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Endometriosis (EMs) is a chronic inflammatory disorder characterized by

dysregulated innate immunity, particularly impaired cytotoxic function of

natural killer (NK) cells. As pivotal effectors of the innate immune response, NK

cells fail to eliminate ectopic endometrial lesions due to aberrant receptor–

ligand interactions, elevated levels of immunosuppressive cytokines (TGF-b, IL-6,
and IL-10), and dysfunction of adhesion molecules. This compromised immune

surveillance facilitates the survival and implantation of ectopic lesions,

contributing to the hallmark symptoms of pain and infertility. Recent

immunotherapeutic strategies, including NK cell checkpoint blockade (anti-

NKG2A, anti-PD-1), IL-2-based activation, and adoptive NK cell transfer—seek

to restore NK cell cytotoxicity and reestablish immune homeostasis. This review

summarizes current advances in understanding NK cell dysfunction in EMs,

emphasizing its central role in immune evasion and the therapeutic promise of

targeting innate immune pathways.
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1 Introduction

Endometriosis (EMs) is a chronic gynecological disorder characterized by low cure

rates and high recurrence, affecting approximately 10% to 15% of women of reproductive

age (1). Epidemiological studies indicate that up to 70% of affected individuals experience

chronic pelvic pain (2), while approximately 50% suffer from infertility, substantially

compromising the health and quality of life of women in their reproductive years (3).

Although the retrograde menstruation theory remains the most widely accepted etiology of

EMs, additional contributing factors, including genetic predisposition, immune

dysfunction, and chronic inflammation, have been implicated in its pathogenesis (4, 5).

Nevertheless, the precise molecular and cellular mechanisms underlying disease onset

remain elusive. Increasingly, EMs is recognized as a multifactorial immune-mediated
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disorder, in which dysregulation of fundamental immunological

processes plays a pivotal role in disease initiation and

progression (6).

Emerging evidence indicates that nearly all immune cell types in

women with EMs exhibit functional abnormalities (7, 8). The

disease microenvironment is characterized by aberrant immune

cell infiltration, macrophage activation, impaired cytotoxicity of

natural killer (NK) cells, and dysregulated expression of

proinflammatory and regulatory cytokines (9). Ectopic

endometrial cells that survive and proliferate in the peritoneal

cavity possess the ability to evade immune surveillance and

clearance by resident immune cells, particularly macrophages and

NK cells. Mounting evidence now supports a strong association

between EMs pathogenesis and impaired NK cell cytotoxicity (10).

This review summarizes current progress in understanding the

regulatory mechanisms governing NK cell cytotoxicity in EMs,

elucidates how ectopic endometrial cells escape NK cell-mediated

immune surveillance, and discusses recent advances in NK cell–

targeted immunotherapeutic strategies.
2 Phenotypes and functions of NK
cells

2.1 NK cell phenotypes

Natural killer (NK) cells are large granular lymphocytes defined

by the CD3−CD56+CD16+/−CD57+/− immunophenotype. They

constitute a central arm of innate immune surveillance, endowed

with the capacity to detect and lyse virally infected, malignant, or

stressed cells without prior sensitization (11, 12). Beyond their

cytolytic role, NK cells can also recognize subsets of normal cells,

thereby participating in a broad spectrum of immunological

processes, including antigen presentation, regulation of

autoimmunity, orchestration of inflammatory responses,

modulation of transplant rejection, and maintenance of pregnancy

(13). Based on surface expression of CD56 and CD16, NK cells are

divided into two major subsets : CD56dimCD16+ and

CD56brightCD16− NK cells (14). The CD56dimCD16+ subset

constitutes approximately 90% of circulating NK cells and is highly

cytotoxic. In contrast, CD56brightCD16− NK cells primarily regulate

immune responses via cytokine secretion, such as IFN-g and TNF-a.
Upon appropriate stimulation, CD56brightCD16− NK cells can

convert into CD56dimCD16+ NK cells, concomitantly enhancing

their cytolytic activity (15). NK cell phenotypic and functional

properties are further shaped by their tissue microenvironment. In

the endometrium during the menstrual cycle, and in the decidua

during pregnancy, NK cells predominantly exhibit the

CD56brightCD16− phenotype. These cells originate from CD34+

progenitors and are involved in spiral artery remodeling, placental

development, and maintenance of gestation (16, 17).
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2.2 NK cell functions

Natural killer (NK) cells exert cytotoxic effects primarily through

the exocytosis of cytolytic granules and the induction of apoptosis via

Fas ligand (FasL)–mediated signaling (18). Target cell recognition is

orchestrated by adhesion molecules in concert with an array of

activating and inhibitory receptors, including killer immunoglobulin-

like receptors (KIRs), leukocyte immunoglobulin-like receptors

(LILRs), and members of the natural killer group 2 (NKG2) receptor

family (19). The dynamic equilibrium between these activating and

inhibitory cues ultimately dictates the magnitude of NK cell

cytotoxicity. In endometriosis (EMs), NK cytotoxic activity has

traditionally been evaluated using K562 leukemia cells as targets.

Multiple studies have reported diminished lytic capacity of NK cells

isolated from both the peripheral blood (20) and peritoneal fluid (21) of

patients with EMs. However, because K562 cells lack major

histocompatibility complex (MHC) class I molecules, they are

intrinsically susceptible to NK-mediated lysis (22), raising concerns

about their relevance inmodeling EMs-specific immune interactions. A

more physiologically relevant approach would be to assess NK

cytotoxicity against ectopic endometrial epithelial or stromal cells.

Nonetheless, technical challenges, particularly the limited availability

of clinical samples and the difficulties in establishing primary cultures,

have constrained such investigations. To date, only a small number of

studies have employed autologous endometrial cells as targets, and the

existing evidence remains insufficient to definitively establish whether

NK cell cytotoxicity is reduced within the eutopic endometrium of EMs

patients (23).
3 Role of NK cells in EMs

3.1 NK cell levels in EMs

Most investigations on NK cells in endometriosis (EMs) have

examined peripheral blood and peritoneal fluid. Most report no

marked differences in the proportions of CD56+ and/or CD16+ NK

cells between EMs patients and healthy controls (24). Some describe

reduced CD16+CD57+ or CD16+CD56− subsets (24), whereas others

note increased CD56− or CD56−CD16+ populations (25). Data on NK

cells in eutopic versus ectopic endometrial tissue remain scarce. Drury

et al. (26) observed that uterine NK (uNK) cell numbers rise from the

proliferative to the late secretory phase, peaking beforemenstruation, in

both EMs and non-EMs cases; however, NK cell frequencies were

consistently lower in ectopic lesions. Conversely, in women with

unexplained recurrent miscarriage or infertility, NKp46+/CD56− cells

are elevated in the endometrium (27). Furthermore, CD56− or CD16+

NK cell counts in ectopic endometrial tissue are generally lower than

those in eutopic endometrium of healthy controls. These cells in

ectopic lesions also fail to exhibit typical phenotypic and functional

profiles seen in uterine NK cells (26).
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Recent evidence indicates that distinct NK cell subsets

differentially contribute to immune dysregulation in EMs (10).

CD56−/CD16+ NK cells, representing a more differentiated

phenotype with potent antibody-dependent cytotoxic potential,

are enriched in the peritoneal fluid of EMs patients, yet display

functional exhaustion, marked by attenuated degranulation

capacity and diminished cytokine release (27–30). Conversely,

CD56+/CD16− NK cells, typically classified as immature, are

relatively expanded in the peripheral circulation and secrete

elevated levels of immunoregulatory mediators such as IL-10 and

TGF-b, potentially reinforcing local immunosuppression (5, 31).

This reciprocal alteration in subset distribution between peripheral

blood and peritoneal fluid reflects a phenotypic shift from cytotoxic

to immunoregulatory dominance, thereby facilitating lesion

persistence and undermining immune surveillance in EMs.

Collectively, these findings implicate aberrant NK cell subset

composition and functional impairment as central mechanisms

driving the loss of NK cytotoxicity in EMs (32).
3.2 Role of NK cells in EMs pathogenesis

NK cells are essential components of the innate immune

system, forming the first line of defense against pathogens. By

eliminating misplaced endometrial cells, they help prevent ectopic

implantation. Dysfunctional NK activity or impaired cytotoxicity

may contribute to EMs onset. Dorien FO et al. (33) found aberrant

expression of NK cell receptors and altered cytokine production by

NK cells in the pelvic environment of EMs patients, further

implicating their role in disease etiology. He J et al. (34)

discovered that sterile alpha motif domain-containing protein 9

(SAMD9) and Ral guanine nucleotide dissociation stimulator-like 2

(RGL2) are significantly upregulated in patients experiencing pelvic

pain associated with EMs. Additionally, expression of

lysophosphatidic acid receptor 1 (LPAR1) is elevated in ectopic

stromal and glandular epithelial cells (34). These findings indicate

that NK cells contribute to EMs pathogenesis, particularly in pain

phenotypes. Suppression of NK cytotoxic function may exacerbate

lesion persistence and pain progression in affected individuals.
3.3 Expression of NK cell receptors and
ligands in EMs

In endometriosis (EMs), impaired NK cytotoxicity is closely

linked to dysregulated activating–inhibitory receptor balance (35).

Reduced expression of the activating receptor NKG2D limits NK

recognition of ectopic endometrial cells and attenuates perforin/

granzyme release, facilitating lesion immune evasion (36). While

ULBP-2 levels remain unchanged, the non-classical MHC

molecules MICA and MICB are markedly upregulated and

correlate with disease severity (37), suggesting potential

interference with NK cytotoxicity that warrants further validation.

Human leukocyte antigen G (HLA-G), a ligand for inhibitory

receptors LILRB1 and KIR2DL4 (38), is aberrantly expressed in
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both eutopic and ectopic endometrium, with menstrual cycle–

dependent variation (39). Elevated soluble HLA-G (sHLA-G) in

peritoneal fluid—but not serum—of EMs patients further

implicates this axis in NK suppression (39), though its

mechanistic role remains unclear (40). Peritoneal NK cells in EMs

also exhibit increased expression of the inhibitory receptor NKG2A,

which binds HLA-E (41). This interaction dampens degranulation

and IFN-g secretion, paralleling immune escape pathways seen in

cancer and supporting lesion persistence (42). Aberrant

upregulation of the inhibitory receptor NKG2A on peritoneal NK

cells enhances binding to HLA-E on ectopic endometrial cells,

amplifying inhibitory signaling and suppressing degranulation,

IFN-g secretion, and overall cytotoxic capacity (32). Adhesion

molecule dysregulation further compromises NK function.

Effective recognition and stable immunological synapse formation

require leukocyte function antigen-1 (LFA-1) on NK cells engaging

intercellular adhesion molecule-1 (ICAM-1) on target cells (43, 44).

In EMs, ectopic endometrial cells secrete soluble ICAM-1 (sICAM-

1), which binds LFA-1 and competitively blocks membrane ICAM-

1 interactions, thereby preventing synapse stabilization (45). This

disruption reduces perforin/granzyme release and degranulation,

weakening cytotoxicity and enabling lesion immune escape.

Consistently elevated sICAM-1 levels in peritoneal fluid, together

with in vitro evidence of NK inhibition (46, 47), identify sICAM-1

as a critical mediator of NK cell dysfunction and lesion survival.
3.4 The role of cytokines in regulating NK
cell cytotoxicity in EMs patients

Peritoneal fluid and ectopic endometrial tissue from patients with

EMs are enriched in immunosuppressive cytokines, which may disrupt

normal immune surveillance (5). Consistent with this milieu,

peritoneal fluid, serum, and conditioned supernatants from cultured

ectopic endometrium suppress NK-cell cytotoxicity (36, 48).

Transforming TGF-b emerges as a central mediator: intraperitoneal

TGF-b reduces NK-cell killing and downmodulates the activating

receptor NKG2D (36), implicating this pathway in EMs

pathogenesis. Additional interleukins further constrain NK function

(49). IL-6 signals through JAK/STAT3 to repress transcription of

perforin and granzyme B while skewing NK cells toward an anti-

inflammatory state with diminished interferon-g production (48). IL-

10, a potent immunosuppressive cytokine, exerts potent

immunosuppressive effects by engaging the STAT3/STAT5 signaling

axis, while enhancing the expression of inhibitory checkpoints such as

NKG2A and PD−1. Collectively, these effects shift NK cells from a

cytotoxic to a functionally exhausted phenotype (5). Moreover, elevated

IL-12 p40 subunit in the peritoneal fluid may antagonize the activity of

the IL-12 heterodimer, thereby impairing NK activation (23). Similarly,

IL-15 attenuates NK effector programs by lowering granzyme B and

interferon-g output and reducing expression of stimulatory receptors

such as NKG2D and NKp44 (50). Collectively, these cytokine-driven

signals establish an immunosuppressive peritoneal niche that dampens

NK-cell cytotoxicity and fosters the persistence of ectopic

lesions (Figure 1).
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4 NK cell–based immunotherapy for
EMs

4.1 Cytokine-based strategies

Ectopic endometrial cells in EMs exhibit hallmark features of

apoptosis resistance, enhanced adhesion, and invasive capacity,

often accompanied by localized angiogenesis during lesion

initiation and progression (51). Due to phenotypic similarities

with tumor cells, the decline in NK cell cytotoxicity in EMs may

represent a form of immune escape, drawing parallels with cancer

immune evasion. The modulation of NK cell activity in EMs

involves intricate interactions between various activating and

inhibitory receptors and their ligands. The downregulation of

activating receptors and upregulation of inhibitory ones may be

mediated by local immunosuppressive cytokines. Therefore,

targeting these inhibitory factors represents a potential strategy to

restore NK cell cytotoxicity.
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IL-2 is a prototypical NK-stimulatory cytokine capable of reversing

NK cell suppression. IL-2 stimulation leads to the generation of

lymphokine-activated killer (LAK) cells, which exhibit high

cytotoxicity against drug-resistant tumor cells, suggesting potential

application in cancer immunotherapy (52). Notably, LAK cells have

demonstrated cytotoxicity toward various target cells, including

endometrial cells from EMs patients (53). In rat models of EMs, IL-2

administration enhances intrauterine immune activation and leads to

failure of ectopic implantation (22). Cytokine combinations based on

IL−15 and IL−2 have garnered attention. IL-15 sustains NK cell

proliferation and survival without expanding regulatory T cells that

are typically induced by IL-2 (54, 55). IL-21 synergizes with IL-15 to

further augment NK cytotoxicity and cytokine secretion. Preclinical

studies in various immune-mediated disorders indicate that such

cytokine combinations can markedly enhance NK effector functions

(56, 57), suggesting their potential translational value in EMs. These

findings suggest that cytokine stimulation therapy may offer a viable

avenue for immunotherapy in EMs.
FIGURE 1

Functions of NK cells in endometriosis progression.
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4.2 Programmed death-1/programmed
death ligand-1 pathway

The programmed death-1 (PD-1) and programmed death-

ligand 1 (PD-L1) checkpoint axis is a prominent focus in NK

cell–based immunotherapy (58). PD-1 and PD-L1 expression have

been detected in ectopic endometrial tissues (59, 60). In cancer

immunotherapy, monoclonal antibodies targeting PD-1 and PD-L1

have yielded promising outcomes. However, such interventions

may also trigger extensive adverse effects across multiple tissues

and organs (61). Nonetheless, targeting the PD-1/PD-L1 axis

remains a promising immunotherapeutic direction for EMs.

Elevated expression of the inhibitory receptor NKG2A (which

recognizes HLA-E molecules) has been observed in Ems (55).

HLA-E is commonly expressed in various tumor types, and

clinical trials have shown favorable responses to anti-NKG2A

antibodies in certain cancers (62). Although the functional role of

NKG2A in EMs remains to be fully elucidated, other checkpoint

pathways, including those mediated by KIR2DL1 (binding HLA-

C2) and LILRB1 (binding HLA-G), may also serve as potential

immunotherapeutic targets. Importantly, the balance between

activating and inhibitory signals is essential for optimal NK cell

function. Excessive NK activation could risk collateral tissue

damage, underscoring the necessity for cautious selection and

precise application of NK-based immunotherapy for EMs.
4.3 Adoptive NK cell transfer and CAR−NK
therapy

Adoptive transfer of NK cells seeks to reconstitute cytotoxic activity

within the peritoneal cavity and can be executed with autologous,

haploidentical, cord-blood, peripheral-blood, or induced pluripotent

stem cell (iPSC)–derived NK products (63). Moreover, the

development of chimeric antigen receptor NK cells (CAR-NK)

allows for redirection of NK cells against specific targets (64). Recent

CAR-NK designs frequently incorporate “armoring” with membrane-

bound or secreted IL-15 to improve in-vivo persistence and metabolic

fitness; genome editing to remove intracellular checkpoints such as

CISH further augments IL-15 signaling and antitumor function (65).

iPSC-derived NK platforms also introduce a high-affinity, non-

cleavable CD16 (hnCD16) to sustain ADCC and enable combination

with tumor-targeting antibodies (66). To enhance homing to diseased

tissues, NK or CAR-NK cells can be retargeted with chemokine

receptors (CXCR1/CXCR4), which improves trafficking in preclinical

models (67–69). Collectively, these modifications address the historical

challenges of NK persistence, trafficking, and serial killing in solid-

tissue settings (70, 71).

The first-in-human, cord-blood–derived anti-CD19/IL-15 CAR-

NK trial demonstrated rapid responses in 8/11 patients (73%) with

minimal CRS/neurotoxicity and detectable persistence up to 12

months (72). An iPSC-derived CAR-NK product (FT596; includes

CD19 CAR, IL-15 receptor fusion, and hnCD16) showed tolerability

and objective responses in a Phase 1 study, supporting feasibility of

standardized “off-the-shelf” CAR-NK therapy (73). Additional early-
Frontiers in Immunology 05
phase programs (NKG2D-ligand–targeted and CD19-targeted

allogeneic CAR-NK) are progressing with preliminary activity and

acceptable safety in Phase 1 settings (74). At present, clinical trial

testing CAR-NK specifically for EMs is limited. However, studies

highlight adoptive NK-based approaches under evaluation for severe

EMs, and preclinical data support that exogenous NK cells can

infiltrate peritoneal/ovarian lesions and may be delivered via routes

including intraperitoneal administration (55, 75, 76). Key hurdles

include identifying lesion-restricted antigens to avoid off-target

cytotoxicity, improving trafficking and retention within ectopic

implants (chemokine-receptor retargeting), and mitigating the

immunosuppressive peritoneal milieu (TGF-b, IL-6, IL-10),

potentially via IL-15 armoring or combination checkpoint

blockade (77). Given the accumulating safety data and modular

engineering options (78–80), CAR-NK strategies merit staged

translation in EMs once lesion-specific targets and homing cues

are defined.
5 Conclusion

In summary, NK cell dysfunction is a central immune defect in

endometriosis, driven by microenvironmental immunosuppression

and ectopic cell immune evasion through altered receptor-ligand

interactions, adhesion molecule aberrations, and cytokine-mediated

suppression, which collectively impair cytotoxic clearance of ectopic

lesions. While emerging immunotherapies targeting NK cells—such

as checkpoint blockade, cytokine stimulation, and adoptive cell

therapy—hold translational potential, challenges remain in

optimizing specificity and safety to avoid systemic autoimmunity.

However, several obstacles need to be addressed before NK cell–

based immunotherapy can be widely applied in EMs. Antigenic

heterogeneity of ectopic lesions complicates the identification of

reliable NK cell targets; the limited trafficking and retention of NK

cells within peritoneal and pelvic lesions may reduce therapeutic

efficacy; and systemic activation of NK cells carries a risk of off-

target cytotoxicity and tissue damage. These considerations

highlight the importance of carefully designed, patient-tailored

approaches and combination strategies. Future research must

prioritize human studies, biomarker-driven patient stratification,

and combinatorial approaches integrating NK-targeted agents with

existing hormonal or surgical therapies to improve clinical

outcomes for pain and infertility in EMs.
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