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Blood vessels are critical in systemic aging with arteries stiffening and calcifying

due to chronic inflammation and oxidative stress, driving age-related

cardiovascular and cerebrovascular diseases. In this review, neutrophil

extracellular traps (NETs) —web-like structures composed of decondensed

chromatin, histones, and antimicrobial proteins released by neutrophils—are

explored as therapeutic targets in vascular aging. NETs are vital for pathogen

defense, but their excessive activation leads to inflammation and vascular

pathologies, promoting endothelial dysfunction, inflammatory aging, and

vascular remodeling in diseases such as hypertension, atherosclerosis,

myocardial infarction, heart failure, atrial fibrillation, ischemic stroke, and

Alzheimer’s disease. Increasing evidence supports that modulating NETs

through inhibitors or scavengers can reduce inflammatory responses, preserve

endothelial integrity, and improve prognosis. As a potential therapeutic target,

growing attention has been directed toward exploring the balance between NET

induction, inhibition, and degradation.
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Introduction

With the accelerating pace of population aging, the study and focus on aging-related

diseases have become increasingly critical. Among these, cardiovascular diseases (CVDs)

are one of the most prevalent age-associated conditions, accounting for a significant

proportion of morbidity and mortality worldwide (1). Vascular aging constitutes the core

pathological basis of CVDs and central nervous system (CNS) disorders. As age advances,

structural remodeling of the vascular wall occurs, characterized by elastin fragmentation,

increased collagen deposition, vascular calcification, and chronic low-grade inflammation

(inflammaging) (2–4). These changes directly result in increased arterial stiffness and

endothelial dysfunction. Emerging biomarkers, such as circulating inflammatory factors,
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epigenetic age, and vascular calcification scores, offer promising

tools for the early identification of high-risk individuals (5, 6).

Neutrophils, the most abundant leukocytes in human blood, are

rapidly recruited to sites of injury and infection via the vasculature

(7). They limit pathogen spread through phagocytosis,

degranulation, and NET release (8, 9). However, hyperactivated

neutrophils frequently lead to adverse outcomes detrimental to host

tissues and immune responses, leading to exacerbated organ

damage (10). Of particular interest are neutrophil-released NETs,

which promote endothelial injury, oxidative stress, immune

dysregulation, and procoagulant states, thereby accelerating

arterial stiffness and dysfunction. These alterations directly

contribute to inflammatory aging and vascular aging (11–14).
The structure and function of NETs

NETs are web-like structures released by neutrophils during

immune defense processes, primarily composed of decondensed

chromatin associated with cytoplasmic and granule proteins, such

as myeloperoxidase (MPO) and neutrophil elastase (NE) (15, 16).

The formation of NETs, referred to as NETosis, is a specialized form

of neutrophil cell death triggered by pathogenic infections, pro-

inflammatory stimuli, or damage-associated molecular patterns

(DAMPs) (17, 18). This process depends on the coordinated

actions of signaling pathways involving protein-arginine

deiminase-4 (PAD4), NE, and Toll-like receptor 4 (TLR4) (19,

20), and is accompanied by changes in reactive oxygen species

(ROS) levels and the regulation of apoptosis-related signaling

pa thways (21–23) . These mechan i sms promote the

decondensation of chromatin and histones, allowing chromatin to

expand from the nucleus into the cytoplasm. Ultimately, the

neutrophil cell membrane ruptures, releasing chromatin and

antimicrobial proteins to form the NET structure (24).

Under physiological conditions, NETs play a critical role in host

defense by directly capturing and eliminating pathogens and

modulating cytokine release to influence local inflammatory

responses. This trapping mechanism, facilitated by the web-like

structure of NETs, enhances pathogen clearance by concentrating

antimicrobial proteins and promoting phagocytosis by other

immune cells (25). Additionally, NETs modulate local

inflammatory responses by releasing cytokines such as IL-8,

which recruit and activate immune cells to coordinate acute

infection resolution (26). In certain contexts, NETs may

contribute to tissue repair by clearing necrotic debris and

supporting wound healing (27). However, aberrant or persistent

activation of NETs can lead to chronic inflammation, immune

dysregulation, and tissue damage. For instance, in autoimmune

diseases such as systemic lupus erythematosus (SLE), impaired

clearance of NETs may result in sustained exposure to self-

antigens, thereby promoting the production of autoantibodies and

the deposition of immune complexes, which exacerbates

inflammatory responses (28, 29). Additionally, the role of NETs

in the tumor microenvironment has garnered increasing attention.

NETs not only facilitate cancer metastasis through the capturing
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cancer cells but may also enhance tumor cell resistance to

chemotherapy (30, 31). The induction of NETs can be achieved

through various stimulatory methods, with classic inducers

including phorbol 12-myristate 13-acetate (PMA) and

lipopolysaccharide (LPS) (32, 33).
NETs damage vascular endothelial
cells and exacerbate vascular
dysfunction

In 2024, Professor Mahmoud Abdellatif innovatively proposed

eight molecular hallmarks as common markers of cardiovascular

aging: autophagy dysfunction, loss of proteostasis, genomic

instability, epigenetic alterations, mitochondrial dysfunction,

cellular senescence, neurohormonal dysregulation, and

inflammation (34). Aging endothelial cells (ECs) are recognized

as a primary hallmark of vascular diseases (35). The clearance of

senescent cells has been shown to alleviate aging-associated

symptoms and extend healthspan (36). Endothelial cell

senescence exhibits characteristic features of normal cellular

aging, such as irreversible growth arrest, increased expression or

activation of p53, upregulation of p21WAF1/Cip1 and cell cycle

inhibitor p16Ink4a, elevated senescence-associated b-galactosidase
activity (SA-b-Gal) (37), and the presence of the senescence-

associated secretory phenotype (SASP) (38). Endothelial cell

senescence often begins with endothelial cell damage, which leads

to endothelial dysfunction, induces a pro-inflammatory state,

further exacerbates endothelial senescence, and promotes the

progression of vascular diseases such as atherosclerosis,

hypertension, and stroke (39). Current experiments have

demonstrated that NETs have significant toxic effects on Human

Umbilical Vein Endothelial Cells (HUVECs). NETs not only

promote the proliferation of HUVECs but also activated the

nuclear factor-kb (NF-kB) pathway, up-regulated the expression

of important inflammatory and angiogenic molecules, including

vascular cell adhesion molecule-1 (VCAM-1), intercellular

adhesion molecule-1 (ICAM-1), metallopeptidase-14 (MMP-14),

vascular endothelial growth factor A (VEGFA), and interleukin-6

(IL-6), and induced the formation of immature neovascularization

(40, 41). Another study revealed a significant enrichment of

mitophagy- and ferroptosis-related signaling pathways in

HUVECs incubated with NETs (42). NETs convert HUVECs into

procoagulant and pro-inflammatory phenotypes (43, 44).

Vascular dysfunction is an early hallmark of various age-related

diseases. Its core feature is closely linked to endothelial cell

dysfunction. As a single layer of cells lining the lumen of blood

vessels, endothelial cells serve as the direct interface between blood

and the vessel wall (45). Endothelial cells regulate vascular tone by

releasing vasodilators such as nitric oxide (NO) and

vasoconstrictors such as endothelin-1 (ET-1) in response to

changes in blood flow (46). Recent studies have further uncovered

the critical role of NETs in endothelial dysfunction and vascular

pathological processes (47). In the progression of atherosclerosis,

NETs induce endothelial cell damage, promote monocyte adhesion,
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and drive macrophages toward a pro-inflammatory phenotype,

thereby accelerating the formation and instabil i ty of

atherosclerotic plaques (48). Furthermore, NETs act as scaffolds

for platelets and coagulation factors, enhancing the coagulation

cascade and inhibiting fibrinolysis, which promotes thrombus

formation and stabilization in deep vein thrombosis (DVT) and

arterial thrombosis (49, 50). NETs are also closely linked to vascular

aging, as they accelerate vascular aging by promoting endothelial

damage, immune dysregulation, and a procoagulant state.

Inflammaging can enhance NETs formation, while NETs-

mediated inflammatory cytokine release and increased oxidative

stress further exacerbate vascular dysfunction (51, 52).
NETs promote age-related diseases

A substantial body of research demonstrates that NETs interact

extensively with various proteins and participate in numerous

physiological pathways, including inflammation and oxidative stress.

This delicate balance underscores the significant role of NETs in

growth and development. However, NETs produced during the aging

process disrupt vascular function, potentially exacerbating the

progression of CVDs and neurodegenerative disorders.
Cardiovascular disease

In cardiovascular diseases, NETs primarily drive vascular

remodeling, thrombosis, and chronic inflammation, amplifying
Frontiers in Immunology 03
arterial stiffness and cardiac dysfunction common in aging.

Increased vascular resistance due to reduced vessel diameter is a

key pathophysiological mechanism contributing to hypertension

(53). Several signaling pathways are involved in vascular

dysfunction and the progression of hypertension, including

calcium channels, the nitric oxide–nitric oxide–soluble guanylyl

cyclase–cyclic guanosine monophosphate (NO-NOsGC-cGMP)

pathway, vascular remodeling pathways, and upstream regulators

such as the renin-angiotensin-aldosterone system (RAAS),

oxidative stress-related pathways, and immune/inflammatory

pathways (53). Changes in intracellular calcium concentration are

a key mechanism regulating the contractile state of vascular smooth

muscle cells. Treatment of neutrophils with the mechanosensitive

calcium channel transient receptor potential vanilloid 4 (TRPV4)

agonist increases intracellular calcium and NETosis, both in a dose-

dependent manner. Jaya et al. further discovered that citrullinated

histones in NETs disrupt endothelial cell integrity, contributing to

vascular dysfunction (54). NETs not only activate innate immunity

via the release of extracellular DNA and histones but also attack the

vascular endothelium through the release of MPO and NE, which

further increase oxidative stress and disrupt the endothelial barrier

(55). Concurrently, elevated MPO-DNA complexes, as reported by

Smith et al., correlate with endothelial apoptosis in hypertensive

patients, highlighting NETs’ role in amplifying oxidative stress (56)

(Figure 1). Isolevuglandins (IsoLGs), products of lipid peroxidation,

further stimulate NET formation, with studies showing that the

IsoLG scavenger 2-hydroxybenzylamine (2-HOBA) reduces NET

accumulation and improves blood pressure in animal models (57).

Another point of concern is that NETs, through their interactions
FIGURE 1

NETs in vascular diseases. Peroxidation products, inflammation directly stimulate neutrophil migration and induce NETs formation. DNase I and
PAD4 inhibitor reduce NET formation. (A) NETs activate innate immunity by releasing extracellular DNA and histones, and also attack the vascular
endothelium by releasing MPO and NE, which further increase oxidative stress and drive the formation of inflammatory mediators IL-6 and IL-1b,
and ultimately disrupts the endothelial barrier. (B) NETs induce mitochondrial damage in cardiomyocytes, leading to autophagic apoptosis and
further cardiac dysfunction. NETs, neutrophil extracellular traps; IsoLGs, Isolevuglandins; HMGB1, high-mobility group box 1; oxLDL, oxidized low-
density lipoprotein; DNase I, deoxyribonuclease I; PAD4, Protein arginine deiminase 4; CitH3, citrullinated histone H3; MPO, Myeloperoxidase; NE,
neutrophil elastase; IL-6, interleukin-6; IL-1b, interleukin-1b.
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with endothelial cells and coagulation factors, directly enhance

coagulation activity, inducing a hypercoagulable state and

increasing thrombotic risk (58). In patients with primary

hypertension and hyperhomocysteinemia (HHcy), studies show

that circulating deoxyribonuclease I (DNase I) can effectively

degrade NETs, thereby reducing the risk of thrombosis (56).

These findings collectively suggest that NETs integrate

inflammatory, thrombotic, and oxidative pathways to drive

hypertension, with potential therapeutic implications for targeting

NETosis to mitigate vascular damage.

Atherosclerosis, as a hallmark of vascular aging, is closely

associated with age-related cellular dysfunction (59). NETs exert

multifaceted effects across different stages of atherosclerosis.

Warna t sch e t a l . demons t ra t ed that NETs ac t iva te

proinflammatory immune responses during early plaque

formation by releasing DNA and granule protein, driving the

production of inflammatory mediators such as interleukin-1b (IL-

1b) (60). This process is further exacerbated by oscillating high-fat

diets (alternating between high-fat diets and regular diets), which

create a more pronounced proinflammatory microenvironment

(61). As plaques mature, hypercholesterolemia impairs DNase-

mediated NET clearance, allowing persistent NETs accumulation

that enlarges the necrotic core, as shown by Döring et al. (62).

Concurrently, oxidized low-density lipoprotein (oxLDL) promotes

NETosis by increasing intracellular chloride concentrations (63).

Notably, histone H2A within NETs promotes monocyte adhesion

and amplifies inflammatory dissemination under endotoxemic

conditions, accelerating plaque progression (64). In experimental

models of recurrent ischemic stroke associated with atherosclerosis,

circulating cell-free DNA (cfDNA) was found to induce NETosis

and activate the absent in melanoma 2 (AIM2) inflammasome

within atherosclerotic plaques, thereby exacerbating inflammation

and destabilizing the plaques (65). Researchers at Harvard Medical

School demonstrated that the delivery of PAD4 inhibitors via

collagen IV-targeted nanoparticles effectively reduces NET

formation, preserves endothelial integrity, and prevents plaque

erosion (66). These studies collectively underscore NETs as a

central mediator of chronic inflammation and plaque

destabilization in atherosclerosis, highlighting their potential as a

therapeutic target to alleviate vascular aging.

These thrombotic and inflammatory contributions in

atherosclerosis and hypertension parallel the acute injury and

remodeling effects of NETs in myocardial infarction, where they

amplify local damage and long-term cardiac consequences. NETs

accumulate at the culprit site and correlate with infarct size in ST-

segment elevation myocardial infarction (STEMI) (67). NETs

enhance local thrombosis and inflammation and directly promote

fibrotic remodeling through the activation offibrocytes at the infarct

site (68). This dual effect makes them critical mediators of both

initial myocardial injury and long-term cardiac dysfunction

following STEMI. Reducing neutrophil infiltration and NETs

formation attenuates myocardial ischemia/reperfusion injury (I/R)

(69, 70). Interestingly, NETs released after tissue injury in

myocardial infarction (MI) fundamentally disrupt humoral

immunity by inducing widespread lymphocyte death and
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immunoglobulin loss, leading to impaired mucosal defenses and

higher risk of infection (71). However, another study found that

NETs in MI also act as modulators of post-infarction inflammation

and tissue repair, promoting better cardiac healing and function in

MI, especially when pathological thrombosis is not a dominant

feature (72). Pharmacological or genetic strategies to inhibit NET

formation—for example, PAD4 knockdown, inhibitors such as

DNase1, the leukotriene C4 (LTC4) receptor antagonist

pranlukast—reduce myocardial injury and improve cardiac

function after MI, highlighting the translational potential of

targeted NETs in MI therapy (73).

NETs exacerbate chronic cardiac dysfunction in heart failure by

promoting inflammation, mitochondrial damage, and pathological

remodeling. Elevated NET formation, triggered by inflammatory

signals and oxidative stress, amplifies myocardial injury (74–76).

For instance, Zhang et al. showed that high-mobility group box 1

(HMGB1) promotes neutrophil recruitment and NETosis in a heart

failure with preserved ejection fraction (HFpEF) mouse model,

exacerbating diastolic dysfunction. Suppression of the HMGB1-

NET axis using sodium-glucose cotransporter 2 (SGLT2) inhibitors

such as empagliflozin successfully improves diastolic function (77).

In the pathophysiological process of heart failure, NET levels are

closely associated with disease severity, with NET-induced

mitochondrial damage in cardiomyocytes serving as a critical

factor. Professor Bo Yu’s team identified a novel VWF-SLC44A2-

NET axis involved in the progression of heart failure and

demonstrated that elevated NET levels impair mitochondrial

function and cardiac performance via the NE-TLR4-PGC-1a
pathway (78). Additionally, low-density neutrophils (LDNs) in

acutely decompensated HFpEF patients exhibit heightened NET-

forming capacity, intensifying chronic inflammation. This suggests

that LDNs may serve as a key source of NET formation (79). Studies

using a pressure overload model show that the deficiency of

developmental endothelial locus-1 (DEL-1) promotes neutrophil

infiltration and NET formation via activation of the p38 signaling

pathway, leading to myocardial remodeling and dysfunction (80).

DEL-1 exerts its protective effects by inhibiting P38 signaling and

suppressing NET formation, highlighting its potential as a

therapeutic target. Clinical studies show that the dynamic changes

in NET markers before and after left ventricular assist device

(LVAD) implantation further highlight the close relationship

between NETs, inflammation, and thrombosis. The significant

post-surgical decrease in NET levels may be associated with the

alleviation of inflammatory responses (81).

Similar to heart failure, the formation and functional

mechanisms of NETs in atrial fibrillation (AF) are closely

associated with inflammation, fibrosis, and thrombosis

development. In patients with AF, NET levels are significantly

elevated and positively correlate with abnormalities in left atrial

hemodynamics, the grade of spontaneous echocardiographic

contrast (SEC), and a prothrombotic state (82). NETs activate

fibrosis-related signaling pathways, such as Smad and MAPK,

promoting the production of extracellular matrix (ECM) proteins,

including collagen and fibronectin, thereby driving fibrosis

progression. Additionally, NETs facilitate fibroblast differentiation
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1657938
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mao et al. 10.3389/fimmu.2025.1657938
into myofibroblasts, which exacerbates atrial structural remodeling

in AF patients (83, 84). NETs also induce autophagic apoptosis and

mitochondria l membrane potent ia l depolar izat ion in

cardiomyocytes, resulting in cardiomyocyte atrophy, increased

perinuclear granules, and further impairment of mitochondrial

function (83, 85). AF induces NET formation predominantly in

the left atrial appendage, potentially contributing to the

development of left atrial mural thrombi (86). Specific markers of

NETosis may serve as prognostic indicators for adverse events in

AF, offering novel insights and potential clinical applications for

predicting thrombotic risk and optimizing the CHA2DS2-VASc

score (87).
Cerebrovascular diseases

In cerebrovascular diseases, NETs exacerbate neurovascular

unit dysfunction, including blood-brain barrier disruption and

neuronal damage, contributing to both acute and chronic aging-

related pathologies. NETs play a detrimental role in various stages

of ischemic stroke. During the acute phase, platelet-derived

HMGB1 mediates NET formation, worsening stroke outcome by

promoting local thrombosis and inflammation (50, 88). Notably,

MPO inhibitors stabilize atherosclerotic plaques, reduce the

incidence and severity of vascular occlusion, limit inflammation-

driven tissue damage, and prevent adverse cardiovascular events

(89). A common phenomenon in stroke is the destruction of the

blood-brain barrier (BBB). The BBB is a specialized vascular

structure formed by endothelial cells that separates the CNS from

the peripheral circulation, and plays a crucial role in regulating

molecular pathways in and out of the brain, and protecting neural

tissues from pathogens (90, 91). After reperfusion in ischemic

stroke, partial recovery of the BBB leads to increased

permeability, allowing neutrophils to enter the brain by altering

the tight junctions of endothelial cells (92). During the delayed

phase, a significant influx of peripheral neutrophils migrates to the
Frontiers in Immunology 05
affected brain tissue, where they release NETs (Figure 2). This

process exacerbates BBB disruption, triggers microglial activation,

and ultimately contributes to neuronal cell death (93). Researchers

have demonstrated that overexpression of PAD4 exacerbates BBB

breakdown and reduces revascularization in an ischemic mouse

model (94). These findings indicate NETs impair revascularization

and vascular remodeling after stroke. NETs contribute to

cerebrovascu lar compl i ca t ions v ia cyc l i c guanos ine

monophosphate-adenosine monophosphate synthase-stimulator

of interferon gene(cGAS-STING) activation and type 1 interferon

response in the ischemic brain (95). A team has developed a self-

assembled liposomal nanocarriers loaded with a PAD4 inhibitor to

inhibit NETosis and reduce downstream inflammatory factors by

inhibiting the cGAS-STING pathway to ameliorate brain injury in

mice with ischemic stroke (96). Similarly, another team achieved

neuroprotection by targeting neutrophils to deliver NETs inhibitors

to the site of brain injury, thereby reducing neuroinflammation and

oxidative damage (97). This strategy may provide a foundation for

the development of stroke-targeted therapeutic diagnostics.

Alzheimer ’s disease (AD) is a gradual, progressive

neurodegenerative disease characterized by the accumulation of

neuritic plaques of b -amyloid (amyloid-b, Ab) in neuronal cytosol

outside of neurons and the accumulation of abnormally

hyperphosphorylated tau proteins within neurons (98, 99).

Neutrophil accumulation has been reported at amyloid plaques

(100). NETs are also detected in both the blood vessels and

parenchyma of AD model mice and in patients with AD. These

NETs are often located near Ab plaques (101). NETs components

such as MPO, citrullinated histone H3 (CitH3), NE and PAD4 are

significantly elevated in the prefrontal cortex of AD model mice.

These elevations are associated with increased levels of

inflammatory cytokines including tumor necrosis factor-a (TNF-

a), IL-1b, IL-6, and interferon-g (IFN-g) (102). NETs are pro-

inflammatory and cytotoxic, and their release is associated with

increased vascular permeability and tissue destruction (103). The

formation of NETs contributes to BBB disruption and neuronal
FIGURE 2

NETs mediated BBB disruption. After ischemic stroke reperfusion, neutrophils enter the brain through the increased permeability of the BBB and
release NETs. Overexpression of PAD4 exacerbates BBB disruption. This process triggers microglia activation, ultimately leading to neuronal cell
death. Next, NETs further impair hemodialysis and vascular remodeling after brain injury through the cGAS-STING pathway. PAD4 inhibitors mitigate
brain damage by inhibiting this pathway. BBB, blood-brain barrier; PAD4, Protein arginine deiminase 4; cGAS-STING, cyclic GMP-AMP synthase-
stimulator of interferon genes.
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damage in AD (104). Strategies that block neutrophil trafficking or

directly inhibit NETs reduce the formation of NETs, improve

cognitive function, decrease microgliosis, and lower Ab and

phospho-tau pathology in AD model mice (101, 105). These

findings suggest that NETs are not only biomarkers of

inflammation but active contributors to the progression of AD,

driving neurodegeneration and impaired cognition.
Angiotensin II and NETs synergistically
induce vascular senescence

In recent years, the interplay between NETs and the renin-

angiotensin system (RAS) has garnered significant attention.

Angiotensin II (Ang II), a key effector molecule of the RAS, not

only directly induces NETosis but also indirectly facilitates NET

release in complex pathophysiological settings via inflammation

and oxidative stress. Moreover, NETs, by promoting the release of

inflammatory cytokines and ROS, further activate the renin-

angiotensin system, establishing a positive feedback loop that may

play a pivotal role in vascular aging and the progression of

related diseases.

A growing body of evidence reveals the pathophysiological role of

Ang II in cardiovascular diseases, including inflammation, metabolic

dysfunction, and aging (106). Ang II induces oxidative stress in
Frontiers in Immunology 06
neutrophils via its Ang II type 1 receptor (AT1R), stimulating the

excessive production of ROS and further amplifying this process

through the activation of nicotinamide adenine dinucleotide

phosphate (NADPH) oxidase. This ROS-mediated oxidative stress

directly activates PAD4, leading to histone citrullination and

triggering NET release (107). In an abdominal aortic aneurysm

(AAA) model Ang II promotes extensive NET formation by

inducing DNA extrusion through signaling pathways such as p38

MAPK and PI3K (108). In contrast, researchers at West China

Hospital reported that Ang II does not directly activate NETs;

rather, when combined with other stimulatory factors such as

PMA, the NET-releasing ability of neutrophils was significantly

enhanced, accompanied by an increase in AKT phosphorylation

and elevated autophagy levels (83).

In addition to direct pathways, Ang II indirectly promotes NET

formation by enhancing neutrophil activation and the

inflammatory microenvironment. For instance, Ang II

significantly activates neutrophils and increases their propensity

to release NETs by downregulating Krüppel-like factor 2 (KLF2)

within these cells (109). At Ang II-induced lesion sites, the

aggregation of NETs not only causes endothelial cell damage but

also leads to microthrombosis, resulting in impaired blood

perfusion, myocardial ischemia, and capillary rarefaction. This

effects ultimately exacerbating downstream organ fibrosis and

functional decline (110).
FIGURE 3

The positive feedback loops between NETs and angiotensin. Ang II acts directly on AT1R, activating NADPH oxidase, upregulating ROS and PAD4
levels, and downregulating KLF2, while activating p38 MARK and PI3K/AKT signaling pathways, promoting DNA efflux to form NETs, which release
the pro-inflammatory factors IL-1b and HMGB1, creating a local inflammatory environment and enhancing Ang II expression, resulting in the
pathological features of inflammation, vascular remodeling, and fibrosis. All of these may lead to vascular senescence. AT1R, Ang II type 1 receptor;
NAPDH, nicotinamide adenine dinucleotide phosphate; ROS, reactive oxygen species; KLF2, Krüppel-like factor 2; IL-1b, interleukin-1b; HMGB1,
high-mobility group box 1.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1657938
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mao et al. 10.3389/fimmu.2025.1657938
The formation of NETs is not only a result of Ang II and RAS

activation but also enhances RAS activity by promoting

inflammatory responses and oxidative stress, creating a positive

feedback loop (Figure 3). This feedback mechanism may play a

critical role in vascular aging and the progression of related diseases.

The release of substantial amounts of ROS and inflammatory

factors (such as IL-1b and HMGB1) during NET formation

significantly amplifies RAS activation (83, 110). For instance, in

AF studies, NET-associated markers such as CitH3 and cfDNA

exhibit a positive correlation with RAS activation. Notably, Ang II

further promotes NET formation, resulting in cardiomyocyte

damage and mitochondrial DNA (mtDNA) release, with these

damage-associated signals driving NET generation via a positive

feedback mechanism, thereby exacerbating fibrosis and structural

remodeling in AF (83). Components released during NET

formation (MPO and DNA) accelerate vascular pathology by

inhibiting the PI3K/AKT signaling pathway in smooth muscle

cells (SMCs), leading to smooth muscle ferroptosis, exacerbated

inflammation, and further increase in Ang II levels within the lesion

site (108). This positive feedback mechanism may serve as a critical

d r i v ing force beh ind vascu la r ag ing and vascu la r -

associated diseases.
Conclusions and future perspectives

The review synthesizes the multifaced role of NETs in vascular

aging and related disease. This discussion revolves around the dual

nature of NETs in physiological and pathological contexts. From a

physiological perspective, NETs hold significant importance in

immune defense by capturing pathogens and facilitating their

clearance. However, over-activation drives a shift toward

pathological drivers such as chronic inflammaging, oxidative

stress, endothelial dysfunction and thrombosis.

NETs exacerbate vascular diseases by promoting vascular

remodeling, hypercoagulability, and neuroinflammtion, often

amplified through positive feedback loops with Ang II. The review

also elucidates the interaction between NETs and vascular diseases.

Therapeutically, targeting NET formation (e.g, PAD4 inhibitors) and

degradation (e.g, DNase) or upstream modulators (e.g., SGLT2

inhibitors, IsoLG scavengers) holds promise for mitigating these

effects and improving outcomes in aging populations.

Unresolved questions include the functional differences in NETs

across age groups and populations; for instance, while elderly

individuals produce more NETs, their function and value-added

stimulation of cells may diminish (111). Controversies persist

regarding NETs’ context-dependent roles—beneficial in controlled

inflammation versus detrimental in chronic states—and the precise

mechanisms linking NET overactivation to vascular senescence. Future

research should prioritize elucidating molecular pathways of NET-

vascular interactions, developing NET-based biomarkers for early risk

stratification and personalized medicine, and conducting in vitro/in
Frontiers in Immunology 07
vivo studies to validate population-specific effects. These efforts could

advance NET-targeted therapies, ultimately reducing the burden of

age-related vascular diseases and enhancing healthspan.
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R, et al. Subclinical atherosclerosis and accelerated epigenetic age mediated by
inflammation: a multi-omics study. Eur Heart J. (2023) 44:2698–709. doi: 10.1093/
eurheartj/ehad361

7. Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM, Chilvers ER.
Neutrophil kinetics in health and disease. Trends Immunol. (2010) 31:318–24.
doi: 10.1016/j.it.2010.05.006
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