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CCAAT/enhancer-binding protein beta (C/EBPb), a key transcription factor, plays a

central role in regulating inflammasome signaling in neurodegenerative diseases

(NDs). This review synthesizes the mechanisms by which C/EBPb modulates

neuroinflammation and its potential as a therapeutic target. We conducted a

comprehensive systematic review spanning January 1995 to June 2025,

systematically querying Google Scholar and PubMed with the following

keywords: neuroinflammation, inflammasome activation, C/EBPb, therapeutic
targeting, and neurodegenerative diseases. C/EBPb exists in three isoforms-LAP1,

LAP2, and LIP-each with distinct functions in inflammasome activation. In

Alzheimer’s disease (AD), C/EBPb drives tau cleavage and Ab pathology through

the AEP axis and exacerbates neuroinflammation by upregulating APOE4. In

Parkinson’s disease (PD), C/EBPb silencing reduces a-synuclein aggregation and

dopaminergic neuron loss by suppressing the NLRP3 inflammasome. In

Amyotrophic Lateral Sclerosis (ALS), C/EBPb is hypothesized to contribute to

TDP-43-associated inflammasome activation, though this requires further

validation. In Multiple Sclerosis (MS), C/EBPb may influence microglial activation

and neuroinflammation, as shown in experimental autoimmune encephalomyelitis

models. Modulators of the C/EBPb-inflammasome axis include endogenous

regulators like gut-derived metabolites and pharmacological interventions such

as small-molecule inhibitors. Therapeutic strategies targeting C/EBPb hold promise

for mitigating neuroinflammation and neurodegeneration, though challenges

remain in achieving isoform-specific targeting and blood-brain barrier

penetration. Future directions include CRISPR-based editing and biomarker

development for personalized therapies.
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1 Introduction

1.1 Overview of neuroinflammation and
inflammasomes in neurodegenerative
diseases

Neurodegenerative diseases (NDs), including Alzheimer’s

disease (AD), Parkinson’s disease (PD), amyotrophic lateral

sclerosis (ALS), and multiple sclerosis (MS), are characterized by

progressive neuronal loss and functional decline in the central

nervous system (CNS). A hallmark shared across these disorders

is chronic neuroinflammation, driven by dysregulated immune

responses and sustained activation of innate immune pathways

(1–3). Central to this process are inflammasomes, multiprotein

complexes that orchestrate inflammatory signaling and contribute

to neuronal damage (4).

Neuroinflammation initially serves as a protective mechanism

aimed at eliminating pathogens and cellular debris. Resident CNS

immune cells, such as microglia and astrocytes, detect danger-

associated molecular patterns (DAMPs) or pathogen-associated

molecular patterns (PAMPs) through pattern recognition

receptors (PRRs), including Toll-like receptors (TLRs) and Nod-

like receptors (NLRs) (5). Acute activation of these pathways

promotes tissue repair and homeostasis. However, persistent

stimuli-such as misfolded protein aggregates (e.g., amyloid-b [Ab]
in AD, a-synuclein in PD), oxidative stress, or mitochondrial

dysfunction-trigger chronic neuroinflammation. This leads to the

sustained release of pro-inflammatory cytokines (e.g., IL-1b, IL-18),
chemokines, and reactive oxygen species (ROS) (6–8). This chronic

state exacerbates neuronal death, synaptic dysfunction, and blood-

brain barrier (BBB) disruption, creating a self-perpetuating cycle of

neurodegeneration (9–13).

In AD, the presence of abnormally phosphorylated tau protein

and extracellular deposits of Ab peptide are key pathological

features (14). These deposits activate microglia and astrocytes,

leading to the release of pro-inflammatory cytokines and

neurotoxicity (15–17). In PD, the misfolding and aggregation of

a-synuclein due to oxidative stress result in the accumulation of

toxic protein aggregates (18, 19). This triggers a cascade of pro-

inflammatory events in microglia and astrocytes, amplifying

neuronal loss and persistent neurodegeneration (20, 21).

The NLRP3 inflammasome is a cri t ical player in

neuroinflammation, activated by DAMPs and PAMPs in microglia,

astrocytes, and neurons (22–24). Activation of the NLRP3

inflammasome leads to the maturation and release of pro-

inflammatory cytokines such as IL-1b and IL-18, contributing to

neuroinflammation and neuronal damage (25). Inhibiting the NLRP3

inflammasome has been proposed as a potential therapeutic strategy

to counteract neurodegenerative diseases (1, 26). Most evidence and

therapeutic concepts presented here derive from in vitro systems or

animal models. While indispensable for mechanistic insight and

proof-of-concept, these data must be validated in rigorously

designed clinical trials before any therapeutic claims can be

extended to human disease.
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1.2 Introduction to C/EBPb: structure,
isoforms, and physiological roles

CCAAT/enhancer-binding protein beta (C/EBPb) is a member

of the C/EBP family of transcription factors that play crucial roles in

various physiological processes (27). As a leucine-zipper (bZIP)

transcription factor, C/EBPb binds DNA as dimers and regulates

the transcription of genes containing specific T(TG)NNGNAA(TG)

motifs (28, 29). The uniqueness of the C/EBPb gene lies in its lack of
introns and its ability to be alternatively translated into three major

isoforms: liver activator protein 1(LAP1), liver activator protein 2

(LAP2), and liver inhibitor protein (LIP) (30). These isoforms arise

through alternative translation initiation sites, leading to differences

in their N-terminal regions (30, 31).

LAP1 and LAP2 are both transcriptional activators, with LAP2

being a stronger transactivator than LAP1. This difference is

attributed to the regulation of C/EBPb protein tertiary structure

and unique N-terminal protein-protein interactions (28, 32). LAP1

and LAP2 differ in their first 21 N-terminal amino acids due to

internal translation initiation from the downstream LAP2 start

codon (28, 30). In contrast, the LIP isoform lacks the N-terminal

transactivation domain (TAD) and most of the negative regulatory

domain, functioning primarily as a dominant-negative regulator of

transcription. However, in some cellular contexts, LIP can act as a

transcriptional activator by interacting with other cofactors (30, 33).

C/EBPb is expressed in various tissues, including the liver,

brain, intestine, and skin, and is involved in multiple

physiological processes (34). It is essential for the differentiation

of mammary epithelial and granulosa cells, macrophage function,

and brown adipose tissue formation (35–37). C/EBPb also plays a

role in cell cycle arrest and differentiation in hepatocytes,

hematopoietic cells, and adipocytes (37–39). Additionally, it is

involved in apoptosis and senescence in microglia and neurons.

For instance, methamphetamine (METH) upregulates C/EBPb
expression, thereby activating Lipocalin2 (an apoptosis-inducing

factor) and leading to apoptosis in microglial cells. Silencing C/

EBPb can reverse this process (40, 41). METH induces neuronal

autophagy and apoptosis through the C/EBPb-DDIT4/TSC2/
mTOR signaling axis and the Trib3/Parkin/a-syn pathway.

Inhibition of C/EBPb can mitigate neurotoxicity (42, 43). C/EBPb
regulates the pro-inflammatory program in microglia and is

involved in the expression of several inflammatory genes in

astrocytes (44, 45). It also plays a role in the regulation of the

complement component 3 gene in neural cells, contributing to its

pro-inflammatory effects (46).
1.3 Rationale for focusing on C/EBPb-
inflammasome axis: bridging
transcriptional regulation and chronic
inflammation in NDs

The C/EBPb-inflammasome axis has emerged as a critical

pathway linking transcriptional regulation to chronic inflammation
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in NDs (Table 1). This axis is particularly relevant in conditions such

as AD, PD, ALS, and MS, where chronic neuroinflammation plays a

significant role in disease progression (54).

C/EBPb plays a pivotal role in regulating the expression of genes

involved in inflammasome activation, thereby linking transcriptional

regulation to chronic inflammation. Inflammasomes, such as the

NLRP3 inflammasome, are activated by various stimuli, including

misfolded protein aggregates, oxidative stress, and mitochondrial

dysfunction (55–58). For instance, C/EBPb has been shown to

directly bind to the promoter region of the SerpinB2 gene, which is

crucial for LPS-induced transcription in macrophages. This binding is

essential for driving transcription from the SerpinB2 promoter in

response to LPS stimulation (59). Additionally, C/EBPb regulates the

expression of caspase-1, a key component of the non-canonical

inflammasome pathway (60, 61). This regulation is critical for

understanding how chronic inflammation is sustained in NDs.

C/EBPb is also implicated in the regulation of mitochondrial

function and the expression of mitochondrial transcription factor A

(TFAM). In a cellular model of Parkinson’s disease using SH-SY5Y

dopaminergic cells treated with the neurotoxin 6-hydroxydopamine

(6-OHDA), C/EBPb levels increased over time, reaching a peak at

18 hours when cells began to die due to stress. In contrast, TFAM

expression decreased after 4 hours of treatment, followed by a

partial recovery. This recovery is likely due to C/EBPb’s activation
of the TFAM promoter (62). Mitochondrial dysfunction, a common

feature of NDs, contributes to chronic inflammation through the

release of damage-associated molecular patterns (DAMPs) (63, 64).

By regulating mitochondrial function, C/EBPb can influence the

inflammatory response and contribute to the pathogenesis of NDs.

C/EBPb has been shown to regulate autophagy, a process

crucial for the degradation of damaged mitochondria. In C/EBPb-
silenced cells, there is an accumulation of autophagic markers under

oxidative stress and inflammatory conditions, indicating that C/

EBPb is involved in the regulation of autophagy. This accumulation

is not due to increased autophagy induction but rather to decreased

autophagosome degradation (62, 65). This finding suggests that C/

EBPb may play a role in maintaining the balance between

mitochondrial biogenesis and degradation, which is essential for

cellular homeostasis.
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2 C/EBPb in inflammasome activation

2.1 Transcriptional control of
inflammasome components

C/EBPb is a key transcription factor that directly regulates the

expression of critical inflammasome components by binding to

their promoter regions. This direct regulation is essential for the

expression and activation of inflammasomes, which play a crucial

role in the inflammatory response in various diseases (66). For

instance, C/EBPb has been shown to regulate the expression of

NLRP3, a key component of the inflammasome complex (60, 67).

NLRP3 is activated by various stimuli, including misfolded proteins

and oxidative stress, leading to the release of pro-inflammatory

cytokines like IL-1b and IL-18 (68–70). Similarly, C/EBPb also

regulates the expression of AIM2, another inflammasome sensor

that recognizes cytosolic DNA and forms a caspase-1-activating

inflammasome (71, 72). Additionally, C/EBPb directly controls the

expression of caspase-1, a crucial enzyme in the inflammasome

pathway that processes pro-IL-1b and pro-IL-18 into their active

forms (60). The specific mechanism is illustrated in Figure 1A.

C/EBPb not only acts independently but also synergizes with other

transcription factors, such as NF-kB, to amplify the production of pro-

inflammatory cytokines (Figure 1A). This synergy is particularly

evident in the regulation of IL-1b and IL-18, two key cytokines

involved in the inflammatory response (73, 74). NF-kB is a well-

known regulator of inflammatory genes, and its cooperation with C/

EBPb enhances the transcriptional activation of these genes. For

example, studies have shown that C/EBPb and NF-kB can bind to

adjacent sites on the promoters of IL-1b and IL-18 genes, leading to a

coordinated upregulation of these cytokines (60). This synergistic effect

is crucial for the robust inflammatory response observed in conditions

such as sepsis and neurodegenerative diseases (46, 62, 75, 76).
2.2 Isoform-specific mechanisms

C/EBPb-LAP, the transcriptionally active isoform of C/EBPb, is
crucial for activating the AIM2 inflammasome by enhancing the
TABLE 1 The molecular pathways of neurodegenerative diseases are regulated by C/EBPb.

Diseases Mechanisms Reference

AD

Glia activation leads to increased C/EBPb expression, its nuclear translocation, and binding to pro-inflammatory gene promoters,
thereby upregulating inflammatory genes.

(46)

C/EBPb binds the promoter of APOE and escalates its expression (47)

Neuronal ApoE4 activates C/EBPb and promotes d-secretase simultaneously cleaves both APP and Tau and augments Ab production
and Tau hyperphosphorylation.

(48, 49)

Diabetes-linked inflammation triggers neuronal C/EBPb activation, leading to increased APP and Tau expression. (50)

PD

C/EBPb acts as a transcription factor to upregulate a-syn and monoamine oxidase B, which triggers oxidative stress in dopaminergic
neurons and a-Syn aggregation.

(51)

Disruption of gut microbiota homeostasis and impairment of the intestinal barrier activate the C/EBP/AEP signaling, leading to a-
synuclein aggregation and substantia nigra dopaminergic neuron degeneration.

(52)

MS Myelin basic protein (MBP)-specific T cells trigger microglial inflammation via a C/EBPb-dependent mechanism. (53)
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expression of AIM2 and caspase-1 (Table 2). This mechanism has

been observed in several contexts.

In Lupus Nephritis (LN), C/EBPb-LAP activates the AIM2

inflammasome and induces podocyte pyroptosis. This activation is

achieved by binding to the promoters of AIM2 and CASPASE1,

thereby enhancing their expression (Figure 1B). Knockdown of AIM2

or caspase-1 reversed the effects of C/EBPb-LAP overexpression,

highlighting the critical role of these interactions in inflammasome

activation (71). In the context of liver inflammation, C/EBPb-LAP
activates the transcription of various pro-inflammatory genes,

including IL-6 and TNF. This activation is crucial for the acute

phase response and the recruitment of immune cells to the site of

inflammation (66, 77, 78).

In contrast to C/EBPb-LAP, the C/EBPb-LIP isoform functions

primarily as a transcriptional inhibitor and has been shown to

promote Ca²+-mediated inflammasome assembly by suppressing the

expression of inositol-1,3,4-phosphat receptor associated G-kinase

substrate (IRAG). Overexpression of C/EBPb-LIP in LN

transcriptionally inhibits IRAG, leading to increased Ca²+ release.

This increase in Ca²+ levels facilitate the assembly and activation of the

AIM2 inflammasome (71, 79, 80). This finding suggests that C/EBPb-
LIP not only regulates the expression of key inflammasome proteins

but also affects their polymerization through the regulation of Ca²+

release (Figure 1B). In Myeloid-Derived Suppressor Cells (MDSCs),

C/EBPb-LIP suppresses the expression of immunosuppressive genes

such as arginase-1 (Arg-1) and inducible nitric oxide synthase (iNOS).

This suppression is achieved by blocking the activity of the

transcriptionally active LAP-1 and LAP-2 isoforms (78). The

balance between LIP and LAP isoforms is crucial for the regulation

of MDSC function and the inflammatory response. In hepatocytes,
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C/EBPb-LIP has been shown to downregulate the expression of

cytochrome P450 enzymes (e.g., CYP3A4) by antagonizing the

transactivation activity of LAP. This mechanism involves the

binding of LIP to LAP (81, 82), preventing it from initiating

transcription. This regulation is important for the metabolic

response to inflammatory stimuli.
3 Role in specific neurodegenerative
diseases

3.1 Alzheimer’s disease

C/EBPb has been identified as a key player in the progression of

AD. Over the past decade, numerous studies have elucidated its

multifaceted role in the pathogenesis of AD. For instance, C/EBPb
has been shown to be a crucial transcription factor for APOE,

preferentially mediating the expression of ApoE4, which is

associated with an increased risk of AD (47). In addition to its

role in Ab production, C/EBPb is implicated in the neurofibrillary

pathology of AD. It has been demonstrated that C/EBPb can

upregulate the expression of certain proteins that mediate the

cleavage of tau and APP, proteins implicated in the development

of AD (48, 49). This suggests that C/EBPb may contribute to both

major pathological features of AD.

Moreover, C/EBPb is involved in neuroinflammation, a critical

component of AD pathology (83, 84). It is a key regulator of pro-

inflammatory genes in microglia and is overexpressed in AD animal

models and AD patients. There is a positive feedback loop between C/

EBPb and inflammatory components-inflammatory factors can
FIGURE 1

Transcriptional regulation of inflammasome activation by C/EBPb. C/EBPb governs the expression of NLRP3 and AIM2, which are pivotal
inflammasome components responsible for triggering the cleavage of latent procaspase-1 into its active form, caspase-1. This activation facilitates
the conversion of the cytokine precursors pro-IL-1b and pro-IL-18 into their mature, bioactive forms, IL-1b and IL-18, respectively. Beyond this, C/
EBPb directly regulates caspase-1 expression and influences NF-kB expression, which in turn modulates the activation of pro-IL-1b and pro-IL-18.
(B) The C/EBPb isoforms, C/EBPb-LAP and C/EBPb-LIP, drive the production of inflammatory factors by activating the AIM2 inflammasome. Created
with BioRender.com.
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activate C/EBPb, which in turn further promotes the production of

inflammatory factors (46, 66). This inflammatory response can further

exacerbate neuronal damage and contribute to the progression of the

disease. Chronic neuroinflammation activates the transcription factor

C/EBPb, which in turn up-regulates the cysteine protease asparagine

endopeptidase (AEP) (85). Clinically, heightened AEP activity is

documented in post-mortem AD brains, while mechanistic studies

reveal that genetic ablation of C/EBPb attenuates AD pathology via

AEP suppression in animal models (86, 87). Importantly, AEP

truncates tau at N368 and N255, yielding aggregation-prone

fragments that precipitate neurofibrillary tangle formation—a

defining feature of AD neurodegeneration (88).

In ADmouse models, knockdown of C/EBPb significantly reduces
the levels of inflammatory factors and the number of activated

microglia. Conversely, overexpression of C/EBPb exacerbates these

pathological features (48). C/EBPb isoforms can bind the promoter

regions of inflammasome genes (e.g., caspase-1, NLRP3, and AIM2) via

their DNA-binding domains and enhance transcription. While this

suggests a potential regulatory role in inflammasome-mediated

processes in AD, direct experimental confirmation is still lacking.

Recent studies have also highlighted the potential therapeutic

implications of targeting C/EBPb. For example, inhibiting the C/

EBPb/d-secretase axis has been shown to reduce Ab levels and

improve cognitive function in animal models of AD (89). Decrease

FOXO inhibition, reverse GABA neuron degeneration, maintaining

the homeostasis of excitation inhibition balance (90). These findings

suggest that interventions aimed at modulating C/EBPb activity

could represent a promising strategy for treating AD (Table 1).
3.2 Parkinson’s disease

Over the past decade, research has illuminated the multifaceted

role of C/EBPb in PD (51, 62). C/EBPb is involved in the regulation

of AEP, also known as legumain, a cysteine protease highly activated

in the brains of PD patients (91). AEP cleaves a-synuclein (a-syn),
promoting its aggregation and neurotoxicity, which contributes to the
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loss of dopaminergic neurons and motor deficits characteristic of PD

(52, 92). Additionally, C/EBPb acts as a transcription factor to

upregulate a-syn and monoamine oxidase B (MAOB), both of

which are implicated in PD pathogenesis in human wild-type a-
Syn transgenic mice (51). This transcription factor can be activated by

lipopolysaccharide (LPS) and inflammatory cytokines such as

interleukin-1b (IL-1b), IL-6, and tumor necrosis factor-a (TNF-a)
(50). Therefore, gut microbiota dysbiosis and inflammation

activation contribute to PD pathology through the C/EBPb/AEP
signaling pathway (52). In a study using a rotenone-induced PD

mouse model, combined with antibiotic-induced microbiome

depletion and fecal microbiota transplantation, it was found that

gut microbiota dysbiosis, along with leaky gut-induced bacterial

endotoxins, activates C/EBPb/AEP signaling and a-syn pathology,

ultimately leading to neurodegeneration in PD (52). This suggests

that the gut microbiota may play a significant role in the activation of

C/EBPb/AEP signaling and the progression of PD.

Furthermore, silencing C/EBPb has been shown to reduce a-
synuclein aggregation and dopaminergic neuron loss. This effect is

mediated through the suppression of the NLRP3 inflammasome (93,

94). By downregulating C/EBPb, the expression of NLRP3 and other

inflammasome components is reduced, thereby attenuating the

inflammatory response and mitigating neuronal damage in an

MPTP neurotoxic model of PD (55, 95). This finding suggests that

targeting C/EBPb could be a promising therapeutic strategy for

reducing neuroinflammation and neurodegeneration in PD (Table 1).
3.3 Amyotrophic lateral sclerosis

TDP-43 (TAR DNA-binding protein 43) is a nuclear protein that

regulates several RNA metabolic pathways. Dysregulation of TDP-43

induces its cytoplasmic accumulation and aggregation, which is a

hallmark of ALS (96). The C/EBPb expression in microglia has

indeed been observed to increase in spinal cord of ALS animal

models and human ALS patients (97).TDP-43 interacts with NF-kB,
a key factor contributing to the inflammatory response, and activates
TABLE 2 The role of the C/EBPb isoform in inflammation.

C/EBPb isoforms Reference

Structural Features LAP1 LAP2 LIP

Full-length N-terminal
transactivation
domain (TAD)

Lacking 21 amino
acids at the N-
terminal TAD and
partially regulatory

Completely lacking the N-terminal TAD and
Lacking most of the negative
regulatory domain

(30)

Primary Functions Increase
transcriptional activity

Increase
transcriptional
activity

Inhibit transcriptional activity (31)

Diseases
Mechanisms

Lupus nephritis C/EBPb-LAP upregulates AIM2 inflammasome
activity by promoting the transcriptional
expression of AIM2 and CASPASE1 through
direct promoter binding

C/EBPb-LIP suppresses IRAG expression at the
transcriptional level, enhancing Ca²+ release and
subsequent AIM2 inflammasome activation

(71)

Chronic inflammation LAP isoforms promote inflammation by
activating the transcription of pro-inflammatory
genes, including IL-6 and TNFa

LIP reduces inflammation by blocking LAP (77)
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NF-kB in microglia (98). Activated NF-kB induces the production of

pro-inflammatory cytokines, contributing to neuroinflammation (97,

99). Considering that C/EBPb is a key transcription factor for NF-kB,it
may play a role in regulating these inflammatory pathways, thereby

contributing to the neuroinflammatory response in ALS (100).
3.4 Multiple sclerosis

C/EBPb has been shown to be involved in the inflammatory

response in MS. Specifically, myelin basic protein-specific T cells, an

autoantigen in MS, induce the expression of IL-1b, IL-1a, TNF-a, and
IL-6 in microglial cells through a mechanism dependent on C/EBPb
activation (53). This suggests that C/EBPb plays a crucial role in

mediating the inflammatory response in MS (53). In the context of

MS, C/EBPb may contribute to the activation of the NLRP3

inflammasome, which is associated with the production of IL-1b and

IL-18, key cytokines in neuroinflammation (101). This activation can

lead to further recruitment of immune cells and exacerbation of the

inflammatory process in MS. Additionally, studies have shown that C/

EBPb deficiency in myeloid cells can reshape microglial gene expression

and is protective in experimental autoimmune encephalomyelitis

(EAE), a mouse model of MS (102). However, additional direct

evidence is necessary to demonstrate that C/EBPb regulates the

inflammasome in MS pathogenesis. Furthermore, C/EBPb has been

implicated in the regulation of other inflammatory mediators such as

HMGB1. HMGB1, a damage-associated molecular pattern (DAMP)

protein, is known to interact with various receptors including RAGE,

TLR2, TLR4, and TLR9, and can induce inflammatory responses (103–

105), C/EBPb can be activated by inflammatory stimuli such as

lipopolysaccharide (LPS), and it has been shown to upregulate the

expression of IL-1b, a cytokine that can be further enhanced byHMGB1

through its interaction with transcription factors like PU.1 (106–109).

This suggests that C/EBPb and HMGB1 can act in concert to amplify

inflammatory signaling.
4 Modulators of the C/EBPb-
inflammasome axis

4.1 Endogenous regulators

Gut-derived metabolites, such as 12-HHTrE, have been

identified as activators of the C/EBPb-inflammasome axis. These

metabolites can induce oxidative stress, which in turn activates C/

EBPb and promotes the expression of pro-inflammatory cytokines

(110). Additionally, oxidative stress itself can act as an activator of

this axis, contributing to the production of reactive oxygen species

(ROS) and subsequent inflammatory responses (111–113). On the

other hand, COP1-mediated ubiquitination and degradation of C/

EBPb in microglia have been reported as a mechanism to control

the activity of this transcription factor (114). This process helps to

regulate the inflammatory response by reducing the levels of active

C/EBPb, thereby limiting the activation of the inflammasome.
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4.2 Pharmacological interventions

Small-molecule inhibitors have been developed to target

components of the C/EBPb-inflammasome axis (115, 116). For

instance, an AEP inhibitor, Compound #11A, has been shown to

reduce the activation of the inflammasome and mitigate

neuroinflammation (117, 118). This pharmacological approach

aims to block the downstream effects of C/EBPb activation,

thereby reducing the production of pro-inflammatory cytokines.

Among pharmacologic NLRP3 inhibitors, the orally bioavailable

agent ZYIL1 prevents ASC oligomerization; its Phase II trial in ALS

has recently concluded. Likewise, VTX3232—an orally active, CNS-

penetrant, and selective NLRP3 inhibitor—is currently undergoing

Phase II evaluation in early-stage Parkinson’s disease (119).

Another strategy involves the use of lentiviral shRNA delivery

systems to silence C/EBPb expression. This method has been

employed to specifically target and reduce the levels of C/EBPb in

cells, thereby attenuating the activation of the inflammasome and

associated inflammatory responses (120, 121). This approach

provides a potential therapeutic avenue for conditions where

excessive activation of the C/EBPb-inflammasome axis contributes

to pathology.
5 Therapeutic implications and
challenges

5.1 Preclinical success

Knockdown of C/EBPb has shown promising results in

preclinical models of AD and PD. Studies have demonstrated that

reducing C/EBPb levels can improve cognitive function and reduce

pathological markers in these models. For instance, in PD models, C/

EBPb reduction has been shown to mitigate dopaminergic neuronal

damage and glial activation, suggesting that C/EBPb depletion could

be a valuable therapeutic target for PD (52). Similarly, in AD models,

the anti-inflammatory cytokine interferon-gamma acts as a potential

therapeutic target of AD (122), and C/EBPb knockdown has been

associated with reduced amyloid-beta (Ab) pathology and improved

cognitive outcomes (47).
5.2 Translational barriers

Despite these encouraging preclinical findings, several

translational barriers must be addressed to develop effective

therapies targeting the C/EBPb-inflammasome axis. One

significant challenge is achieving isoform-specific targeting of C/

EBPb to avoid off-target effects. C/EBPb has multiple isoforms, and

targeting the wrong isoform could lead to unintended consequences

(47, 123). Therefore, developing strategies to specifically target the

pathogenic isoforms of C/EBPb is crucial. High-throughput small-

molecule screening can now be coupled with AI/ML-driven

chemical-structure modelling, similarity-based target prediction,
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and cross-species transcriptomics to markedly reduce off-

target liabilities.

Another major challenge is the blood-brain barrier (BBB)

penetration for inhibitors. The BBB restricts the entry of many

drugs into the central nervous system, making it difficult to deliver

effective concentrations of therapeutic agents to the brain (124).

Overcoming this barrier is essential for the successful translation of

C/EBPb inhibitors from preclinical to clinical settings. Nanobodies

—single-domain antibodies of ~15 kDa—readily access cryptic

epitopes inaccessible to conventional antibodies and can stabilize

distinct protein conformations with exquisite specificity. Several

nanobodies have already demonstrated brain penetrance (125) and

the platform is rapidly gaining traction as a therapeutic modality for

CNS disorders (126, 127).
5.3 Future directions

Looking forward, several innovative approaches hold promise

for addressing these challenges. CRISPR-based isoform editing is a

cutting-edge technology that could enable precise targeting of

specific C/EBPb isoforms, thereby reducing the risk of off-target

effects (128–130). This approach could be particularly useful in

selectively targeting the pathogenic isoforms of C/EBPb in

neurodegenerative diseases.

Additionally, the development of biomarkers for C/EBPb
activity could facilitate patient stratification and personalized

medicine. Identifying reliable biomarkers that reflect C/EBPb
activity in vivo would allow for better selection of patients who

are most likely to benefit from C/EBPb-targeted therapies (131).

This could enhance the success rate of clinical trials and improve

patient outcomes.
6 Conclusion

In conclusion, the C/EBPb-inflammasome axis provides a critical

link between transcriptional regulation and chronic inflammation

in NDs. Understanding this axis is essential for developing

therapeutic strategies aimed at mitigating neuroinflammation and

neurodegeneration. Future research should focus on elucidating the

specific mechanisms by which C/EBPb regulates inflammasome

activation and identifying potential therapeutic targets within this axis.

C/EBPb, a transcription factor, plays a vital role in regulating

immune and inflammatory responses. It has been shown to directly

target the promoter region of various genes, such as IL-1b, thereby
contributing to the activation of the NLRP3 inflammasome (106,

132). This activation leads to the production of pro-inflammatory

cytokines, which are key drivers of neuroinflammation in NDs. For

instance, in models of Alzheimer’s disease and Parkinson’s disease,

C/EBPb knockdown has been shown to reduce pathological

markers and improve cognitive function (133–136).

However, targeting C/EBPb for therapeutic purposes presents

several challenges. One major issue is achieving isoform-specific

targeting to avoid off-target effects, as C/EBPb has multiple isoforms
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with distinct functions. Additionally, delivering therapeutic agents

across the blood-brain barrier remains a significant hurdle, as the

BBB restricts the entry of many drugs into the central nervous system.

Future directions in research should include the development of

isoform-specific inhibitors and strategies to enhance BBB

penetration. CRISPR-based isoform editing could enable precise

targeting of specific C/EBPb isoforms, thereby reducing the risk of

off-target effects. Moreover, the development of biomarkers for C/

EBPb activity could facilitate patient stratification and personalized

medicine, allowing for better selection of patients who are most

likely to benefit from C/EBPb-targeted therapies.

In summary, the dual role of C/EBPb as a transcriptional

orchestrator and inflammasome amplifier underscores its potential

as a therapeutic target for NDs. Emphasis on personalized therapeutic

strategies targeting this axis could lead to more effective treatments

for mitigating neuroinflammation and neurodegeneration. Future

research should aim to overcome current translational barriers and

explore innovative approaches to harness the therapeutic potential of

targeting the C/EBPb -inflammasome axis.
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