restore microbial symbiosis, and preserve

cholangiocyte function to intercept pathological cascades.
Frontiers in Immunology 04
The innate immune signaling pathways within the biliary tract

encompass complex molecular mechanisms regulating host

responses to microbial stimuli. While direct investigations of the

biliary tract remain limited, insights derived from related tissues

and cell types provide valuable insights into these pathways. NF-kB
signaling constitutes a pivotal component of innate immune

responses across diverse epithelial tissues. NF-kB activation is

essential for epithelial defense, with cortactin playing a critical

role in facilitating NF-kB-mediated cytokine production, such as

IL-8, during bacterial infection (32). This underscores the

significance of NF-kB in mediating inflammatory responses, likely

relevant to biliary epithelial cells due to their epithelial

characteristics. Similarly, microbial components modulate innate

immune signaling, as demonstrated in studies of pathogen

recognition. Chlamydia trachomatis can induce TLR3 expression

while concurrently downregulating the NF-kB and IRF3 pathways

in Sertoli cells, resulting in the suppression of pro-inflammatory
FIGURE 2

Innate immune cells in PBC. The interplay of innate immune cells in PBC’s hepatic sinusoids and biliary system with micro-organisms traversing
hepatoenteric circulation during BA metabolism. Innate immune mechanisms via the gut-liver axis contribute to PBC pathogenesis through gut-
derived signals and hepatic inflammation. (A) Monocyte recruitment and hepatic activation: Monocytes infiltrate the liver sinusoids and interact with
endothelial cells, Kupffer cells, and macrophages. Mitochondrial antigen PDC-E2 triggers monocyte recruitment and activation via NF-kB signaling
(through CD14/TLR4), alongside regulatory interactions with NK cells and immune checkpoint regulator TIM-3 modulate cytotoxicity. (B) LPS-
induced inflammation: LPS translocated from the gut activates TLR signaling on innate immune cells (e.g., macrophages, dendritic cells), promoting
pro-inflammatory cytokine production (e.g., IL-12, IL-23, IL-17, IFN-g). (C) Bacterial translocation and bile acid dysregulation: sIgA function and gut
barrier failure lead to bacterial translocation. Secondary BAs activate TGR5 receptors, disrupting BA homeostasis and amplifying inflammatory and
cholestatic injury in small and large cholangiocytes. Created by BioGDP.com (29). BAs, Bile Acids; TLR, Toll-like receptor; LPS, Lipopolysaccharide;
MyD88, Myeloid differentiation factor 88; IRAK1, Immune Recognition of Alphavirus Capsid Protein; IFIT3, Interferon-induced protein with
tetratricopeptide repeats 3; SASP, Senescence-Associated Secretory Phenotype; TIM-3, an immune checkpoint molecule; FXR, Farnesoid X Receptor;
TGR5, Takeda G protein-coupled receptor 5; ILC1, Innate Lymphoid Cells; CD163, a marker for macrophages; sIgA, Secretory Immunoglobulin A.
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cytokine production (33). This indicates that certain pathogens can

manipulate innate signaling pathways, potentially influencing

immune responses in tissues such as the biliary tract that are

exposed to microbial stimuli.

Type I and III interferons play critical roles in innate antiviral

immunity. Studies demonstrate differential interferon responses in

human nasal versus lung tissues following SARS-CoV-2 infection,

revealing restricted interferon induction in lung tissue despite

productive viral infection (34, 35). These findings indicate tissue-

specific regulation of interferon signaling pathways, suggesting

parallels to the response mechanisms observed in biliary

epithelium upon exposure to pathogens. The role of cytokines,

such as Interferon Gamma (IFNg), in linking immune responses to

tissue pathology is underscored (36), who found that chronic IFNg
expression alters hepatic immune microenvironments, potentially

contributing to autoimmune condit ions l ike primary

biliary cholangitis.

This connection underscores the critical role of cytokine

signaling pathways in biliary immune regulation. Furthermore,

the involvement of nuclear receptors in modulating immune

responses is evident within the context of liver and biliary

diseases. Studies indicate that PPARa and FXR may alter the

hepatic immune microenvironment in biliary atresia (37, 38),

suggesting that nuclear receptor pathways are integral to immune

regulation in biliary tissues. Additional insights into innate immune

regulation derive from investigations of tissue-specific responses.

Bacterial outer membrane proteins activate innate immunity via

neural-immune communication pathways, demonstrating that

microbial components may influence immune signaling beyond

classical receptor pathways (39). Moreover, the multifunctional role

of CD14 in innate immunity and tissue homeostasis has highlighted

its potential regulatory functions in barrier tissues characterized by

rapid cell turnover, such as the biliary epithelium (40).
2.2 The relationship between innate biliary
immunity and PBC

Typically, Biliary epithelial cells (BECs) are integral to immune

response, functioning not only as a physical barrier but also actively

participating in immune signaling. The apoptosis of BECs induces

the release of auto-antigenic epitopes, which subsequently activate

the immune system, driving dysregulation of both innate and

adaptive immunity in PBC (41). Mass cytometry analyses

demonstrate quantitative alterations in peripheral immune cell

subsets in patients, including decreased gd T cells and memory B

cells, alongside increased monocytes and naïve B cells (42). This

cellular imbalance underscores the critical role of innate immunity

in disease progression (43).

Cytokines and immune mediators orchestrate PBC

pathogenesis. Elevated expression of interferon-induced proteins,

such as IFIT3, within senescent BECs indicates their involvement in

inflammatory processes (44). Furthermore, TIM-3-mediated

modulation of chemokine receptors on NK cells contributes to

immune dysregulation, suggesting therapeutic potential through
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targeting this pathway (45). The gut microbiome exhibits significant

interaction with innate immunity in PBC. Disease-associated

dysbiosis, characterized by reduced microbial diversity and

overgrowth of specific bacterial taxa, may influence immune

responses via the gut-liver axis (46). Microbial metabolites can

modulate both innate and adaptive immunity, thereby linking

intestinal homeostasis to biliary inflammation (47).

Identification of disease-associated immune cell subsets and

cytokine profiles holds promise for yielding novel biomarkers and

therapeutic targets. Promising strategies include modulating the

TIM-3 pathway and restoring gut microbiome balance (45, 46).

Concurrently, genome-wide association studies identify risk loci

predominantly related to immune function, highlighting the

contribution of innate immunity to genetic susceptibility in

PBC (43).
3 The mechanism of onset and
progression

3.1 The autoimmune response

The innate immune system plays a critical role in the

pathogenesis of PBC. NK cells mediate the destruction of BECs

through both direct and indirect mechanisms. Specifically, the

enhanced frequency and cytotoxicity of NK cells observed in the

peripheral blood and liver tissues of PBC patients amplify

autoimmune responses via the activation of autoreactive CD4+ T

cells and the secretion of inflammatory cytokines (48). Innate

Lymphoid Cells (ILCs) exhibit imbalances in subtype distribution

among PBC patients, with alterations in cytokine production

patterns correlating with disease severity. These ILC

dysregulations may promote inflammatory and autoimmune

pathways during PBC progression (49). Emerging evidence

highlights trained immunity—a persistent functional

reprogramming of innate immune cells following initial stimuli—

as a contributor to exaggerated inflammatory responses upon

secondary challenges (50). This innate immune hyper-reactivity

to self-antigens may perpetuate chronic inflammation and tissue

injury. The metabolic and epigenetic remodeling underlying trained

immunity represents potential therapeutic targets. Reversing these

adaptations may attenuate PBC-associated chronic inflammation

(51). Pro-inflammatory cytokines secreted by activated innate

immune cells establish a destructive microenvironment for BECs.

Notably, the Th17/Treg imbalance, characterized by elevated Th17

cell levels and reduced Treg cell levels, reflects the inflammatory

shift characteristic of PBC (52).

Gut microbiome dysbiosis in PBC patients correlates with altered

microbial diversity and metabolite profiles. Microbiota-derived

metabolites (e.g., short-chain fatty acids) modulate innate immunity,

suggesting microbiome-targeted therapies could influence disease

progression (46). Furthermore, metabolites derived from the gut

microbiota reach the liver via the portal venous system, providing

persistent low-grade immune stimulation. This continuous gut-derived

immunogenic signal is hypothesized to disrupt immune tolerance
frontiersin.org
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towards mitochondrial antigens (53). Consequently, this ongoing

microbial-driven immune activation provides a mechanistic

explanation for the suboptimal efficacy and lack of durability

observed with therapeutic strategies solely targeting systemic immune

responses (53). Concurrently, the pivotal role of Peroxisome

Proliferator-Activated Receptor (PPAR) in regulating the gut-liver

immune axis has emerged as a significant finding (23). PPAR

agonists to modulate immune responses, Low-dose IL-2 to restore

immune balance (52), Trained immunity pathway inhibitors (50, 54).

Their involvement in modulating immune and metabolic pathways

offers promising novel targets for therapeutic intervention in PBC.
3.2 Injury of bile duct epithelial cells

Biliary epithelial cells are primary targets in PBC, where

apoptosis releases autoantigen epitopes that trigger immune

activation. This process is modulated by genetic predisposition

and environmental factors that disrupt immune tolerance, driving

disease progression (41). Bile acid accumulation within BECs

induces cellular damage through membrane-disrupting detergent

effects (55). Concurrently, diminished bicarbonate production

compromises the protective “bicarbonate umbrella,” worsening

BEC injury and cholestasis (56). Innate immunity critically

influences PBC pathogenesis. Inflammatory cytokines released

during BEC injury recruit and activate macrophages and NK

cells, amplifying bile duct damage. Invariant NK T cells

exacerbate liver fibrosis via Interleukin-17A (IL-17A) production,

correlating with disease severity in PBC patients (56). Mast cells

further contribute by interacting with innate immune cells to

promote inflammation and fibrosis in cholestatic liver diseases (57).

Cholangiocytes exhibit injury responses including proliferation,

differentiation, and senescence, collectively termed the Ductular

Reaction (DR) to repair bile ducts (58). However, maladaptive

responses exacerbate fibrosis. Senescent cholangiocytes adopt a

Senescence-associated Secretory Phenotype (SASP), releasing pro-

inflammatory mediators that sustain fibrogenesis and perpetuate

injury cycles (44). Advancements in organoid technology have

enabled the modeling of BEC injury, providing insights into

cholangiocyte pathophysiology. These model systems facilitate the

investigation of cholangiocyte apoptosis and fibrogenic responses

critical to the progression of cholangiopathies, including biliary

atresia and PBC (59). Such models hold promise for identifying

therapeutic targets to mitigate BEC damage in PBC.

UDCA targets enhanced bile flow and reduced cholestatic injury

but frequently fails to halt disease progression (60). Emerging

therapeutic strategies focus on immunomodulatory agents and anti-

fibrotic therapies to improve BEC survival and restore biliary function

(55). Targeting cholangiokines—cytokines secreted by cholangiocytes

—may also modulate the hepatic microenvironment for therapeutic

benefit (61). The complex interplay between BEC injury, immune

activation, and cholangiocyte adaptive responses underscores the

disease pathogenesis.
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3.3 Inflammatory factors

Inflammatory factors—ranging frommolecular signaling pathways

like TGF-b1/Smad and IRF3 phosphorylation, to immune cell subsets

such as ILCs, and systemic cytokines—play crucial roles in the innate

immune response of the biliary tract in PBC. These factors contribute

to inflammation, tissue injury, and fibrosis, shaping the disease course

and offering potential targets for therapeutic intervention.

MicroRNA-34a has been identified as a potential marker and

regulator of fibrogenesis in PBC which promotes Epithelial-

Mesenchymal Transition (EMT) and liver fibrosis by modulating the

TGF-b1/Smad pathway, suggesting its pivotal role in inflammatory and

fibrotic processes within the biliary system (62). However, the precise

role ofEMTin thepathogenesis ofPBCremains controversial.Although

in vitro studies demonstrate that TGF-b1 can induce EMT in

cholangiocytes (63, 64), lineage-tracing animal models have failed to

provide definitive evidence for EMT occurrence in vivo (65, 66).

Cholangiocyte senescence (67, 68), autophagy dysfunction (69), and

inflammatorycytokines suchas IL-17A(70)are recognizedas significant

pathogenicmechanisms inPBC.Asamatteroffact,whetherEMTactsas

a primary driver of bile duct injury or a secondary consequence requires

further investigation. The extent of concordance between EMT

manifestations observed in human PBC and those in experimental

animal models also warrants critical evaluation.

Moreover, substantial evidence suggests that interferon

regulatory factor 3 (IRF3) phosphorylation serves as a critical

mediator of inflammation and tissue injury. Elevated IRF3

phosphorylation levels observed in the livers of patients with PBC

and Primary Sclerosing Cholangitis (PSC) reveal that bile acid–

induced IRF3 activation mediates cell death, inflammatory

responses, and fibrosis, highlighting the pivotal role of innate

immune signaling in disease pathology (71). The immune cell

landscape also undergoes alterations in PBC. ILC subsets,

specifically ILC1s and ILC3s in both patients and murine models,

are implicated in the disease process, potentially contributing to

inflammatory responses and biliary tract fibrosis (72).

Bile acids themselves function as modulators of inflammation. The

roles of bile acids and their cognate receptors underscore their

influence on immune responses in autoimmune liver diseases (73).

This connection implies that bile acid–mediated signaling pathways

may intersect with inflammatory cascades, further modulating innate

immunity in PBC. The microbial milieu within the biliary system

likewise influences inflammatory responses. Altered biliary microbial

patterns correlate with disease progression and reduced transplant-free

survival in PSC, suggesting microbial factors modulate innate immune

activation and inflammation in cholangiopathies (74).

Additionally, systemic inflammatory cytokines and their mediators

have been investigated for causal roles (Table 1). Mendelian

randomization analyses demonstrate that circulating inflammatory

cytokines mediate the relationship between plasma metabolites and

bile duct or gallbladder calculus formation (91), collectively illustrating

the integral contribution of inflammatory mediators to disease

pathogenesis and progression.
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3.4 Biliary microbiota

The biliary microbiome constitutes a complex microbial

community inhabiting the biliary tract. Dysbiosis—an imbalance

within this ecosystem. Specifically, patients with PBC exhibit

compositional alterations in their biliary microbiota, which may
Frontiers in Immunology 07
drive immune dysregulation and disease progression (92, 93).

Certain bacterial genera, including Enterococcus and Fusobacteria,

demonstrate significant correlations with PBC severity. The

detection of Enterococcus in bile samples is associated with

heightened risks of disease advancement, suggesting that specific

microbial populations exacerbate inflammatory cascades within the

biliary tract (41, 94).

Biliary epithelial cells regulate local immune responses through

secretory IgA expression and chemokine receptor modulation,

while bile acids confer cytoprotection via TGR5 receptor

activation (95). Conversely, secondary bile acids generated by

microbial metabolism exhibit concentration-dependent and

microbiota-contextual effects on cholangiocytes, ranging from

protective to detrimental outcomes (41, 96). The interplay

between biliary microbiota and inflammation involves

multifactorial mechanisms. Dysbiosis may promote intestinal

barrier dysfunction, facilitating bacterial translocation and

metabolite influx into the biliary system. This process can incite

aberrant immune activation and cholangiocyte injury (93, 97).

Distinct microbial signatures within the bile of PBC patients

correlate with disease duration and severity. Elevated microbial

richness and enrichment of specific taxa are linked to advanced

fibrotic stages (98).

Given the emerging role of biliary dysbiosis in PBC,

microbiome-targeted interventions represent a promising

therapeutic strategy. Approaches including probiotics, prebiotics,

and fecal microbiota transplantation aim to restore microbial

homeostasis and enhance biliary immune function (99, 100).

Pharmacological agents modulating bile acid metabolism and

cholangiocyte signaling pathways also hold therapeutic potential

as PPAR agonists (23, 32).
4 Diagnosis and treatment strategies
for innate biliary immunity

4.1 The standard of care

UDCA persists as the cornerstone of PBC management,

attenuating cholestatic injury through pleiotropic mechanisms

(32, 100). Although its cytoprotective effects on cholangiocytes

against bile acid toxicity are well-established, the precise

molecular pathways—particularly its interactions with bile acid

transporters and nuclear receptors—require further elucidation.

This knowledge gap holds clinical significance: approximately

40% of patients exhibit suboptimal biochemical responses to

UDCA, necessitating second-line therapies (41). OCA, a potent

FXR agonist, targets this therapeutic gap by reprogramming bile

acid homeostasis. Its efficacy derives from the transcriptional

upregulation of efflux transporters (BSEP, MRP2/3, MDR3),

thereby reducing hepatocellular bile acid retention and apoptosis

(43, 101). However, the dose-dependent pruritus of OCA and

heterogeneous treatment responses underscore the necessity for

personalized FXR agonist selection based on patient genetics and

disease phenotype. The autoimmune pathogenesis of PBC positions
TABLE 1 Primary cytokines associated with cholangiocytes and their
functional roles in PBC.

Cytokines Function Description

IL-1b

IL-1b upregulates the expression of intercellular adhesion
molecules, antigen-presenting molecules, and IL-6 in cultured
cholangiocytes and induces Th17 cell differentiation in
conjunction with IL-6 (75).

IL-2
Low-dose IL-2 can significantly improve liver biochemistry and
pathology by reversing the imbalance of Th17 and Treg cells
(23, 76)

IL-6
IL-6 mediates the proliferation of cultured cholangiocytes and,
in conjunction with IL-1ß, promotes Th17 cell differentiation
(77, 78).

IL-10
The immunomodulatory effect of IL-10 as an
immunosuppressive and anti-inflammatory cytokine as a role
of IL-10 in fibrosis (79–81).

IL-12
IL-12 enhances T cell activation, leading to IFN-y-mediated
cholangiocyte injury via Th1 responses in PBC (82).

IL-17

The frequency of IL-17 (+) lymphocyte infiltration in liver
tissues of patients with PBC and those with other liver
dysfunction increases. IL-17A promotes fibrosis related to PBC
(47, 81, 83).

IL-21
IL-21 is a member of the common gamma-chain cytokine
family and exacerbated liver fibrosis in mice with autoimmune
cholangitis (84, 85).

IL-23
The persistence of IL-12/ Th1-mediated immunopathology in
PBC through the IL-23/Th17 pathway (86).

TNF-a

TNF-a upregulates the expression of intercellular adhesion
molecules and antigen-presenting molecules in cultured
cholangiocytes and disrupts the barrier function of the tight
junction (30, 87).

IFN-g

IFN-g upregulates the expression of intercellular adhesion
molecules and antigen-presenting molecules, downregulates
PPAR-g expression in cultured cholangiocytes, and disrupts the
barrier function of the tight junction (75, 87).

TGF-b
NUDTI-dependent DNA damage resistance enhances CD8+ T
cells in vitro through the PARP1-TGF ßR axis (62, 88)

MMP-3
The increase in MMP-3 concentration is positively correlated
with various clinical and immunological parameters of PBC as
well as advanced liver fibrosis (89).

ERa
ERa activation led to mitochondrial damage, apoptosis, and
upregulation of ERa and PDC-E2 expression (90).
This table delineates key cytokines implicated in the pathogenesis of PBC, detailing their
effects on cholangiocytes and their contributions to disease mechanisms including
inflammation, immune cell differentiation, fibrosis, and disruption of biliary barrier
integrity. Each cytokine entry is accompanied by a description of its primary function(s), as
established by current evidence from vivo or vitro investigations. Superscript numerals denote
corresponding references.
CD, a cluster of differentiation; IFN, interferon; MMP, matrix metalloproteinase; PBC,
primary biliary cholangitis; PPAR, peroxisome proliferator-activated receptor; TGF,
transforming growth factor; Th, T helper; TNF, tumor necrosis factor. Cytokines expressed
by cholangiocytes from Refs (30, 75, 86, 87, 89).
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innate immunity regulators as promising therapeutic targets, as

illustrated in Figure 3.
4.2 Emerging experimental strategies
targeting innate immunity

Receptor Interacting Serine/Threonine Kinase 2 (RIPK2)

functions as a critical signaling hub within the NOD-mediated

inflammatory cascade (102). Pharmacological inhibition of RIPK2

may disrupt the self-perpetuating cycle of biliary epithelial cell

damage and cytokine release- a strategy potentially synergistic with

bile acid-directed therapies. Similarly, interleukin-1 blockade
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(Canakinumab) represents a rational therapeutic approach to

attenuate inflammasome activation in patients refractory to

UDCA/OCA (103). Its established efficacy in autoinflammatory

disorders such as Still’s disease suggests applicability in PBC

patients exhibiting prominent serological inflammation (elevated

CRP/SAA). Nevertheless, strategic stratification of patients is

essential: IL-1 antagonists may benefit individuals with dominant

innate immune activation, whereas RIPK2 inhibitors might target

those with NOD pathway dysregulation. Non-immunosuppressive

adjuncts play vital roles in symptom control and mucosal

protection. Hymecromone exemplifies this approach—its triple

mechanisms of action (choleretic, cholekinetic, spasmolytic)

alleviate biliary pain without inducing gallbladder contraction,
FIGURE 3

Therapeutic approaches in primary biliary cholangitis. The figure summarizes current and emerging approaches to modulate innate immune
responses and inflammation in PBC. Schematic overview of current standard of care (UDCA and OCA) and emerging therapeutic strategies (RIPK2
inhibition, IL-1 blockade, TIM-3 modulation, MSCs, Biliary Microbiota therapy and novel prognostic markers - NLR/MLR/SII), highlighting potential
molecular targets and pathways in PBC. Established therapies: UDCA (first-line) and OCA (obeticholic acid, FXR agonist) primarily target bile acid
metabolism. Investigational and adjunct therapies: PPAR-a agonists (e.g., fenofibrate) and IL-1 blockade (e.g., canakinumab). Exploratory strategies:
RIPK2 inhibition (innate immunity), Hymecromone (choleretic effects), MSCs therapy(anti-inflammatory), and HDPs (biliary microbiota modulation).
Systemic inflammation indices NLR, MLR, SII serve as prognostic biomarkers, with elevated levels correlating with a pro-inflammatory state and
poorer outcomes, guiding personalized treatment decisions. Created by BioGDP.com (29). UDCA, ursodeoxycholic acid; OCA, Obeticholic Acid; RIPK2
inhibitors, immunomodulation; Canakinumab, IL-1 blockade; MSCs, anti-inflammatory modulation; HDPs, Host-Directed Therapies; Cholestyramine,
bile acid sequestrant; Fenofibrate, PPAR-a agonist; NLR, Neutrophil-to-Lymphocyte Ratio; MLR, Monocyte-to-Lymphocyte Ratio; SII, Systemic
Immune-Inflammation Index.
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rendering it uniquely suited for biliary dyskinesia (104, 105).

Concurrently, the gut-liver axis emerges as a therapeutic target.

Host defense peptides (HDPs), induced by dietary components,

enhance mucosal barrier integrity and exert selective antimicrobial

effects without exacerbating inflammation (105). This host-directed

strategy could counteract dysbiosis-associated disease progression,

particularly given evidence that UDCA modulates gut microbiota

composition- a potential biomarker for treatment response (106).

The therapeutic landscape of PBC is poised for transformation

through innovative strategies extending beyond conventional

approaches. Drug repurposing spearheads this evolution, with

network pharmacology identifying promising candidates—

including IL-1, EGFR, and TNF-a inhibitors, branched-chain

amino acids, and curcumin—tailored to distinct PBC endotypes

(107). These agents offer accelerated translational potential due to

established safety profiles, enabling rapid deployment for

phenotype-specific interventions. Building on cross-disciplinary

insights, oncology-inspired therapeutic synergies present

compelling paradigms. The efficacy of CDK4/6 inhibitors

combined with cytotoxic chemotherapy in biliary tract cancers

demonstrates how autophagy blockade overcomes treatment

resistance (108). While direct applicability to PBC requires

validation, this mechanistic approach—particularly triple therapy

regimens targeting autophagic flux—could inform combinational

strategies for advanced, treatment-refractory PBC.

Furthermore, advanced delivery systems are redefining precision

targeting. Engineered exosomes exemplify this frontier, functioning as

modular platforms for cholangiocyte-directed immunomodulation

(109). Their capacity to deliver bespoke cargo (e.g., miRNA silencing

RIPK2 or anti-inflammatory cytokines) could overcome limitations

inherent to systemic drug administration, enabling site-specific

pathway modulation with reduced off-target effects. Additionally,

immunogenic microenvironment reprogramming—inspired by

oncology’s “cold-to-hot” tumor conversion strategies—holds

untapped potential. Activating Double-stranded RNA (dsRNA)

sensors within fibrotic hepatic niches may reverse immunological

anergy, priming PBC microenvironments for enhanced

responsiveness to checkpoint inhibitors (110). This approach could

synergize with existing immunomodulators to interrupt cycles of

autoimmune-driven fibrosis.
4.3 Stem cell therapy drugs

Mesenchymal stem cells (MSCs) represent a promising

therapeutic strategy for PBC owing to their immunomodulatory

properties, capacity for multilineage differentiation, and potential to

promote tissue repair (111, 112). MSCs modulate immune

responses by suppressing pro-inflammatory cytokine production

and augmenting anti-inflammatory pathways, thereby potentially

restoring immune homeostasis in PBC patients (41, 111). MSC

therapy may mitigate the effects of trained immunity—a

phenomenon where in inna t e immune ce l l s exh ib i t

hyperresponsiveness to secondary stimuli that may otherwise

exacerbate pathologies such as stroke (41, 112).
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However, the clinical translation of MSC therapy for PBC

remains nascent, with ongoing research focused on optimizing

therapeutic protocols. Clinical trials have demonstrated promising

efficacy, indicating MSC administration improves hepatic function

and attenuates inflammation in autoimmune liver diseases (112–

114). Nevertheless, clinical trials in autoimmune liver diseases are

ongoing, with results awaited (NCT02997878). The challenges

persist, including the necessity for standardized methodologies for

MSC isolation, expansion, and delivery, alongside concerns

regarding long-term therapeutic safety and efficacy (113, 114).

Furthermore, integrating MSC therapy with established treatments

may enhance clinical outcomes. Combining MSC therapy with

immunomodulatory agents could yield synergistic effects, advancing

overall PBC management (115, 116). Recent advances in stem cell

membrane-camouflaged nanoparticles demonstrate potential for

targeted delivery to inflamed tissues, offering a particularly

advantageous approach for PBC treatment (117).
4.4 Prognostic model of NLR, MLR, and SII

Neutrophil-to-Lymphocyte Ratio (NLR) and Monocyte-to-

Lymphocyte Ratio (MLR) are readily available and cost-effective

markers of systemic inflammation (118–120). The potential utility

of NLR and MLR as predictors of treatment response to novel

therapies for PBC. However, these biomarkers have not yet been

validated for routine clinical application and are not incorporated

into current international management guidelines. NLR reflects the

balance between innate (neutrophils) and adaptive (lymphocytes)

immune responses (121). Elevated NLR indicates a heightened

inflammatory state, often associated with poorer outcomes in

various diseases (120). Similarly, MLR reflects the proportion of

monocytes relative to lymphocytes, providing another dimension of

immune system activity (121, 122).

Several studies have demonstrated the prognostic value of NLR

and MLR in various diseases, including autoimmune conditions

and cancers (119–130). In seropositive autoimmune encephalitis, a

high NLR was associated with a higher likelihood of first-line

treatment failure (129). In advanced gastric and colorectal

cancers, lower MLR was associated with prolonged progression-

free survival and overall survival (120). Higher NLR has been

correlated with poor prognosis in several cancers, as well as being

a reliable marker of inflammation, infection and sepsis (121, 129).

High NLR levels independently associated with poor prognosis in

heart failure (129). Therefore, NLR and MLR can serve as indicators

of disease severity and predictors of treatment response and

survival. A study found the maximal NLR had the best predictive

value for in-hospital and 30-day mortality in ICU patients with

CAD and CKD (128). Meanwhile, the total cholesterol, ALP, and

NLR were the three independent risk factors associated with early

biochemical nonresponse to UDCA treatment (129).

While specific studies focusing on NLR and MLR as prognostic

markers in PBC are still emerging, the existing literature provides a

strong rationale for their potential utility. Combining NLR and MLR

with other inflammatory markers, such as the Systemic Immune-
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inflammation Index (SII) (122, 123, 125, 126), to improve prognostic

accuracy (38).
4.5 Biliary microbiota therapy

Dysbiosis, or an imbalance in the gut microbiota, has been

implicated in the pathogenesis of PBC. For instance, alterations in

the gut microbiome have been associated with the severity of liver

disease and the response to treatment. Research indicates that

specific microbial taxa may influence the immune response and

contribute to the autoimmune processes observed in PBC patients

(131). Furthermore, the salivary microbiota of PBC patients

exhibited significant differences, suggesting that oral microbiota

may play a role in the disease’s pathogenesis (132).

Consequently, given the emerging evidence of the gut-liver axis’s

role in PBC, several therapeutic strategies are being explored to

manipulate the biliary microbiota. One promising approach involves

the use of bile acid sequestrants, such as cholestyramine, which have

been shown to alter the gut microbiome and improve cholestatic

symptoms in PBC patients (133). Additionally, the use of fenofibrate as

a second-line therapy for patients with inadequate responses to UDCA

has shown promise. Studies have demonstrated that fenofibrate can

improve liver biochemistry and histological features in PBC patients,

suggesting that it may also exert beneficial effects on the gut microbiota

(134). The combination of UDCA and fenofibrate has been associated

with improved biochemical responses, indicating a synergistic effect

that may be mediated by changes in the gut microbiome (135). The

exploration of biliary microbiota therapy in PBC is still in its infancy.

Moreover, clinical trials investigating the efficacy of probiotics,

prebiotics, and other microbiota-targeted therapies in PBC patients

are warranted (136). Beyond cholestatic pathologies, Hypoxia-

inducible Factors (HIFs) exhibit immunosuppressive properties in

hepa t i c mal i gnanc i e s by fos t e r ing pro- tumor igen i c

microenvironments, positioning them as therapeutic targets in liver

cancer management (137).
4.6 CAR-T therapy

Originally developed for hematological malignancies, Chimeric

Antigen Receptor (CAR)-T cell therapy has recently demonstrated

sustained, profound depletion of autoreactive B cells in autoimmune

diseases, exhibiting promising safety and efficacy profiles (138). This

transition from oncology to autoimmunity represents a transformative

advancement in therapeutic strategy (139). Currently, CAR-T therapy

is under investigation across 372 institutions in 40 countries/regions for

various autoimmune conditions, including Systemic Lupus

Erythematosus (SLE) and multiple sclerosis (140). The development

of novel CAR architectures, such as fourth-generation constructs,

continues to enhance therapeutic potential (141, 142).

However, CAR-T therapy entails significant risks, including

Cytokine Release Syndrome (CRS), neurotoxicity, and organ-specific

toxicities. These adverse events are influenced by inflammatory

microenvironments, limitations inherent in CAR design, and
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systemic immune disruption (143). Safety optimization may be

achievable through innovative strategies—e.g., logic-gated CAR

systems or alternative cellular carriers—coupled with rigorous clinical

monitoring. Future efforts should prioritize generating disease-specific

clinical evidence and developing adaptable CAR designs to facilitate

broader, safer application.

Although CAR-T expansion into autoimmunity offers new

therapeutic potential for refractory cases (144–147), its adverse

effects present distinctive challenges within autoimmune

pathological contexts (138, 139). For instance, inflammatory

microenvironments can impair CAR-T persistence and exacerbate

toxicity (140). Disease-specific toxicities, such as renal dysfunction

or cutaneous manifestations, have also been reported, particularly

with CD19-directed CAR-T therapy in SLE (146). Research

characterizing toxicity profiles is evolving rapidly. Critical future

directions include developing allogeneic CAR-T products to

circumvent limitations associated with autologous approaches and

extending CAR technology to alternative effector cells (e.g., CAR-

macrophages or CAR-Natural Killer (NK) cells) to improve safety

and efficacy (148, 149). Integration of precision medicine

methodologies may facilitate enhanced risk stratification and

personalized monitoring protocols (150). Therefore, Refined CAR

designs and systematic real-world evidence are essential for safe,

effective translation from oncology to autoimmunity. It must be

emphasized that the application of CAR-T therapy in PBC remains

speculative, there is no clinical evidence currently supports its

potential efficacy in this condition.
5 Conclusions and future perspectives

Innate immune pathways—including TIM3/Gal9, NF-kB, and
cGAS-STING—emerge as promising intervention points for biliary

tract disorders, given their central role in stone-associated

inflammatory cascades (151–154).

The innate immune system constitutes a pivotal pathogenic

mechanism in PBC. Dysregulation of innate immune responses can

activate autoreactive T and B lymphocytes, contributing to

autoimmunity (155). Recent scientific advances demonstrate that

apoptosis of biliary epithelial cells releases auto-antigens, which

subsequently activate the immune system and disrupt immune

tolerance (41, 156). Furthermore, the gut-liver axis is implicated

in PBC pathogenesis, with gut microbiota and bile acids influencing

immune responses and disease progression (75).

Although strategies targeting innate immunity—such as RIPK2

inhibition, IL-1 blockade, TIM-3 modulation, and MSCs therapy—

hold therapeutic promise, they remain largely at the experimental stage

and require further validation before clinical translation. Furthermore,

novel prognostic inflammatory markers including NLR andMLR have

been shown to reflect systemic inflammation and correlate with disease

progression. In parallel, deeper investigation into mechanisms such as

the gut–biliary–immune axis and trained immunity is ongoing.

However, these approaches currently lack sufficient clinical

evaluation, and their application remains speculative. Firstly, the

complexity of the immune response in PBC complicates the
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identification of specific intervention targets. For instance, while Tregs

are crucial for maintaining immune tolerance, their therapeutic

application in autoimmune liver diseases has yielded inconsistent

outcomes (156). While the role of autoimmunity in the pathogenesis

of PBC is well established, immunomodulatory therapies (including

biologics) effective in other autoimmune diseases may be ineffective in

PBC (157). Furthermore, existing experimental models of PBC

inadequately recapitulate the key immunopathological features,

progression kinetics, and heterogeneity observed in human (158,

159). Consequently, immunomodulatory strategies developed based

on model data frequently fail to achieve anticipated efficacy in the

clinical trials of human. Moreover, the protracted progression

characteristic of PBC presents substantial challenges for clinical trial

design. Studies often rely on surrogate endpoints, and the

implementation of long-term placebo-controlled trials is problematic.

These limitations impede the definitive confirmation of benefits on

hard clinical endpoints. Additionally, trial durationsmay be insufficient

to demonstrate meaningful therapeutic effects (28, 160).

Critically, a fundamental limitation of failed therapies lies in

their inability to effectively target core liver/bile duct-specific

immunopathological mechanisms. Specifically, these include

pathogenic CD8+T cells, dysregulated IL-15 signaling, and tissue-

resident memory T cells. Many therapeutic approaches, however,

induce generalized immunosuppression without effectively

intervening in the early stages of the autoimmune cascade (28).

Additionally, precise modulation of the immune response is

critical, as overactivation can exacerbate hepatic damage.

Advancements in immunotherapy offer promising avenues for PBC

treatment. The therapeutic application of MSCs has emerged as a

potential strategy due to their immunomodulatory properties and

capacity to facilitate tissue regeneration (114). Concurrently,

biopolymer immune implants designed to sequentially activate

innate and adaptive immunity show promise in other contexts,

suggesting potential applicability in PBC (161). Moreover,

exploration of the gut microbiota-bile acid-immunity network

provides a novel perspective for therapeutic strategies. Targeting

immune factors associated with gut microbiota dysbiosis and bile

acid imbalance may yield breakthroughs in PBC management (75,

120). Converging research underscores the critical regulatory role of the

STING pathway in innate immunity, revealing novel therapeutic

opportunities (162). Genetic associations between PBC and

extrahepatic autoimmune disorders (e.g., inflammatory bowel

disease) may indicate shared pathogenic pathways, potentially

informing the development of targeted interventions (163, 164).

Collectively, the biliary innate immune system in PBC critically

regulates disease progression through intricate cellular and molecular

mechanisms. Damage to bile duct epithelial cells, release of

inflammatory mediators, and immune cell imbalance collectively

drive autoimmune responses and fibrotic processes. Technological

innovations, including T Cell Receptor (TCR) sequencing and

Chimeric Antigen Receptor (CAR) platforms, demonstrate potential

for engineering personalized immunotherapies addressing PBC-

specific immune dysfunction (141, 145).

Emerging therapeutic strategies—including targeting innate

immune signaling pathways, modulating the gut microbiota, and
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applying stem cell therapy—provide novel approaches for PBC

management. These findings elucidate key immunological nodes in

PBC pathogenesis, thereby establishing a foundation for developing

precise therapeutic strategies. Nevertheless, these methods presently

do not have adequate clinical assessment, and their use is still

hypothetical. Consequently, thorough mechanistic studies and

stringent treatment burden evaluation are crucial to promote

these strategies for clinical application. Future research should

prioritize elucidating the gut-liver axis, bile acid metabolism and

CAR-T cells, which are anticipated to yield more effective PBC

treatment options.
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