

OPEN ACCESS

EDITED BY
Jinbiao Liu,
Hubei University of Technology, China

REVIEWED BY
Lina Zhou,
University of Tennessee Health Science Center
(UTHSC), United States
Yongkui Li,
Jinan University, China
Sandip Godse,
University of Tennessee Health Science Center
(UTHSC), United States

[†]These authors have contributed equally to this work

RECEIVED 29 June 2025
ACCEPTED 18 August 2025
PUBLISHED 05 September 2025

CITATION

Wang J, Li Y and Xia Y (2025) C/EBPβ as a master regulator of inflammasome signaling in neurodegenerative diseases: mechanisms and therapeutic implications *Front. Immunol.* 16:1656165. doi: 10.3389/fimmu.2025.1656165

COPYRIGHT

© 2025 Wang, Li and Xia. This is an openaccess article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

C/EBPβ as a master regulator of inflammasome signaling in neurodegenerative diseases: mechanisms and therapeutic implications

Ji Wang^{1†}, Yuan Li^{2,3†} and Yiyuan Xia^{1,4}*

¹Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, Hubei, China, ²School of Fine Arts and Design, Hunan City University, Yiyang, Hunan, China, ³Postdoctoral Mobile Station of Journalism and Communication, Hunan Normal University, Changsha, Hunan, China, ⁴Hubei Provincial Demonstration Center for Experimental Medicine Education, School of Medicine, Jianghan University, Wuhan, Hubei, China

CCAAT/enhancer-binding protein beta (C/EBPB), a key transcription factor, plays a central role in regulating inflammasome signaling in neurodegenerative diseases (NDs). This review synthesizes the mechanisms by which C/EBP\$\text{modulates}\$ neuroinflammation and its potential as a therapeutic target. We conducted a comprehensive systematic review spanning January 1995 to June 2025, systematically querying Google Scholar and PubMed with the following keywords: neuroinflammation, inflammasome activation, C/EBPβ, therapeutic targeting, and neurodegenerative diseases. C/EBPB exists in three isoforms-LAP1, LAP2, and LIP-each with distinct functions in inflammasome activation. In Alzheimer's disease (AD), C/EBP β drives tau cleavage and A β pathology through the AEP axis and exacerbates neuroinflammation by upregulating APOE4. In Parkinson's disease (PD), C/EBP β silencing reduces α -synuclein aggregation and dopaminergic neuron loss by suppressing the NLRP3 inflammasome. In Amyotrophic Lateral Sclerosis (ALS), C/EBP β is hypothesized to contribute to TDP-43-associated inflammasome activation, though this requires further validation. In Multiple Sclerosis (MS), C/EBPB may influence microglial activation and neuroinflammation, as shown in experimental autoimmune encephalomyelitis models. Modulators of the C/EBPβ-inflammasome axis include endogenous regulators like gut-derived metabolites and pharmacological interventions such as small-molecule inhibitors. Therapeutic strategies targeting C/EBPB hold promise for mitigating neuroinflammation and neurodegeneration, though challenges remain in achieving isoform-specific targeting and blood-brain barrier penetration. Future directions include CRISPR-based editing and biomarker development for personalized therapies.

KEYWORDS

neuroinflammation, inflammasome activation, $C/EBP\beta$ isoforms, neurodegenerative diseases, therapeutic targeting

1 Introduction

1.1 Overview of neuroinflammation and inflammasomes in neurodegenerative diseases

Neurodegenerative diseases (NDs), including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS), are characterized by progressive neuronal loss and functional decline in the central nervous system (CNS). A hallmark shared across these disorders is chronic neuroinflammation, driven by dysregulated immune responses and sustained activation of innate immune pathways (1–3). Central to this process are inflammasomes, multiprotein complexes that orchestrate inflammatory signaling and contribute to neuronal damage (4).

Neuroinflammation initially serves as a protective mechanism aimed at eliminating pathogens and cellular debris. Resident CNS immune cells, such as microglia and astrocytes, detect dangerassociated molecular patterns (DAMPs) or pathogen-associated molecular patterns (PAMPs) through pattern recognition receptors (PRRs), including Toll-like receptors (TLRs) and Nodlike receptors (NLRs) (5). Acute activation of these pathways promotes tissue repair and homeostasis. However, persistent stimuli-such as misfolded protein aggregates (e.g., amyloid-β [Aβ] in AD, α-synuclein in PD), oxidative stress, or mitochondrial dysfunction-trigger chronic neuroinflammation. This leads to the sustained release of pro-inflammatory cytokines (e.g., IL-1β, IL-18), chemokines, and reactive oxygen species (ROS) (6-8). This chronic state exacerbates neuronal death, synaptic dysfunction, and bloodbrain barrier (BBB) disruption, creating a self-perpetuating cycle of neurodegeneration (9-13).

In AD, the presence of abnormally phosphorylated tau protein and extracellular deposits of A β peptide are key pathological features (14). These deposits activate microglia and astrocytes, leading to the release of pro-inflammatory cytokines and neurotoxicity (15–17). In PD, the misfolding and aggregation of α -synuclein due to oxidative stress result in the accumulation of toxic protein aggregates (18, 19). This triggers a cascade of pro-inflammatory events in microglia and astrocytes, amplifying neuronal loss and persistent neurodegeneration (20, 21).

The NLRP3 inflammasome is a critical player in neuroinflammation, activated by DAMPs and PAMPs in microglia, astrocytes, and neurons (22–24). Activation of the NLRP3 inflammasome leads to the maturation and release of proinflammatory cytokines such as IL-1 β and IL-1 β , contributing to neuroinflammation and neuronal damage (25). Inhibiting the NLRP3 inflammasome has been proposed as a potential therapeutic strategy to counteract neurodegenerative diseases (1, 26). Most evidence and therapeutic concepts presented here derive from *in vitro* systems or animal models. While indispensable for mechanistic insight and proof-of-concept, these data must be validated in rigorously designed clinical trials before any therapeutic claims can be extended to human disease.

1.2 Introduction to C/EBPβ: structure, isoforms, and physiological roles

CCAAT/enhancer-binding protein beta (C/EBP β) is a member of the C/EBP family of transcription factors that play crucial roles in various physiological processes (27). As a leucine-zipper (bZIP) transcription factor, C/EBP β binds DNA as dimers and regulates the transcription of genes containing specific T(TG)NNGNAA(TG) motifs (28, 29). The uniqueness of the C/EBP β gene lies in its lack of introns and its ability to be alternatively translated into three major isoforms: liver activator protein 1(LAP1), liver activator protein 2 (LAP2), and liver inhibitor protein (LIP) (30). These isoforms arise through alternative translation initiation sites, leading to differences in their N-terminal regions (30, 31).

LAP1 and LAP2 are both transcriptional activators, with LAP2 being a stronger transactivator than LAP1. This difference is attributed to the regulation of C/EBP β protein tertiary structure and unique N-terminal protein-protein interactions (28, 32). LAP1 and LAP2 differ in their first 21 N-terminal amino acids due to internal translation initiation from the downstream LAP2 start codon (28, 30). In contrast, the LIP isoform lacks the N-terminal transactivation domain (TAD) and most of the negative regulatory domain, functioning primarily as a dominant-negative regulator of transcription. However, in some cellular contexts, LIP can act as a transcriptional activator by interacting with other cofactors (30, 33).

C/EBPB is expressed in various tissues, including the liver, brain, intestine, and skin, and is involved in multiple physiological processes (34). It is essential for the differentiation of mammary epithelial and granulosa cells, macrophage function, and brown adipose tissue formation (35–37). C/EBP β also plays a role in cell cycle arrest and differentiation in hepatocytes, hematopoietic cells, and adipocytes (37-39). Additionally, it is involved in apoptosis and senescence in microglia and neurons. For instance, methamphetamine (METH) upregulates C/EBPB expression, thereby activating Lipocalin2 (an apoptosis-inducing factor) and leading to apoptosis in microglial cells. Silencing C/ EBP β can reverse this process (40, 41). METH induces neuronal autophagy and apoptosis through the C/EBPβ-DDIT4/TSC2/ mTOR signaling axis and the Trib3/Parkin/α-syn pathway. Inhibition of C/EBPβ can mitigate neurotoxicity (42, 43). C/EBPβ regulates the pro-inflammatory program in microglia and is involved in the expression of several inflammatory genes in astrocytes (44, 45). It also plays a role in the regulation of the complement component 3 gene in neural cells, contributing to its pro-inflammatory effects (46).

1.3 Rationale for focusing on C/EBP β -inflammasome axis: bridging transcriptional regulation and chronic inflammation in NDs

The C/EBP β -inflamma some axis has emerged as a critical pathway linking transcriptional regulation to chronic inflammation

in NDs (Table 1). This axis is particularly relevant in conditions such as AD, PD, ALS, and MS, where chronic neuroinflammation plays a significant role in disease progression (54).

C/EBP β plays a pivotal role in regulating the expression of genes involved in inflammasome activation, thereby linking transcriptional regulation to chronic inflammation. Inflammasomes, such as the NLRP3 inflammasome, are activated by various stimuli, including misfolded protein aggregates, oxidative stress, and mitochondrial dysfunction (55–58). For instance, C/EBP β has been shown to directly bind to the promoter region of the SerpinB2 gene, which is crucial for LPS-induced transcription in macrophages. This binding is essential for driving transcription from the SerpinB2 promoter in response to LPS stimulation (59). Additionally, C/EBP β regulates the expression of caspase-1, a key component of the non-canonical inflammasome pathway (60, 61). This regulation is critical for understanding how chronic inflammation is sustained in NDs.

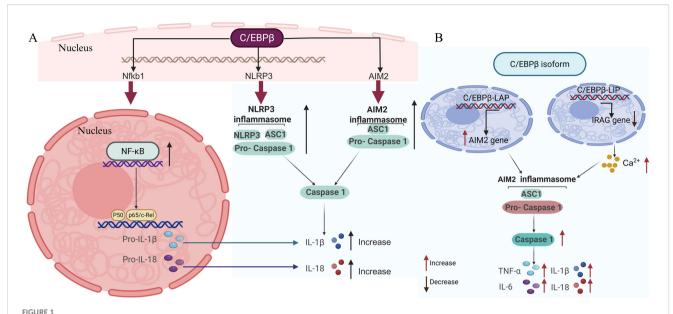
C/EBPβ is also implicated in the regulation of mitochondrial function and the expression of mitochondrial transcription factor A (TFAM). In a cellular model of Parkinson's disease using SH-SY5Y dopaminergic cells treated with the neurotoxin 6-hydroxydopamine (6-OHDA), C/EBPβ levels increased over time, reaching a peak at 18 hours when cells began to die due to stress. In contrast, TFAM expression decreased after 4 hours of treatment, followed by a partial recovery. This recovery is likely due to C/EBPβ's activation of the TFAM promoter (62). Mitochondrial dysfunction, a common feature of NDs, contributes to chronic inflammation through the release of damage-associated molecular patterns (DAMPs) (63, 64). By regulating mitochondrial function, C/EBPβ can influence the inflammatory response and contribute to the pathogenesis of NDs.

C/EBP β has been shown to regulate autophagy, a process crucial for the degradation of damaged mitochondria. In C/EBP β -silenced cells, there is an accumulation of autophagic markers under oxidative stress and inflammatory conditions, indicating that C/EBP β is involved in the regulation of autophagy. This accumulation is not due to increased autophagy induction but rather to decreased autophagosome degradation (62, 65). This finding suggests that C/EBP β may play a role in maintaining the balance between mitochondrial biogenesis and degradation, which is essential for cellular homeostasis.

2 C/EBPβ in inflammasome activation

2.1 Transcriptional control of inflammasome components

C/EBPB is a key transcription factor that directly regulates the expression of critical inflammasome components by binding to their promoter regions. This direct regulation is essential for the expression and activation of inflammasomes, which play a crucial role in the inflammatory response in various diseases (66). For instance, C/EBPB has been shown to regulate the expression of NLRP3, a key component of the inflammasome complex (60, 67). NLRP3 is activated by various stimuli, including misfolded proteins and oxidative stress, leading to the release of pro-inflammatory cytokines like IL-1β and IL-18 (68-70). Similarly, C/EBPβ also regulates the expression of AIM2, another inflammasome sensor that recognizes cytosolic DNA and forms a caspase-1-activating inflammasome (71, 72). Additionally, C/EBPβ directly controls the expression of caspase-1, a crucial enzyme in the inflammasome pathway that processes pro-IL-1β and pro-IL-18 into their active forms (60). The specific mechanism is illustrated in Figure 1A.


C/EBP β not only acts independently but also synergizes with other transcription factors, such as NF- κ B, to amplify the production of proinflammatory cytokines (Figure 1A). This synergy is particularly evident in the regulation of IL-1 β and IL-18, two key cytokines involved in the inflammatory response (73, 74). NF- κ B is a well-known regulator of inflammatory genes, and its cooperation with C/EBP β enhances the transcriptional activation of these genes. For example, studies have shown that C/EBP β and NF- κ B can bind to adjacent sites on the promoters of IL-1 β and IL-18 genes, leading to a coordinated upregulation of these cytokines (60). This synergistic effect is crucial for the robust inflammatory response observed in conditions such as sepsis and neurodegenerative diseases (46, 62, 75, 76).

2.2 Isoform-specific mechanisms

C/EBP β -LAP, the transcriptionally active isoform of C/EBP β , is crucial for activating the AIM2 inflammasome by enhancing the

TABLE 1 The molecular pathways of neurodegenerative diseases are regulated by C/EBP β .

Diseases	Mechanisms	Reference		
AD	Glia activation leads to increased $C/EBP\beta$ expression, its nuclear translocation, and binding to pro-inflammatory gene promoters, thereby upregulating inflammatory genes.	(46)		
	$C/EBP\beta$ binds the promoter of APOE and escalates its expression	(47)		
	Neuronal ApoE4 activates C/EBP β and promotes δ -secretase simultaneously cleaves both APP and Tau and augments A β production and Tau hyperphosphorylation.			
	Diabetes-linked inflammation triggers neuronal C/EBP β activation, leading to increased APP and Tau expression.	(50)		
PD	C/EBP β acts as a transcription factor to upregulate α -syn and monoamine oxidase B, which triggers oxidative stress in dopaminergic neurons and α -Syn aggregation.			
	Disruption of gut microbiota homeostasis and impairment of the intestinal barrier activate the C/EBP/AEP signaling, leading to α -synuclein aggregation and substantia nigra dopaminergic neuron degeneration.	(52)		
MS	Myelin basic protein (MBP)-specific T cells trigger microglial inflammation via a C/EBPβ-dependent mechanism.			

Transcriptional regulation of inflammasome activation by C/EBPb. C/EBPb governs the expression of NLRP3 and AIM2, which are pivotal inflammasome components responsible for triggering the cleavage of latent procaspase-1 into its active form, caspase-1. This activation facilitates the conversion of the cytokine precursors pro-IL-1b and pro-IL-18 into their mature, bioactive forms, IL-1b and IL-18, respectively. Beyond this, C/EBPb directly regulates caspase-1 expression and influences NF-kB expression, which in turn modulates the activation of pro-IL-1b and pro-IL-18. (B) The C/EBPb isoforms, C/EBPb-LAP and C/EBPb-LIP, drive the production of inflammatory factors by activating the AIM2 inflammasome. Created with BioRender.com.

expression of AIM2 and caspase-1 (Table 2). This mechanism has been observed in several contexts.

In Lupus Nephritis (LN), C/EBP β -LAP activates the AIM2 inflammasome and induces podocyte pyroptosis. This activation is achieved by binding to the promoters of AIM2 and CASPASE1, thereby enhancing their expression (Figure 1B). Knockdown of AIM2 or caspase-1 reversed the effects of C/EBP β -LAP overexpression, highlighting the critical role of these interactions in inflammasome activation (71). In the context of liver inflammation, C/EBP β -LAP activates the transcription of various pro-inflammatory genes, including IL-6 and TNF. This activation is crucial for the acute phase response and the recruitment of immune cells to the site of inflammation (66, 77, 78).

In contrast to C/EBPβ-LAP, the C/EBPβ-LIP isoform functions primarily as a transcriptional inhibitor and has been shown to promote Ca2+-mediated inflammasome assembly by suppressing the expression of inositol-1,3,4-phosphat receptor associated G-kinase substrate (IRAG). Overexpression of C/EBPβ-LIP in LN transcriptionally inhibits IRAG, leading to increased Ca2+ release. This increase in Ca2+ levels facilitate the assembly and activation of the AIM2 inflammasome (71, 79, 80). This finding suggests that C/EBPβ-LIP not only regulates the expression of key inflammasome proteins but also affects their polymerization through the regulation of Ca²⁺ release (Figure 1B). In Myeloid-Derived Suppressor Cells (MDSCs), C/EBPβ-LIP suppresses the expression of immunosuppressive genes such as arginase-1 (Arg-1) and inducible nitric oxide synthase (iNOS). This suppression is achieved by blocking the activity of the transcriptionally active LAP-1 and LAP-2 isoforms (78). The balance between LIP and LAP isoforms is crucial for the regulation of MDSC function and the inflammatory response. In hepatocytes, C/EBPβ-LIP has been shown to downregulate the expression of cytochrome P450 enzymes (e.g., CYP3A4) by antagonizing the transactivation activity of LAP. This mechanism involves the binding of LIP to LAP (81, 82), preventing it from initiating transcription. This regulation is important for the metabolic response to inflammatory stimuli.

3 Role in specific neurodegenerative diseases

3.1 Alzheimer's disease

C/EBP β has been identified as a key player in the progression of AD. Over the past decade, numerous studies have elucidated its multifaceted role in the pathogenesis of AD. For instance, C/EBP β has been shown to be a crucial transcription factor for APOE, preferentially mediating the expression of ApoE4, which is associated with an increased risk of AD (47). In addition to its role in A β production, C/EBP β is implicated in the neurofibrillary pathology of AD. It has been demonstrated that C/EBP β can upregulate the expression of certain proteins that mediate the cleavage of tau and APP, proteins implicated in the development of AD (48, 49). This suggests that C/EBP β may contribute to both major pathological features of AD.

Moreover, C/EBP β is involved in neuroinflammation, a critical component of AD pathology (83, 84). It is a key regulator of proinflammatory genes in microglia and is overexpressed in AD animal models and AD patients. There is a positive feedback loop between C/EBP β and inflammatory components-inflammatory factors can

TABLE 2 The role of the C/EBPβ isoform in inflammation.

C/EBPβ isoforms						
Structural Features		LAP1	LAP2	LIP		
		Full-length N-terminal transactivation domain (TAD)	Lacking 21 amino acids at the N- terminal TAD and partially regulatory	Completely lacking the N-terminal TAD and Lacking most of the negative regulatory domain	(30)	
Primary Functions		Increase transcriptional activity	Increase transcriptional activity	Inhibit transcriptional activity	(31)	
Diseases Mechanisms	Lupus nephritis	C/EBPβ-LAP upregulates AIM2 inflammasome activity by promoting the transcriptional expression of AIM2 and CASPASE1 through direct promoter binding		C/EBPβ-LIP suppresses IRAG expression at the transcriptional level, enhancing Ca ²⁺ release and subsequent AIM2 inflammasome activation	(71)	
	Chronic inflammation	LAP isoforms promote inflammation by activating the transcription of pro-inflammatory genes, including IL-6 and TNF α		LIP reduces inflammation by blocking LAP	(77)	

activate C/EBPβ, which in turn further promotes the production of inflammatory factors (46, 66). This inflammatory response can further exacerbate neuronal damage and contribute to the progression of the disease. Chronic neuroinflammation activates the transcription factor C/EBPβ, which in turn up-regulates the cysteine protease asparagine endopeptidase (AEP) (85). Clinically, heightened AEP activity is documented in post-mortem AD brains, while mechanistic studies reveal that genetic ablation of C/EBPβ attenuates AD pathology via AEP suppression in animal models (86, 87). Importantly, AEP truncates tau at N368 and N255, yielding aggregation-prone fragments that precipitate neurofibrillary tangle formation—a defining feature of AD neurodegeneration (88).

In AD mouse models, knockdown of C/EBPβ significantly reduces the levels of inflammatory factors and the number of activated microglia. Conversely, overexpression of C/EBPβ exacerbates these pathological features (48). C/EBPβ isoforms can bind the promoter regions of inflammasome genes (e.g., caspase-1, NLRP3, and AIM2) via their DNA-binding domains and enhance transcription. While this suggests a potential regulatory role in inflammasome-mediated processes in AD, direct experimental confirmation is still lacking.

Recent studies have also highlighted the potential therapeutic implications of targeting C/EBP β . For example, inhibiting the C/EBP β / δ -secretase axis has been shown to reduce A β levels and improve cognitive function in animal models of AD (89). Decrease FOXO inhibition, reverse GABA neuron degeneration, maintaining the homeostasis of excitation inhibition balance (90). These findings suggest that interventions aimed at modulating C/EBP β activity could represent a promising strategy for treating AD (Table 1).

3.2 Parkinson's disease

Over the past decade, research has illuminated the multifaceted role of C/EBP β in PD (51, 62). C/EBP β is involved in the regulation of AEP, also known as legumain, a cysteine protease highly activated in the brains of PD patients (91). AEP cleaves α -synuclein (α -syn), promoting its aggregation and neurotoxicity, which contributes to the

loss of dopaminergic neurons and motor deficits characteristic of PD (52, 92). Additionally, C/EBPβ acts as a transcription factor to upregulate α-syn and monoamine oxidase B (MAOB), both of which are implicated in PD pathogenesis in human wild-type α-Syn transgenic mice (51). This transcription factor can be activated by lipopolysaccharide (LPS) and inflammatory cytokines such as interleukin-1 β (IL-1 β), IL-6, and tumor necrosis factor- α (TNF- α) (50). Therefore, gut microbiota dysbiosis and inflammation activation contribute to PD pathology through the C/EBPB/AEP signaling pathway (52). In a study using a rotenone-induced PD mouse model, combined with antibiotic-induced microbiome depletion and fecal microbiota transplantation, it was found that gut microbiota dysbiosis, along with leaky gut-induced bacterial endotoxins, activates C/EBPβ/AEP signaling and α-syn pathology, ultimately leading to neurodegeneration in PD (52). This suggests that the gut microbiota may play a significant role in the activation of C/EBPβ/AEP signaling and the progression of PD.

Furthermore, silencing C/EBP β has been shown to reduce α -synuclein aggregation and dopaminergic neuron loss. This effect is mediated through the suppression of the NLRP3 inflammasome (93, 94). By downregulating C/EBP β , the expression of NLRP3 and other inflammasome components is reduced, thereby attenuating the inflammatory response and mitigating neuronal damage in an MPTP neurotoxic model of PD (55, 95). This finding suggests that targeting C/EBP β could be a promising therapeutic strategy for reducing neuroinflammation and neurodegeneration in PD (Table 1).

3.3 Amyotrophic lateral sclerosis

TDP-43 (TAR DNA-binding protein 43) is a nuclear protein that regulates several RNA metabolic pathways. Dysregulation of TDP-43 induces its cytoplasmic accumulation and aggregation, which is a hallmark of ALS (96). The C/EBP β expression in microglia has indeed been observed to increase in spinal cord of ALS animal models and human ALS patients (97).TDP-43 interacts with NF- κ B, a key factor contributing to the inflammatory response, and activates

NF- κ B in microglia (98). Activated NF- κ B induces the production of pro-inflammatory cytokines, contributing to neuroinflammation (97, 99). Considering that C/EBP β is a key transcription factor for NF- κ B,it may play a role in regulating these inflammatory pathways, thereby contributing to the neuroinflammatory response in ALS (100).

3.4 Multiple sclerosis

C/EBPβ has been shown to be involved in the inflammatory response in MS. Specifically, myelin basic protein-specific T cells, an autoantigen in MS, induce the expression of IL-1β, IL-1α, TNF-α, and IL-6 in microglial cells through a mechanism dependent on C/EBPB activation (53). This suggests that C/EBPB plays a crucial role in mediating the inflammatory response in MS (53). In the context of MS, C/EBPβ may contribute to the activation of the NLRP3 inflammasome, which is associated with the production of IL-1B and IL-18, key cytokines in neuroinflammation (101). This activation can lead to further recruitment of immune cells and exacerbation of the inflammatory process in MS. Additionally, studies have shown that C/ EBPβ deficiency in myeloid cells can reshape microglial gene expression and is protective in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS (102). However, additional direct evidence is necessary to demonstrate that C/EBPB regulates the inflammasome in MS pathogenesis. Furthermore, C/EBPβ has been implicated in the regulation of other inflammatory mediators such as HMGB1. HMGB1, a damage-associated molecular pattern (DAMP) protein, is known to interact with various receptors including RAGE, TLR2, TLR4, and TLR9, and can induce inflammatory responses (103-105), C/EBPB can be activated by inflammatory stimuli such as lipopolysaccharide (LPS), and it has been shown to upregulate the expression of IL-1 β , a cytokine that can be further enhanced by HMGB1 through its interaction with transcription factors like PU.1 (106-109). This suggests that C/EBPB and HMGB1 can act in concert to amplify inflammatory signaling.

4 Modulators of the C/EBP β -inflammasome axis

4.1 Endogenous regulators

Gut-derived metabolites, such as 12-HHTrE, have been identified as activators of the C/EBPβ-inflammasome axis. These metabolites can induce oxidative stress, which in turn activates C/EBPβ and promotes the expression of pro-inflammatory cytokines (110). Additionally, oxidative stress itself can act as an activator of this axis, contributing to the production of reactive oxygen species (ROS) and subsequent inflammatory responses (111–113). On the other hand, COP1-mediated ubiquitination and degradation of C/EBPβ in microglia have been reported as a mechanism to control the activity of this transcription factor (114). This process helps to regulate the inflammatory response by reducing the levels of active C/EBPβ, thereby limiting the activation of the inflammasome.

4.2 Pharmacological interventions

Small-molecule inhibitors have been developed to target components of the C/EBP β -inflammasome axis (115, 116). For instance, an AEP inhibitor, Compound #11A, has been shown to reduce the activation of the inflammasome and mitigate neuroinflammation (117, 118). This pharmacological approach aims to block the downstream effects of C/EBP β activation, thereby reducing the production of pro-inflammatory cytokines. Among pharmacologic NLRP3 inhibitors, the orally bioavailable agent ZYIL1 prevents ASC oligomerization; its Phase II trial in ALS has recently concluded. Likewise, VTX3232—an orally active, CNS-penetrant, and selective NLRP3 inhibitor—is currently undergoing Phase II evaluation in early-stage Parkinson's disease (119).

Another strategy involves the use of lentiviral shRNA delivery systems to silence C/EBP β expression. This method has been employed to specifically target and reduce the levels of C/EBP β in cells, thereby attenuating the activation of the inflammasome and associated inflammatory responses (120, 121). This approach provides a potential therapeutic avenue for conditions where excessive activation of the C/EBP β -inflammasome axis contributes to pathology.

5 Therapeutic implications and challenges

5.1 Preclinical success

Knockdown of C/EBP β has shown promising results in preclinical models of AD and PD. Studies have demonstrated that reducing C/EBP β levels can improve cognitive function and reduce pathological markers in these models. For instance, in PD models, C/EBP β reduction has been shown to mitigate dopaminergic neuronal damage and glial activation, suggesting that C/EBP β depletion could be a valuable therapeutic target for PD (52). Similarly, in AD models, the anti-inflammatory cytokine interferon-gamma acts as a potential therapeutic target of AD (122), and C/EBP β knockdown has been associated with reduced amyloid-beta (A β) pathology and improved cognitive outcomes (47).

5.2 Translational barriers

Despite these encouraging preclinical findings, several translational barriers must be addressed to develop effective therapies targeting the C/EBP β -inflammasome axis. One significant challenge is achieving isoform-specific targeting of C/EBP β to avoid off-target effects. C/EBP β has multiple isoforms, and targeting the wrong isoform could lead to unintended consequences (47, 123). Therefore, developing strategies to specifically target the pathogenic isoforms of C/EBP β is crucial. High-throughput small-molecule screening can now be coupled with AI/ML-driven chemical-structure modelling, similarity-based target prediction,

and cross-species transcriptomics to markedly reduce off-target liabilities.

Another major challenge is the blood-brain barrier (BBB) penetration for inhibitors. The BBB restricts the entry of many drugs into the central nervous system, making it difficult to deliver effective concentrations of therapeutic agents to the brain (124). Overcoming this barrier is essential for the successful translation of C/EBP β inhibitors from preclinical to clinical settings. Nanobodies—single-domain antibodies of ~15 kDa—readily access cryptic epitopes inaccessible to conventional antibodies and can stabilize distinct protein conformations with exquisite specificity. Several nanobodies have already demonstrated brain penetrance (125) and the platform is rapidly gaining traction as a therapeutic modality for CNS disorders (126, 127).

5.3 Future directions

Looking forward, several innovative approaches hold promise for addressing these challenges. CRISPR-based isoform editing is a cutting-edge technology that could enable precise targeting of specific C/EBP β isoforms, thereby reducing the risk of off-target effects (128–130). This approach could be particularly useful in selectively targeting the pathogenic isoforms of C/EBP β in neurodegenerative diseases.

Additionally, the development of biomarkers for C/EBP β activity could facilitate patient stratification and personalized medicine. Identifying reliable biomarkers that reflect C/EBP β activity *in vivo* would allow for better selection of patients who are most likely to benefit from C/EBP β -targeted therapies (131). This could enhance the success rate of clinical trials and improve patient outcomes.

6 Conclusion

In conclusion, the C/EBP β -inflammasome axis provides a critical link between transcriptional regulation and chronic inflammation in NDs. Understanding this axis is essential for developing therapeutic strategies aimed at mitigating neuroinflammation and neurodegeneration. Future research should focus on elucidating the specific mechanisms by which C/EBP β regulates inflammasome activation and identifying potential therapeutic targets within this axis.

C/EBP β , a transcription factor, plays a vital role in regulating immune and inflammatory responses. It has been shown to directly target the promoter region of various genes, such as IL-1 β , thereby contributing to the activation of the NLRP3 inflammasome (106, 132). This activation leads to the production of pro-inflammatory cytokines, which are key drivers of neuroinflammation in NDs. For instance, in models of Alzheimer's disease and Parkinson's disease, C/EBP β knockdown has been shown to reduce pathological markers and improve cognitive function (133–136).

However, targeting C/EBP β for therapeutic purposes presents several challenges. One major issue is achieving isoform-specific targeting to avoid off-target effects, as C/EBP β has multiple isoforms

with distinct functions. Additionally, delivering therapeutic agents across the blood-brain barrier remains a significant hurdle, as the BBB restricts the entry of many drugs into the central nervous system.

Future directions in research should include the development of isoform-specific inhibitors and strategies to enhance BBB penetration. CRISPR-based isoform editing could enable precise targeting of specific C/EBP β isoforms, thereby reducing the risk of off-target effects. Moreover, the development of biomarkers for C/EBP β activity could facilitate patient stratification and personalized medicine, allowing for better selection of patients who are most likely to benefit from C/EBP β -targeted therapies.

In summary, the dual role of $C/EBP\beta$ as a transcriptional orchestrator and inflammasome amplifier underscores its potential as a therapeutic target for NDs. Emphasis on personalized therapeutic strategies targeting this axis could lead to more effective treatments for mitigating neuroinflammation and neurodegeneration. Future research should aim to overcome current translational barriers and explore innovative approaches to harness the therapeutic potential of targeting the $C/EBP\beta$ -inflammasome axis.

Author contributions

YX: Visualization, Conceptualization, Writing – original draft, Writing – review & editing, Funding acquisition. JW: Conceptualization, Investigation, Writing – original draft. YL: Writing – original draft, Visualization, Conceptualization.

Funding

The author(s) declare financial support was received for the research and/or publication of this article. Hubei Provincial Natural Science Foundation of China for Distinguished Young Scholars (Grant No. 2022CFA104), Key Research and Development Program of Wuhan (2024020802030159) and the Scientific Research Project Funding of Jianghan University (2023ZDRC01) to YX.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

- 1. Piancone F, La Rosa F, Marventano I, Saresella M, Clerici M. The role of the inflammasome in neurodegenerative diseases. *Molecules*. (2021) 26:953. doi: 10.3390/molecules26040953
- 2. Chen Z, Shi J, Li L. Application of single-cell sequencing technology and its clinical implications in Parkinson's disease and Alzheimer's disease: a narrative review. *Advanced Technol Neurosci.* (2025) 2:9–15. doi: 10.4103/ATN.ATN-D-24-00015
- 3. Elyaman W, Stern LJ, Jiang N, Dressman D, Bradley P, Klatzmann D, et al. Exploring the role of T cells in Alzheimer's and other neurodegenerative diseases: Emerging therapeutic insights from the T Cells in the Brain symposium. *Alzheimers Dement.* (2025) 21:e14548. doi: 10.1002/alz.14548
- 4. Wang Q, Yang S, Zhang X, Zhang S, Chen L, Wang W, et al. Inflammasomes in neurodegenerative diseases. *Transl Neurodegener*. (2024) 13:65. doi: 10.1186/s40035-024-00459-0
- 5. Suleiman Khoury Z, Sohail F, Wang J, Mendoza M, Raake M, Tahoor Silat M, et al. Neuroinflammation: A critical factor in neurodegenerative disorders. *Cureus*. (2024) 16:e62310. doi: 10.7759/cureus.62310
- 6. Jurcău MC, Andronie-Cioara FL, Jurcău A, Marcu F, Țiţ DM, Pașcalău N, et al. The link between oxidative stress, mitochondrial dysfunction and neuroinflammation in the pathophysiology of alzheimer's disease: therapeutic implications and future perspectives. *Antioxidants.* (2022) 11:2167. doi: 10.3390/antiox11112167
- 7. Picca A, Guerra F, Calvani R, Romano R, Coelho-Júnior HJ, Bucci C, et al. Mitochondrial dysfunction, protein misfolding and neuroinflammation in parkinson's disease: roads to biomarker discovery. *Biomolecules*. (2021) 11:1508. doi: 10.3390/biom11101508
- 8. Pisanti S, Rimondi E, Pozza E, Melloni E, Zauli E, Bifulco M, et al. Prenylation defects and oxidative stress trigger the main consequences of neuroinflammation linked to mevalonate pathway deregulation. *Int J Environ Res Public Health*. (2022) 19:9061. doi: 10.3390/ijerph19159061
- 9. Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG. Does neuroinflammation fan the flame in neurodegenerative diseases? *Mol Neurodegeneration*. (2009) 4:47. doi: 10.1186/1750-1326-4-47
- 10. Gao H-M, Hong J-S. Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. *Trends Immunol.* (2008) 29:357–65. doi: 10.1016/j.it.2008.05.002
- 11. Amelimojarad M, Amelimojarad M, Cui X. The emerging role of brain neuroinflammatory responses in Alzheimer's disease. *Front Aging Neurosci.* (2024) 16. doi: 10.3389/fnagi.2024.1391517
- 12. Yang J, Ran M, Li H, Lin Y, Ma K, Yang Y, et al. New insight into neurological degeneration: Inflammatory cytokines and blood-brain barrier. *Front Mol Neurosci.* (2022) 15. doi: 10.3389/fnmol.2022.1013933
- 13. Mou Y, Du Y, Zhou L, Yue J, Hu X, Liu Y, et al. Gut microbiota interact with the brain through systemic chronic inflammation: implications on neuroinflammation, neurodegeneration, and aging. *Front Immunol.* (2022) 13. doi: 10.3389/fimmu.2022.796288
- 14. Liu E, Zhang Y, Wang J-Z. Updates in Alzheimer's disease: from basic research to diagnosis and therapies. *Trans Neurodegeneration*. (2024) 13:45. doi: 10.1186/s40035-024-00432-x
- 15. Dhapola R, Hota SS, Sarma P, Bhattacharyya A, Medhi B, Reddy DH. Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer's disease. *Inflammopharmacology*. (2021) 29:1669–81. doi: 10.1007/s10787-021-00889-6
- 16. Zhang H, Wei W, Zhao M, Ma L, Jiang X, Pei H, et al. Interaction between A β and tau in the pathogenesis of alzheimer's disease. *Int J Biol Sci.* (2021) 17:2181–92. doi: 10.7150/ijbs.57078
- 17. Wang X, Liu P, Alterovitz G, Zhou S, Grinstaff MW, Brody DL, et al. Tryptophan metabolism in alzheimer's disease with the involvement of microglia and astrocyte crosstalk and gut-brain axis. *Aging Dis.* (2024) 15:2168–90. doi: 10.14336/AD.2024.0134
- 18. Ganguly G, Chakrabarti S, Chatterjee U, Saso L. Proteinopathy, oxidative stress and mitochondrial dysfunction: cross talk in Alzheimer's disease and Parkinson's disease. *Drug Design Dev Ther.* (2017) 11:797–810. doi: 10.2147/DDDT.S130514
- 19. Dong-Chen X, Yong C, Yang X, Chen-Yu S, Li-Hua P. Signaling pathways in Parkinson's disease: molecular mechanisms and therapeutic interventions. *Signal Transduction Targeted Ther.* (2023) 8:73. doi: 10.1038/s41392-023-01353-3

- 20. Rasheed M, Liang J, Wang C, Deng Y, Chen Z. Epigenetic regulation of neuroinflammation in parkinson's disease. *Int J Mol Sci.* (2021) 22:4956. doi: 10.3390/ijms22094956
- 21. Palumbo L, Carinci M, Guarino A, Asth L, Zucchini S, Missiroli S, et al. The NLRP3 inflammasome in neurodegenerative disorders: insights from epileptic models. *Biomedicines*. (2023) 11:2825. doi: 10.3390/biomedicines11102825
- 22. Yu J, Zhao Z, Li Y, Chen J, Huang N, Luo Y. Role of NLRP3 in Parkinson's disease: Specific activation especially in dopaminergic neurons. *Heliyon*. (2024) 10: e28838. doi: 10.1016/j.heliyon.2024.e28838
- 23. Freeman L, Guo H, David CN, Brickey WJ, Jha S, Ting JPY. NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes. *J Exp Med.* (2017) 214:1351–70. doi: 10.1084/jem.20150237
- 24. Zhang M, Guo B, Zhang X, Han D, Lv L, Yan X, et al. IFP35, a novel DAMP, aggravates neuroinflammation following acute ischemic stroke via TLR4/NF-kappaB/NLRP3 signaling. *J Neuroinflamm*. (2025) 22:164. doi: 10.1186/s12974-025-03492-6
- 25. Han Q-Q, Le W. NLRP3 inflammasome-mediated neuroinflammation and related mitochondrial impairment in parkinson's disease. *Neurosci Bull.* (2023) 39:832–44. doi: 10.1007/s12264-023-01023-y
- 26. Satoh T, Trudler D, Oh C-K, Lipton SA. Potential therapeutic use of the rosemary diterpene carnosic acid for alzheimer's disease, parkinson's disease, and long-COVID through NRF2 activation to counteract the NLRP3 inflammasome. *Antioxidants*. (2022) 11:124. doi: 10.3390/antiox11010124
- 27. Pulido-Salgado M, Vidal-Taboada JM, Saura J. C/EBP β and C/EBP δ transcription factors: Basic biology and roles in the CNS. *Prog Neurobiol.* (2015) 132:1–33. doi: 10.1016/j.pneurobio.2015.06.003
- 28. Belluti S, Rigillo G, Imbriano C. Transcription factors in cancer: when alternative splicing determines opposite cell fates. *Cells*. (2020) 9:760. doi: 10.3390/cells9030760
- 29. Lountos GT, Cherry S, Tropea JE, Wlodawer A, Miller M. Structural basis for cell type specific DNA binding of C/EBP β : The case of cell cycle inhibitor p15INK4b promoter. *J Struct Biol.* (2022) 214:107918. doi: 10.1016/j.jsb.2022.107918
- 30. Zahnow CA. CCAAT/enhancer-binding protein β : its role in breast cancer and associations with receptor tyrosine kinases. *Expert Rev Mol Med.* (2009) 11:e12. doi: 10.1017/S1462399409001033
- 31. Tolomeo M, Grimaudo S. The "Janus" Role of C/EBPs family members in cancer progression. *Int J Mol Sci.* (2020) 21:4308. doi: 10.3390/ijms21124308
- 32. Sterken BA, Ackermann T, Müller C, Zuidhof HR, Kortman G, Hernandez-Segura A, et al. C/EBPβ isoform-specific regulation of migration and invasion in triplenegative breast cancer cells. *NPJ Breast Cancer*. (2022) 8:11. doi: 10.1038/s41523-021-00372-z
- 33. Park B-H, Kook S, Lee S, Jeong J-H, Brufsky A, Lee B-C. An isoform of C/ΕΒΡβ, LIP, regulates expression of the chemokine receptor CXCR4 and modulates breast cancer cell migration. *J Biol Chem.* (2013) 288:28656–67. doi: 10.1074/jbc.M113.509505
- 34. Zahnow CA. CCAAT/enhancer binding proteins in normal mammary development and breast cancer. *Breast Cancer Res.* (2002) 4:113–21. doi: 10.1186/bcr428
- 35. Rojo MD, Bandyopadhyay I, Burke CM, Sturtz AD, Phillips ES, Matherne MG, et al. C/EBP β deletion in macrophages impairs mammary gland alveolar budding during the estrous cycle. *Life Sci Alliance*. (2024) 7:e202302516. doi: 10.26508/lsa.202302516
- 36. Wessells J, Yakar S, Johnson PF. Critical prosurvival roles for C/EBP β and insulin-like growth factor I in macrophage tumor cells. *Mol Cell Biol.* (2023) 24:3238–50. doi: 10.1128/MCB.24.8.3238-3250.2004
- 37. Guo L, Li X, Tang Q-Q. Transcriptional regulation of adipocyte differentiation: A central role for CCAAT/enhancer-binding protein (C/EBP) β . J Biol Chem. (2015) 290:755–61. doi: 10.1074/jbc.R114.619957
- 38. Liu S, Wang J, Chen S, Han Z, Wu H, Chen H, et al. C/EBPβ Coupled with E2F2 Promoted the Proliferation of hESC-Derived Hepatocytes through Direct Binding to the Promoter Regions of Cell-Cycle-Related Genes. *Cells*. (2023) 12:497. doi: 10.3390/cells12030497
- 39. Sato A, Kamio N, Yokota A, Hayashi Y, Tamura A, Miura Y, et al. C/ΕΒΡβ isoforms sequentially regulate regenerating mouse hematopoietic stem/progenitor cells. *Blood Adv.* (2020) 4:3343–56. doi: 10.1182/bloodadvances.2018022913

- 40. Chen X, Lu J, Zhao X, Chen C, Qiao D, Wang H, et al. Role of C/EBP-beta in methamphetamine-mediated microglial apoptosis. *Front Cell Neurosci.* (2019) 13:366. doi: 10.3389/fncel.2019.00366
- 41. Samuel Olajide T, Oyerinde TO, Omotosho OI, Okeowo OM, Olajide OJ, Ijomone OM. Microglial senescence in neurodegeneration: Insights, implications, and therapeutic opportunities. *Neuroprotection*. (2024) 2:182–95. doi: 10.1002/nep3.v2.3
- 42. Jayanthi S, Daiwile AP, Cadet JL. Neurotoxicity of methamphetamine: Main effects and mechanisms. *Exp Neurol.* (2021) 344:113795. doi: 10.1016/j.expneurol.2021.113795
- 43. Ma J, Wan J, Meng J, Banerjee S, Ramakrishnan S, Roy S. Methamphetamine induces autophagy as a pro-survival response against apoptotic endothelial cell death through the Kappa opioid receptor. *Cell Death Dis.* (2014) 5:e1099–9. doi: 10.1038/cddis.2014.64
- 44. Straccia M, Gresa-Arribas N, Dentesano G, Ejarque-Ortiz A, Tusell JM, Serratosa J, et al. Pro-inflammatory gene expression and neurotoxic effects of activated microglia are attenuated by absence of CCAAT/enhancer binding protein β. J Neuroinflamm. (2011) 8:156. doi: 10.1186/1742-2094-8-156
- 45. Fields J, Ghorpade A. C/EBPβ regulates multiple IL-1β-induced human astrocyte inflammatory genes. *J Neuroinflamm*. (2012) 9:177. doi: 10.1186/1742-2094-9-177
- 46. Yao Q, Long C, Yi P, Zhang G, Wan W, Rao X, et al. C/EBP β : A transcription factor associated with the irreversible progression of Alzheimer's disease. *CNS Neurosci Ther.* (2024) 30:e14721. doi: 10.1111/cns.14721
- 47. Xia Y, Wang ZH, Zhang J, Liu X, Yu SP, Ye KX, et al. C/EBPbeta is a key transcription factor for APOE and preferentially mediates ApoE4 expression in Alzheimer's disease. *Mol Psychiatry.* (2021) 26:6002–22. doi: 10.1038/s41380-020-00956-4
- 48. Wang ZH, Xia Y, Wu Z, Kang SS, Zhang JC, Liu P, et al. Neuronal ApoE4 stimulates C/EBPbeta activation, promoting Alzheimer's disease pathology in a mouse model. *Prog Neurobiol.* (2022) 209:102212. doi: 10.1016/j.pneurobio.2021.102212
- 49. Qian Z, Wang Z, Li B, Meng X, Kuang Z, Li Y, et al. Thy1-ApoE4/C/EBPbeta double transgenic mice act as a sporadic model with Alzheimer's disease. *Mol Psychiatry*. (2024) 29:3040–55. doi: 10.1038/s41380-024-02565-x
- 50. Liu P, Wang ZH, Kang SS, Liu X, Xia Y, Chan CB, et al. High-fat diet-induced diabetes couples to Alzheimer's disease through inflammation-activated C/EBP β /AEP pathway. *Mol Psychiatry*. (2022) 27:3396–409. doi: 10.1038/s41380-022-01600-z
- 51. Wu Z, Xia Y, Wang Z, Su Kang S, Lei K, Liu X, et al. C/EBP β / δ -secretase signaling mediates Parkinson's disease pathogenesis via regulating transcription and proteolytic cleavage of α -synuclein and MAOB. *Mol Psychiatry.* (2021) 26:568–85. doi: 10.1038/s41380-020-0687-7
- 52. Fang X, Liu S, Muhammad B, Zheng M, Ge X, Xu Y, et al. Gut microbiota dysbiosis contributes to α -synuclein-related pathology associated with C/EBP β /AEP signaling activation in a mouse model of Parkinson's disease. *Neural Regener Res.* (2024) 19:2081–8. doi: 10.4103/1673-5374.391191
- 53. Dasgupta S, Jana M, Liu X, Pahan K. Role of very-late antigen-4 (VLA-4) in myelin basic protein-primed T cell contact-induced expression of proinflammatory cytokines in microglial cells. *J Biol Chem.* (2003) 278:22424–31. doi: 10.1074/jbc.M301789200
- $54.\ Thiruvengadam\ M.\ Neuroinflammation: Unraveling its role in neurodegenerative diseases. {\it Brain\ Spine.}\ (2024)\ 4:102866.\ doi: 10.1016/j.bas.2024.102866$
- 55. Wu D, Zhang Y, Zhao C, Li Q, Zhang J, Han J, et al. Disruption of C/ΕΒΡβ-Clec7a axis exacerbates neuroinflammatory injury via NLRP3 inflammasome-mediated pyroptosis in experimental neuropathic pain. *J Trans Med.* (2022) 20:583. doi: 10.1186/s12967-022-03779-9
- 56. Baragetti A, Catapano AL, Magni P. Multifactorial activation of NLRP3 inflammasome: relevance for a precision approach to atherosclerotic cardiovascular risk and disease. *Int J Mol Sci.* (2020) 21:4459. doi: 10.3390/ijms21124459
- 57.~ Hamilton C, Anand PK. Right place, right time: localisation and assembly of the NLRP3 inflammasome. {\it F1000Research}. (2019) 8:F1000 Faculty Rev-676. doi: 10.12688/f1000research
- 58. Halliday M, Mallucci GR. Review: Modulating the unfolded protein response to prevent neurodegeneration and enhance memory. *Neuropathology Appl Neurobiol.* (2015) 41:414–27. doi: 10.1111/nan.2015.41.issue-4
- 59. Spilianakis CB, Udofa EA, Stringer BW, Gade P, Mahony D, Buzza MS, et al. The transcription factor C/EBP- β Mediates constitutive and LPS-inducible transcription of murine serpinB2. *PloS One.* (2013) 8:e57855. doi: 10.1371/journal.pone.0057855
- 60. Ma J, Liu C, Yang Y, Yu J, Yang J, Yu S, et al. C/EBP β Acts upstream of NF- κ B P65 subunit in ox-LDL-induced IL-1 β Production by macrophages. *Cell Physiol Biochem.* (2018) 48:1605–15. doi: 10.1159/000492282
- 61. Endo M, Mori M, Akira S, Gotoh T. C/EBP homologous protein (CHOP) is crucial for the induction of caspase-11 and the pathogenesis of lipopolysaccharide-induced inflammatio. *J Immunol.* (2006) 176:6245–53. doi: 10.4049/jimmunol.176.10.6245
- 62. Sierra-Magro A, Bartolome F, Lozano-Muñoz D, Alarcón-Gil J, Gine E, Sanz-SanCristobal M, et al. C/EBP β Regulates TFAM expression, mitochondrial function and autophagy in cellular models of parkinson's disease. *Int J Mol Sci.* (2023) 24:1459. doi: 10.3390/ijms24021459
- 63. Bajwa E, Pointer CB, Klegeris A. The role of mitochondrial damage-associated molecular patterns in chronic neuroinflammation. *Mediators Inflammation*. (2019) 2019:1–11. doi: 10.1155/2019/4050796

- 64. Lin M-M, Liu N, Qin Z-H, Wang Y. Mitochondrial-derived damage-associated molecular patterns amplify neuroinflammation in neurodegenerative diseases. *Acta Pharmacologica Sin.* (2022) 43:2439–47. doi: 10.1038/s41401-022-00879-6
- 65. Barakat DJ, Mendonca J, Barberi T, Zhang J, Kachhap SK, Paz-Priel I, et al. C/ EBPβ regulates sensitivity to bortezomib in prostate cancer cells by inducing REDD1 and autophagosome-lysosome fusion. *Cancer Lett.* (2016) 375:152–61. doi: 10.1016/j.canlet.2016.03.005
- 66. Ma J, Yang X, Chen X. C/EBP β is a key transcription factor of ox-LDL inducing THP-1 cells to release multiple pro-inflammatory cytokines. *Inflammation Res.* (2021) 70:1191–9. doi: 10.1007/s00011-021-01509-3
- 67. Wang X, Cheng W, Chen X, Gong Y, Wang G, Zhang X, et al. Inhibition of CEBPB attenuates lupus nephritis via regulating pim-1 signaling. *Mediators Inflammation*. (2022) 2022:1–14. doi: 10.1155/2022/2298865
- 68. Jones GH, Vecera CM, Pinjari OF, MaChado-Vieira R. Inflammatory signaling mechanisms in bipolar disorder. *J Biomed Sci.* (2021) 28:45. doi: 10.1186/s12929-021-00742-6
- 69. Wang K, Gao Y, Wang C, Liang M, Liao Y, Hu K. Role of oxidative stress in varicocele. Front Genet. (2022) 13. doi: 10.3389/fgene.2022.850114
- 70. Jiang C, Xie S, Yang G, Wang N. Spotlight on NLRP3 inflammasome: role in pathogenesis and therapies of atherosclerosis. *J Inflammation Res Volume.* (2021) 14:7143–72. doi: 10.2147/JIR.S344730
- 71. Zou H, Chen M, Wang X, Yu J, Li X, Xie Y, et al. C/EBP β isoform-specific regulation of podocyte pyroptosis in lupus nephritis-induced renal injury. *J Pathol.* (2023) 261:269–85. doi: 10.1002/path.v261.3
- 72. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. *Nature*. (2009) 458:514–8. doi: 10.1038/nature07725
- 73. Barnes PJ, Adcock IM. Transcription factors and asthma. Eur Respir J. (1998) 12:221–34. doi: 10.1183/09031936.98.12010221
- 74. Hirai H, Yokota A, Tamura A, Sato A, Maekawa T. Non-steady-state hematopoiesis regulated by the C/EBP β transcription factor. *Cancer Sci.* (2015) 106:797–802. doi: 10.1111/cas.2015.106.issue-7
- 75. McClure C, McPeak MB, Youssef D, Yao ZQ, McCall CE, El Gazzar M. Stat3 and C/EBP β synergize to induce miR-21 and miR-181b expression during sepsis. *Immunol Cell Biol.* (2016) 95:42–55. doi: 10.1038/icb.2016.63
- 76. McPeak MB, Youssef D, Williams DA, Pritchett CL, Yao ZQ, McCall CE, et al. Frontline Science: Myeloid cell-specific deletion of Cebpb decreases sepsis-induced immunosuppression in mice. *J Leukocyte Biol.* (2017) 102:191–200. doi: 10.1189/jlb.4HI1216-537R
- 77. Wang W, Xia X, Mao L, Wang S. The CCAAT/enhancer-binding protein family: its roles in MDSC expansion and function. *Front Immunol.* (2019) 10. doi: 10.3389/fimmu.2019.01804
- 78. Yan D, Wang J, Sun H, Zamani A, Zhang H, Chen W, et al. TIPE2 specifies the functional polarization of myeloid-derived suppressor cells during tumorigenesis. *J Exp Med.* (2020) 217:e20182005. doi: 10.1084/jem.20182005
- 79. Chen M, Rong R, Xia X. Spotlight on pyroptosis: role in pathogenesis and therapeutic potential of ocular diseases. *J Neuroinflamm*. (2022) 19:183. doi: 10.1186/s12974-022-02547-2
- 80. Shao R, Wang X, Xu T, Xia Y, Cui D. The balance between AIM2-associated inflammation and autophagy: the role of CHMP2A in brain injury after cardiac arrest. *J Neuroinflamm.* (2021) 18:257. doi: 10.1186/s12974-021-02307-8
- 81. de Jong LM, Jiskoot W, Swen JJ, Manson ML. Distinct effects of inflammation on cytochrome P450 regulation and drug metabolism: lessons from experimental models and a potential role for pharmacogenetics. *Genes.* (2020) 11:1509. doi: 10.3390/genes11121509
- 82. Li Y, Bevilacqua E, Chiribau C-B, Majumder M, Wang C, Croniger CM, et al. Differential control of the CCAAT/enhancer-binding protein β (C/EBP β) products liverenriched transcriptional activating protein (LAP) and liver-enriched transcriptional inhibitory protein (LIP) and the regulation of gene expression during the response to endoplasmic reticulum stress. *J Biol Chem.* (2008) 283:22443–56. doi: 10.1074/jbc.M801046200
- 83. Chen C, Liao J, Xia Y, Liu X, Jones R, Haran J, et al. Gut microbiota regulate Alzheimer's disease pathologies and cognitive disorders via PUFA-associated neuroinflammation. *Gut.* (2022) 71:2233–52. doi: 10.1136/gutjnl-2021-326269
- 84. Ndoja A, Reja R, Lee SH, Webster JD, Ngu H, Rose CM, et al. Ubiquitin ligase COP1 suppresses neuroinflammation by degrading c/EBP β in microglia. *Cell.* (2020) 182:1156–1169.e12. doi: 10.1016/j.cell.2020.07.011
- 85. Adhikary K, Mohanty S, Bandyopadhyay B, Maiti R, Bhattacharya K, Karak P. β Amyloid peptide modulates peripheral immune responses and neuroinflammation in rats. Biomolecular Concepts. (2024) 15:15. doi: 10.1515/bmc-2022-0042
- 86. Wang ZH, Gong K, Liu X, Zhang Z, Sun X, Wei ZZ, et al. C/EBPbeta regulates delta-secretase expression and mediates pathogenesis in mouse models of Alzheimer's disease. *Nat Commun.* (2018) 9:1784. doi: 10.1038/s41467-018-04120-z
- 87. Muller UC, Deller T, Korte M. Not just amyloid: physiological functions of the amyloid precursor protein family. *Nat Rev Neurosci.* (2017) 18:281–98. doi: 10.1038/nrn.2017.29
- 88. Zhang Z, Song M, Liu X, Kang SS, Kwon IS, Duong DM, et al. Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer's disease. *Nat Med.* (2014) 20:1254–62. doi: 10.1038/nm.3700

- 89. Xiong J, Zhang Z, Ye K. C/EBPbeta/AEP signaling drives alzheimer's disease pathogenesis. *Neurosci Bull.* (2023) 39:1173–85. doi: 10.1007/s12264-023-01025-w
- 90. Xia Y, Qadota H, Wang ZH, Liu P, Liu X, Ye KX, et al. Neuronal C/EBPbeta/AEP pathway shortens life span via selective GABAnergic neuronal degeneration by FOXO repression. *Sci Adv.* (2022) 8:eabj8658. doi: 10.1126/sciadv.abj8658
- 91. Wang H, Chen G, Ahn EH, Xia Y, Kang SS, Liu X, et al. C/EBP β /AEP is age-dependently activated in Parkinson's disease and mediates α -synuclein in the gut and brain. NPJ Parkinsons Dis. (2023) 9:1. doi: 10.1038/s41531-022-00430-8
- 92. Li L, Dawson VL, Dawson TM. Gastrointestinal tract cleavage of α -synuclein by asparaginyl endopeptidase leads to Parkinson's disease. *Neuron.* (2024) 112:3516–8. doi: 10.1016/j.neuron.2024.10.015
- 93. Morales-Garcia JA, Gine E, Hernandez-Encinas E, Aguilar-Morante D, Sierra-Magro A, Sanz-SanCristobal M, et al. CCAAT/Enhancer binding protein β silencing mitigates glial activation and neurodegeneration in a rat model of Parkinson's disease. *Sci Rep.* (2017) 7:13526. doi: 10.1038/s41598-017-13269-4
- 94. Gordon R, Albornoz EA, Christie DC, Langley MR, Kumar V, Mantovani S, et al. Inflammasome inhibition prevents α -synuclein pathology and dopaminergic neurodegeneration in mice. *Sci Transl Med.* (2018) 10:eaah4066. doi: 10.1126/scitranslmed.aah4066
- 95. Amo-Aparicio J, Daly J, Højen JF, Dinarello CA. Pharmacologic inhibition of NLRP3 reduces the levels of α -synuclein and protects dopaminergic neurons in a model of Parkinson's disease. *J Neuroinflamm*. (2023) 20:147. doi: 10.1186/s12974-023-02830-w
- 96. Yu CH, Davidson S, Harapas CR, Hilton JB, Mlodzianoski MJ, Laohamonthonkul P, et al. TDP-43 Triggers Mitochondrial DNA Release via mPTP to Activate cGAS/STING in ALS. Cell. (2020) 183:636–649.e18. doi: 10.1016/j.cell.2020.09.020
- 97. Kumar S, Phaneuf D, Julien JP. Withaferin-A treatment alleviates TAR DNA-binding protein-43 pathology and improves cognitive function in a mouse model of FTLD. *Neurotherapeutics*. (2021) 18:286–96. doi: 10.1007/s13311-020-00952-0
- 98. Zhao W, Beers DR, Bell S, Wang J, Wen S, Baloh RH, et al. TDP-43 activates microglia through NF- κ B and NLRP3 inflammasome. *Exp Neurol.* (2015) 273:24–35. doi: 10.1016/j.expneurol.2015.07.019
- 99. Thammisetty SS, Pedragosa J, Weng YC, Calon F, Planas A, Kriz J. Age-related deregulation of TDP-43 after stroke enhances NF-κB-mediated inflammation and neuronal damage. *J Neuroinflamm*. (2018) 15:312. doi: 10.1186/s12974-018-1350-y
- 100. Valente T, Mancera P, Tusell JM, Serratosa J, Saura J. C/ΕΒΡβ expression in activated microglia in amyotrophic lateral sclerosis. *Neurobiol Aging*. (2012) 33:2186–99. doi: 10.1016/j.neurobiolaging.2011.09.019
- 101. Cui Y, Yu H, Bu Z, Wen L, Yan L, Feng J. Focus on the role of the NLRP3 inflammasome in multiple sclerosis: pathogenesis, diagnosis, and therapeutics. *Front Mol Neurosci.* (2022) 15:894298. doi: 10.3389/fnmol.2022.894298
- 102. Pulido-Salgado M, Vidal-Taboada JM, Garcia Diaz-Barriga G, Serratosa J, Valente T, Castillo P, et al. Myeloid C/EBPβ deficiency reshapes microglial gene expression and is protective in experimental autoimmune encephalomyelitis. *J Neuroinflamm*. (2017) 14:54. doi: 10.1186/s12974-017-0834-5
- 103. Andersson U, Tracey KJ, Yang H. Post-translational modification of HMGB1 disulfide bonds in stimulating and inhibiting inflammation. *Cells.* (2021) 10:3323. doi: 10.3390/cells10123323
- 104. Pandolfi F, Altamura S, Frosali S, Conti P. Key role of DAMP in inflammation, cancer, and tissue repair. Clin Ther. (2016) 38:1017–28. doi: 10.1016/j.clinthera.2016.02.028
- 105. De Luca G, Goette NP, Lev PR, Baroni Pietto MC, Marin Oyarzún CP, Castro Ríos MA, et al. Elevated levels of damage-associated molecular patterns HMGB1 and S100A8/A9 coupled with toll-like receptor-triggered monocyte activation are associated with inflammation in patients with myelofibrosis. *Front Immunol.* (2024) 15:1365015. doi: 10.3389/fimmu.2024.1365015
- 106. Luo Y, Ge P, Wen H, Zhang Y, Liu J, Dong X, et al. C/EBP β Promotes LPS-induced IL-1 β Transcription and secretion in alveolar macrophages via NOD2 signaling. J Inflammation Res. (2022) 15:5247–63. doi: 10.2147/JIR.S377499
- 107. Dai XG, Li Q, Li T, Huang WB, Zeng ZH, Yang Y, et al. The interaction between C/EBP β and TFAM promotes acute kidney injury via regulating NLRP3 inflammasome-mediated pyroptosis. *Mol Immunol.* (2020) 127:136–45. doi: 10.1016/j.molimm.2020.08.023
- 108. Wei Z, Li C, Zhang Y, Lin C, Zhang Y, Shu L, et al. Macrophage-derived IL-1 β Regulates emergency myelopoiesis via the NF- κ B and C/ebp β in zebrafish. *J Immunol.* (2020) 205:2694–706. doi: 10.4049/jimmunol.2000473
- 109. Zhang G, Zhou B, Li S, Yue J, Yang H, Wen Y, et al. Allele-specific induction of IL-1 β expression by C/EBP β and PU.1 contributes to increased tuberculosis susceptibility. *PloS Pathog.* (2014) 10:e1004426. doi: 10.1371/journal.ppat.1004426
- 110. Xia Y, Xiao Y, Wang ZH, Liu X, Alam AM, Haran JP, et al. Bacteroides Fragilis in the gut microbiomes of Alzheimer's disease activates microglia and triggers pathogenesis in neuronal C/EBP β transgenic mice. *Nat Commun.* (2023) 14:5471. doi: 10.1038/s41467-023-41283-w
- 111. Kim KS, Lee D, Song CG, Kang PM. Reactive oxygen species-activated nanomaterials as theranostic agents. *Nanomedicine (Lond)*. (2015) 10:2709–23. doi: 10.2217/nnm.15.108
- 112. Sharma A, Singh S, Ahmad S, Gulzar F, Schertzer JD, Tamrakar AK. NOD1 activation induces oxidative stress via NOX1/4 in adipocytes. *Free Radic Biol Med.* (2021) 162:118–28. doi: 10.1016/j.freeradbiomed.2020.11.036

- 113. Villarreal-García V, Estupiñan-Jiménez JR, Vivas-Mejía PE, Gonzalez-Villasana V, Vázquez-Guillén JM, Reséndez-Pérez D. A vicious circle in breast cancer: The interplay between inflammation, reactive oxygen species, and microRNAs. Front Oncol. (2022) 12:980694. doi: 10.3389/fonc.2022.980694
- 114. Guo Y, Zhang Y, Guan Y, Chen N, Zhao M, Li Y, et al. IL-37d enhances COP1-mediated C/EBP β degradation to suppress spontaneous neutrophil migration and tumor progression. *Cell Rep.* (2024) 43:113787. doi: 10.1016/j.celrep.2024.113787
- 115. Singh S, Sharma S, Sharma H. Potential impact of bioactive compounds as NLRP3 inflammasome inhibitors: an update. *Curr Pharm Biotechnol.* (2024) 25:1719–46. doi: 10.2174/0113892010276859231125165251
- 116. Haque I, Thapa P, Burns DM, Zhou J, Sharma M, Sharma R, et al. NLRP3 inflammasome inhibitors for antiepileptogenic drug discovery and development. Int J Mol Sci. (2024) 25:6078. doi: 10.3390/ijms25116078
- 117. Cheng Q, Ma X, Liu J, Feng X, Liu Y, Wang Y, et al. Pharmacological inhibition of the asparaginyl endopeptidase (AEP) in an alzheimer's disease model improves the survival and efficacy of transplanted neural stem cells. *Int J Mol Sci.* (2023) 24:7739. doi: 10.3390/ijms24097739
- 118. He C, Wang T, Han Y, Zuo C, Wang G. E3 ubiquitin ligase COP1 confers neuroprotection in cerebral ischemia/reperfusion injury via regulation of transcription factor C/EBP β in microglia. *Int J Biol Macromol.* (2022) 222:1789–800. doi: 10.1016/j.ijbiomac.2022.09.264
- 119. Ramachandran R, Manan A, Kim J, Choi S. NLRP3 inflammasome: a key player in the pathogenesis of life-style disorders. *Exp Mol Med.* (2024) 56:1488-500. doi: 10.1038/s12276-024-01261-8
- 120. Guo DK, Zhu Y, Sun HY, Xu XY, Zhang S, Hao ZB, et al. Pharmacological activation of REV-ERBα represses LPS-induced microglial activation through the NF-κB pathway. *Acta Pharmacol Sin.* (2019) 40:26–34. doi: 10.1038/s41401-018-0064-0
- 121. Li X, Sun M, Men S, Shi Y, Ma L, An Y, et al. The inflammatory transcription factor C/EBP β Plays a critical role in cardiac fibroblast differentiation and a rat model of cardiac fibrosis induced by autoimmune myocarditis. *Int Heart J.* (2018) 59:1389–97. doi: 10.1536/ihj.17-446
- 122. Li W, Huang X, Pang X, Sun Y, Zeng Z, Zheng P, et al. The anti-inflammatory cytokine interferon-gamma as a potential therapeutic target of Alzheimer's disease: a retrospective observational study. *Aging Adv.* (2024) 1:105–11. doi: 10.4103/AGINGADV-D-24-00006
- 123. Spike AJ, Rosen JM. C/EBPß Isoform Specific Gene Regulation: It's a Lot more Complicated than you Think! *J Mammary Gland Biol Neoplasia*. (2020) 25:1–12. doi: 10.1007/s10911-020-09444-5
- 124. Chen Y, Liu L. Modern methods for delivery of drugs across the blood-brain barrier. Adv Drug Delivery Rev. (2012) 64:640–65. doi: 10.1016/j.addr.2011.11.010
- 125. Caljon G, Caveliers V, Lahoutte T, Stijlemans B, Ghassabeh GH, Van Den Abbeele J, et al. Using microdialysis to analyse the passage of monovalent nanobodies through the blood-brain barrier. *Br J Pharmacol.* (2012) 165:2341–53. doi: 10.1111/j.1476-5381.2011.01723.x
- 126. Butler YR, Liu Y, Kumbhar R, Zhao P, Gadhave K, Wang N, et al. alpha-Synuclein fibril-specific nanobody reduces prion-like alpha-synuclein spreading in mice. *Nat Commun.* (2022) 13:4060. doi: 10.1038/s41467-022-31787-2
- 127. Oosterlaken M, Rogliardo A, Lipina T, Lafon PA, Tsitokana ME, Keck M, et al. Nanobody therapy rescues behavioural deficits of NMDA receptor hypofunction. *Nature*. (2025). doi: 10.1038/s41586-025-09265-8
- 128. Sinclair F, Begum AA, Dai CC, Toth I, Moyle PM. Recent advances in the delivery and applications of nonviral CRISPR/Cas9 gene editing. *Drug Delivery Transl Res.* (2023) 13:1500–19. doi: 10.1007/s13346-023-01320-z
- 129. Tripathi S, Sharma Y, Rane R, Kumar D. CRISPR/cas9 gene editing: A novel approach towards alzheimer's disease treatment. CNS Neurol Disord Drug Targets. (2024) 23:1405–24. doi: 10.2174/0118715273283786240408034408
- 130. Laurent M, Geoffroy M, Pavani G, Guiraud S. CRISPR-based gene therapies: from preclinical to clinical treatments. *Cells.* (2024) 13:800. doi: 10.3390/cells13100800
- 131. Cecchin E, Stocco G. Pharmacogenomics and personalized medicine. *Genes (Basel).* (2020) 11:679. doi: 10.3390/genes11060679
- 132. Wang H, Larris B, Peiris TH, Zhang L, Le Lay J, Gao Y, et al. C/EBPbeta activates E2F-regulated genes *in vivo* via recruitment of the coactivator CREB-binding protein/P300. *J Biol Chem.* (2007) 282:24679–88. doi: 10.1074/jbc.M705066200
- 133. Rui W, Xiao H, Fan Y, Ma Z, Xiao M, Li S, et al. Systemic inflammasome activation and pyroptosis associate with the progression of amnestic mild cognitive impairment and Alzheimer's disease. *J Neuroinflamm*. (2021) 18:280. doi: 10.1186/s12974-021-02329-2
- 134. Wang ZH, Gong K, Liu X, Zhang Z, Sun X, Wei ZZ, et al. Author Correction: C/EBP β regulates delta-secretase expression and mediates pathogenesis in mouse models of Alzheimer's disease. *Nat Commun.* (2019) 10:5452. doi: 10.1038/s41467-109-1353-z
- 135. Lin Z, Huang L, Cao Q, Luo H, Yao W, Zhang JC. Inhibition of abnormal C/EBP β/α -Syn signaling pathway through activation of Nrf2 ameliorates Parkinson's disease-like pathology. *Aging Cell.* (2023) 22:e13958. doi: 10.1111/acel.v22.10
- 136. Lee Y, Lee S, Chang SC, Lee J. Significant roles of neuroinflammation in Parkinson's disease: therapeutic targets for PD prevention. *Arch Pharm Res.* (2019) 42:416–25. doi: 10.1007/s12272-019-01133-0