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In recent years, the introduction of immune checkpoint inhibitors (ICIs) has

revolutionized the treatment landscape for malignant tumors, markedly

improving survival outcomes across various cancers, such as lung cancer,

esophageal cancer, and melanoma. Consequently, ICIs have become a

cornerstone of first-line therapy for numerous malignancies. However, while ICIs

effectively modulate immune responses to combat tumor cells, they may also

trigger excessive immune activation and T-cell dysfunction, thereby leading to a

spectrum of immune-related adverse events (irAEs). The organs most frequently

affected by these irAEs include the skin, gastrointestinal tract, endocrine system, and

lungs. Among these adverse events, the development of severe immune

checkpoint inhibitor-related pneumonitis (CIP) may result in significant disability,

permanent discontinuation of ICIs, and even death, with real-world incidence rates

exceeding those reported in clinical trials. Early detection, precise diagnosis, and

timely intervention are critical for optimizing patient outcomes. However,

diagnosing CIP remains challenging because it relies heavily on high-resolution

chest CT imaging and a detailed treatment history. The radiological features of CIP

are often nonspecific, complicating its identification. This complexity is further

exacerbated in patients receiving consolidative immunotherapy following

concurrent or sequential chemoradiotherapy for stage III unresectable non-small

cell lung cancer, where distinguishing between radiation pneumonitis and CIP
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becomes particularly difficult. To address these challenges, an increasing number of

imaging experts are investigating the potential of radiomics and machine learning

techniques in predicting the occurrence and assessing the prognosis of CIP. This

article comprehensively reviews the pathogenesis of CIP, the predictive value of

radiomics in identifying this condition and recent advancements in treatment

strategies, with the aim of providing novel insights for future research and clinical

management of CIP.
KEYWORDS

immune checkpoint inhibitor-related pneumonitis (CIP), imaging, radiomics, prediction,
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1 Introduction

In recent years, immune checkpoint inhibitors (ICIs), which

target cytotoxic T-lymphocyte antigen-4 (CTLA-4), programmed

cell death 1 (PD-1) and programmed cell death ligand-1 (PD-L1),

have shown significant efficacy in treating various malignant

tumors. ICIs meticulously modulate the activity of CD8-positive

cytotoxic T lymphocytes (CD8+ T cells), CD4-positive helper T

lymphocytes (CD4+ T cells), and regulatory T cells (Tregs),

ultimately enhancing the antitumor immune response (1, 2).

However, excessive activation of T-cell responses can disrupt the

delicate balance among T-lymphocyte subsets, leading to

deregulated expression of inflammatory mediators and triggering

an overly aggressive immune response, potentially culminating in a

spectrum of immune-related adverse events (irAEs), including but

not limited to various degrees of rashes, pneumonia, hepatitis,

colitis and endocrinopathies (3–5). Among these irAEs,

checkpoint inhibitor-related pneumonitis(CIP) is of particular

concern because of its potentially life-threatening nature. CIP

manifests as the onset of respiratory system-related symptoms

such as dyspnea, shortness of breath, and cough with sputum in

patients receiving ICI therapy. Crucially, these symptoms are

accompanied by new pulmonary infiltrates on imaging studies

while excluding tumor progression, new pulmonary infections, or

other conditions that could cause pulmonary changes (6). This

distinctive combination of clinical and radiological features makes

CIP a critical focus in the management of patients receiving ICIs.
2 Epidemics and risk factors

2.1 CIP epidemic

CIP is the most common fatal adverse reaction to PD-1/PD-L1

inhibitors (7). Compared with patients with other cancers, patients

with lung cancer have a greater incidence and severity of CIP (8).

Compared with monotherapy, combination immunotherapy results

in more frequent CIP (9, 10). Clinical studies have reported a
02
3%-5% overall incidence of CIP with 1% grade≥3 cases (9, 11, 12),

whereas real-world data indicate higher rates of 13%-19% (13–15).

Moey et al. (16) conducted an analysis of the WHO drug safety

database and reported that the mortality rate associated with CIP

was significantly higher than that reported in clinical trials, with

20.4% in lung cancer patients, potentially due to diagnostic

challenges distinguishing CIP from tumor progression or

infections (17). CIP may occur anytime post-ICI therapy, with a

median onset of 2.8 months (range: 9 days–19.2 months) (18),

rarely extending to 36 months (19). Onset occurs earlier in non-

small cell lung cancer (NSCLC) patients (1.1 vs 3.1 months). Severe

CIP is associated with a 61.5% mortality rate, with a median survival

of 104 days (20). Consequently, for patients with a history of ICI

treatment, CIP should be prioritized as a differential diagnosis if

they exhibit respiratory-related symptoms or abnormal chest

imaging findings.
2.2 Risk factors for CIP

Identifying the risk factors associated with CIP is crucial for

facilitating early diagnosis and effective management of high-risk

patients. Previous retrospective studies have reported that a high

incidence of immune checkpoint inhibitor-related pneumonia

(CIP) is associated with various antitumor treatments, tumor

pathological types, chronic underlying lung diseases, age, smoking

history, radiotherapy history, levels of certain inflammatory factors,

and genetic susceptibility (Figure 1).

2.2.1 Antineoplastic drug regimen
A meta-analysis assessing ICIs in stage III NSCLC patients

revealed a significantly greater incidence of grade 2 pneumonia with

anti-PD-1 therapy than with anti-PD-L1 therapy (22.7% vs 14.9%;

OR=2.10, P<0.01) (21). Consistent findings were corroborated in

additional studies (21). A meta-analysis revealed that the incidence

of CIP was 1.6% with anti-PD-1 monotherapy vs. 6.6% with the

anti-PD-1/CTLA-4 combination, indicating a greater CIP risk with

dual vs. single ICI therapy (9). With the increasing prominence of
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perioperative neoadjuvant immunotherapy in the treatment of non-

small cell lung cancer, emerging evidence indicates that the

incidence of CIP among patients receiving neoadjuvant

immunotherapy ranges from 3% to 25% (22). Pathological partial

response (PCR) positivity rate among patients in the CIP group is

significantly lower than that among patients in the non-CIP group

(20.8% vs 26%) (23), while surgical intervention itself constitutes a

traumatic stimulus factor. In a retrospective study, the incidence of

CIP among patients who received sequential targeted drug therapy

within 8 weeks following immune checkpoint inhibitor (ICI)

treatment was notably greater (18.8%) than that among those

who received cytotoxic chemotherapy (7.4%) and those who did

not undergo any chemotherapy (5.1%) (24). Patients receiving

postimmunotherapy targeted drugs developed CIP earlier than

those receiving chemotherapy did (35 vs 62 days) (24). All cases

of CIP were graded as having a severity of ≥3, and the condition was

associated with a relatively high mortality rate (26.1%) (24).

Another cohort study revealed that the median overall survival

(mOS) of patients with NSCLC who received ICI therapy, such as

epidermal growth factor receptor (EGFR)-TKI therapy, following
Frontiers in Immunology 03
tyrosine kinase inhibitor (TKI) treatment was significantly

shorter than that of patients who did not receive TKIs (7.6

months vs. 18.5 months). This observed disparity may be

attributed to an increased risk of immune-related adverse events

(irAEs), including chemotherapy-induced pneumonitis (CIP), as

well as alterations in the tumor microenvironment associated with

drug resistance (25).

2.2.2 Chronic lung diseases
Studies (26) have shown that, compared with noncomorbid

cases, chronic obstructive pulmonary disease (COPD)/asthma in

NSCLC patients is associated with an increased incidence of CIP

(2.3%). Chronic interstitial lung disease (ILD) patients have a

threefold greater CIP risk. UIP-type ILD patients receiving ICIs

face independent acute ILD exacerbation risks (27). Conversely,

isolated pleuroparenchymal fibroelastosis (PPFE) patients exhibit

significantly lower CIP rates (p=0.024) and longer survival,

potentially due to the lack of acute ILD exacerbation associated

with PPFE, which primarily causes chronic respiratory failure

(28–30).
FIGURE 1

Risk factors for CIP.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1656063
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2025.1656063
2.2.3 Site and histological type of the primary
tumor

Cui et al. demonstrated a significant association between

squamous cell carcinoma and the occurrence of CIP. Furthermore,

obstructive pneumonia may contribute to an increased risk of CIP, as

squamous cell carcinomas are predominantly central lung cancers

that frequently result in obstructive pneumonia (31).

2.2.4 Baseline indicators of population
characteristics

A meta-analysis was conducted by Zhang et al (32). demonstrated

that both race and age significantly influence the incidence of CIP.

Specifically, the incidence of pneumonia is greater in Asian populations

than in Western populations. Additionally, studies with a greater

proportion of elderly participants revealed an increased incidence of

CIP, particularly among individuals aged 65 years or older.

Furthermore, a history of smoking has been identified as an

independent risk factor for the development of CIP (33).

2.2.5 History of radiotherapy
The KEYNOTE-001 trial revealed that the incidence of CIP was

13% in NSCLC patients receiving thoracic radiotherapy before ICI

therapy versus 1% in nonradiated patients (34). Studies combining

ICIs with chemoradiotherapy for locally advanced NSCLC have

shown that ≥grade 2 CIP occurs in ~10% of cases (34, 35), which

suggests that patients with a history of thoracic radiotherapy are at

increased risk of developing CIP. Barron et al. proposed that

radiotherapy-induced DNA damage, immune cell infiltration,

cytokine upregulation, and collagen deposition alter the lung

immune microenvironment. Thoracic radiation injury combined

with hyperactivated T cells during ICI therapy may drive CIP

development (36).

2.2.6 Other factors
According to a study by Chao et al. (37), patients with a PD-L1

expression level of ≥50% and an IL-8 concentration of < 9.0 pg/mL

presented a significantly elevated risk of developing CIP. Mao et al.

(38) revealed that when the fibrinogen (FIB) level reached 3.955 g/L,

the mortality rate increased by 22%, suggesting that fibrinogen,

which serves as a marker of the inflammatory process, is associated

with an increased risk of CIP due to its elevated levels. A

retrospective study revealed that patients who tested positive for

HLA-B*35 and HLA-DRB1*11 molecules presented a significantly

elevated risk of developing CIP (39). It is currently recognized that

in autoimmune diseases, the expression of HLA-B*35 is linked to an

increased risk of severe primary pulmonary hypertension in

scleroderma patients, as well as to nephritis accompanied by

marked leukocytosis and high-risk juvenile idiopathic arthritis.

Furthermore, HLA-DRB1*11 expression has been associated with

the development of systemic sclerosis (40–42). The human

leukocyte antigen (HLA) complex is crucial for the efficacy and

regulation of T-cell-mediated immune responses. It specifically

functions by presenting peptides derived from tumor antigens to

T-cell receptors on effector T cells (43). The proinflammatory effects

and endoplasmic reticulum stress (ERS) induced by the HLA-B*35
Frontiers in Immunology 04
allele, combined with the Th2-promoting capability of DRB1*11,

may explain the increased incidence of immune-related

pneumonitis (IRP) in cancer patients receiving PD-1/PD-L1

immune checkpoint inhibitor therapy (42, 44). A previous study

(45) reported that the incidence of CIP follows a seasonal pattern,

with a higher prevalence observed during the winter months. These

findings suggest a link between ICI treatment, viral infections, and

CIP, indicating that seasonal viruses may contribute to CIP

development. Additionally, the literature suggests a potential

association between cytomegalovirus (CMV) infection and the

development of CIP. In this study, serological samples from 29

patients diagnosed with grade 3–4 CIP were analyzed, and CMV

pp65 antigen was positive in 28 of these patients (46).
3 Progress on the mechanisms of CIP

The molecular mechanism of CIP involves a complex interplay

of multiple factors. Although the precise molecular mechanisms

underlying this condition remain incompletely understood, several

key processes are believed to contribute to the onset of pneumonitis

during ICI treatment (Figure 2). Emerging scientific evidence

suggests the involvement of diverse pathways in the pathogenesis

of CIP, which are delineated below.
3.1 T-cell dysfunction

PD-1/PD-L1 inhibitors can augment the antitumor efficacy of T

cells (47, 48). Accumulating evidence indicates that the

upregulation of T cells may play a role in the pathogenesis of CIP

(4, 49). The increased activity of these targeted T cells can lead to

the attack of cross-reactive antigens shared between tumors and

normal lung tissue, resulting in off-target toxicity.

Hiroyuki and colleagues reported the presence of T-cell-

predominant lymphocytosis in the BALF of patients with CIP

(50). Notably, the proportions of CD8+ T cells expressing

immune checkpoint proteins, a hallmark of tumor-infiltrating T

lymphocytes (TILs), are greater in patients with CIP than in those

with other immune-related adverse events (irAEs) (51–53). Naidoo

et al. proposed increased infiltration of highly proliferative CD8+ T

cells in the lung biopsy tissue of NSCLC patients who developed

chronic bronchiolitis obliterans organizing pneumonia subsequent

to nivolumab therapy (54). Subudhi et al. demonstrated a significant

correlation between the abundance of CD8+ T-cell clones in the

peripheral blood and the incidence of irAEs (P=0.01), particularly

grade 2–3 irAEs (P<0.0001), among patients treated with

ipilimumab, a CTLA-4 inhibitor (55, 56). Suresh and colleagues

reported a significant increase in CD4+ T cells in the BAL samples

of CIP patients, primarily those with NSCLC, following treatment

with anti-PD-1/PD-L1 inhibitors (57). These findings support a

lymphocyte-driven hyperimmune response.

In addition, the expression levels of CTLA-4 and PD-1 on Treg

cells in CIP patients were significantly decreased, suggesting an

attenuated Treg suppressive phenotype (57, 58). When regulated by
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ICIs, CTLA-4, a key molecule in Treg cell function, can alter the

suppressive capabilities of Treg cells within the tumor immune

microenvironment. This alteration may lead to the development of

CIP by relieving the immunosuppressive effects of Treg cells (2, 59).

Moreover, deficiency of CTLA-4, in addition to PD-1, may further

compromise the ability of Treg cells to control the proinflammatory

responses of conventional T cells and macrophages, thereby

exacerbating the unchecked immune dysregulation observed in

CIP (57).

T-cell activation and infiltration within the lung tissue of CIP

patients signify enhanced antitumor immunity. However, this

heightened immune activity poses a risk of normal tissue damage

due to overly aggressive immune reactions (60, 61), which support

the hypothesis that ICI-related pneumonitis may be induced when
Frontiers in Immunology 05
ICI-activated T cells recognize self-peptides or epitopes that are

shared between the tumor and the host (62). This hyperresponsive

immune state, triggered by T-cell activation and infiltration, may

lead to the misidentification of self-antigens in lung tissue, thereby

triggering an autoimmune reaction (63).
3.2 Increased preexisting and emerging
autoantibodies

An increasing number of studies indicate that the occurrence of

CIP may be linked to elevated levels of both preexisting and newly

emerging autoantibodies within the human immune system (58, 64).

These autoantibodies, which may be present at low concentrations
FIGURE 2

Shows that CIP development involves multiple mechanisms and factors. These include dysregulation of the PD-1/PD-L1 and CTLA-4 pathways,
which causes autoimmune dysfunction; excessive T-cell activation and cytotoxicity with impaired Treg function; imbalance in cytokine networks
(e.g., elevated TNF-a, IL-6, IL-17, and IFN-g) and proinflammatory mediators (e.g., CXCL1, IL-8, and CXCL9/10/13), which activate neutrophils and T
cells; genetic variations, which affect immune responses (e.g., HLA polymorphisms, GABRP, and BRD2B); autoantibodies, which amplify inflammation
via complement activation (e.g., C3a/C5a); gut–lung axis imbalance (e.g., altered microbiota), which increases the risk of lung injury; and infections
(e.g., streptococcal), which trigger autoimmune reactions.
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before the initiation of ICI therapy or generated de novo during

treatment, are believed to contribute to the pathogenesis of certain

nonpulmonary irAEs (58).

PD-1/PD-L1-targeted therapy has been shown to induce Treg

dysfunction and foster the generation of pathological autoantibodies,

as evidenced in both PD-1-knockout mice and patients undergoing

such treatment (65, 66). Adverse effects such as pneumonitis,

arthralgia, vitiligo, and hypothyroidism are frequently observed in

patients receiving PD-1/PD-L1 inhibitor treatment (67, 68).

Additionally, Toi et al. demonstrated that NSCLC patients have

preexisting autoantibodies, such as rheumatoid factor (69).

Klocke et al. investigated the role of CTLA-4 by ablating CTLA-4

expression in adult mice and compared the resulting autoimmunity

with that observed in congenital CTLA-4 deficiency. They identified

autoimmune disease phenotypes, including pneumonitis, accompanied

by organ-specific autoantibodies (70). In a retrospective study of 22

patients with CTLA-4 insufficiency and COVID-19, Ochoa et al.

examined autoantibodies against type 1 IFNs at baseline. They

reported that most patients with CTLA-4 insufficiency and COVID-

19 had nonsevere disease and lacked autoantibodies against type 1

Interferons (71). These findings suggest a potential explanation for the

risk of developing autoimmune complications in cancer patients

during treatment with the CTLA4-blocking checkpoint inhibitor

ipilimumab (72).

Emerging evidence implicates multiple distinct autoantibodies in

the development of CIP. Notably, CD74, an autoantibody-active

protein, functions as an intracellular chaperone for major

histocompatibility complex class II (MHC-II) and can stimulate the

release of inflammatory mediators. Although primarily intracellular,

CD74 is also expressed on the cell membrane of immune cells,

including macrophages (73). It serves as a high-affinity receptor for

macrophage inhibitory factors, thereby inducing inflammatory

mediator release and cell proliferation (74, 75). In normal human

lung tissue, CD74 is expressed at modest levels; however, its expression

is dramatically increased in lung tissues affected by ICI-induced

pneumonitis (76). A large-scale screening study of ICI-treated

patients revealed that serum levels of anti-CD74 antibodies

were elevated in patients with CIP compared with their pretreatment

levels (77). Salahaldin A. Tahir et al. conducted a high-throughput

serological analysis of recombinant cDNA expression to investigate

autoantibodies in patients receiving ICIs. They reported a significant

median 1.34-fold increase in anti-CD74 antibody levels post-ICI

treatment in patients with CIP, whereas no significant changes

were detected in a comparison group of 20 patients without

pneumonitis, suggesting a pathogenic role for CD74 autoantibodies

in the development of pneumonitis (78). These findings indicate the

pathogenic involvement of CD74 and its autoantibodies in the

development of CIP.
3.3 Inflammatory cytokine imbalance

The administration of ICIs can activate T cells, resulting in

excessive release of cytokines and potent proinflammatory

responses, which in turn promote the development of various
Frontiers in Immunology 06
adverse events, including CIP. Elevated levels of various cytokines

have been observed in patients experiencing irAEs following ICI

treatment, highlighting significant changes in cytokine profiles (79).

Moreover, certain cytokines have shown promise as predictive

biomarkers for irAEs, offering promising avenues for early

detection and management strategies.

Tumor necrosis factor-a (TNF-a), interleukin-6 (IL-6) and

interferon-g (IFN-g) collectively contribute to tissue damage and

exacerbate the immune-mediated lung injury characteristic of CIP

(63, 80, 81). Dysregulated cytokine production disrupts immune

homeostasis by initiating inflammatory cascades, which recruit

neutrophils and macrophages to injury sites and suppress anti-

inflammatory counterregulation, ultimately worsening CIP severity

(82–84). Mechanistically, Lin et al. demonstrated that the infiltration

of Th2 cells in the BALF of CIP patients drives the overproduction of

interleukin clusters (IL-4, IL-5, IL-6, IL-9, IL-10, and IL-13), thereby

creating a self-sustaining inflammatory loop (85).

Similarly, other studies have also identified specific cytokines

associated with the development of irAEs, including pneumonitis.

Lim’s team, who studied melanoma patients receiving ICIs, identified

11 plasma cytokines (including granulocyte–colony-stimulating

factor [G-CSF], granulocyte–macrophage colony–stimulating factor

[GM–CSF], and IL–13) that dynamically increase before or during

the onset of high-grade irAEs (86). Notably, NSCLC studies have

revealed both similarities and divergences in cytokine patterns: while

elevations in IL-1b and IL-8 align with findings in melanoma,

decreased G-CSF has emerged as a unique predictor in lung cancer

cohorts (87). This discrepancy underscores microenvironment-

driven variations in the cytokine network. Furthermore, a study of

204 NSCLC patients with or without PD-L1 inhibitor monotherapy

(43 of whom developed irAEs) revealed a proinflammatory increase

in IL-1b and elevated levels of IL-5, IL-8, IL-10, IL-12p70, and

granzyme A, along with decreased G-CSF, as predictors of irAEs,

including pneumonitis (86). Receptors for IL-8 are present on

neutrophils, Tregs, monocytes, and NK cells, indicating their

potential involvement in the complex biology of CIP (49, 88).

However, the role of IL-5 and IL-10 in lung injury associated with

pneumonitis remains uncertain.

IL-6 has garnered significant attention in CIP research because

of its potential role in its pathogenesis. One study reported elevated

IL-6 levels in CIP patients compared with those at baseline, whereas

another examination of BALF cytokines in 12 CIP patients revealed

significantly higher IL-6 levels than in controls (89, 90). However, it

is important to note that IL-6 elevation is not universal in the BALF

of CIP patients (57). Despite this variability, tocilizumab, an IL-6

inhibitor, has shown efficacy in treating steroid-refractory CIP in a

single-center study (91). C-reactive protein (CRP), an acute-phase

protein secreted by liver cells in response to inflammatory cytokines

such as IL-6 and TNF-a, is also relevant. Given the observed

elevated IL-6 levels in some CIP patients, it is unsurprising that

CRP levels are increased in NSCLC patients who develop CIP

postatezolizumab treatment compared with baseline (92, 93). These

findings suggest that CIP development may be attributed to

excessive immune system activation induced by both CRP and

IL-6, along with their potent proinflammatory properties (81).
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IL-17, a cytokine with diverse functions, plays crucial roles in

autoimmune diseases and inflammation. Its abnormal expression

has been implicated in the pathology of various lung diseases,

including asthma, pneumonia, and pulmonary fibrosis (94). Lou

et al. demonstrated a significant increase in serum IL-17 levels in

NSCLC patients who developed CIP following ICI treatment (95).

This phenomenon may be attributed to the disruption of immune

tolerance and enhanced T-cell activation resulting from PD-1 and

PD-L1 blockade (96, 97). A separate analysis of serum and BALF

from 13 NSCLC patients with CIP post-PD-1/PD-L1 therapy

revealed elevated levels of both IL-17A and IL-35 in these

compartments. Furthermore, serum IL-17A levels were found to

be positively correlated with the Th17 cell subtype (98). Given that

IL-17A is implicated in other autoimmune disorders, acute lung

injury, and lung fibrosis, it is plausible that it also contributes to the

pathogenesis of CIP (49, 99, 100).

C-X-C chemokines (CXCLs) are pivotal in regulating the

differentiation of primary T cells into Th1 cells and facilitating

the migration of immune cells to tumor sites through interactions

with molecules such as CXCL9, CXCL10, CXCL11, and CXCL13

(101, 102). By assessing 40 cytokines in plasma, Shaheen Khan and

colleagues reported significant upregulation of various cytokines,

particularly CXCL9, 10, 11, and 13, following ICI treatment, which

was closely linked to the onset of irAEs (103).

Despite the variability in underlying tumor histology, host

factors, and disease profiles among patients, emerging evidence

suggests that cytokine dysregulation is involved in the pathogenesis

of CIP. This dysregulation leads to the release of proinflammatory

cytokines and the infiltration of immune cells into the lung

parenchyma, thereby exacerbating tissue damage and contributing

to the development of pneumonitis (81).
3.4 Genetic variants

Given the widespread belief that the development of irAEs is

linked to autoimmunity, genetic variations have emerged as a

potential contributing factor to this phenomenon. Notably,

human leukocyte antigen (HLA) variations, which are crucial at

the immune cell interface, have garnered significant attention in

recent research. In a cohort of 256 patients undergoing PD-1/PD-L1

treatment, including 29 CIP patients, HLA typing revealed a strong

correlation between the incidence of CIP and the germline

expression of HLA-B allele 35 and HLA-DRB1 allele 11 (39).

These alleles have also been implicated in other autoimmune

disorders, further underscoring the potential significance of

genetic factors in the pathogenesis of CIP (104). Furthermore,

specific genetic polymorphisms have been associated with

susceptibility to CIP. These include polymorphisms in genes

related to immune regulation and inflammation, such as those

encoding gamma-aminobutyric acid type A receptor subunit pi

(GABRP), desmocollin, and bromodomain adjacent to zinc finger

domain 2B (BRD2B). However, further research is necessary to

elucidate their precise roles in the development of CIP (82, 105).

Collectively, these findings suggest that genetic variations are likely

to contribute to the dysregulation underlying CIP.
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3.5 Other possible mechanisms

Hakozaki et al. highlighted disparities in the gut microbiome

between advanced NSCLC patients experiencing low- and high-grade

irAEs (106). This has prompted a growing focus on the ‘gut–lung axis’,

a concept describing the interaction between the gut and respiratory

microbiomes and its potential impact on immune responses (107).

Although research on respiratory microbiomes in the context of cancer

immunotherapy is relatively less extensive than that on gut

microbiomes, studies have indicated that anti-PD-1 treatment can

modulate the diversity and abundance of specific microbiome

populations (108, 109). Notably, Zhang et al. discovered that certain

respiratory microbes, particularly enriched Streptococcus, might

potentiate antitumor immune responses by enhancing antigen

presentation and effector T-cell function, thereby potentially

increasing the incidence of irAEs, including CIP (110).

Hsu et al. demonstrated that PD-1-expressing NK cells can

mediate immunosuppression in tumor microenvironments by

interacting with PD-L1-positive tumor cells. PD-1/PD-L1 blockade

can release the cytotoxic potential of NK cells against tumors by

increasing PD-1-induced immune inhibition. However, when ICI

treatment triggers inflammation in nonmalignant lung tissue via

diverse non-NK cell-mediated pathways, activated NK cells can

directly eliminate infected cells and secrete proinflammatory

cytokines. Consequently, NK cell activation mediated by PD-1/PD-

L1 blockade might exacerbate inflammation and contribute to

damage in normal lung tissues (111).
4 Imaging manifestations of CIP

In a previous retrospective study, Park et al. (112) initially identified

common imaging features of CIP, including ground-glass opacity

(GGO), consolidation, reticular density, and traction bronchiectasis.

In Pozzessere’s study (113), CIP was categorized into eight distinct

types: organizing pneumonia (OP), nonspecific interstitial pneumonia

(NSIP), hypersensitivity pneumonia (HP), acute interstitial pneumonia/

diffuse alveolar damage (AIP/DAD), bronchiolitis, nodular or mass-like

lesions, the unclassifiable type, and sarcoidosis-like manifestations. The

predominant distribution pattern of lung injury induced by ICIs is

bilateral, involving multiple lobes and segments. However, unilateral or

single-lobe lesions may also occur. The lower lobes are most frequently

affected. In recurrent cases, the imaging distribution may remain

consistent or exhibit migratory characteristics (45, 114).
4.1 Classical imaging manifestations of CIP

The 2021 Fleischner guidelines categorized theCT imaging patterns

associated with drug-induced pneumonia into five distinct types (115),

four of which can be observed in patients receiving immunotherapy.

4.1.1 Organizing pneumonia (OP)
OP is characterized by multiple patchy areas of increased density,

which are typically distributed around bronchovascular bundles and/or
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in the peripheral lung fields, and may be associated with a reverse halo

sign (Figure 3A). Histologically, it is characterized by granulation tissue

filling the alveolar ducts and surrounding alveolar spaces, accompanied

by inflammatory infiltration of the lung parenchyma (116).

Bronchoalveolar lavage revealed a decreased CD4/CD8 T-cell ratio,

with an increase of 20% to 40% in activated T lymphocytes (117).
4.1.2 Nonspecific interstitial pneumonia (NSIP)
NSIP presents with imaging features ranging from patchy ground–

glass opacities to irregular reticular shadows, accompanied by

destruction of the lung lobe structure and traction bronchiectasis,

with or without consolidation (Figure 3B). Lesions typically exhibit

bilateral and symmetrical distributions, predominantly involving the

lower lobes of the lungs. A distinguishing feature of NSIP compared

with OP is the relative sparing of subpleural regions (116).
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Histologically, NSIP is characterized by lymphocytic and plasma cell

infiltration, as well as uniform thickening of the alveolar walls (118).

4.1.3 Hypersensitivity pneumonia (HP)
The HP pattern comprises indistinct centrilobular nodules,

ground-glass opacities in both lungs, and large patchy or lobar

regions exhibiting mosaic perfusion (Figure 3C). The CTCAE grade

for the HP pattern tends to be relatively low, typically ranging from

grade 1 to 2 (114). Histologically, it is distinguished by diffuse

lymphocytic and plasmacytic infiltration surrounding the bronchi,

as well as loose, nonnecrotizing granuloma formation (119).

4.1.4 Diffuse alveolar damage (DAD)
DAD, also referred to as AIP or acute respiratory distress

syndrome (ARDS), is characterized by extensive ground–glass
FIGURE 3

Classic CT imaging of CIP. (A) Organizing pneumonia (OP); (B) Nonspecific interstitial pneumonia (NSIP); (C) Hypersensitivity pneumonia (HP);
(D) Acute interstitial pneumonia/diffuse alveolar damage (AIP/DAD).
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opacities with consolidation in both lungs during the exudative

phase. The organizing and fibrotic stages are characterized by

traction bronchiectasis, whereas in the late stage, there is a

notable reduction in lung volume (Figure 3D). Additionally, DAD

may present as thickening of the interlobular and intralobular septa,

forming a “crazy paving” pattern (120). The clinical manifestations

and pulmonary injury associated with the AIP pattern tend to be

severe, typically corresponding to a CTCAE grade of 3 or higher

(114). Histologically, DAD is characterized by diffuse alveolar

damage and pulmonary edema (120).
4.2 Radiation recall pneumonitis (RRP)

In addition to the classic manifestations of CIP, radiation recall

pneumonitis (RRP) has attracted increasing interest from

oncologists and radiation therapists in recent years. The incidence

of RRP has increased since immunotherapy, which is used as a

consolidation treatment following chemoradiotherapy for locally

advanced NSCLC, was promoted clinically. Some studies report

that the incidence of RRP can reach 18.8%, with a median onset

time of 450 days post-radiotherapy (116). RRP is characterized by

CT-detected pneumonia outside the typical radiation pneumonitis

window (4–12 weeks post-RT) and is localized to the irradiated area

(Figures 4A, B). Imaging features include patchy ground-glass

opacity/consolidation (120). Pathologically, it is characterized by

mucosal congestion, leukocyte infiltration, alveolitis, type II alveolar

cell hyperplasia, and fibrosis (121). ICI-induced RRP results in

radiation field-aligned consolidation/ground-glass opacity with

clear lesion-normal tissue borders. ICI-induced RRP mechanisms

may involve overactivation of T lymphocytes post-ICI binding to

irradiated lung tissue, triggering hypersensitivity; radiation-induced

endothelial damage, increasing vascular permeability and localized
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ICI accumulation in irradiated areas; and synergistic damage to

alveolar epithelial cells caused by both therapies (122, 123).
4.3 Other rare imaging modalities

Bronchiolitis has been reported exclusively in case studies.

Histologically, bronchiolitis is obliterative and characterized by

centripetal fibrosis of the submucosa and peribronchial tissues of the

terminal and respiratory bronchioles (124). CT findings include

thickened bronchial walls and diffuse tree-in-bud opacities in the

peripheral lung zones, often accompanied by bronchiectasis or

sharply demarcated mosaic attenuation patterns of the lung

parenchyma, which are more pronounced during expiration (125).

SLR represents a drug-induced multisystem granulomatous reaction

that is histologically characterized by noncaseating epithelioid

granulomas with multinucleated giant cells at the center and

surrounding scattered lymphocytes (126). It occurs in approximately

5% to 7% of patients receiving nivolumab therapy (127). Typical HRCT

features include miliary nodules predominantly distributed in the upper

and middle lung zones along the lymphatic vessels, which are associated

with mediastinal and bilateral hilar lymphadenopathy (128). Most SLR

cases require no treatment owing to minimal symptoms. ICI-induced

AEP is rare and presents as bilateral ground–glass opacities,

consolidation, septal thickening, and pleural effusion on CT.

Diagnosis requires elevated eosinophils in the blood and

bronchoalveolar fluid. Monitoring blood eosinophils during ICI

therapy aids early detection of CIP (129, 130).

Imaging exams are crucial for diagnosing CIP, with manifestations

linked to disease progression, hormone therapy response, and

prognosis. Studies have shown that organizing pneumonia (OP) is

the most common CT pattern in CIP patients (114). Clinically, the

severity of CIP follows the order of DAD/AIP > NSIP/HP > OP (131).
FIGURE 4

Radiation recall pneumonitis (RRP). The above image shows an elderly man with a history of smoking who was diagnosed with stage IIIB squamous
cell carcinoma. He received 4 cycles of albumin-bound paclitaxel combined with carboplatin treatment, followed by radical radiotherapy. Image (A)
shows the occurrence of pneumonia after one cycle of tislelizumab treatment following sequential chemoradiotherapy. Image (B) shows partial
absorption of pneumonia in the left lower lobe after 2 weeks of methylprednisolone therapy.
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Capaccione et al. (132) demonstrated through multimodal imaging

analysis that the imaging characteristics of CIP patients are significantly

associated with the type and duration of immunotherapy. Specifically,

CIP linked to anti-PD-1/PD-L1 therapy predominantly exhibits an OP

pattern, whereas CIP associated with anti-CTLA-4 therapy typically

manifests as anNSIP pattern. Research indicates that individuals in CIP

stages G1–2 have higher survival rates than those in G3–4. Hormone

therapy benefits HP/OP-like patients, whereas DAD-like patterns show

rapid progression and poor treatment response (33, 115).
4.4 CIP with infection

Clinically, patients with CIP often exhibit no specific symptoms,

and approximately one-third of them may remain asymptomatic.

Therefore, differential diagnosis is essential to exclude other potential

conditions, such as pulmonary infection, tumor pseudoprogression,

radiation-induced lung injury, and pulmonary edema. Among them,

opportunistic pulmonary infections, including tuberculosis (TB),

aspergillosis, cytomegalovirus pneumonia (CMVP), and

Pneumocystis jirovecii pneumonia (PJP), present significant

diagnostic challenges and constitute important differential diagnoses

(133–135). A meta-analysis revealed that patients treated with PD-1/

PD-L1 inhibitors are not only at risk of developing various types of

immune-related pneumonitis but also exhibit an increased incidence of

infectious pneumonia compared with patients in the chemotherapy or

placebo groups (136). The presence of symptoms such as fever,

expectoration, and elevated blood counts may indicate infection in

patients. Obstructive pneumonia represents a common type of

pulmonary infection among lung cancer patients, with bacterial

pathogens being the most prevalent cause. P. jirovecii infection may

result in bilateral ground–glass opacities and hypoxemia, whereas viral

infections can also cause diffuse pulmonary involvement. Furthermore,

several case reports have documented fungal infections, fungal airway

disease, and active pulmonary tuberculosis in patients receiving ICI

therapy (137–139). Pulmonary infection and CIP may present with

overlapping imaging features, making differential diagnosis

challenging. Therefore, it is essential to integrate findings from

sputum microbiology and serum biomarkers, including Legionella

antibodies, Mycoplasma antibodies, (1, 3)-b-D-glucans, Aspergillus
galactomannan, Cryptococcus capsular polysaccharide antigen, and

interferon-g release assays, to facilitate accurate differentiation (140). In

patients who develop immune checkpoint inhibitor-associated

pneumonitis (CIP), particularly those with grade 2 or higher CIP,

bronchoscopy and/or bronchoalveolar lavage (BAL) are recommended

as initial diagnostic procedures to exclude infectious etiologies. When

concurrent infection is suspected, prompt initiation of empirical anti-

infective therapy is also warranted (120). In cases where CIP and

infectious pneumonia cannot be definitively differentiated, occur

concurrently, or are followed by secondary infection, empirical

antibiotic therapy should be initiated following appropriate

diagnostic evaluation, while simultaneous efforts are made to identify

the etiological agent. Moreover, throughout the management of CIP,

continuous monitoring is needed for opportunistic infections that may

arise as a consequence of immunosuppressive therapy (141).
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5 Radiomics in CIP: from basic
imaging features to advanced
predictive modeling

Early studies focused on the basic imaging features of CIP. With

the development of radiomics, subsequent studies explored the links

among imaging findings, histopathology, treatment response, and

the potential of radiomics for assessing CIP risk, diagnosis, and

prognosis. Radiomics extracts high-throughput data from medical

images via computational algorithms, transforming qualitative

metrics into quantitative metrics. It includes traditional and deep

learning-based types. Common feature selection methods in

traditional radiomics include least absolute shrinkage and

selection operator (LASSO) (142), principal component analysis

(PCA) (143), and minimum redundancy maximum relevance

(MRMR) (144). However, traditional radiomic approaches may

overlook higher-level features during feature extraction. Deep

learning-based radiomics uses CNNs and transformers for

forward propagation to generate predictive outcomes through

data transformation. Backpropagation optimizes network

parameters via gradient calculations from prediction errors. This

interaction enables automatic feature extraction and advanced

radiomic analysis. The CNN remains the classical architecture

widely applied in medical imaging, with GoogLeNet/Inception,

ResNet, VGGNet, and DenseNet being prominent models in lung

cancer radiomics (145).

5.1 Radiomics-driven CIP risk stratification

In 2019, Colen et al. (146) pioneered a radiomic model for

predicting CIP in 32 patients. Using 3D Slicer for CT image

segmentation, they extracted 1,860 texture features on the basis of

histograms and the GLCM. The mRMR method selected predictive

features, achieving 100% accuracy (p = 0.0033). However, the small

sample size limits the generalizability of the results. Building on

Cole’s work, Zhang et al. (147) increased the robustness of the

NSCLC prediction model by integrating greyscale-dependent

matrix radiomic features. Features were selected via combined

MRMR and RFE methods, with added model evaluation

techniques. The ICC consistency assessment ensured reliability.

Ultimately, the model constructed using the RS, clinical, and SF

features demonstrated excellent performance in terms of ROC

curves, calibration curves, and DCA. This advancement enables

physicians to predict the likelihood of CIP in NSCLC patients with

greater speed and accuracy.

Tan et al. (148) developed a multimodal deep learning model

using a 3D ResNet18 architecture to predict chemotherapy-induced

pneumonia in lung cancer patients. The model integrated nine

clinical and radiomic features through 18 convolutional layers and

fully connected layers. Compared with two-stage transfer learning

with contrastive learning, it achieves an AUC of 0.918 via fivefold

cross-validation. Similarly, Cheng et al. (149) developed a multimodal

nomogram integrating clinical and deep imaging radiomics to predict

CIP risk in 141 lung cancer patients. They optimized ResNet-50-V2
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with a feature pyramid network (FPN), showing that the multimodal

model outperformed the radiomic-only and clinical-only models,

achieving AUCs of 0.910 vs 0.871 vs 0.778 (training set) and 0.900 vs

0.856 vs 0.869 (test set), respectively.

Chen et al. (150) constructed a radiomic prediction vector for

lung cancer immunotherapy (LCI-RPV) on the basis of radiomic

tumor features from enhanced chest CT scans, CD274 counts in

NSCLC patients treated with anti-PD-1/PD-L1 therapy, and RNA

expression levels of the PD-L1 protein-coding gene as the response

variable. Subgroup analysis revealed that the LCI-RPV could predict

CIP in PD-L1 inhibitor patients, with an AUC of 0.74 (95% CI:

0.53–0.95). Thomas et al. pioneered functional lung radiomics in

locally advanced NSCLC, assessing its role in pneumonia risk

stratification for combined radiation and ICI therapy. Baseline

COPD significantly increased pneumonia risk (HR 4.59). COPD

was the primary predictor, with a c-index of 0.69 (0.59–0.80) (151).
5.2 Identification of CIPs

The incidence of RP and CIP is greater than that of other types

of treatment-related pneumonitis in NSCLC patients. RP is dose

dependent with radiation field confinement, whereas CIP

presents bilateral multilobe involvement without dose correlation

(120, 152, 153). Concurrent RT-ICI-induced pneumonia combines the

features ofCIP andRP (11, 154) rather than simple superposition. In the

PEMBRO-RT trial and PACIFIC study, the incidence of pneumonia in

NSCLCpatients receiving radiotherapy (RT) and ICIwas reported to be

as high as 26% to 33.9% (95, 155). Differentiating CIP fromRP is crucial

for clinical management, guiding steroid dosage and ICI rechallenge or

discontinuation (156).

Chen et al. (157) analyzed CT data from 82 NSCLC patients with

pneumonia (immunotherapy/radiotherapy/combined therapy). They

built a radiomic model using LASSO-selected features and grid search

optimization, achieving a training set AUC of 0.76 for distinguishing

ICI- and RT-induced pneumonia. Cheng et al. (158) analyzed CT

images and clinical data from 73 patients with pneumonia related to

ICIs, radiotherapy or combined therapy. Three CT texture features

(intensity histogram, GLCM-based, and Bow) were extracted, with

the Bow showing the best cross-validation performance (AUC 0.937).

Logistic regression, random forest, and linear SVM models

underwent 10-fold validation in ICI/radiotherapy-only patients.

Testing in combined therapy patients yielded AUCs of 0.765, 0.848,

and 0.937, respectively. The optimal model achieved an AUC of 0.896

in the combined treatment cohort, outperforming prior studies. QIU

et al. (159) developed a CT radiomic model that integrates radiomic,

clinical, and radiological factors to differentiate CIP from RP, with

excellent performance (AUC 0.953 and 0.947). Bilateral CT changes

were more likely in patients with ICI-induced pneumonia than in

those with RP (p<0.001). CIP patients had less well-defined

boundaries (p=0.001), which aligns with other studies (157). The

radiomic nomogram outperformed the Rad-score in distinguishing

CIP from RP.

Wang et al. (160) developed a CT-based radiomic model for RP

and CIP patients. They built two models (random forest and linear
Frontiers in Immunology 11
discriminant classifiers), achieving test cohort AUCs of 0.851 and

0.842, respectively, with 83% accuracy. Additionally, this study

identified four highly discriminative features, including one first-

order feature, one gray-level run-length matrix (GLRLM)-based

feature, one gray-level co-occurrence matrix (GLCM)-based

feature, and one neighborhood gray-tone difference matrix

(NGTDM)-based feature. Previous studies (161, 162) have shown

that multifrequency CT decomposition effectively decodes the

underlying phenotypic differences between CIP and RP in

patients undergoing RT and ICI therapy.

The De Ruysscher team published a study in 2021 at the European

Society for Medical Oncology (ESMO), which distinguished CIP from

other causes of pneumonia (163). They extracted 837 radiomic

features and used recursive feature elimination (RFE) to select the

42most correlated features, and the areas under the ROC curves of the

clinical, radiomic, and combined models for predicting ICI-R

pneumonitis were 0.99, 0.65, and 0.99, respectively.

Early identification and diagnosis of CIP are crucial but

complicated by its broad onset window and clinical and radiological

heterogeneity. The imaging features of CIP frequently overlap with

those of infectious pneumonia. Since the emergence of the COVID-19

pandemic, this diagnostic challenge has become even more significant.

Sumeet Hindocha et al (164) developed a rigorously validated machine

learning tool capable of differentiating CIP from radiation pneumonitis

(RP), COVID-19, and other infectious pneumonia. Compared with

radiologists, the models for distinguishing RP from COVID-19, CIP

from COVID-19, and CIP from non-COVID-19 interstitial

pneumonia (IP) demonstrated superior performance, as evidenced

by test set AUCs of 0.92 versus 0.8 and 0.8; 0.68 versus 0.43 and 0.4; and

0.71 versus 0.55 and 0.63, respectively.

Recent research has expanded the application scope of

radiomics in the treatment of CIP and improved its value in

immunotherapy monitoring. The application of radiomics in the

treatment of CIP has gradually expanded from initial risk

stratification to automatic identification, differential diagnosis,

and prognosis prediction.
6 Management of CIP

On the basis of the Toxicity Management Guidelines for Immune

Checkpoint Inhibitor Pneumonitis (CIP) published by the National

Comprehensive Cancer Network (NCCN) (165), CIP is categorized

into four grades: Grade 1, asymptomatic, lesions are limited to a single

lobe or < 25% of the lung parenchyma; Grade 2, new symptoms or

worsening of existing symptoms, including shortness of breath, cough,

fever, chest pain, and hypoxia; lesions involve multiple lobes or 25% to

50% of the lung parenchyma, affecting daily life, requiring

pharmacological intervention; Grade 3, severe new symptoms,

lesions involve all lobes or >50% of the lung parenchyma, self-care

ability is limited, oxygen is needed, hospitalization is needed for

treatment; and Grade 4, life-threatening respiratory distress

syndrome, acute respiratory distress syndrome. Current guidelines

recommend the management of CIP on the basis of severity

grading (166).
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6.1 Graded treatment of CIP

For Grade 1 CIP, ICI discontinuation is advised with self-

monitoring of symptoms and weekly physical examination and

oxygen saturation monitoring during the first 3 weeks. If symptoms

occur, chest CT should be implemented in advance. Without

clinical progress, a follow-up chest CT after 3–4 weeks should be

performed. If imaging shows improvement, resumption of ICI

therapy with close follow-up is recommended. In cases of no

radiographic improvement, treatment should be escalated to

Grade 2, and ICI therapy should be paused.

The recommended approaches for Grade 2 CIP include baseline

assessment, such as blood tests (complete blood count, liver and

kidney function, electrolytes), and pulmonary function analysis. ICI

therapy should be paused until the condition improves to Grade 1

or lower. Intravenous methylprednisolone at 1–2 mg/(kg·d) is

advised for 48–72 hours. If symptoms improve, the steroid dose

should be tapered over 4–6 weeks and reduced by 5–10 mg weekly.

If there is no improvement, treatment should be escalated to Grade

3–4 protocols. If infection cannot be ruled out, empirical antibiotics

should be considered. Bronchoscopy with bronchoalveolar lavage is

recommended for atypical lesions.

Generally, for Grade 3–4 CIP, ICI therapy should be permanently

discontinued. Intravenous methylprednisolone at 2 mg/(kg·d) is

recommended. If clinical improvement is observed within 48

hours, continue steroid therapy until symptoms improve to Grade

1 or lower and then taper over 4–6 weeks. Bronchoscopy with

bronchoalveolar lavage is advised for atypical lesions, and biopsy

may be considered. Empirical antibiotic therapy should be initiated if

infection cannot be ruled out. If there is no significant improvement

with steroids, alternative therapies such as tocilizumab (8 mg/kg,

repeatable after 14 days), infliximab (5 mg/kg, repeatable after 14

days), mycophenolate mofetil (1–1.5 g twice daily), or intravenous

immunoglobulin (IVIG) should be considered.

Antimicrobial agents constitute a critical component of the

pharmacological management of CIP. Patients who have

received antitumor immunotherapy, chemotherapy, radiotherapy,

as well as steroid hormones and immunosuppressive therapies for

CIP are frequently immunocompromised, rendering them highly

susceptible to a range of infectious diseases, including opportunistic

infections. Respiratory infections can potentially trigger or worsen

CIP, and a subset of patients may concurrently present with both

CIP and pulmonary infectious diseases, thereby complicating the

clinical management of CIP. In cases of coexisting infection, an

individualized antibiotic regimen should be formulated on the basis

of the clinical and radiological characteristics of CIP, etiological

findings, and the patient’s baseline therapeutic strategy (140). Some

experts propose that during the treatment of CIP with steroid

hormones and/or immunosuppressants, prophylactic sulfonamide

therapy can be administered. In the absence of contraindications, a

prophylactic dose of sulfonamide should be routinely administered

orally. Common high-risk factors are poorly controlled diabetes

mellitus, long-term use of hormones (prednisone equivalent ≥ 20

mg/d) and/or immunosuppressants, bone marrow suppression

following oncological treatment, a history of Pneumocystis
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jirovecii infection, and a peripheral blood CD4+ T-cell count of

less than 400 cells/ml (167–170).
6.2 Corticosteroid therapy and escalation
strategies for CIP

Corticosteroids are generally recommended as the initial

treatment for symptomatic checkpoint inhibitor pneumonia (CIP)

patients. Retrospective data indicate that over 90% of Grade 1–2

CPI events can improve or resolve with either the cessation of the

drug or the use of corticosteroids, with or without additional

interventions. Furthermore, 60%-86% of patients who experience

Grade 3 or more severe CIP can achieve remission or cure through

corticosteroids or supplementary immunosuppressive therapy (11,

153). Steroid-refractory CIP is defined as the absence of clinical

improvement following high-dose corticosteroids administered for

48 hours, which necessitates the introduction of additional

immunosuppressive treatments (131).

6.2.1 The occurrence and prognosis of steroid-
refractory CIP

According to reported data from relatively large cohorts of CIP

patients, the proportion of patients with steroid-refractory CIP

ranged from 11.6% (11) to 18.5% (131). KL-6 may serve as a

viable screening biomarker for CIP, particularly in NSCLC patients,

and could predict steroid responsiveness (171). Immune toxicity

has been associated with improved efficacy of immunotherapies. In

an advanced NSCLC cohort (171), patients with severe CIP

presented the highest overall response rate (ORR) to immune

checkpoint inhibitors (ICIs), followed by those with grade 1–2

CIP, compared with non-CIP patients (44.44%, 35.3%, and 28.35%,

respectively). However, the prognosis for patients with steroid-

refractory CIP is suboptimal. A retrospective cohort study involving

26 patients with steroid-refractory CIP reported a mortality rate of

23% due to pneumonitis and 12% attributed to infections, which

may have been associated with immunosuppression (172).

Furthermore, the mortality attributable to CIP and/or associated

infectious complications was 75% (8/12) in another cohort (131).

Compared with steroid-responsive CIP, steroid-refractory CIP is

associated with a higher 1-year mortality rate, with a hazard ratio

(HR) of 15.1 (95% CI: 3.9–57.8, P < 0.0001) (173).

6.2.2 Advances in the treatment of steroid-
refractory CIP

For steroid-refractory CIP, there is currently no unified

standardized treatment strategy. Several immunosuppressants,

including infliximab, mycophenolate mofetil, intravenous

immunoglobulin (IVIG), and cyclophosphamide, are recommended

primarily on the basis of their efficacy in treating other steroid-

refractory immune-related adverse events (irAEs). However, the

efficacy and safety data for these therapies specifically targeting CIP

are limited and exhibit significant variability across retrospective

studies. Jason Beattie and colleagues reported that among 26

patients receiving additional immunomodulators (tumor necrosis

factor-alpha inhibitors and/or mycophenolate) for steroid-refractory
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CIP, 38% (10/26) achieved durable improvement (172). In another

study, Aanika Balaji and colleagues examined 65 patients with CIP, of

whom 12 were steroid refractory. Among these patients, those treated

with infliximab, with or without IVIG, experienced 100%mortality (5/

5 patients), whereas those treated with IVIG alone had a mortality rate

of 42.9% (3/7 patients) (131). An earlier study reported improvement

in CIP with infliximab in 4 out of 9 patients within a small,

retrospective cohort, where bronchoscopy was performed in 67% of

cases (172). Given the challenges in differentiating infection from

pneumonitis, particularly in severe cases, the mixed efficacy of the

aforementioned therapies may be partially attributed to variations in

the utility of bronchoscopy.

Agents targeting IL-6R, such as tocilizumab, have been shown to

be effective approaches for treating several types of steroid-refractory

immune-related adverse events (irAEs) (91), including one case of CIP

(174). Clinical trials are currently ongoing to evaluate the safety and

efficacy of tocilizumab in combination with ICIs (NCT04940299,

NCT03999749). Other reported therapies for steroid-refractory CIP

patients include pulse corticosteroids (175), cyclophosphamide (176),

and cyclosporine (177).

Given the high mortality associated with severe CIP and the lack of

reliable treatments for steroid-refractory cases, there is a pressing need

to explore various treatment approaches for these patients in

prospective studies. Conducting such trials may be challenging owing

to the relatively low incidence of this condition (NCT04438382).

Currently, prospective studies are evaluating the role of concurrent

immunosuppressants with ICIs in preventing irAEs (NCT04940299,

NCT03999749). Notably, the addition of early short-course

corticosteroids to ICI therapy has been shown to reduce the

incidence of irAEs that lead to ICI discontinuation in patients with

NSCLC (5.8% vs. 15.7%, OR = 0.34; 95% CI, 0.12–0.85; p = 0.013)

(178). For patients requiring long-term corticosteroid therapy to

manage irAEs, prophylaxis against certain opportunistic infections is

advisable, even though the incidence of Pneumocystis jirovecii

pneumonia (PJP) has been reported to be low (169).
6.3 Advances in the treatment of chronic
CIP

Some researchers propose dividing the clinical phenotypes of CIP

into acute, subacute, and chronic phases and dividing the

2 pathological processes of CIP into inflammatory, profibrotic, and

fibrotic stages (179, 180). Early-onset CIP often occurs within 6 weeks

of patients receiving ICI treatment, and the symptoms are generally

severe with a poor prognosis. Late-onset CIP typically appears after

6 weeks of ICI treatment, with fewer symptoms and a better prognosis.

Chronic CIP is defined as CIP that persists or worsens after the

reduction of steroid treatment, and such patients require more than

12 weeks of immunosuppressive therapy after the discontinuation of

ICIs (181). During the chronic CIP phase, fibrotic interstitial lung

diseases (such as complete damage to normal lung structure,

thickening and obstruction of blood vessels) are histologically

dominant, which may impair the efficiency of blood–gas exchange in

the lungs (182, 183). Typical sequelae may include persistent
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pulmonary interstitial fibrosis and reduced pulmonary function

caused by severe CIP (54). These concepts provide new directions

for the treatment of CIP beyond immunosuppressive therapy, namely,

antifibrotic treatment. Anti-fibrosis agents such as pirfenidone have

demonstrated efficacy (184). In a retrospective study (185), compared

with the glucocorticoid-only group, the glucocorticoid-pirfenidone

group demonstrated significant improvements in forced vital

capacity (FVC), diffusing capacity of the lung for carbon monoxide

(DLCO), 6-minute walk distance (6MWD), and oxygen saturation

without supplemental oxygen (P < 0.05). Among patients with grade 2

immune checkpoint inhibitor-related pneumonia (CIP), those

receiving combination therapy exhibited a significantly shorter

duration of symptom improvement than those treated with

glucocorticoids alone did. Furthermore, following the resumption of

immunotherapy, the incidence of CIP recurrence was lower in the

glucocorticoid-pirfenidone group than in the glucocorticoid-only

group. Nintedanib is a small molecule tyrosine kinase inhibitor that

has been approved for the antifibrotic treatment of patients with

idiopathic pulmonary fibrosis (IPF) and chronic interstitial lung

disease (ILD) (186). Additionally, nintedanib has demonstrated

efficacy against solid tumors in multiple clinical trials. For patients

with advanced squamous carcinoma, the LUME-Lung 3 study reported

that with first-line combination treatment of nintedanib plus cisplatin

plus gemcitabine, the disease control rate (DCR) was 81.3%, the

median progression-free survival (mPFS) was 4.2 months, and the

median overall survival (mOS) was 6.7 months (187). In lung

adenocarcinoma, the combination treatment of nintedanib and

docetaxel has been approved by the European Union as a first-line

chemotherapy regimen (https://www.ema.europa.eu/en/medicines/

human/EPAR/vargatef). Several case reports have documented the

use of nintedanib for salvage treatment in refractory and chronic

CIP patients, with clinical efficacy (186, 188).
6.4 ICI rechallenge in resolved CIP:
strategies and long-term vigilance

When grade 1–2 CIP events resolve or revert to grade 1, patients

may continue their previous ICI regimen. The recurrence of CIP

should be closely monitored, particularly for early-onset irAEs

(189). Delaunay et al. reported that among 10 patients with non-

small cell lung cancer (NSCLC) who were rechallenged with ICIs

after initially managing grade 1–2 CIP with ICI withdrawal or

corticosteroids, 3 patients (30%) experienced recurrent interstitial

lung disease (ILD) (153). A larger retrospective cohort study

revealed that 9 patients (20.0%) developed recurrent pneumonitis,

and 11 patients (24.4%) experienced new irAEs among 45 CIP

patients who underwent ICI rechallenge (190). A more recent

analysis (191) revealed that while ICI rechallenge beyond disease

progression did not introduce new safety concerns, it did not

improve clinical outcomes in patients with locally advanced or

metastatic NSCLC. However, patients who demonstrate a favorable

response to initial ICI treatment still benefit from subsequent ICI

rechallenge therapy. Similarly, systematic analysis revealed that the

incidence rates of all-grade and high-grade (grade 3 or 4) irAEs
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were not significantly different between initial and readministered

ICIs, and no significant difference in overall survival (OS) was

observed between the ICI rechallenge and discontinuation cohorts

(192). For patients who have recovered from grade 2 pneumonitis,

cautious reintroduction of ICIs is advised, particularly for those

with a positive response to initial ICIs and without feasible

alternative therapies. This resumption may be accompanied by

concomitant prednisone treatment, typically at a dosage of 20–30

mg/day, and should be conducted under close monitoring with

chest CT (189). Although reintroduction of ICIs has been

proven safe in rare and carefully selected cases (193), it is not

recommended for patients who have recovered from grade 3 CIP

events. For patients with grade 4 CIP, the use of ICIs should be

permanently avoided.

Overall, most cases of CIP can be effectively managed through

the withholding of ICIs and the administration of corticosteroids.

Although severe cases are relatively uncommon, they are associated

with poor prognosis and high mortality, underscoring the need for

prompt recognition and intervention. Currently, there are no

prospective trials evaluating the efficacy of treatments for severe

cases; thus, no universal guidelines for optimal therapy beyond

corticosteroids exist. For patients who have recovered from CIPs,

immunotherapy rechallenge may be feasible, particularly for those

who experienced low-grade CIPs and benefit from initial ICI

treatment; however, the recurrence of CIP or the emergence of

new irAEs should be closely monitored.
7 Conclusion and future points

With the expanding application of immune checkpoint inhibitors

(ICIs) in oncology, the real-world incidence of immune checkpoint

inhibitor-related pneumonia (CIP) has been progressively increasing.

Despite advances in understanding its pathogenesis, imaging features,

and therapeutic strategies, the prediction and early diagnosis of CIP

remain challenging in clinical practice. The lack of specific imaging

patterns and validated biomarkers often leads to delayed diagnosis

and treatment, particularly contributing to higher mortality rates

among patients with steroid-refractory pneumonia. Emerging studies

investigating the underlying mechanisms and potential predictive

biomarkers of CIP have identified associations between its

occurrence, severity, and response to steroid therapy and various

inflammatory mediators, chemokines, autoantibodies, and certain

genetic predispositions. Additionally, evidence suggests that the

baseline neutrophil-to-lymphocyte ratio (NLR) and platelet-to-

lymphocyte ratio (PLR) are correlated with the risk of immune-

related adverse events (irAEs) in patients with solid tumors receiving

ICIs (147), whereas the baseline lymphocyte and eosinophil counts

have also been linked to irAE development (194). Nevertheless, these

biomarkers have not yet been widely adopted in clinical settings, and

their diagnostic sensitivity and specificity require further validation

through large-scale prospective cohort studies.

Radiomics and machine learning, as critical branches of

artificial intelligence in medical imaging, enable the extraction of

many quantitative features from high-resolution CT scans.
Frontiers in Immunology 14
These technologies support the clinical risk stratification of

immune checkpoint inhibitor-related pneumonia (CIP) and

facilitate its differential diagnosis from other types of pneumonia,

such as radiation pneumonitis and infectious pneumonia. Recently,

various convolutional neural network (CNN)-based deep learning

models and multimodal models that integrate clinical, imaging, and

pathological data have demonstrated outstanding classification

performance, with area under the curve (AUC) values generally

exceeding 0.9 (158, 164), significantly surpassing traditional

radiological evaluation methods. For example, Wang et al. utilized

deep learning visualization techniques and reported that regions

beyond the tumor—such as pleural retraction, pleural effusion, and

vascular abnormalities—are crucial for predicting the risk of CIP

during immunotherapy (195).

Despite their promising applications in CIP diagnosis and risk

prediction, several challenges remain: a lack of standardized

protocols for image acquisition; insufficient repeatability and

stability in image segmentation, leading to variability in region of

interest (ROI) delineation across different software platforms,

drawing methods, and observers; and most current studies on

CIP are single-center retrospective analyses with limited sample

sizes. To validate these findings more robustly, large-scale

multicenter prospective studies along with external dataset

validation and training are needed. To date, research on CIP has

focused primarily on predictive modeling and differential diagnosis,

with relatively limited exploration of disease prognosis and

therapeutic response. This gap highlights an important direction

for future investigations. In model development, the acquisition of

high-quality images is fundamental to ensuring model robustness.

During radiomic feature extraction, standardization of the slice

thickness, imaging protocols, and ROI delineation procedures is

essential. Integrating radiomic features with patients’ clinical

profiles, cytokine levels, autoantibody panels, and genetic

predispositions, followed by advanced bioinformatics analysis,

may yield models with enhanced accuracy in diagnosis, prognosis,

and outcome prediction (196).

In conclusion, the prediction, diagnosis, and management of

immune checkpoint inhibitor-related pneumonitis (CIP) are

progressively advancing toward the integration of multiomics

biomarkers and imaging artificial intelligence technologies. Future

efforts should focus on strengthening interdisciplinary collaboration,

validating the clinical utility of novel models through prospective,

multicenter studies, and facilitating the broad implementation of

these cutting-edge tools in routine clinical practice. Only through

such systematic approaches can the mortality and treatment

discontinuation risks associated with CIP be effectively mitigated,

thereby fully harnessing the therapeutic potential of immunotherapy.
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