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Background and Aims: Liver cirrhosis and in particular acute-on-chronic liver
failure (ACLF) are characterized by systemic inflammation and dysfunctional
immune responses. Extracellular vesicles (EVs) are important mediators of cell
stress and inflammation, but their role in ACLF is unclear.

Methods: Phenotype and immune function of EVs of patients with compensated
liver cirrhosis, acute decompensation, or ACLF were characterized regarding
particle size, concentration, surface markers, and RNA cargo. In addition,
functional analyses were performed to assess the impact of EVs on T cells.
Results: EVs of patients with liver cirrhosis showed lower expression of
exosome-specific markers (e.g. CD9, CD63, CD81) than EVs of healthy
individuals, carried a distinct cargo of proteins and small RNAs, and were in
high frequency derived from liver cells based on their carriage of liver cell
markers such as ASGPR1, CD248 or CD163. Of note, in ACLF the
concentration of EVs decreased, and EVs in ACLF lost partially their
differentiation and surface markers but were enriched in IncRNAs. In functional
assays, EVs of patients with cirrhosis and ACLF induced changes in the
composition of T cell populations like a loss of naive and central memory T
cells and an increase in effector memory T cells. Mechanistically, EVs decreased
the viability of CD3* T cells, which could be explained by an induction of
mitochondrial dysfunction.

Conclusion: Liver cirrhosis is associated with distinct changes in circulating EVs.
In ACLF, EVs are less differentiated and induce mitochondrial dysfunction,
decreased T cell viability and changes in the composition of T cell populations.
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Introduction

Liver cirrhosis is a process of tissue scarring by chronic damage
leading to loss of liver function. Whereas patients with compensated
liver cirrhosis are largely asymptomatic, patients with
decompensated liver cirrhosis suffer from complications such as
ascites or hepatic encephalopathy (1). Survival rates decrease
strongly after transition to decompensated cirrhosis, which is
partially explained by an increased risk to develop infections or
acute-on-chronic liver failure (ACLF) (2, 3). ACLF is characterized
by defined organ failures, excessive systemic inflammation, as well
as by a high short-term mortality (4-6).

Liver cirrhosis and in particular ACLF is characterized by a
dysfunctional immune response, systemic inflammation and
impaired adaptive immunity (7, 8). For example, frequencies of
naive and effector T cells are decreased whereas central memory and
effector memory CD4" and CD8" T cells are increased in patients
with advanced cirrhosis and ACLF (9). Among other mechanisms,
mitochondrial dysfunction may contribute to the immune-
pathogenesis and organ failures of ACLF (10).

Extracellular vesicles (EVs) are nano-sized cell derived vesicles
with a bi-lipid membrane (11, 12). Regarding their size and
biogenesis pathway, EVs are divided into three subgroups:
Exosomes (40-150 nm) are released by fusion of multivesicular
bodies (MVBs) with the plasma membrane (12, 13); microvesicles
(100-1,000 nm) are formed by outward budding and fission of the
cellular membrane (14); whereas apoptotic bodies (1,000-5,000 nm)
are originated from apoptotic cells by plasma membrane blebs (15).
EVs function as contact-independent communicators between cells
(12). In the last years, EVs secreted by different cell types like
granulocytes, macrophages or apoptotic cells have been found to
modulate immune responses (16-18). Yet, the role of EVs in the
pathogenesis of ACLF is incompletely understood.

In the present study, we aimed to characterize phenotypes and
immune-modulatory functions of the EV compartment in patients
with liver cirrhosis through the entire spectrum of the disease from
compensated liver cirrhosis to ACLF.

Material and methods
Patients

A total number of 84 adult patients diagnosed with liver
cirrhosis with or without ACLF were recruited between 2018 and
2021 at the Department of Gastroenterology, University Hospital
Essen. Written informed consent was obtained from all participants
and human biological samples and related data were provided by
the Westdeutsche Biobank Essen (WBE, University Hospital Essen,
Essen, Germany; approval WBE-071). Acute decompensation or
ACLF were classified according to the criteria of the CLIF-EASL
consortium. Pregnant and breast-feeding patients, as well as
patients with hepatocellular carcinoma beyond Milan criteria or
patients tested positive for human Immunodeficiency virus were
excluded from the study. Blood of healthy donors was provided by
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the blood donation center at the University Hospital Essen.
Biographic details of healthy donors were anonymized, so no
matching of age and gender could have been performed.

Isolation of peripheral blood mononuclear
cells

For isolation of peripheral blood mononuclear cells (PBMCs),
blood of healthy donors, and of patients with liver cirrhosis with or
without ACLF was collected. After centrifugation at 3,000 x g for 15
min at 4 °C, plasma was collected and stored at -80 °C. Upon
dilution with phosphate buffered saline (PBS; Gibco, Thermo Fisher
Scientific, Waltham, USA) the blood cell compartment was layered
on top of PANcoll solution (Pan Biotech, Aidenbach, Germany).
After centrifugation at 600 x g for 20 min at 4 °C without brake,
PBMCs located in the interphase were carefully aspirated and
washed twice with PBS at 300 x g for 10 min at 4 °C. Afterwards,
PBMC were stored in fetal bovine serum (Sigma, Taufkirchen,
Germany) containing 10% DMSO (Sigma, Taufkirchen, Germany)
at -80 °C.

Isolation and characterization of
extracellular vesicles

EVs were isolated from plasma of healthy donors, and of
patients with liver cirrhosis with or without ACLF. Blood for EV
isolation was drawn at baseline of hospitalization. EVs were isolated
from EDTA K3 blood taken during routine blood draw in the early
morning hours with butterfly system. Tubes were inverted 8-10
times and stored vertically until centrifugation at 3000 xg for 15 min
at 4 °C. Plasma was stored at -80 °C until usage. EVs were isolated
with ExoquickTM (System Biosciences, Palo Alto, USA) according to
the manufacturer’s instructions. Pelleted EVs were resuspended in
0.9% sodium chloride (B. Braun, Melsungen, Germany)
supplemented with 1% Penicillin/Streptavidin (Gibco, Thermo
Fisher Scientific, Waltham, MA USA). EV fractions were
characterized according to the MISEV guidelines (19) to verify
the identity of vesicles including (i) determination of particle size,
which should be around 150nm, and concentration by nanoparticle
tracking analysis with a ZetaView Laser Scattering Video
Microscope (ParticleMetrix GmbH, Meerbusch, Germany), (ii)
negative staining by Phosphotungstic acid (w/v Carl Roth,
Karlsruhe, Germany) in 1.5% aqueous solution of adherent
particles on a formvar coated copper grid, (PLANO GmbH,
Wetzlar, Germany) followed by transmission electron microscopy
(TEM) using JEM 1400Plus (JOEL, Freising, Germany) to visualize
the outer of vesicles, (iii) quantification of protein concentration of
particles via Pierce'" BCA Protein Assay Kit (Thermo Fisher
Scientific, Waltham, MA USA), and (iv) detection of exosome-
specific markers with the ExoAb Antibody Kit (System Biosciences,
Palo Alto, USA). Furthermore, EVs were characterized via flow
cytometry to investigate their cellular origin. In detail, EVs were
analyzed via flow cytometry (CytoFLEX S, Beckman Coulter, Brea,
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CA) for immune cell markers using the MACSPlex Exosome Kit
(Miltenyi Biotec, Bergisch Gladbach, Germany; negative control:
EV storage buffer) and for markers reflecting liver cells (according
to Spittler (20); control: fluorescent Megamix-Plus SSC and
Megamix-Plus FSC beads (BioCytex a Stago group company,
Marseille, France)) using antibodies against CD11b (BV510 clone
ICRF44), CD31 (PE-Cy7 clone WM59), CD68 (APC-Cy7 clone Y1/
82A), CD108 (PE clone MEM-150), CD235a (FITC clone ICRF44),
all provided by Biolegend (San Diego, CA), and ASGPR (BV650
clone 8D7), CD248 (BV605 clone B1/35), provided by BD
Biosciences (San Jose, CA). Finally, the content of small RNAs of
EVs was characterized by Illumina NextSeq500 deep sequencing by
GenXPro (Frankfurt am Main, Germany) using the TrueQuant
method to eliminate PCR artefacts. False discovery rate (FDR) was
calculated with Benjamini-Hochberg method and small RNA hits
with FDR > 5% were excluded.

Functional assays to assess the impact of
EVs on PBMCs

For functional analysis, exosome-depleted FBS was generated
by ultra-centrifugation at 100,000 x g for 130 min at 4 °C (rotor
Ti45; Beckman Coulter, Krefeld, Germany). Exosome-free FBS was
sterile filtrated and frozen at -30 °C until usage. PBMCs were seeded
in RPMI media supplemented with exosome-depleted FBS in 6 well
plates. After 2h incubation at 37 °C and 5% CO,, 10 ug EVs of
healthy donors or patients per 1x10° PBMCs were added. EV-
primed PBMCs were harvested after 24h and stained with
monoclonal fluorochrome-bound antibodies targeting CD3 (FITC
clone UCHT1; AF700 clone UCHT1), CD4 (AF700 clone RPA-T4;
BV605 clone OKT4), CD8 (APC/Fire750 clone RPA-T8), CD45RA
(PE/Dazzle594 clone HI100), CD183 (PerCP Cy5.5 clone G025H7),
or CD196 (PE clone G034E3), CD197 (PE/Cy7 clone G043H7).
Cells were additionally analyzed for their Annexin V signal (PE)
and viability was assessed with Zombie Aqua staining. All
antibodies were provided by BioLegend/San Diego, CA).
Mitochondrial function was measured using 50 nM MitoSpy
NIRDiIC1 (Biolegend, San Diego, CA) and 25 nM MitoTracker
Orange CMH2TMROS (ThermoFisher, Waltham, MA USA).
Samples were measured using a CytoFlexS cytometer (Beckman
Coulter, Brea, CA) with corresponding CytExpert software
(Beckman Coulter, Brea, CA). Analysis of data was done using
FlowJo v10.7.1.

Viability assay of CD3* T cells

Healthy donor PBMCs were used for positive T cells isolation
using CD3" magnetic beads (Miletnyi Biotec, Bergisch Gladbach,
Germany). 20,000 CD3" T cells were seeded in 96 well plates and
primed with EVs for 2h at 37 °C and 5% CO,. Cells were primed
with EVs with or without additional stimulation with 100 pg/ml
heparin (Sigma Taufkirchen, Germany) and incubated for 24h at 37
°C and 5% CO, before adding the WST-1 reagent (Sigma,
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Taufkirchen, Germany). After 4h, the signal was detected at 400
nm wavelength (660 nm reference wavelength) using FLUOstar®
Omega (BMG Labtech, Ortenberg, Germany) with the Omega

Reader Control software and MARS Data Analysis Software.

Statistical analysis

Statistical analysis was performed using GraphPad Prism v9.0.2
software (GraphPad Software, San Diego, CA, USA). All metric
parameters were given as mean + SEM. After testing for Gaussian
distribution, two groups were tested by T-test or Wilcoxon-Mann-
Whitney-U-Test, as appropriate, while comparison of more groups
was done by One-way ANOVA or Kruskal-Wallis-Test,
as appropriate.

Results
Characteristics of included patients

Eighty-four patients with liver cirrhosis were included in this
study, of whom 21, 48 and 15 had compensated liver cirrhosis, acute
decompensation, or ACLF, respectively (Table 1). Etiology of liver
cirrhosis was viral hepatitis in 10 patients, (11.90%), non-alcoholic
fatty liver disease in 9 patients (10.71%), alcoholic liver disease in 42
patients (50.00%), and cholestatic liver disease in 11 patients
(11.90%). In addition, EV's from 20 healthy controls were analyzed.

Morphology and composition of EV-
fraction in patients with liver cirrhosis

After isolation, purity of EVs was confirmed by transmission
electron microscopy and Western Blot analysis for GM130, a
marker for cellular debris (Supplementary Figure S1). Particle size
and concentration of EVs were determined by Nanoparticle
tracking analysis. EVs of patients with liver cirrhosis were larger
than those of healthy donors and EV size increased with disease
progression (healthy control 113 nM, compensated liver cirrhosis
118 nM, acute decompensation 122 nM, ACLF 128 nM, p<0.0001;
Figure 1A). In contrast, particle concentration of EVs was not
significantly higher in patients with compensated liver cirrhosis and
acute decompensation compared to healthy donors (6.12x10° vs.
5.30x10° vs. 5.57x10° particles/ml, p>0.9999), whereas it decreased
in ACLF (3.44x10° particles/ml, p=0.05; Figure 1B).

Next, exosome-specific markers such as CD9, CD63, CD81 and
HSP70 were quantified to further characterize EV fractions. In
particular, a progressive decline in the frequency of CD81 positive
EVs was observed from healthy controls vs. compensated liver
cirrhosis vs. acute decompensation vs. ACLF (Figure 1C). CD9 was
only detectable on EVs of healthy donors, while non-significant
trends of lower frequencies of HSP70 in patients with cirrhosis
versus healthy controls were observed. A distinct pattern was found
for the frequency of EVs positive for Annexin V, a surrogate marker
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TABLE 1 Patient characteristics.

Compensated AD ACLF P-value P-value P-value
cirrhosis (N =21) (N =48) (N =15) (comp. vs. AD) (comp. vs. ACLF) (AD vs. ACLF)

General characteristics
Age [years], mean (SD) 56.6 (13.30) 58.9 (9.50) 62.9 (10.15) 04 0.2 04
Male gender, N (%) 11 (52.4) 28 (58.3) 11 (73.3); 4 (26.7) 0.6 02 03
Child Pugh Score, mean
D) 5.24 (0.44) 8.23 (1.17) 9.60 (1.60) <0.0001 <0.0001 0.09
CLIF OF score, mean
D) 6.10 (0.30) 6.85 (1.09) 9.27 (1.44) 0.02 <0.0001 <0.0001
MELD score, mean (SD) 8.12 (3.00) 14.4 (5.20) 212 (7.88) 0.0001 <0.0001 0.02
Etiology of liver cirrhosis
Viral, N (%) 3 (14.3) 3 (6.25) 4(26.7) 0.4 0.4 0.0
NASH, N (%) 2(952) 4(833) 3 (20.00) 50.99 0.6 03
Alcoholic, N (%) 5 (23.8) 29 (60.4) 8 (53.3) 0.008 0.09 0.8
Cholestatic, N (%) 5(23.8) 5 (10.4) 0 (0.00) 02 0.06 03
Others, N (%) 6 (28.6) 7 (14.6) 0 (0.00) 02 0.03 0.2
Clinical biochemistry
Leuk Ll,

cukocytes [per L] 5.25 (1.76) 6.96 (2.96) 527 (2.10) 0.03 09 0.07
mean (SD)
H bin [g/dL],
(S;")‘Ogl obin [g/dL], mean 1191 (231) 9.85 (1.85) 8.50 (1.84) 0.0004 <0.0001 0.06
Platelets [per nL], mean
sD) 163.5 (70.2) 148.3 (89.0) 77.9 (30.1) 0.6 0.0003 0.003
CRP [mg/dL], mean (SD) 1.04 (1.10) 2.66 (2.08) 3.12 (241) 0.0007 0.001 >0.99
Sodi 1],
(;’D')”m [mmol/l], mean 138.1 (3.32) 135.8 (4.43) 1324 (5.38) 0.1 0.001 0.07

tini d1),
E:Srg; inine [me/dl], mean 1.00 (0.21) 1.10 (0.34) 2.1 (0.98) 0.7 <0.0001 <0.0001
Bilirubi d1),
(Sll;u in [mg/dl, mean 1.04 (0.62) 3.54 (3.71) 6.06 (8.40) 0.0002 0.002 50.99
AST [U/1], mean (SD) 39.9 (25.6) 64.0 (69.7) 51.8 (38.2) 0.05 0.8 >0.99
ALT [U/1], mean (SD) 473 (53.8) 35.96 (26.3) 373 (26.1) >0.99 50.99 >0.99
GGT [U/1], mean (SD) 119.6 (81.6) 165.2 (203.5) 114.3 (99.6) 50.99 50.99 0.8
AP [U/1], mean (SD) 134.8 (92.9) 1807 (132.1) 141.2 (58.3) 0.1 08 >0.99
INR, mean (SD) 111 (0.14) 1.35 (0.33) 1.4 (0.43) 0.0004 0.001 >0.99
Albumin [g/dl],
( SD‘;mm [g/dl], mean 439 (0.52) 3.26 (0.64) 2,90 (0.45) <0.0001 <0.0001 02
IL-6 [pg/ml], mean (SD) 3.96 (10.5) 47.98 (76.8) 448 (37.5) 0.0005 0.0002 0.5
ACLF grade
Grade 1, N (%) - - 8 (53.3) - - -
Grade 2, N (%) - - 7 (46.7) - - -
Grade 3, N (%) - - 0 (0) - - -
(Continued)
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TABLE 1 Continued

ACLF

Compensated AD

cirrhosis (N = 21) (N = 48)

(N = 15)

10.3389/fimmu.2025.1656692

P-value
(AD vs. ACLF)

P-value
(comp. vs. ACLF)

P-value
(comp. vs. AD)

Complications of liver cirrhosis

Hepatic encephalopathy

Grade 0, N (%) 21 (100.00) ‘ 41 (85.42) 7 (31.82) 0.09 <0.0001 <0.0001
Grade 1, N (%) 0 (0.00) ‘ 4(8.33) 4 (26.67) 0.3 0.02 0.08
Grade 2, N (%) 0 (0.00) 2 (4.17) 1 (6.67) >0.99 0.4 0.6
Grade 3, N (%) 0 (0.00) 1(2.08) 3 (20.00) >0.99 0.06 0.03
Gastrointestinal bleeding

N (%) 0 (0.00) ‘ 5(10.42) 3 (20.00) 0.3 0.06 0.4
Infections

N (%) 1 (4.76) ‘ 13 (27.08) 11 (73.33) 0.05 <0.0001 0.002
Ascites

No ascites, N (%) 19 (90.48) 15 (31.25) 0 0.00) <0.0001 <0.0001 0.01
Moderate, N (%) 2 (9.52)* 29 (60.42) 9 (60.00) <0.0001 0.002 >0.99
Massive, N (%) 0 (0.00) 14 (29.17) 6 (40.00) 0.004 0.002 0.5
Esophageal varices

Grade 0, N (%) 10 (47.62) 15 (31.25) 4 (26.67) 0.3 0.3 >0.99
Grade 1, N (%) 4 (19.05) 21 (43.75) 3 (20.00) 0.06 >0.99 0.1
Grade 2, N (%) 4 (19.05) 7 (14.58) 7 (46.67) 0.7 0.1 0.02
Grade 3, N (%) 3 (14.29) 5(10.42) 1 (6.67) 0.6 0.6 >0.99
Outcome

Mortality within 481

days, N (%) 02 (9.52) 9 (18.75) 9 (60.00) 0.3 0.001 0.0004

*Patients had ascites grade 1 and a child Pugh score of 6 points.

for apoptotic bodies. Patients with liver cirrhosis had higher
frequencies of Annexin V positive EVs, which, however, declined
from compensated cirrhosis to acute decompensation and
ultimately to ACLF (Figure 1D).

Since the etiology of liver cirrhosis in our cohort was
heterogenous, we next assessed the impact of bacterial infections
and etiology on particle size and expression of surface antigens.
(Supplementary Figure S2 and S3). Overall, a moderate impact of
bacterial infection and etiology on these parameters was observed.

Cellular source and RNA content of EVs

To determine the cellular source of EVs according to the stage
of liver disease, markers specific for important immune cell
populations, platelets, and liver cells were determined on isolated
EVs by flow cytometry. The expression of immune cell markers on
EVs was not significantly different across the stages of liver
cirrhosis, but numerically most immune cell markers declined
while some increased (e.g. CD20) in patients with liver cirrhosis
compared to healthy controls and with progressive severity of liver
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disease (Figures 2A-C). The expression of platelet markers also
decreased with increasing severity of liver cirrhosis (Figure 2D).

A contrasting pattern of markers suggesting an origin from
hepatocytes (ASGPR1), liver sinusoidal endothelial cells (CD31),
Kupffer cells (CD11b, CD68, CD163), and hepatic stellate cells
(CD248) was observed. Profoundly higher frequencies of EVs with a
liver cell signature were observed in patients with liver cirrhosis
compared to healthy controls, though their relative abundance
declined with disease severity (Figure 3). Again, moderate
differences of frequencies of liver EVs were observed according to
the presence of infections and etiology of liver cirrhosis
(Supplementary Figures S2 and S3).

Additionally, small RNA sequencing was performed to
characterize RNA signatures of EVs (Figure 4, Supplementary
Tables S1 and S2). In total, the number of detectable small RNAs
species decreased notably with disease progression (Supplementary
Table S1). This applied in particular for long-coding RNAs, and
micro RNAs (Supplementary Table S1). A number of 191, 255 and
279 small RNAs were significantly different in concentration of EV's
of patients with compensated cirrhosis, acute decompensation or
ACLF, compared to healthy controls (Figure 4). Pathway analysis
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revealed a large number of RNA species involved in cellular
metabolism (Figure 4). Furthermore, significant changes in the
amount of small RNAs, which were previously described in
mitochondrial function, were detected (Supplementary Table S3).

EVs of patients with liver cirrhosis induce
relative shifts in T cell subpopulations

In functional assays, PBMCs from healthy donors were
stimulated with 20 ug EVs derived from patients of different liver
cirrhosis stages for 24h and proportions of different T cell
subpopulations were quantified via flow cytometry. EVs of
patients with liver cirrhosis induced relative changes in the
composition of T cell populations. In detail, the amount of all
living CD3" T cells decreased after incubation with EVs of patients
with ACLF (Figure 5A). More specifically, the frequency of total
CD4" T cells did not change (Figure 5B) whereas the frequency of
CD8" T cells significantly increased after stimulation with EV's from
patients with liver cirrhosis (Figure 5C). Furthermore, EVs led to
changes in the composition of subpopulations by inducing a loss of
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central memory and naive CD4" and CD8" T cells, while also
causing an increase in the frequency of effector memory T cells
(Figures 5E-L).

EVs of patients with ACLF induce cell stress
and mitochondrial dysfunction in T cells

Incubation of T cells with EVs of patients with liver cirrhosis
and - in particular - with ACLF resulted in decreased T cell
viability, as assessed by the WST-1 assay (Figure 6A). Heparin,
previously described to block EV binding and uptake of target cells
(21), was used as a control. T cells with simultaneous EV and
heparin stimulation show no changes in T cell viability. To
understand possible mechanisms, mitochondrial presence and
function was determined via staining with MitoSpy and
MitoTracker and quantification by flow cytometry. Incubation of
PBMCs with EVs from patients with ACLF resulted in reduced
numbers of mitochondria in CD4" and CD8" T cells compared to
cells stimulated with EVs from healthy donors or with EVs of
patients with compensated liver cirrhosis (Figures 6B, D). In
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Most immune cell markers are not enriched in EVs of patients with liver cirrhosis. (A-D) To determine the cellular origin of EVs, EVs from patients or
controls were stained with antibodies against specific cell surface markers and quantified by flow cytometry (N = 5) using a MACSPlex Kit. (E) tSNE
visualization of MACSPlex measurement by FlowJo and tSNE plugin. UMAP analysis was performed on 18 surface markers for 24 EV samples from
healthy donors or patients with cirrhosis with or without ACLF (N = 6 per group). UMAP plot from patient groups shows the relative abundance and
UMAP plot for all included markers are displayed. Statistical significance was determined by One-way ANOVA or Kruskal-Wallis test, as appropriate.
*P < 0.05 significance to healthy control, tP < 0.05 significance to compensated sample.
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Liver cell markers are enriched in EVs of patients with liver cirrhosis. To determine the cellular origin of EVs, EVs from patients or controls were
stained with antibodies against specific cell surface markers and quantified by flow cytometry (N = 5). All data are presented as mean with SEM.
Statistical significance was determined by two-way ANOVA. **P < 0.01, ***P < 0.001, ****P < 0.0001; comparisons with EVs from healthy controls
not indicated in the graph (P < 0.0001 for all markers)
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SmallRNA cargo of EVs is distinct in liver cirrhosis and ACLF. Illumina NextSeq500 deep sequencing was used by GenXPro (Frankfurt am Main,
Germany) to characterize smallRNA cargo of EVs (A-J). Log,fold change was determined using the program DE-Seq?2 (B-J). Threshold of —log10(p
value) was set on 2, corresponding a P-value of 0.01. Red-marked points are significantly different expressed smallRNAs. Negative log2 fold changes
refer to higher expression of regarded smallRNA in group 2 compared to group 1. K) Pathway analysis of all detected smallRNAs was performed
using PANTHER tool (33, 34)
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EVs of patients with liver cirrhosis induce shifts in T cell populations. PBMCs of healthy donors (N = 6) were primed with EVs of different healthy
controls or patients for 24 h. T cell populations were quantified by flow cytometric analysis for total CD3 T cells (A), total CD4* T cells (B), total
CD8* T cells (C), as well as for CD4* T cell subpopulations (E-H) and CD8" T cell subpopulations (I-L). (D) Representative FACS plot showing a
CD45RA/CD197 T-cell staining from one exemplary sample. Data are presented as median with the 10th and 90th percentile. Statistical significance
was determined by One-way ANOVA or Kruskal-Wallis test, depending on normality test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

addition, a trend of reduced mitochondrial function of CD8" T cells
(Figure 6E) whereas a significant reduction was observed in CD4" T
cells after stimulation with EVs from patients with liver cirrhosis,
a phenomenon which was again most pronounced in
ACLF (Figure 6C).

Discussion

The main findings of our study demonstrate that EVs of
patients with liver cirrhosis differ from those of healthy

Frontiers in Immunology

individuals with respect to their cellular source, their phenotype,
and RNA cargo. These alterations are mostly pronounced in ACLF.
Interestingly, EVs from patients with ACLF induce cell stress and
mitochondrial dysfunction in T cells, which may affect T cell
viability in advanced liver cirrhosis and may therefore contribute
to shifts in T cell subpopulations.

According to our study, EVs of patients with compensated liver
cirrhosis secrete slightly higher total amounts of EVs than healthy
individuals, whereas in patients with advanced liver disease, in
particular with ACLF, the concentration of EVs in blood declines
significantly. These findings were somehow unexpected, because in
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FIGURE 6

EVs of patients with liver cirrhosis impact T cell viability and induce mitochondrial dysfunction. (A) CD3* T cells of healthy donors (N = 6) were
isolated and primed with EVs derived from different healthy donors or liver cirrhosis patients without (w/o) or with additional stimulation with heparin
for 24h. T cell viability was assessed by WST-1 assay. PBMCs of healthy donors (N = 6) were stimulated with either EVs of different healthy donors or
of patients with liver cirrhosis for 24h. Frequencies of MitoSpy-positive cells, reflecting mitochondrial abundance [MitoSpy; (B, D)] and MitoTracker-
positive cells, indicating mitochondrial functionality [MitoTracker; (C, E)] were analyzed via flow cytometry. Data are presented as median with the
10th and 90th percentile. Statistical significance was determined by (A-F) One-way ANOVA or Kruskal-Wallis test depending on normality test.

*P < 0.05, **P < 0.01, ***P < 0.001.

previous studies higher concentrations of EVs in cirrhosis, and in
particular in patients with severe alcoholic hepatitis, have been
described (22). Of note, a previous study involving patients with
ACLF has shown decreasing concentrations of EVs as well,
consistent with our study (23). Conflicting results in previous
studies may be attributed to the applied isolation method (24). In
this regard, a previous recommendation of standardized isolation
methods is crucial for the successful use of EVs as biomarkers for
specific liver disease (24). Yet, our finding of declining EV-
concentrations in patients with ACLF is of interest, because data
on EVs in ACLF are scarce. One may speculate that in these very
sick patients EVs are unstable due to toxic alterations of lipid
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membranes, which may result in a shorter half live in vivo (or in a
decline during the isolation progress). A consistent finding to most
previous study is the increasing size of EVs with disease
progression (25).

For both diagnostic and functional aspects, phenotype and
cargo of EVs are likely more important than their concentration.
In this regard, our study shows profound differences in the cellular
source, protein- and RNA-cargo of EVs in liver cirrhosis. In
particular, the proportion of EVs from various resident liver cells
including hepatocytes, endothelial cells or Kupffer cells is strongly
increasing in patients already with compensated liver cirrhosis,
whereas the proportion of EVs from the majority of circulating
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immune cells is rather decreasing. A previously published large
biomarker study showed an increase in EVs of hepatic origin to be
associated with poor prognosis in patients with compensated,
alcohol-related liver disease (26). In general, EVs are secreted
from cells including hepatocytes in response to various stimuli
(25). Hence, in the setting of profound systemic inflammation, an
increase of EVs from immune cells in ACLF might have been
expected. Yet, previous studies have shown a significant decline and
functional exhaustion of many immune cell populations in ACLF,
which may explain the decreasing concentration of immune cell-
derived EVs in patients with ACLF (9). Notably, the frequency of
EVs with liver cell signatures declines also in patients with ACLF
compared to compensated cirrhosis or acute decompensation
(although it is still much higher than in healthy individuals), as
well as the proportion of EVs which are positive for exosome-
specific markers such as CD81. At present, we can only speculate
about the causes of this phenomenon, which may involve an altered
secretion machinery or altered sources of EVs in ACLF, but even
technical issues due to unstable membranes cannot fully
be excluded.

Of note, the changing repertoire of EVs in liver cirrhosis and in
particular in ACLF appears to have pathophysiological
consequences. Inflammation and cell death are important
determinants in the pathogenesis of ACLF, which have been
linked with mitochondrial toxicity due to profound metabolic
alterations in this entity (10, 27). EVs may play an important role
in regulating these processes. In our study, EVs from patients with
liver cirrhosis reduced T cell viability and induced mitochondrial
dysfunction - findings which were most pronounced for EVs from
patients with ACLF. Mechanistically, mitochondrial toxicity of EVs
might be mediated by specific microRNAs or IncRNAs like let7b-
5p, which have been recently recognized to regulate mitochondria
(28-31), Supplementary Table S2. In addition, EVs from patients
with cirrhosis induced profound changes in the composition of T
cell populations ex vivo, which may be functionally linked to their
impact on cell viability and mitochondrial function. Of note, the
induced changes - namely a decrease of naive T cells and central
memory T cells and an increase of effector memory T cells -
resembled to the altered in vivo T cell compartment in patients with
ACLF (9). Collectively, our data suggest that EVs contribute to key
determinants — immune dysfunction, cell death and mitochondrial
toxicity — in the pathogenesis of ACLF. This assumption is in line
with a recent study in mice showing that EVs in alcoholic hepatitis
can cause dysfunction in skeletal muscle which may contribute to
the pathogenesis of sarcopenia (32).

Our study has some limitations. The sample size of our study
was too small for a detailed analysis of the impact of etiology of liver
cirrhosis on EV phenotype and function in ACLF, which may have
an impact for example on protein and RNA cargo of EVs (25).
Furthermore, the precise mechanism of inducing mitochondrial
dysfunction remains to be established in detail in future studies.
Finally, EVs from healthy controls used for our study were derived
from individuals with anonymized biographic details. Hence, there
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is a risk of a bias with respect to an insufficient matching for age
and gender.

Collectively, our study reveals profound phenotypic and
functional alterations of EVs in patients with liver cirrhosis and in
particular with ACLF, which may contribute to the pathogenesis of
ACLF by inducing mitochondrial toxicity and immune dysfunction.
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