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CCAAT/enhancer-binding protein beta (C/EBPB), a key transcription factor, plays a
central role in regulating inflammasome signaling in neurodegenerative diseases
(NDs). This review synthesizes the mechanisms by which C/EBPB modulates
neuroinflammation and its potential as a therapeutic target. We conducted a
comprehensive systematic review spanning January 1995 to June 2025,
systematically querying Google Scholar and PubMed with the following
keywords: neuroinflammation, inflammasome activation, C/EBPB, therapeutic
targeting, and neurodegenerative diseases. C/EBPp exists in three isoforms-LAPL,
LAP2, and LIP-each with distinct functions in inflammasome activation. In
Alzheimer's disease (AD), C/EBPJ drives tau cleavage and AP pathology through
the AEP axis and exacerbates neuroinflammation by upregulating APOE4. In
Parkinson's disease (PD), C/EBPR silencing reduces o.-synuclein aggregation and
dopaminergic neuron loss by suppressing the NLRP3 inflammasome. In
Amyotrophic Lateral Sclerosis (ALS), C/EBPB is hypothesized to contribute to
TDP-43-associated inflammasome activation, though this requires further
validation. In Multiple Sclerosis (MS), C/EBPB may influence microglial activation
and neuroinflammation, as shown in experimental autoimmune encephalomyelitis
models. Modulators of the C/EBPB-inflammasome axis include endogenous
regulators like gut-derived metabolites and pharmacological interventions such
as small-molecule inhibitors. Therapeutic strategies targeting C/EBPB hold promise
for mitigating neuroinflammation and neurodegeneration, though challenges
remain in achieving isoform-specific targeting and blood-brain barrier
penetration. Future directions include CRISPR-based editing and biomarker
development for personalized therapies.
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1 Introduction

1.1 Overview of neuroinflammation and
inflammasomes in neurodegenerative
diseases

Neurodegenerative diseases (NDs), including Alzheimer’s
disease (AD), Parkinson’s disease (PD), amyotrophic lateral
sclerosis (ALS), and multiple sclerosis (MS), are characterized by
progressive neuronal loss and functional decline in the central
nervous system (CNS). A hallmark shared across these disorders
is chronic neuroinflammation, driven by dysregulated immune
responses and sustained activation of innate immune pathways
(1-3). Central to this process are inflammasomes, multiprotein
complexes that orchestrate inflammatory signaling and contribute
to neuronal damage (4).

Neuroinflammation initially serves as a protective mechanism
aimed at eliminating pathogens and cellular debris. Resident CNS
immune cells, such as microglia and astrocytes, detect danger-
associated molecular patterns (DAMPs) or pathogen-associated
molecular patterns (PAMPs) through pattern recognition
receptors (PRRs), including Toll-like receptors (TLRs) and Nod-
like receptors (NLRs) (5). Acute activation of these pathways
promotes tissue repair and homeostasis. However, persistent
stimuli-such as misfolded protein aggregates (e.g., amyloid-f3 [Af]
in AD, o-synuclein in PD), oxidative stress, or mitochondrial
dysfunction-trigger chronic neuroinflammation. This leads to the
sustained release of pro-inflammatory cytokines (e.g., IL-13, IL-18),
chemokines, and reactive oxygen species (ROS) (6-8). This chronic
state exacerbates neuronal death, synaptic dysfunction, and blood-
brain barrier (BBB) disruption, creating a self-perpetuating cycle of
neurodegeneration (9-13).

In AD, the presence of abnormally phosphorylated tau protein
and extracellular deposits of AP peptide are key pathological
features (14). These deposits activate microglia and astrocytes,
leading to the release of pro-inflammatory cytokines and
neurotoxicity (15-17). In PD, the misfolding and aggregation of
a-synuclein due to oxidative stress result in the accumulation of
toxic protein aggregates (18, 19). This triggers a cascade of pro-
inflammatory events in microglia and astrocytes, amplifying
neuronal loss and persistent neurodegeneration (20, 21).

The NLRP3 inflammasome is a critical player in
neuroinflammation, activated by DAMPs and PAMPs in microglia,
astrocytes, and neurons (22-24). Activation of the NLRP3
inflammasome leads to the maturation and release of pro-
inflammatory cytokines such as IL-1P and IL-18, contributing to
neuroinflammation and neuronal damage (25). Inhibiting the NLRP3
inflammasome has been proposed as a potential therapeutic strategy
to counteract neurodegenerative diseases (1, 26). Most evidence and
therapeutic concepts presented here derive from in vitro systems or
animal models. While indispensable for mechanistic insight and
proof-of-concept, these data must be validated in rigorously
designed clinical trials before any therapeutic claims can be
extended to human disease.
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1.2 Introduction to C/EBP: structure,
isoforms, and physiological roles

CCAAT/enhancer-binding protein beta (C/EBPf) is a member
of the C/EBP family of transcription factors that play crucial roles in
various physiological processes (27). As a leucine-zipper (bZIP)
transcription factor, C/EBPP binds DNA as dimers and regulates
the transcription of genes containing specific T(TG)NNGNAA(TG)
motifs (28, 29). The uniqueness of the C/EBPP gene lies in its lack of
introns and its ability to be alternatively translated into three major
isoforms: liver activator protein 1(LAP1), liver activator protein 2
(LAP2), and liver inhibitor protein (LIP) (30). These isoforms arise
through alternative translation initiation sites, leading to differences
in their N-terminal regions (30, 31).

LAPI and LAP2 are both transcriptional activators, with LAP2
being a stronger transactivator than LAP1. This difference is
attributed to the regulation of C/EBPP protein tertiary structure
and unique N-terminal protein-protein interactions (28, 32). LAP1
and LAP2 differ in their first 21 N-terminal amino acids due to
internal translation initiation from the downstream LAP2 start
codon (28, 30). In contrast, the LIP isoform lacks the N-terminal
transactivation domain (TAD) and most of the negative regulatory
domain, functioning primarily as a dominant-negative regulator of
transcription. However, in some cellular contexts, LIP can act as a
transcriptional activator by interacting with other cofactors (30, 33).

C/EBPJ is expressed in various tissues, including the liver,
brain, intestine, and skin, and is involved in multiple
physiological processes (34). It is essential for the differentiation
of mammary epithelial and granulosa cells, macrophage function,
and brown adipose tissue formation (35-37). C/EBPP also plays a
role in cell cycle arrest and differentiation in hepatocytes,
hematopoietic cells, and adipocytes (37-39). Additionally, it is
involved in apoptosis and senescence in microglia and neurons.
For instance, methamphetamine (METH) upregulates C/EBPf
expression, thereby activating Lipocalin2 (an apoptosis-inducing
factor) and leading to apoptosis in microglial cells. Silencing C/
EBPP can reverse this process (40, 41). METH induces neuronal
autophagy and apoptosis through the C/EBPB-DDIT4/TSC2/
mTOR signaling axis and the Trib3/Parkin/o-syn pathway.
Inhibition of C/EBPP can mitigate neurotoxicity (42, 43). C/EBPB
regulates the pro-inflammatory program in microglia and is
involved in the expression of several inflammatory genes in
astrocytes (44, 45). It also plays a role in the regulation of the
complement component 3 gene in neural cells, contributing to its
pro-inflammatory effects (46).

1.3 Rationale for focusing on C/EBPj3-
inflammasome axis: bridging
transcriptional regulation and chronic
inflammation in NDs

The C/EBPB-inflammasome axis has emerged as a critical
pathway linking transcriptional regulation to chronic inflammation
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in NDs (Table 1). This axis is particularly relevant in conditions such
as AD, PD, ALS, and MS, where chronic neuroinflammation plays a
significant role in disease progression (54).

C/EBP plays a pivotal role in regulating the expression of genes
involved in inflammasome activation, thereby linking transcriptional
regulation to chronic inflammation. Inflammasomes, such as the
NLRP3 inflammasome, are activated by various stimuli, including
misfolded protein aggregates, oxidative stress, and mitochondrial
dysfunction (55-58). For instance, C/EBPB has been shown to
directly bind to the promoter region of the SerpinB2 gene, which is
crucial for LPS-induced transcription in macrophages. This binding is
essential for driving transcription from the SerpinB2 promoter in
response to LPS stimulation (59). Additionally, C/EBPJ regulates the
expression of caspase-1, a key component of the non-canonical
inflammasome pathway (60, 61). This regulation is critical for
understanding how chronic inflammation is sustained in NDs.

C/EBPB is also implicated in the regulation of mitochondrial
function and the expression of mitochondrial transcription factor A
(TFAM). In a cellular model of Parkinson’s disease using SH-SY5Y
dopaminergic cells treated with the neurotoxin 6-hydroxydopamine
(6-OHDA), C/EBP levels increased over time, reaching a peak at
18 hours when cells began to die due to stress. In contrast, TFAM
expression decreased after 4 hours of treatment, followed by a
partial recovery. This recovery is likely due to C/EBPB’s activation
of the TFAM promoter (62). Mitochondrial dysfunction, a common
feature of NDs, contributes to chronic inflammation through the
release of damage-associated molecular patterns (DAMPs) (63, 64).
By regulating mitochondrial function, C/EBPB can influence the
inflammatory response and contribute to the pathogenesis of NDs.

C/EBPP has been shown to regulate autophagy, a process
crucial for the degradation of damaged mitochondria. In C/EBPJ-
silenced cells, there is an accumulation of autophagic markers under
oxidative stress and inflammatory conditions, indicating that C/
EBP is involved in the regulation of autophagy. This accumulation
is not due to increased autophagy induction but rather to decreased
autophagosome degradation (62, 65). This finding suggests that C/
EBPB may play a role in maintaining the balance between
mitochondrial biogenesis and degradation, which is essential for
cellular homeostasis.

10.3389/fimmu.2025.1656165

2 C/EBPS in inflammasome activation

2.1 Transcriptional control of
inflammasome components

C/EBPB is a key transcription factor that directly regulates the
expression of critical inflammasome components by binding to
their promoter regions. This direct regulation is essential for the
expression and activation of inflammasomes, which play a crucial
role in the inflammatory response in various diseases (66). For
instance, C/EBPP has been shown to regulate the expression of
NLRP3, a key component of the inflammasome complex (60, 67).
NLRP3 is activated by various stimuli, including misfolded proteins
and oxidative stress, leading to the release of pro-inflammatory
cytokines like IL-1B and IL-18 (68-70). Similarly, C/EBPP also
regulates the expression of AIM2, another inflammasome sensor
that recognizes cytosolic DNA and forms a caspase-1-activating
inflammasome (71, 72). Additionally, C/EBPJ directly controls the
expression of caspase-1, a crucial enzyme in the inflammasome
pathway that processes pro-IL-1f and pro-IL-18 into their active
forms (60). The specific mechanism is illustrated in Figure 1A.

C/EBP not only acts independently but also synergizes with other
transcription factors, such as NF-xB, to amplify the production of pro-
inflammatory cytokines (Figure 1A). This synergy is particularly
evident in the regulation of IL-1B and IL-18, two key cytokines
involved in the inflammatory response (73, 74). NF-xB is a well-
known regulator of inflammatory genes, and its cooperation with C/
EBPP enhances the transcriptional activation of these genes. For
example, studies have shown that C/EBPB and NF-xB can bind to
adjacent sites on the promoters of IL-1f and IL-18 genes, leading to a
coordinated upregulation of these cytokines (60). This synergistic effect
is crucial for the robust inflammatory response observed in conditions
such as sepsis and neurodegenerative diseases (46, 62, 75, 76).

2.2 Isoform-specific mechanisms

C/EBP[B-LAP, the transcriptionally active isoform of C/EBP, is
crucial for activating the AIM2 inflammasome by enhancing the

TABLE 1 The molecular pathways of neurodegenerative diseases are regulated by C/EBPB.

Diseases Mechanisms Reference
Glia activation leads to increased C/EBPP expression, its nuclear translocation, and binding to pro-inflammatory gene promoters, 46)
thereby upregulating inflammatory genes.

C/EBPP binds the promoter of APOE and escalates its expression (47)
AD
Neuronal ApoE4 activates C/EBPP and promotes 3-secretase simultaneously cleaves both APP and Tau and augments AP production (48, 49)
and Tau hyperphosphorylation. ?
Diabetes-linked inflammation triggers neuronal C/EBP activation, leading to increased APP and Tau expression. (50)
C/EBPP acts as a transcription factor to upregulate o-syn and monoamine oxidase B, which triggers oxidative stress in dopaminergic G1)
neurons and o-Syn aggregation.
PD
Disruption of gut microbiota homeostasis and impairment of the intestinal barrier activate the C/EBP/AEP signaling, leading to o.- 2)
synuclein aggregation and substantia nigra dopaminergic neuron degeneration.
MS Myelin basic protein (MBP)-specific T cells trigger microglial inflammation via a C/EBPB-dependent mechanism. (53)
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FIGURE 1

Transcriptional regulation of inflammasome activation by C/EBPb. C/EBPb governs the expression of NLRP3 and AIM2, which are pivotal
inflammasome components responsible for triggering the cleavage of latent procaspase-1 into its active form, caspase-1. This activation facilitates
the conversion of the cytokine precursors pro-IL-1b and pro-IL-18 into their mature, bioactive forms, IL-1b and IL-18, respectively. Beyond this, C/
EBPb directly regulates caspase-1 expression and influences NF-kB expression, which in turn modulates the activation of pro-IL-1b and pro-IL-18.
(B) The C/EBPb isoforms, C/EBPb-LAP and C/EBPb-LIP, drive the production of inflammatory factors by activating the AIM2 inflammasome. Created

with BioRender.com.

expression of AIM2 and caspase-1 (Table 2). This mechanism has
been observed in several contexts.

In Lupus Nephritis (LN), C/EBPB-LAP activates the AIM2
inflammasome and induces podocyte pyroptosis. This activation is
achieved by binding to the promoters of AIM2 and CASPASEIL,
thereby enhancing their expression (Figure 1B). Knockdown of AIM2
or caspase-1 reversed the effects of C/EBPB-LAP overexpression,
highlighting the critical role of these interactions in inflammasome
activation (71). In the context of liver inflammation, C/EBPB-LAP
activates the transcription of various pro-inflammatory genes,
including IL-6 and TNF. This activation is crucial for the acute
phase response and the recruitment of immune cells to the site of
inflammation (66, 77, 78).

In contrast to C/EBPB-LAP, the C/EBPB-LIP isoform functions
primarily as a transcriptional inhibitor and has been shown to
promote Ca**-mediated inflammasome assembly by suppressing the
expression of inositol-1,3,4-phosphat receptor associated G-kinase
substrate (IRAG). Overexpression of C/EBPB-LIP in LN
transcriptionally inhibits IRAG, leading to increased Ca** release.
This increase in Ca*" levels facilitate the assembly and activation of the
AIM2 inflammasome (71, 79, 80). This finding suggests that C/EBPf3-
LIP not only regulates the expression of key inflammasome proteins
but also affects their polymerization through the regulation of Ca**
release (Figure 1B). In Myeloid-Derived Suppressor Cells (MDSCs),
C/EBPB-LIP suppresses the expression of immunosuppressive genes
such as arginase-1 (Arg-1) and inducible nitric oxide synthase (iNOS).
This suppression is achieved by blocking the activity of the
transcriptionally active LAP-1 and LAP-2 isoforms (78). The
balance between LIP and LAP isoforms is crucial for the regulation
of MDSC function and the inflammatory response. In hepatocytes,
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C/EBPB-LIP has been shown to downregulate the expression of
cytochrome P450 enzymes (e.g, CYP3A4) by antagonizing the
transactivation activity of LAP. This mechanism involves the
binding of LIP to LAP (81, 82), preventing it from initiating
transcription. This regulation is important for the metabolic
response to inflammatory stimuli.

3 Role in specific neurodegenerative
diseases

3.1 Alzheimer’s disease

C/EBP has been identified as a key player in the progression of
AD. Over the past decade, numerous studies have elucidated its
multifaceted role in the pathogenesis of AD. For instance, C/EBPB
has been shown to be a crucial transcription factor for APOE,
preferentially mediating the expression of ApoE4, which is
associated with an increased risk of AD (47). In addition to its
role in AP production, C/EBPJ is implicated in the neurofibrillary
pathology of AD. It has been demonstrated that C/EBPB can
upregulate the expression of certain proteins that mediate the
cleavage of tau and APP, proteins implicated in the development
of AD (48, 49). This suggests that C/EBP may contribute to both
major pathological features of AD.

Moreover, C/EBP is involved in neuroinflammation, a critical
component of AD pathology (83, 84). It is a key regulator of pro-
inflammatory genes in microglia and is overexpressed in AD animal
models and AD patients. There is a positive feedback loop between C/
EBPPB and inflammatory components-inflammatory factors can
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TABLE 2 The role of the C/EBPB isoform in inflammation.

C/EBPS isoforms

10.3389/fimmu.2025.1656165

Reference

LAP1

Structural Features

Full-length N-terminal
transactivation
domain (TAD)

LAP2

Lacking 21 amino
acids at the N-
terminal TAD and

LIP

Completely lacking the N-terminal TAD and (30)
Lacking most of the negative
regulatory domain

partially regulatory
Primary Functions Increase Increase Inhibit transcriptional activity (31)
transcriptional activity transcriptional
activity
Diseases Lupus nephritis C/EBPB-LAP upregulates AIM2 inflammasome C/EBPB-LIP suppresses IRAG expression at the (71)
Mechanisms activity by promoting the transcriptional transcriptional level, enhancing Ca®* release and

expression of AIM2 and CASPASEI through

direct promoter binding

Chronic inflammation

activating the transcription of pro-inflammatory

genes, including IL-6 and TNFa

activate C/EBPJ, which in turn further promotes the production of
inflammatory factors (46, 66). This inflammatory response can further
exacerbate neuronal damage and contribute to the progression of the
disease. Chronic neuroinflammation activates the transcription factor
C/EBPB, which in turn up-regulates the cysteine protease asparagine
endopeptidase (AEP) (85). Clinically, heightened AEP activity is
documented in post-mortem AD brains, while mechanistic studies
reveal that genetic ablation of C/EBPP attenuates AD pathology via
AEP suppression in animal models (86, 87). Importantly, AEP
truncates tau at N368 and N255, yielding aggregation-prone
fragments that precipitate neurofibrillary tangle formation—a
defining feature of AD neurodegeneration (88).

In AD mouse models, knockdown of C/EBP significantly reduces
the levels of inflammatory factors and the number of activated
microglia. Conversely, overexpression of C/EBPP exacerbates these
pathological features (48). C/EBPP isoforms can bind the promoter
regions of inflammasome genes (e.g,, caspase-1, NLRP3, and AIM2) via
their DNA-binding domains and enhance transcription. While this
suggests a potential regulatory role in inflammasome-mediated
processes in AD, direct experimental confirmation is still lacking.

Recent studies have also highlighted the potential therapeutic
implications of targeting C/EBPP. For example, inhibiting the C/
EBPf/d-secretase axis has been shown to reduce AP levels and
improve cognitive function in animal models of AD (89). Decrease
FOXO inhibition, reverse GABA neuron degeneration, maintaining
the homeostasis of excitation inhibition balance (90). These findings
suggest that interventions aimed at modulating C/EBPP activity
could represent a promising strategy for treating AD (Table 1).

3.2 Parkinson's disease

Over the past decade, research has illuminated the multifaceted
role of C/EBPP in PD (51, 62). C/EBP is involved in the regulation
of AEP, also known as legumain, a cysteine protease highly activated
in the brains of PD patients (91). AEP cleaves o-synuclein (o-syn),
promoting its aggregation and neurotoxicity, which contributes to the
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LAP isoforms promote inflammation by

subsequent AIM2 inflammasome activation

LIP reduces inflammation by blocking LAP (77)

loss of dopaminergic neurons and motor deficits characteristic of PD
(52, 92). Additionally, C/EBPf acts as a transcription factor to
upregulate o-syn and monoamine oxidase B (MAOB), both of
which are implicated in PD pathogenesis in human wild-type o-
Syn transgenic mice (51). This transcription factor can be activated by
lipopolysaccharide (LPS) and inflammatory cytokines such as
interleukin-1 (IL-1f), IL-6, and tumor necrosis factor-o. (TNF-or)
(50). Therefore, gut microbiota dysbiosis and inflammation
activation contribute to PD pathology through the C/EBPB/AEP
signaling pathway (52). In a study using a rotenone-induced PD
mouse model, combined with antibiotic-induced microbiome
depletion and fecal microbiota transplantation, it was found that
gut microbiota dysbiosis, along with leaky gut-induced bacterial
endotoxins, activates C/EBPB/AEP signaling and a-syn pathology,
ultimately leading to neurodegeneration in PD (52). This suggests
that the gut microbiota may play a significant role in the activation of
C/EBPP/AEP signaling and the progression of PD.

Furthermore, silencing C/EBPf has been shown to reduce o-
synuclein aggregation and dopaminergic neuron loss. This effect is
mediated through the suppression of the NLRP3 inflammasome (93,
94). By downregulating C/EBP, the expression of NLRP3 and other
inflammasome components is reduced, thereby attenuating the
inflammatory response and mitigating neuronal damage in an
MPTP neurotoxic model of PD (55, 95). This finding suggests that
targeting C/EBPP could be a promising therapeutic strategy for
reducing neuroinflammation and neurodegeneration in PD (Table 1).

3.3 Amyotrophic lateral sclerosis

TDP-43 (TAR DNA-binding protein 43) is a nuclear protein that
regulates several RNA metabolic pathways. Dysregulation of TDP-43
induces its cytoplasmic accumulation and aggregation, which is a
hallmark of ALS (96). The C/EBPf expression in microglia has
indeed been observed to increase in spinal cord of ALS animal
models and human ALS patients (97).TDP-43 interacts with NF-«B,
a key factor contributing to the inflammatory response, and activates
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NF-kB in microglia (98). Activated NF-kB induces the production of
pro-inflammatory cytokines, contributing to neuroinflammation (97,
99). Considering that C/EBPf is a key transcription factor for NF-«B,it
may play a role in regulating these inflammatory pathways, thereby
contributing to the neuroinflammatory response in ALS (100).

3.4 Multiple sclerosis

C/EBPP has been shown to be involved in the inflammatory
response in MS. Specifically, myelin basic protein-specific T cells, an
autoantigen in MS, induce the expression of IL-1f3, IL-1o,, TNF-0,, and
IL-6 in microglial cells through a mechanism dependent on C/EBPP
activation (53). This suggests that C/EBPP plays a crucial role in
mediating the inflammatory response in MS (53). In the context of
MS, C/EBPP may contribute to the activation of the NLRP3
inflammasome, which is associated with the production of IL-18 and
IL-18, key cytokines in neuroinflammation (101). This activation can
lead to further recruitment of immune cells and exacerbation of the
inflammatory process in MS. Additionally, studies have shown that C/
EBP deficiency in myeloid cells can reshape microglial gene expression
and is protective in experimental autoimmune encephalomyelitis
(EAE), a mouse model of MS (102). However, additional direct
evidence is necessary to demonstrate that C/EBPP regulates the
inflammasome in MS pathogenesis. Furthermore, C/EBPP has been
implicated in the regulation of other inflammatory mediators such as
HMGBI1. HMGBI, a damage-associated molecular pattern (DAMP)
protein, is known to interact with various receptors including RAGE,
TLR2, TLR4, and TLRY, and can induce inflammatory responses (103
105), C/EBPP can be activated by inflammatory stimuli such as
lipopolysaccharide (LPS), and it has been shown to upregulate the
expression of IL-1P, a cytokine that can be further enhanced by HMGB1
through its interaction with transcription factors like PU.1 (106-109).
This suggests that C/EBP3 and HMGBI can act in concert to amplify
inflammatory signaling.

4 Modulators of the C/EBPf3-
inflammasome axis

4.1 Endogenous regulators

Gut-derived metabolites, such as 12-HHTrE, have been
identified as activators of the C/EBPf-inflammasome axis. These
metabolites can induce oxidative stress, which in turn activates C/
EBPP and promotes the expression of pro-inflammatory cytokines
(110). Additionally, oxidative stress itself can act as an activator of
this axis, contributing to the production of reactive oxygen species
(ROS) and subsequent inflammatory responses (111-113). On the
other hand, COP1-mediated ubiquitination and degradation of C/
EBPp in microglia have been reported as a mechanism to control
the activity of this transcription factor (114). This process helps to
regulate the inflammatory response by reducing the levels of active
C/EBP, thereby limiting the activation of the inflammasome.
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4.2 Pharmacological interventions

Small-molecule inhibitors have been developed to target
components of the C/EBPB-inflammasome axis (115, 116). For
instance, an AEP inhibitor, Compound #11A, has been shown to
reduce the activation of the inflammasome and mitigate
neuroinflammation (117, 118). This pharmacological approach
aims to block the downstream effects of C/EBP activation,
thereby reducing the production of pro-inflammatory cytokines.
Among pharmacologic NLRP3 inhibitors, the orally bioavailable
agent ZYIL1 prevents ASC oligomerization; its Phase II trial in ALS
has recently concluded. Likewise, VTX3232—an orally active, CNS-
penetrant, and selective NLRP3 inhibitor—is currently undergoing
Phase II evaluation in early-stage Parkinson’s disease (119).

Another strategy involves the use of lentiviral shRNA delivery
systems to silence C/EBPP expression. This method has been
employed to specifically target and reduce the levels of C/EBPJ in
cells, thereby attenuating the activation of the inflammasome and
associated inflammatory responses (120, 121). This approach
provides a potential therapeutic avenue for conditions where
excessive activation of the C/EBPB-inflammasome axis contributes
to pathology.

5 Therapeutic implications and
challenges

5.1 Preclinical success

Knockdown of C/EBPB has shown promising results in
preclinical models of AD and PD. Studies have demonstrated that
reducing C/EBP levels can improve cognitive function and reduce
pathological markers in these models. For instance, in PD models, C/
EBPP reduction has been shown to mitigate dopaminergic neuronal
damage and glial activation, suggesting that C/EBP[ depletion could
be a valuable therapeutic target for PD (52). Similarly, in AD models,
the anti-inflammatory cytokine interferon-gamma acts as a potential
therapeutic target of AD (122), and C/EBP knockdown has been
associated with reduced amyloid-beta (Af) pathology and improved
cognitive outcomes (47).

5.2 Translational barriers

Despite these encouraging preclinical findings, several
translational barriers must be addressed to develop effective
therapies targeting the C/EBPB-inflammasome axis. One
significant challenge is achieving isoform-specific targeting of C/
EBP to avoid off-target effects. C/EBPf has multiple isoforms, and
targeting the wrong isoform could lead to unintended consequences
(47, 123). Therefore, developing strategies to specifically target the
pathogenic isoforms of C/EBP is crucial. High-throughput small-
molecule screening can now be coupled with AI/ML-driven
chemical-structure modelling, similarity-based target prediction,
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and cross-species transcriptomics to markedly reduce oft-
target liabilities.

Another major challenge is the blood-brain barrier (BBB)
penetration for inhibitors. The BBB restricts the entry of many
drugs into the central nervous system, making it difficult to deliver
effective concentrations of therapeutic agents to the brain (124).
Overcoming this barrier is essential for the successful translation of
C/EBP inhibitors from preclinical to clinical settings. Nanobodies
—single-domain antibodies of ~15 kDa—readily access cryptic
epitopes inaccessible to conventional antibodies and can stabilize
distinct protein conformations with exquisite specificity. Several
nanobodies have already demonstrated brain penetrance (125) and
the platform is rapidly gaining traction as a therapeutic modality for
CNS disorders (126, 127).

5.3 Future directions

Looking forward, several innovative approaches hold promise
for addressing these challenges. CRISPR-based isoform editing is a
cutting-edge technology that could enable precise targeting of
specific C/EBPJ isoforms, thereby reducing the risk of off-target
effects (128-130). This approach could be particularly useful in
selectively targeting the pathogenic isoforms of C/EBPJ in
neurodegenerative diseases.

Additionally, the development of biomarkers for C/EBP
activity could facilitate patient stratification and personalized
medicine. Identifying reliable biomarkers that reflect C/EBPP
activity in vivo would allow for better selection of patients who
are most likely to benefit from C/EBPp-targeted therapies (131).
This could enhance the success rate of clinical trials and improve
patient outcomes.

6 Conclusion

In conclusion, the C/EBPB-inflammasome axis provides a critical
link between transcriptional regulation and chronic inflammation
in NDs. Understanding this axis is essential for developing
therapeutic strategies aimed at mitigating neuroinflammation and
neurodegeneration. Future research should focus on elucidating the
specific mechanisms by which C/EBPP regulates inflaimmasome
activation and identifying potential therapeutic targets within this axis.

C/EBP, a transcription factor, plays a vital role in regulating
immune and inflammatory responses. It has been shown to directly
target the promoter region of various genes, such as IL-10, thereby
contributing to the activation of the NLRP3 inflammasome (106,
132). This activation leads to the production of pro-inflammatory
cytokines, which are key drivers of neuroinflammation in NDs. For
instance, in models of Alzheimer’s disease and Parkinson’s disease,
C/EBPB knockdown has been shown to reduce pathological
markers and improve cognitive function (133-136).

However, targeting C/EBPf for therapeutic purposes presents
several challenges. One major issue is achieving isoform-specific
targeting to avoid off-target effects, as C/EBPP has multiple isoforms
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with distinct functions. Additionally, delivering therapeutic agents
across the blood-brain barrier remains a significant hurdle, as the
BBB restricts the entry of many drugs into the central nervous system.

Future directions in research should include the development of
isoform-specific inhibitors and strategies to enhance BBB
penetration. CRISPR-based isoform editing could enable precise
targeting of specific C/EBPP isoforms, thereby reducing the risk of
off-target eftects. Moreover, the development of biomarkers for C/
EBP activity could facilitate patient stratification and personalized
medicine, allowing for better selection of patients who are most
likely to benefit from C/EBPP-targeted therapies.

In summary, the dual role of C/EBPP as a transcriptional
orchestrator and inflammasome amplifier underscores its potential
as a therapeutic target for NDs. Emphasis on personalized therapeutic
strategies targeting this axis could lead to more effective treatments
for mitigating neuroinflammation and neurodegeneration. Future
research should aim to overcome current translational barriers and
explore innovative approaches to harness the therapeutic potential of
targeting the C/EBPJ -inflammasome axis.
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