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Enhancing natural killer cell
anti-tumour activity through
macrophage manipulation
Natasha Palmer, Salim Khakoo*, Tilman Sanchez-Elsner
and Andres F. Vallejo*

School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton,
Southampton, United Kingdom
The tumour microenvironment (TME) is a complex and dynamic environment

containing diverse cellular, stromal and soluble factors, that collectively influence

cancer progression, immune evasion and therapeutic resistance. Among the

immune components of the TME, macrophages and natural killer (NK) cells are

key players, whose interactions, particularly their crosstalk, critically shape anti-

tumour immunity. The macrophage–NK cell interplay can either promote or

suppress immune responses depending on the context, representing both a

challenge and a therapeutic opportunity. NK cells are key effectors capable of

recognising and eliminating malignant cells without prior sensitisation, whereas

macrophages exhibit remarkable plasticity, functioning as either promoters or

suppressors of tumour immunity depending on their activation state. This review

focuses on current strategies to harness macrophages in cancer therapy,

including phenotype repolarisation, selective depletion, and disruption or

enhancement of the macrophage-NK cell crosstalk to enhance NK cell-

mediated tumour surveillance. Finally, we highlight emerging technologies,

such as single-cell RNA sequencing, spatial transcriptomics, and proteomics,

as powerful tools to elucidate the dynamic interplay between macrophages and

NK cells and inform the next generation of immunotherapeutic interventions.
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1 Macrophages: versatile regulators of tissue
homeostasis and immunity

Macrophages are innate immune cells with essential roles across homeostasis,

inflammation, and cancer. They originate from multiple developmental pathways,

including embryonic progenitors such as yolk sac and foetal liver precursors, which give

rise to long-lived tissue-resident populations like microglia in the brain, Kupffer cells in the

liver, and alveolar macrophages in the lung (1, 2). These populations are maintained

independently of circulating monocytes throughout adult life (3). By contrast, macrophages

associated with inflammation or pathology are typically derived from adult haematopoietic
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stem cells via monocytes, which are recruited to tissues in response

to chemotactic signals and differentiate in situ (4–6).

Across tissues, macrophages carry out a core set of functions,

including the phagocytosis of pathogens, apoptotic cells, and debris;

the presentation of antigens via Major Histocompatibility Complex

(MHC) molecules to T cells; and the secretion of cytokines and

chemokines that modulate both innate and adaptive immune

responses (7). However, their phenotype and function are shaped

by the local tissue microenvironment and inflammatory cues, giving

rise to considerable heterogeneity.

In vitro models have classically categorised macrophage

polarisation into ‘M1’ and ‘M2’ phenotypic states, pro-

inflammatory and anti-inflammatory respectively, based on

stimulation with microbial products (e.g., LPS, IFN-g) (8) or anti-
inflammatory cytokines (e.g., IL-4, IL-13) (9). While this M1/M2

paradigm has provided a useful conceptual framework, it does not

adequately reflect the complexity of heterogeneity of macrophage

phenotypes observed in vivo, particularly within pathological settings

such as the tumour microenvironment (TME). Tumour-associated

macrophages (TAMs), for instance, do not conform neatly to M1 or

M2 phenotypes but rather exhibit a spectrum of activation states that

can simultaneously support immunosuppression, tissue remodelling,

and tumour progression (10, 11). Unravelling this functional and

phenotypic diversity remains a major focus in immunology, with

implications for both fundamental biology and therapeutic targeting.
1.1 Activating and inhibitory receptors:
regulating macrophage activation

Macrophage activation is regulated by a balance of stimulatory

and inhibitory signals that enable these plastic cells to dynamically

adapt to their environment. Among the main activating pathways

are pattern recognition receptors (PRRs), notably Toll-like

receptors (TLRs). TLRs recognise conserved pathogen-associated

molecular patterns (PAMPs) and danger-associated molecular

patterns (DAMPs), initiating downstream signalling cascades such

as NF-kB activation. This leads to the production of pro-

inflammatory cytokines, including TNF-a, IL-6 and IL-12 (12,

13). Co-stimulatory receptors like CD40 also promote

macrophage activation, particularly through interaction with

CD40L on CD4+ T cells, resulting in similar cytokine production

(14–17). Triggering Receptor Expressed on Myeloid Cells-1

(TREM-1) further amplifies inflammatory responses by

synergising with TLR signalling (18), whereas TREM-2 is

associated with a regulatory phenotype, supporting phagocytosis

and tissue remodelling (19).

Conversely, macrophage activation is tightly controlled by

inhibitory receptors that prevent excessive tissue damage and

maintain immune homeostasis. The checkpoint receptor

programmed death-1 (PD-1) and its ligand PD-L1 modulate

macrophage function by dampening inflammatory responses (20).

The scavenger receptor Macrophage Receptor with Collagenous

Structure (MARCO), also plays a immunoregulatory role by

mediating the clearance of apoptotic cells and microbial
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components (21, 22). Additional regulatory pathways include the

CD47–SIRPa axis, which inhibits macrophage phagocytosis and is

frequently exploited by cancer cells to avoid clearance (23).
2 Natural killer cells: key players in
immune surveillance and tumour
defence

Natural killer (NK) cells are critical effectors of the innate

immune system, capable of detecting and eliminating transformed

or infected cells. These cytotoxic lymphocytes develop in the bone

marrow and undergo maturation in secondary lymphoid organs,

such as the spleen, lymph nodes and tonsils (24). Once in

circulation, where they comprise 5-15% of peripheral blood

lymphocytes, NK cells traffic to diverse tissues, including

lymphoid and non-lymphoid sites like the liver and lungs (25).

NK cell populations are broadly divided into two functional subsets:

the cytotoxic CD56dim subset, which predominates in peripheral

blood and the spleen, and the CD56bright subset, enriched in

secondary lymphoid tissues and characterised by robust cytokine

production, including IFN-g, TNF-a, and GM-CSF (26–28).

CD56bright NK cells also secrete chemokines such as CCL3–5 and

CXCL8 (24, 29), contributing to immune cell recruitment and

orchestration of early immune responses.
1.2 Activating and inhibitory receptors:
coordinating NK cell responses

NK cell function is intricately regulated by a balance of activating

and inhibitory germline-encoded receptors. Activating receptors,

including NKG2D, DNAM-1, and natural cytotoxicity receptors

(NCRs), recognise ligands that are upregulated on stressed, infected,

or malignant cells (30–32). Conversely, inhibitory receptors, such as

those within the killer immunoglobulin-like receptor (KIR) family and

the NKG2A–CD94 heterodimer, monitor the expression of self-MHC

class I molecules, preventing autoreactivity (33–35). This delicate

receptor balance ensures that NK cells maintain tolerance to healthy

cells while retaining the ability to target cells that have downregulated

MHC class I expression, a common immune evasion mechanism in

tumour cells. Thus, NK cells provide a crucial layer of immune

surveillance that operates independently of T cell recognition (36).

The activation of NK cells typically requires the engagement of

multiple activating receptors; however, CD16 (FcgRIIIa), the

receptor responsible for mediating antibody-dependent cellular

cytotoxicity (ADCC), can induce cytotoxic responses in the

absence of other activating signals (37, 38). The KIR family,

which includes both activating and inhibitory isoforms, plays a

critical role in NK cell education, ensuring functional licensing and

the development of tolerance to self (39). This process enables NK

cells to discern between healthy and aberrant cells, with the clonal

distribution of activating and inhibitory receptors across the NK cell

repertoire allowing for context-dependent responses to both

tumorigenic and infectious cells (40).
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3 The role of macrophage-NK cell
communication in immune defence

Macrophages and NK cells influence each other through dynamic,

bidirectional interactions that shape immune responses (Table 1),

and often these interactions are dependent on their anatomical

context. Macrophages are largely tissue-resident and adapt to the

specific microenvironment of their organ (49). While NK cells

are traditionally described as circulating between blood and

lymphoid tissues, they can be recruited to sites of inflammation or

tumours (50–52), and subsets of tissue-resident NK cells have been

identified in organs such as the liver and uterus during pregnancy,

where they exhibit distinct phenotypic and functional properties

(53, 54). In peripheral tissues, including the liver and lung,

macrophages can activate NK cells through direct cell-to-cell contact

and the secretion of soluble mediators. Notably, co-culture studies have

demonstrated that blocking activating receptors such as DNAM-1 or

2B4, or neutralising IL-18, leads to reduced NK cell-derived IFN-g (41),
underscoring the importance of both receptor–ligand interactions and

cytokine signalling in this axis. In addition, macrophage-derived IL-1b
and type I interferons, particularly IFN-b, have been shown to

upregulate the expression of activating NK cell receptors including

NKp44 and NKG2D, thereby enhancing IFN-g production (43).

The functional role of NKG2D-mediated signalling has been

particularly well characterised in uterine NK cells, where recognition

of macrophage-expressed MICA drives robust IFN-g responses (42).
Conversely, NK cells can reciprocally activate macrophages.

Engagement of CD40 on macrophages by CD154 expressed on NK

cells induces the production of pro-inflammatory cytokines (55, 56),

and macrophages from CD40-deficient mice exhibit impaired

phagocytic activity in the presence of NK cells (44). Additionally,

NK cell-derived IFN-g can reprogramme immunosuppressive

macrophages towards a more immunostimulatory phenotype (45),

characterised by enhanced secretion of IL-12, TNF-a, and CXCL

chemokines (57). This reciprocal activation is further amplified by a
Frontiers in Immunology 03
positive cytokine feedback loop: macrophage-derived IL-12, IL-15,

and IL-18 activates NK cells, which in turn produce IFN-g, TNF-a,
and GM-CSF that further stimulate macrophage function and

inflammatory cytokine production (46, 58, 59).

Importantly, this cooperative relationship is tempered by

regulatory mechanisms that prevent excessive inflammation and

preserve tissue integrity. For instance, type I interferons and Toll-

like receptor (TLR) agonists can upregulate NKG2D ligands (such

as MICA and ULBP1–3) on macrophages (42, 47), promoting their

recognition and lysis by NK cells via NKG2D (47). However,

inhibitory signalling through NKG2A, which recognises HLA-E

on macrophages, restrains NK cell-mediated cytotoxicity (48).

Macrophages activated by inflammatory stimuli express higher

levels of HLA-E, providing increased protection against NK cell

killing (48). Additionally, blockade of activating NK cell receptors,

including NKp46 and DNAM-1, reduces macrophage susceptibility

to NK cell-mediated cytotoxicity (60).

Together, these observations emphasise a finely tuned balance

between NK cell-mediated activation and restraint, ensuring

sufficient immune surveillance without depleting critical

macrophage populations. In the context of cancer, selectively

modulating this axis, such as through temporal regulation of

NKG2D ligand expression, may offer a strategy to eliminate

immunosuppressive tumour-associated macrophages while

preserving homeostatic ones in healthy tissues.
4 Macrophage-NK cell crosstalk in the
tumour microenvironment: balancing
immunity and tolerance

TAMs and NK cells are key components of the TME, each

contributing in distinct and often opposing ways, with their

dynamic crosstalk shaping the TME (Figure 1). TAMs are

typically the most abundant immune population within the TME,
TABLE 1 Key interactions between macrophages and NK cells.

Interaction Mediators Cellular response
Physiological
significance

References

Macrophage modulation of NK cells:
direct cell-to-cell contact

NKG2D-MICA/MICB, DNAM-1-CD112/
CD155, 2B4-CD48, CD40-CD154

NK cell activation, IFN-g
production

Enhanced
immune response

(41, 42)

Macrophage modulation of NK cells:
soluble mediators

IL-15, IL-18, IL-1b, IL-23, IFN-g, IFN-b
NK cell priming, enhanced
cytotoxicity, cytokine production

Enhanced
immune response

(41, 43)

NK cell modulation of macrophages:
direct cell-to-cell contact

CD40-CD154
Enhanced
macrophage phagocytosis

Improved
pathogen clearance

(44)

NK cell modulation of macrophages:
soluble mediators

IFN-g
Enhanced
macrophage phagocytosis

Improved
pathogen clearance

(45, 46)

NK cell killing of macrophages NKG2D ligands
Elimination of
overactivated macrophages

Regulation
of inflammation

(47)

Macrophage self-protection HLA-E
Macrophage resistance to NK
cell lysis

Maintenance of
macrophage population

(48)
The table summarizes key modes of macrophage-NK cell crosstalk, including direct cell-to-cell contact and soluble mediators, the specific molecular mediators involved, resulting cellular
responses, and their physiological significance. These interactions highlight the bidirectional modulation between macrophages and NK cells, contributing to immune activation, pathogen
clearance, and regulation of inflammation.
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comprising up to 50% of infiltrating immune cells and contributing

significantly to tumour structure and immunoregulation (61, 62).

While they share some functional overlap with myeloid-derived

suppressor cells (MDSCs), such as the ability to dampen anti-

tumour immunity, TAMs are generally more differentiated and

tissue-resident, whereas MDSCs represent a heterogeneous

population of immature myeloid cells that expand during cancer

and other chronic inflammatory conditions (63).

In early-stage tumours, macrophages may exhibit

immunostimulatory phenotypes and exert tumoricidal functions

(64), partly through nitric oxide production (65), and have been

associated with improved clinical outcomes in colorectal (66), lung

(67), ovarian (68), and breast cancers (69). However, as tumours

progress, the local cytokine milieu shifts to favour anti-inflammatory

cues, such as IL-10 and CSF1, driving the recruitment of monocytes

and their subsequent differentiation into immunosuppressive TAMs

(68, 70). These TAMs often adopt a phenotype resembling anti-

inflammatory macrophages and are associated with poor prognosis

across a wide spectrum of malignancies, including pancreatic, breast,

endometrial, and brain cancers, as well as lymphomas and

melanomas (7).

In contrast, NK cells are potent effectors of anti-tumour

immunity. Their ability to directly lyse malignant cells and secrete

pro-inflammatory cytokines such as IFN-g renders them crucial for

early tumour surveillance. Preclinical models demonstrate that
Frontiers in Immunology 04
prolonged NK cell depletion accelerates tumour progression (71–

73), while clinical studies link reduced NK cell infiltration or

impaired function with increased metastatic potential and

recurrence, particularly in colorectal, head and neck, and

pharyngeal cancers (74–77). Despite robust in vitro cytotoxicity

against tumour targets such as melanoma, adoptive NK cell transfer

has yielded limited clinical efficacy, often due to suppressive factors

within the TME, including downregulation of activating receptors

such as NKG2D (78).
4.1 Soluble mediators of communication:
cytokine-driven modulation

Macrophage-NK cell communication within the TME is shaped by

both soluble mediators and direct cell-cell interactions. Although these

cells often reside in close proximity in the TME, cytokines such as

TAM- and tumour-derived IL-10 still exert broad immunosuppressive

effects, dampening both macrophage and NK cell effector functions

(46, 79). Interestingly, in vitro addition of IL-15 can restore NK

cell cytotoxicity in the presence of IL-10, suggesting that IL-10’s

suppressive effects may be context-dependent (80). TGF-b, a

prominent immunoregulatory cytokine secreted by both TAMs

and tumour cells, suppresses NK cell activation by downregulating

NKG2D and NKp30 (81), while concurrently promoting macrophage
FIGURE 1

Polarised TAM-NK cell interactions in the TME. TAMs modulate NK cell activity depending on their polarisation state. Pro-inflammatory TAMs (left)
promote anti-tumour responses by secreting IL-12, IL-15, IL-18, and TNF-a, and enhancing NK cell activation and IFN-g production through
engagement of activating receptors (e.g., NKG2D, NKp80, LFA-1). In contrast, anti-inflammatory TAMs (right) facilitate immune suppression via IL-10
and TGF-b, and upregulating inhibitory ligands (e.g., PD-L1, HLA-E, NKG2DL) that engage inhibitory NK cell receptors (e.g., PD-1, NKG2A, KIRs). This
bidirectional crosstalk shapes the tumour microenvironment by either enhancing or suppressing NK cell cytotoxicity.
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polarisation toward an immunosuppressive phenotype and

reducing pro-inflammatory cytokine output (82). In gastric cancer,

macrophage-derived TGF-b induces a marked functional impairment

in NK cells, characterised by reduced IFN-g production and

diminished expression of NKp30, NKp46, and 2B4 (83). Notably,

this suppression can be partially reversed by exogenous IL-15 (84).

NK cells also exert feedback effects on macrophages. In prostate

cancer, NK cell-derived IL-8 recruits macrophages and skews their

polarisation toward a tumour-promoting phenotype (85). Similarly,

activated NK cells release cytotoxic granules containing effector

molecules such as granzymes which can act on macrophages. For

example, granzyme A can stimulate macrophages to produce pro-

inflammatory cytokines including IL-6, IL-8, IL-1b and TNF-a (86–

88). Conversely, macrophages, particularly those with anti-tumour

activity, are a major source of type I interferons (IFN-a and IFN-b),
which are essential for NK cell development and activation (89). These

interferons reduce TAM frequency, promote inflammatory

polarisation, and induce chemokines such as CXCL10 and CXCL11,

which recruit NK cells via CXCR3 (90–94). IFN-b also enhances NK

cell cytotoxic potential by upregulating NKG2D and inducing IL-15, a

cytokine critical for both macrophage activation and NK cell survival,

proliferation, and function (43). TAMs within the TME frequently

produce IL-12, IL-15, and IL-18, a group of cytokines that work

together to sustain NK cell activity (44, 48, 95, 96).

TNF-a, produced by both macrophages and NK cells,

reinforces this axis by suppressing anti-inflammation-associated

gene expression and enhancing IL-15 signalling pathways in NK

cells (97, 98). Via TNFR1 and TNFR2, TNF-a activates pro-

inflammatory signalling cascades that can culminate in tumour

cell death (99, 100). Importantly, the outcome of macrophage–NK

cell crosstalk depends on the prevailing balance of stimulatory

versus inhibitory cytokines and on the spatial and temporal

context of their interaction. Therapeutic strategies must therefore

account for the heterogeneity of cytokine networks and macrophage

polarisation states within individual tumours.
4.2 Receptor-ligand interactions: immune
synapses in tumour immunity

In addition to soluble factors, direct contact between

macrophages and NK cells is also important in shaping immune

responses. NK cell activity is modulated through a network of

activating and inhibitory receptors that respond to ligand

expression on both tumour cells and myeloid populations. For

instance, NKp46-deficient mice exhibit impaired tumour control in

lymphoma and melanoma models (101–104), while reduced NKp30

and NKp46 expression in patients with leukaemia or cervical cancer

correlates with poorer outcomes (105–107). Conversely, high

expression of DNAM-1 enhances NK cell responses against both

haematological malignancies and solid tumours (108).

Within the TME, tumour-derived CSF1 induces macrophage

expression of NKG2D ligands, including MICA/B and ULBPs,

thereby promoting NK cell activation (109). However, chronic

NKG2D stimulation, as observed in acute myeloid leukaemia and
Frontiers in Immunology 05
hepatocellular carcinoma (HCC), can lead to NK cell exhaustion

(110–112). Similarly, the 2B4-CD48 axis supports NK cell

activation and IFN-g production (41, 47, 113), but persistent

engagement in the context of HCC drives functional impairment

(114). Other macrophage-expressed ligands, such as AICL and

ICAM-1, engage NKp80 and LFA-1 on NK cells, respectively,

facilitating activation and migration (115–117). Notably, dectin-1,

a C-type lectin receptor expressed by macrophages, recognises

tumour-specific glycan structures and initiates signalling

pathways that enhance NK cell cytotoxicity (118).

These receptor-ligand interactions act as important checkpoints

that help control anti-tumour immune responses. However,

because these signals are highly dynamic and influenced by the

suppressive nature of the TME, therapeutic strategies need to be

carefully tailored. New technologies, such as co-culture systems,

single-cell transcriptomics, and spatial profiling, will be key to

mapping these interactions within the TME and uncovering

precise targets for immune-based therapies.
5 Harnessing macrophages: innovative
approaches to target cancer

While T cells have been the main target of cancer

immunotherapy for years, focusing on TAMs offers distinct

advantages. Unlike T cells, which face challenges such as

exhaustion, antigen escape, and TME infiltration (119–122),

macrophages are already abundant and well-established within

tumours (61, 62). TAMs play a pivotal role in shaping the TME

by promoting tumour growth, suppressing T cell function,

supporting angiogenesis, and remodelling the extracellular matrix

(123–125). Additionally, they are key regulators of other immune

populations (126–129); within the TME, the immunosuppressive

interplay between TAMs and NK cells can further dampen effective

anti-tumour responses. As they are less reliant on tumour-specific

antigens, therapies targeting TAMs may also be less susceptible to

immune evasion and more broadly applicable (130, 131).

Previous reviews have discussed immunotherapeutic strategies

targeting TAMs (46, 132), yet few studies have addressed the

therapeutic potential of modulating TAMs specifically to augment

NK cell function. This remains a significant and underexplored

area, with emerging evidence suggesting that TAM modulation can

shape NK cell recruitment, activation and cytotoxicity. A summary

of therapeutic approaches under clinical and preclinical

investigation is outlined in Table 2. Current therapeutic strategies

focus on three main approaches: reprogramming macrophage

phenotype, depleting immunosuppressive subsets, and

modulating TAM–NK cell interactions to restore cytotoxic activity.
5.1 Repolarising TAMs: shifting
macrophages to anti-tumour action

One strategy to increase the anti-tumour response involves

reprogramming TAMs from a tumour-promoting state toward a
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more pro-inflammatory, tumour suppressive phenotype, thereby

enhancing NK cell recruitment and effector function (Figure 2).

In vitro, macrophages described as ‘M2-like’ can be repolarised to

an ‘M1-like’ phenotype, promoting IFN-g secretion and restoring

cytotoxicity in resting NK cells against multiple tumour targets,

achieving activity comparable to IL-12-conditioned NK cells

(41, 48, 135). Repolarised macrophages also secrete increased levels

of IL-12, IL-18, and TNF-a (41), and upregulate NK cell-activating

receptors such as NKp30, NKp44, NKp46, and NKG2D (47, 135).

Notably, these repolarised macrophages exhibit resistance to NK cell-

mediated cytotoxicity (48), suggesting a cooperative rather than

antagonistic relationship between the two cell types.

Toll-like receptor (TLR) agonists represent a widely studied

class of agents capable of driving this phenotypic shift. For instance,

stimulation with lipopolysaccharide (LPS, TLR4 agonist) enhances

the ability of TAMs isolated from ovarian cancer to activate NK

cells and promote tumour cell lysis (133). Similarly, poly(I:C) (a

synthetic TLR3 ligand) induces pro-inflammatory phenotype

polarisation of alveolar macrophages in lung cancer, resulting in
Frontiers in Immunology 06
heightened NK cell cytotoxicity and suppression of metastatic

growth (134). In uterine macrophages, poly(I:C) also upregulates

the NKG2D ligand MICA, enabling robust NK cell activation via

NKG2D engagement (42). In melanoma, b-glucan (a TLR2 agonist)

increases NKG2D expression on NK cells and enhances tumour

control in a manner dependent on NK cell presence (135).

Beyond TLR-based interventions, antibody-mediated targeting of

TAM-associated surface receptors offers an additional strategy to

reprogramme macrophage function and restore NK cell

responsiveness. In melanoma, TAMs expressing the scavenger

receptor MARCO are found near NK cells (136, 137). Antibody

blockade of MARCO reprogrammes TAMs toward an

immunostimulatory phenotype, enhances IL-15 secretion, and

increases NK cell infiltration and cytotoxicity (136, 138). In preclinical

breast cancer models, anti-MARCO treatment also reduces tumour

burden and metastatic dissemination (137). A similar effect has been

observed with antibodies targeting Clever-1 (also known as stabilin-1),

which boosts NK cell numbers and IFN-g production in patients with

advanced-stage solid tumours (140). Treatment with the anti–Clever-1
TABLE 2 Cancer therapeutic strategies targeting TAMs to enhance NK cell effector function.

Therapeutic strategy Study type Tumour context Effect on TAM-NK crosstalk References

TLR4 agonist (LPS) Preclinical Ovarian cancer
Induces pro-inflammatory TAMs: ↑ NK
cell activation

(133)

TLR3 agonist (poly(I:C)) Preclinical Lung
Induces pro-inflammatory TAMs and MICA
expression: ↑ NK cell cytotoxicity

(134)

TLR2 agonist (b-glucan) Preclinical Melanoma TAM activation: ↑ NKG2D expression (135)

Anti-MARCO antibody Preclinical
Melanoma, breast cancer,
solid tumours

Reprogrammes TAMs: ↑ IL-15 secretion and NK
cell cytotoxicity

(136–139)

Anti–Clever-1 antibody (FP-1305
and Bexmarilimab)

Early-phase clinical Advanced solid tumours
Reprogrammes TAMs: ↑ NK cell numbers and
IFN-g production

(140, 141)

Checkpoint inhibitors (PD-1/PD-L1) Clinical
Osteosarcoma,
ovarian cancer

Restores TAM phagocytosis: ↑ NK cell activation (20, 142, 143)

Checkpoint inhibitors with anti-TREM2
or anti-MARCO antibodies

Preclinical Ovarian cancer TAM repolarisation: ↑ NK cell infiltration (136, 144)

Genetic ablation of CSF1R Preclinical Breast cancer ↓ TAM accumulation: ↑ NK cell activation (145)

Small molecule blockade of
CSF1R (BLZ945)

Preclinical Glioma
Reprogrammes TAMs and ↑ antigen
presentation genes: ↓ NK cell infiltration

(146, 147)

CSF1R inhibitor (Emactuzumab) Early-phase clinical
Diffuse-type tenosynovial
giant cell tumours,

↓ TAM accumulation: ↑ NK cell activation
(pre-clinical)

(148, 149)

CCL2 blockade/CCR2 antagonists Preclinical Hepatocellular carcinoma
↑ TAM accumulation: ↑ NK cell activation,
cytotoxicity and IFN-g production

(150–152)

CCR2 antagonist (PF-04136309) Early-phase clinical
Pancreatic
ductal adenocarcinoma

↓ TAM accumulation: ↑ NK cell activation
(pre-clinical)

(153)

CAR-T cells targeting FRb+ TAMs Preclinical Solid tumours
Selective depletion of TAMs: effect on NK cells
not explored

(154)

TGF-b blockade Preclinical Gastric and breast cancer
Induces pro-inflammatory TAMs: ↑ NK
cell activation

(83, 145, 155)

Axl or GAS6 blockade Preclinical
Melanoma, breast and
pancreatic cancer

Induces pro-inflammatory TAMs: ↑ NK
cell activation

(156, 157)
The table displays preclinical and clinical approaches that modulate TAMs to improve NK cell activation, recruitment, or cytotoxicity. Strategies include antibody-based depletion or
reprogramming of TAM subsets (e.g., anti-MARCO, anti–Clever-1), immune checkpoint blockade and inhibition of macrophage recruitment (e.g., CCL2/CCR2 axis). While most approaches
remain preclinical, several agents are under early-phase clinical evaluation and show potential to restore NK cell function in the TME.
↑ represents increase and ↓ represents decrease.
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antibodybexmarilimab inpatientswith solid tumourshas similarly been

associated with increased IFN-g and NK cell activation markers (141).

Immune checkpoint blockade has also emerged as a strategy to

reprogramme TAMs. TAMs express both PD-1 and PD-L1, and

blockade of this axis not only restores tumour cell phagocytosis but

also enhances NK cell activation (20). Macrophage-targeted anti–

PD-L1 therapy has been shown to increase IFN-g production by NK

cells (142), while anti–PD-1 treatment in osteosarcoma models

expands the anti-tumour macrophage population (143).

Importantly, combining immune checkpoint inhibitors with

TAM-targeting agents such as anti-MARCO or anti-TREM2

antibodies enhances therapeutic efficacy in preclinical models,

including ovarian cancer (136, 144).
5.2 Depleting TAMs: targeting the
macrophages that aid tumour growth

The frequency and distribution of TAMs strongly correlate with

poor prognosis across multiple malignancies, including breast,

prostate, ovarian and lung cancers (158–164). In preclinical breast

cancer models, macrophage depletion significantly delays tumour

progression, positioning TAMs as a promising therapeutic target

(165). However, efforts to deplete macrophages (Figure 3), have
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revealed the need for refined approaches that distinguish between

immunosuppressive and immunostimulatory subsets.

The colony-stimulating factor 1 (CSF1)-CSF1 receptor (CSF1R)

axis represents a key regulatory pathway for macrophage survival and

differentiation (166). Tumour cells, macrophages, and other stromal

components secrete CSF1, sustaining TAM viability within the TME

(167, 168). Genetic ablation of CSF1R in murine breast cancer models

reduces TAM accumulation and promotes NK cell activation, with

adoptive NK cell transfer further enhancing tumour control (145).

Blockade of CSF1R using small-molecule inhibitors, such as BLZ945,

has shown efficacy in glioma, where treatment led to TAMs with

increased expression of antigen presentation genes (146) and

downregulation of pro-tumour macrophage markers (147). Notably,

these latter effects appear to reflect macrophage repolarisation rather

than depletion.

Another strategy to limit TAM accumulation involves targeting

monocyte recruitment through the CCL2–CCR2 chemokine axis.

Tumour-derived CCL2 facilitates the recruitment of CCR2-

expressing monocytes, which subsequently differentiate into TAMs.

Inhibition of this pathway, via anti-CCL2 antibodies or CCR2

antagonists, reduces TAM numbers and restores NK cell effector

function (150–152). In hepatocellular carcinoma models, CCL2

blockade enhances NK cell activation, IFN-g production, and

cytotoxicity, supporting the therapeutic value of this approach (150).
FIGURE 2

Strategies for TAM repolarisation in the TME. There are various approaches to reprogramme TAMs from an anti-inflammatory, pro-tumour phenotype to
a pro-inflammatory, anti-tumour state. Therapeutic strategies include activation of pro-inflammatory-inducing pathways via agents targeting Toll-like
receptors (TLRs), and immune checkpoint blockade (e.g., anti-PD-1/PD-L1) to relieve TAM-mediated immunosuppression. The reprogrammed TAMs
exhibit enhanced phagocytic activity, antigen presentation, and pro-inflammatory cytokine secretion, contributing to improved anti-tumour immunity.
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Nevertheless, blockade of monocyte recruitment can trigger

compensatory mechanisms, such as increased neutrophil

infiltration, which may counteract therapeutic benefits (62). One

strategy to circumvent this is to selectively target TAM-associated

receptors. For instance, chimeric antigen receptor (CAR)-T cells

engineered to recognise folate receptor beta (FRb), a marker

enriched on immunosuppressive TAMs, successfully deplete this

population, promote pro-inflammatory polarisation, and suppress

tumour growth in preclinical models (154).
5.3 Modulation of TAM-NK cell crosstalk:
shaping the immune communication to
combat cancer

Rather than indiscriminately depleting macrophages, a more

refined therapeutic strategy involves selectively modulating the

bidirectional interactions between TAMs and NK cells within the

TME. By either amplifying beneficial communication or disrupting

suppressive crosstalk, it may be possible to restore NK cell function

while preserving the immune-regulatory roles of macrophages

critical for tissue integrity (Figure 4).

One approach to enhance NK cell function is to increase

expression of activating ligands on macrophages, particularly

those that engage the NK cell receptor NKG2D. In mice,
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peritoneal macrophages stimulated with TLR agonists, including

LPS (TLR4), Pam3CSK4 (TLR2), zymosan (TLR2/6), and poly(I:C)

(TLR3), upregulate the NKG2D ligand RAE-1 (169). Tumour-

derived CSF1 similarly drives RAE-1 expression on TAMs (109).

Poly(I:C) treatment also induces the expression of other murine

NKG2D ligands, such as H60 and MULT-1, while promoting

secretion of type I interferons and cytokines critical for NK cell

activation, including IFN-b, IL-12, IL-15, and IL-18 (48).

Neutralisation of IFN-b or IL-15 diminishes NKG2D expression

and NK cell cytotoxicity, demonstrating the centrality of this axis to

immune activation (48). In human monocytes, analogous ligand

upregulation can be achieved through IFN-a or TLR4 stimulation

(170). LPS increases surface MICA and ULBP1–3 expression and

enhances NK cell-derived IFN-g in a MICA-NKG2D-dependent

manner (170). However, prolonged or high-dose LPS exposure can

paradoxically render macrophages more susceptible to NK cell-

mediated lysis via NKG2D recognition, highlighting the delicate

balance required in therapeutic modulation (47).

While the induction of activating ligands on macrophages can

bolster NK cell function, persistent ligand expression can drive NK

cell exhaustion. In both murine and human models, sustained

exposure to RAE-1d+ or MICAhigh TAMs results in reduced

NKG2D expression and diminished cytotoxic capacity (109, 171).

In melanoma models, recombinant NKG2D ligands have been

shown to partially restore NK cell responsiveness (109). Similar
FIGURE 3

Therapeutic strategies to reduce TAM accumulation in the TME. Approaches to target TAM recruitment and survival to limit their accumulation in the
TME include: inhibition of the colony-stimulating factor 1 receptor (CSF1R) pathway (through genetic knockout (CSF1R KO) or pharmacological
inhibition using CSF1R inhibitor BLZ945) (top); disruption of the CCL2-CCR2 axis using anti-CCL2 antibodies or CCR2 antagonists (centre); chimeric
antigen receptor (CAR)-T cells engineered to recognise the TAM marker folate receptor b (FRb) (bottom). Collectively, these strategies contribute to
reduced TAM accumulation in the TME, potentially enhancing anti-tumour immunity.
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effects are observed with the CD48–2B4 axis: TAMs expressing

CD48 transiently activate NK cells, but prolonged stimulation leads

to functional exhaustion (114). In hepatocellular carcinoma,

blockade of 2B4 reverses this dysfunction and restores NK cell

IFN-g production (114).

Disruption of suppressive cytokine signalling represents

another avenue to restore NK cell cytotoxicity. TGF-b, a

canonical immunosuppressive cytokine secreted by both tumour

cells and TAMs, impairs NK cell function by downregulating

activating receptors such as NKG2D and NKp30 (81). In human

gastric cancer and murine breast cancer models, TGF-b blockade

restores NK cell activity and augments anti-tumour responses (83,

145, 155). Targeting macrophage-intrinsic suppressive pathways is

also showing promise. The receptor tyrosine kinase AXL, often

upregulated on TAMs in breast, ovarian, renal, and lung cancers,

correlates with poor clinical outcomes and skews macrophages

toward an immunosuppressive phenotype (172). In leukaemia,

AXL is induced by tumour-derived GAS6, which also acts on NK

cells to reduce NKG2D expression and impair cytotoxicity (173,

174). Blockade of either AXL or GAS6 enhances NK cell activation,

reduces metastasis, and promotes tumour control in breast cancer,

melanoma, and pancreatic cancer models (156, 157).

Immune checkpoint inhibition remains a promising approach

in cancer immunotherapy. While there is limited direct evidence of

checkpoint molecule-mediated interactions between TAMs and NK

cells, therapeutic strategies targeting these checkpoints often

modulate the activity of both cell types, suggesting underlying
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immune crosstalk that could be targeted. For example, V-domain

Ig suppressor of T cell activation (VISTA) is highly expressed on

TAMs, and its blockade improves survival in murine models of

leukaemia and lymphoma (175). Notably, although NK cells do not

express VISTA, anti-VISTA antibodies have demonstrated

increased NK cell maturation and activation (176, 177), implying

that indirect modulation through other immune populations,

possibly including macrophages, is at play.

Lymphocyte activation gene-3 (LAG-3), an inhibitory receptor

expressed on NK cells, is associated with reduced IFN-g production

and proliferation (178). Blockade of LAG-3 has been effective in

restoring NK cell function in chronic lymphocytic leukaemia,

including increased production of IFN-g and IL-12 (179). Although

there is limited evidence for direct interaction between TAMs and NK

cells via LAG-3, LAG-3+ T cells can bind MHC class II on

macrophages (180), and soluble LAG-3 binding to MHC class II on

macrophages inhibits monocyte-to-macrophage differentiation (181).

T-cell immunoglobulin and mucin-domain containing-3 (TIM-3)

is expressed on both TAMs and NK cells (182, 183). In vitro, TIM-3

blockade enhances NK cell cytotoxicity against cancer cell lines and

primary multiple myeloma cells, accompanied by increased IFN-g
production; in vivo, this corresponds to reduced tumour growth

(184, 185). In macrophages, blocking TIM-3 inhibits polarisation

toward an immunosuppressive phenotype in glioblastoma (186).

Blockade of T cell immunoreceptor with Ig and ITIM domains

(TIGIT), also present on both NK cells and TAMs, enhances NK

cell cytotoxicity against melanoma cells in vitro and reduces metastatic
FIGURE 4

Modulating TAM–NK cell crosstalk to influence anti-tumour immunity. Strategies to either enhance or disrupt the interaction between TAMs and NK
cells in the TME aim to restore or enhance NK cell cytotoxicity and contribute to anti-tumour responses. On the left, enhancing crosstalk is achieved
through TLR agonists and CSFR1 stimulation, which upregulate NKG2D ligands (NKG2DL) on TAMs and promote NK cell activation. Inhibition of
Gas6-AXL signalling using anti-Gas6 antibodies further supports immune activation. On the right, disruption of immunosuppressive crosstalk is
demonstrated via blockade of TGF-b signalling (using anti-TGF-b antibodies) and interference with inhibitory CD48-2B4 interactions (via anti-2B4
antibodies). Additionally, recombinant NKG2DL can be used to inhibit NKG2D-mediated suppression.
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growth in murine melanoma models (187). In TAMs, TIGIT

supports an immunosuppressive phenotype (188), but inhibition can

reprogramme these cells toward a pro-inflammatory, anti-tumour

state (189).
5.4 Strengths, limitations, and translational
challenges of harnessing macrophages

Several strategies to manipulate TAMs with the aim of enhancing

NK cell function have emerged, including approaches to repolarise

their phenotype, deplete suppressive subsets, and enhance TAM-NK

cell crosstalk. Among these, antibody-based therapies targeting

specific surface markers on pro-tumoural TAMs represent some of

the most promising and clinically advanced avenues. Anti-MARCO

antibodies have shown tumour-reducing effects across multiple

models (136–138), although MARCO is also expressed on non-

tumour macrophages (21), highlighting the need for tissue-specific

profiling and validation. Anti-Clever-1 antibodies offer more

selectivity by targeting immunosuppressive TAMs while sparing

homeostatic populations (190), though their broader applicability

across tumour types and their impact on NK cells remain

underexplored. CAR-T strategies directed at TAM markers such as

FRb also offer a degree of specificity (154), yet their effects on NK

cells, as well as their persistence, trafficking, and safety profiles,

remain largely uncharacterised.

While several macrophage-targeted therapies, including anti-

MARCO and anti-Clever-1 antibodies, have entered early-phase

clinical trials, few include NK cell-specific endpoints. Most focus on

T cell responses or cytokine outputs, neglecting NK-relevant

metrics such as CD107a expression or intratumoural infiltration.

For instance, clinical trials assessing CSF1R inhibition (e.g.,

NCT02526017) or checkpoint blockade (e.g., NCT02817633) do

not evaluate NK functional markers (191, 192). Many of the

strategies outlined in Table 2 remain preclinical, with toxicity,

tumour-type specificity, and durability yet to be addressed.

Compared to T cell-based approaches, TAM-targeted therapies

offer distinct advantages. Their antigen-independent mechanism

avoids issues of antigen loss or MHC downregulation (193, 194).

TAM repolarisation allows in situ immune reprogramming,

potentially overcoming the trafficking barriers faced by adoptively

transferred T cells (195). Repolarised TAMs can also secrete IL-15

and IL-12, enhancing NK cytotoxicity without the systemic toxicity

of exogenous cytokines (41). Furthermore, because activation is

localised, repolarisation carries a lower risk of cytokine release

syndrome compared to CAR-T therapies (196).

However, macrophage plasticity poses a significant barrier to

durable responses; macrophages are highly responsive to local cues,

including the immunosuppressive signals of the TME, and therefore

may not maintain an anti-tumour phenotype over time (197–199).

Additionally, unlike memory-forming T cells, macrophages do not

clonally expand (1, 3). Repolarising agents like TLR agonists [e.g.,

LPS, poly(I:C)] can upregulate NK-activating ligands but often lack

tumour specificity, leading to off-target inflammation (200–203).

Even more tolerable agents like b-glucan or inhibitors of broadly
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expressed molecules (e.g., Axl, TGF-b) may cause systemic toxicity

without targeted delivery strategies (204–206).

TAM depletion strategies offer a different approach, aiming to

remove suppressive macrophages and reduce inhibitory signalling

toward NK cells. However, these are often not selective enough, for

example CSF1R blockade can deplete supportive myeloid cells that

produce IL-15 and IL-18, cytokines that are important for NK survival

(207). In lung cancer models, CSF1R inhibitor BLZ945 impaired NK

infiltration and increased metastasis (207). Depleting CD206+ TAMs

similarly disrupted NK recruitment, indicating that not all TAMs are

suppressive (208). Thus, complete depletion may inadvertently remove

macrophages that support NK-mediated immunity.

Moreover, TAM populations may exhibit resistance to CSF1R

inhibition (209) or are replenished via alternative recruitment (e.g.,

CCR5) (210), while compensatory upregulation of PD-L1 or other

inhibitory molecules may undermine efficacy (167). Although

depletion strategies bypass the need for antigen specificity, they

carry a higher risk of disrupting tissue-resident macrophages

involved in homeostasis (208). The functional heterogeneity of

TAMs demands greater precision in distinguishing suppressive

subsets from those with beneficial roles (211).

Enhancing TAM–NK cell crosstalk offers a mechanistically

attractive alternative. Instead of depleting or repolarising

macrophages, this strategy modulates communication pathways

to restore NK cell activity. This approach may be especially

effective in NK-sensitive tumours where T cell responses are

limited (212). However, it requires the presence of functional NK

cells, limiting efficacy in tumours with low infiltration unless paired

with adoptive NK cell transfer (213, 214).

Each TAM-targeting approach has trade-offs. Repolarisation

preserves beneficial functions, but is vulnerable to reversal due to

plasticity. Depletion removes immunosuppressive signalling, but

risks harming supportive macrophages. Crosstalk enhancement

provides targeted immune recalibration with minimal disruption,

but depends on the presence of responsive NK cells. Of these,

crosstalk modulation may strike the most effective balance:

restoring NK function while maintaining macrophage-mediated

tissue integrity. Ultimately, advancing TAM-targeted therapies

will require a more nuanced understanding of macrophage-NK

cell dynamics. Emerging technologies such as single-cell RNA

sequencing, spatial transcriptomics, and proteomics offer

powerful tools to explore this complexity.
6 Resolving the spatiotemporal
crosstalk between macrophages and
NK cells through single-cell and
spatial multi-omics

While macrophage and NK cell interactions have been studied

using flow cytometry, bulk RNA-sequencing, and co-culture

models, these methods fall short in capturing spatial context,

heterogeneity, and post-translational modifications. Emerging

high-dimensional approaches such as spatial transcriptomics (ST),
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single-cell RNA sequencing (scRNA-seq), and proteomics, promise

to overcome these limitations, offering a systems-level perspective

on immune cell interplay.
6.1 Single-cell sequencing: unravelling
cellular heterogeneity

Single-cell RNA sequencing (scRNA-seq) has transformed our

understanding of immune cell heterogeneity and function by

enabling transcriptomic profiling at single-cell resolution. This

technology is particularly valuable for dissecting the diverse

phenotypic states of macrophages within the tumour

microenvironment (TME), a complexity underscored by findings

such as the enhanced ability of spleen macrophages, compared to

their lung counterparts, to potentiate NK cell cytotoxicity (215). For

instance, scRNA-seq identified a neuron-like TAM subset in lung

adenocarcinoma that promotes tumoural neurogenesis (216).

Similarly, scRNA-seq has provided insights into the regulation of

tumour-infiltrating NK cells, revealing that inhibition of the

transcription factor HIF-1a can enhance cytotoxicity, suggesting

novel therapeutic avenues (217). Integrative scRNA-seq analyses on

NK cells from over 700 patients with 24 types of cancer shows

heterogeneity in NK cell composition in a tumour-type-specific

manner and importantly, also identified a population of tumour-

associated NK cel ls that show impaired anti-tumour

functions (218).

Beyond cellular profiling, integrating ligand-receptor

interaction frameworks such as CellPhoneDB (219) and NicheNet

(220) with scRNA-seq data has enabled the prediction of

intercellular communication networks. In ovarian carcinoma, this

approach revealed robust crosstalk, mediated by CXCL and CCL

chemokines, between anti-tumour TAM subsets and cytotoxic NK

cells (221). Moving forward, combining scRNA-seq with

computational inference of cell-cell interactions holds significant

promise for uncovering regulatory mechanisms such as cytokine

feedback loops, immune checkpoint modulation, and metabolic

coordination within the TME.
6.2 Spatial transcriptomics: adding the
context of location

While scRNA-seq provides powerful insights into cellular

heterogeneity, it lacks spatial resolution. Spatial transcriptomics

(ST) addresses this limitation by mapping gene expression directly

onto intact tissue sections, preserving the native architecture and

cellular context. This spatial dimension is particularly crucial for

elucidating cell–cell interactions within complex environments such

as the TME.

ST has proven instrumental in characterising macrophage

infiltration patterns in non-small cell lung cancer (NSCLC). In

patient samples from anti-PD-1/PD-L1 immunotherapy trials,

spatial profiling revealed the distribution of CD163+ macrophages

across tumour and stromal areas, with high densities correlating
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with poor clinical outcomes (222). These findings underscore the

multifaceted roles of TAMs in modulating immune responses and

contributing to therapeutic resistance . In pancreat ic

adenocarcinoma, integration of scRNA-seq with ST enabled the

identification of an anti-tumour macrophage population marked by

IRF7 activity, which limited tumour progression through lipid

metabolism-dependent mechanisms (223). More broadly, multi-

modal spatial analyses have revealed that TAMs are not

homogeneously distributed across the TME. Rather, distinct TAM

subsets occupy defined niches: pro-inflammatory TAMs are

enriched in tumour cores, whereas anti-inflammatory TAMs

preferentially localise to invasive margins in gastric and

pancreatic cancers (224, 225). Moreover, TAM function appears

spatially encoded - those residing in perivascular or hypoxic regions

exhibit immunosuppressive phenotypes, while macrophages at the

invasive front can display anti-tumour activity (225). These

spatially resolved phenotypes suggest that local tissue architecture

and microenvironmental cues shape macrophage polarisation

and function.

Importantly, recent spatial transcriptomic studies have begun to

map TAM and NK cell crosstalk within the TME, revealing key

mechanisms of immune exclusion and dysfunction (Figure 5). In

NSCLC, TREM2+ macrophages are highly enriched in tumour

cores, where they physically and functionally restrict NK cell

infiltration; antibody-mediated TREM2 blockade reactivates NK

cells, highlighting a targetable axis of suppression (227). Similarly,

in adenocarcinoma and squamous-cell carcinoma, clusters of anti-

inflammatory macrophages form immunosuppressive hotspots,

inversely correlating with NK cell abundance (226). These

spatially resolved TAM-NK interactions further support the

notion that immune spatial context may influence response

to immunotherapy.

Future studies examining macrophage–NK cell crosstalk will

benefit from ST’s ability to reveal sites of cellular co-localisation,

spatially restricted cytokine gradients, and the organisation of

functional niches. Combining ST with scRNA-seq facilitates high-

resolution mapping of cellular diversity within the TME. One

notable advancement is Zman-seq, a dynamic single-cell

technology that captures transcriptomic changes over time (228).

In glioblastoma, Zman-seq uncovered a rapid sequence of

immunological events: NK cells acquired a dysfunctional

phenotype within 24 hours, driven by TGFb1 signalling, followed

by the different iat ion of infi l t rat ing monocytes into

immunosuppressive TAMs within 36–48 hours, characterised by

upregulation of suppressive myeloid checkpoints (228). These

findings point to a critical early window for therapeutic

intervention to preserve immune cell function.

Further integration of ST with high-dimensional imaging

techniques, such as co-detection by indexing (CODEX) (229) or

multiplexed ion beam imaging (MIBI) (230), will allow

transcriptomic data to be overlaid with protein-level information.

This multimodal approach will enhance validation of spatial

signatures and enable a more comprehensive characterisation of

immune cell states and interactions within the TME. However,

current ST platforms still face major limitations. Researchers must
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1656925
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Palmer et al. 10.3389/fimmu.2025.1656925
often choose between single-cell resolution and full transcriptome

coverage, meaning high resolution and comprehensive data is hard

to achieve at the same time. Even at single-cell resolution, the

number of genes reliably captured per cell is often too low to

support detailed analyses, especially when compared to liquid-based

single-cell RNA-seq (231). In addition, important parts of the TME,

such as the extracellular matrix, are still not well captured by most

current technologies, leaving major gaps in how we understand

tumour structure and cell communication.
6.3 Proteomics: capturing functional states
and post-translational dynamics

In the context of tumours, it is proteins, not RNA, that

ultimately drive cell behaviour. While transcriptomic data offers

important insights, gene expression levels often do not correlate

with protein abundance or activity. Proteins interact directly,

undergo post-translation modifications, and include secreted

factors that mediate communication between cells – critical

factors that are missed by RNA-based methods. This underscores

the importance of integrating proteomic data to gain a more

accurate and comprehensive understanding of cellular function

and tumour biology.
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Proteomic analyses have shed light on the heterogeneity and

function of macrophage subsets. In models of liver fibrosis, distinct

populations, including embryo-derived liver-resident Kupffer cells

(EmKCs) and monocyte-derived Kupffer cells (MoKCs), were

delineated based on unique proteomic signatures (232). In

melanoma, proteomic profiling of TAMs revealed a shift toward

enhanced cholesterol metabolism and reduced immune activation

during tumour progression (233). Similar approaches have

elucidated diversity within the NK cell compartment. For

example, proteomics has distinguished memory-like NK cells

from naïve populations by differential expression of key

regulatory proteins (234). Furthermore, NK cell-derived

extracellular vesicles, characterised through proteomic profiling,

have been shown to contain effector molecules such as Fas ligand,

TRAIL, NKG2D, and b-actin, which collectively contribute to their

anti-tumour function (235).

Looking ahead, mass spectrometry-based proteomics and

targeted platforms such as cytometry by time-of-flight (CyTOF)

will be instrumental in dissecting macrophage-NK cell interactions.

These approaches enable the detection of activation markers,

secreted cytokines, and metabolic enzymes, providing functional

insights beyond transcriptomic profiling. When integrated with

scRNA-seq and ST, proteomics enables a multidimensional view

of immune cell states and interactions - essential for understanding
FIGURE 5

Spatial transcriptomic insights into TAM-NK cell crosstalk in the TME. Recent spatial transcriptomic analyses reveal altered distributions of TAMs and
NK cells across tumour regions. Left: Anti-inflammatory macrophage-rich niches predominate in the TME of both adenocarcinoma and squamous
cell carcinoma, with a corresponding reduction in NK cell infiltration and cytotoxic gene expression. Based on work by De Zuani et al. (226). Middle:
In non-small cell lung cancer, TREM2+ TAMs are enriched within the tumour core, acting as a barrier to NK cell infiltration and promoting an
immunosuppressive landscape. Right: Therapeutic blockade of TREM2 reverses this exclusion, enhancing NK cell activation. Middle and right panels
based on findings from Park et al. (227).
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the dynamic regulation of immunity within the TME and informing

next-generation immunotherapies.

While scRNA-seq, ST, and proteomics each provide distinct

insights into macrophage and NK cell biology, combining these

three technologies will allow macrophage-NK cell crosstalk to be

studied at a cellular, spatial and functional level. For instance, a

study in gastric cancer using integrated spatial multi-omics has

shown that the TME has distinct, tissue-specific metabolism

signatures (236). In glioblastoma, integrative spatial analysis

showed cell organisation is associated with hypoxic cancer cells,

with a distinct macrophage state marked by pro-inflammatory

cytokine expression being identified (237). Combining scRNA-

seq, ST, and proteomics provides a layered view of the TME,

allowing transcriptional states, spatial relationships, and protein

activity to be mapped together. This approach is well-suited to

dissecting macrophage-NK cell interactions, revealing functional

states and immunoregulatory niches that shape their crosstalk.
7 Concluding remarks

Harnessing the interplay between macrophages and NK cells

within the TME represents a promising strategy to heighten innate

immunity and drive durable anti-tumour responses. Unlike

conventional T cell–focused therapies, targeting the mechanisms

that govern macrophage-NK cell communication has the potential

to initiate more coordinated, tissue-integrated immune activation

capable of overcoming the immunosuppressive barriers within the

TME. TAMs are abundant and actively shape the immune

landscape, making them more accessible and impactful

therapeutic targets compared to T cells, which often face

challenges such as exhaustion, antigen escape, and poor infiltration.

However, current TAM-targeting strategies have limitations.

Approaches aimed at repolarising macrophages toward a simplified

“M1-like” phenotype underestimate the complexity and plasticity of

TAMs, whose states rapidly shift in response to local cues, reducing

the durability of such interventions. Depletion strategies lack

selectivity, risking the loss of macrophage subsets essential for

supporting NK cell function and maintaining tissue homeostasis.

Given these challenges, the most promising path forward lies in

directly modulating TAM-NK cell crosstalk through manipulating

cell communication to restore NK cell cytotoxicity and promote

anti-tumour activity. So far this has been achieved through

upregulating NKG2D ligands on macrophages or blocking

suppressive TGF-b secretion.

However, to fully exploit this therapeutic potential, future research

must address several key areas. Mapping the spatial and temporal

dynamics of macrophage-NK cell interactions using advanced

technologies such as spatial transcriptomics and proteomics will

provide detailed insights into their behaviour within the TME. It is also

essential to identify selective strategies that target immunosuppressive

TAMsubsets,whilepreservingmacrophagepopulations that supportNK

cell function. Understanding the mechanisms underlying NK cell

dysfunction driven by chronic TAM engagement will guide the

development of approaches to restore NK cytotoxic capacity.
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Furthermore, establishing physiologically relevant model systems,

including tumour organoids and patient-derived co-cultures, will better

enable preclinical testing of combination therapies. Finally, integrating

TAM-NK cell-targeting strategies with existing immuno-oncology

approaches, such as checkpoint blockade and adoptive cell therapies,

may amplify therapeutic outcomes and broaden patient responsiveness.

Collectively, these directions will deepen our understanding of innate

immune crosstalk in cancer and provide a foundation for the

development of next-generation immunotherapies.
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