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Blood vessels are critical in systemic aging with arteries stiffening and calcifying
due to chronic inflammation and oxidative stress, driving age-related
cardiovascular and cerebrovascular diseases. In this review, neutrophil
extracellular traps (NETs) —web-like structures composed of decondensed
chromatin, histones, and antimicrobial proteins released by neutrophils—are
explored as therapeutic targets in vascular aging. NETs are vital for pathogen
defense, but their excessive activation leads to inflammation and vascular
pathologies, promoting endothelial dysfunction, inflammatory aging, and
vascular remodeling in diseases such as hypertension, atherosclerosis,
myocardial infarction, heart failure, atrial fibrillation, ischemic stroke, and
Alzheimer’'s disease. Increasing evidence supports that modulating NETs
through inhibitors or scavengers can reduce inflammatory responses, preserve
endothelial integrity, and improve prognosis. As a potential therapeutic target,
growing attention has been directed toward exploring the balance between NET
induction, inhibition, and degradation.
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Introduction

With the accelerating pace of population aging, the study and focus on aging-related
diseases have become increasingly critical. Among these, cardiovascular diseases (CVDs)
are one of the most prevalent age-associated conditions, accounting for a significant
proportion of morbidity and mortality worldwide (1). Vascular aging constitutes the core
pathological basis of CVDs and central nervous system (CNS) disorders. As age advances,
structural remodeling of the vascular wall occurs, characterized by elastin fragmentation,
increased collagen deposition, vascular calcification, and chronic low-grade inflammation
(inflammaging) (2-4). These changes directly result in increased arterial stiffness and
endothelial dysfunction. Emerging biomarkers, such as circulating inflammatory factors,
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epigenetic age, and vascular calcification scores, offer promising
tools for the early identification of high-risk individuals (5, 6).
Neutrophils, the most abundant leukocytes in human blood, are
rapidly recruited to sites of injury and infection via the vasculature
(7). They limit pathogen spread through phagocytosis,
degranulation, and NET release (8, 9). However, hyperactivated
neutrophils frequently lead to adverse outcomes detrimental to host
tissues and immune responses, leading to exacerbated organ
damage (10). Of particular interest are neutrophil-released NETs,
which promote endothelial injury, oxidative stress, immune
dysregulation, and procoagulant states, thereby accelerating
arterial stiffness and dysfunction. These alterations directly
contribute to inflammatory aging and vascular aging (11-14).

The structure and function of NETs

NETs are web-like structures released by neutrophils during
immune defense processes, primarily composed of decondensed
chromatin associated with cytoplasmic and granule proteins, such
as myeloperoxidase (MPO) and neutrophil elastase (NE) (15, 16).
The formation of NETs, referred to as NETosis, is a specialized form
of neutrophil cell death triggered by pathogenic infections, pro-
inflammatory stimuli, or damage-associated molecular patterns
(DAMPs) (17, 18). This process depends on the coordinated
actions of signaling pathways involving protein-arginine
deiminase-4 (PAD4), NE, and Toll-like receptor 4 (TLR4) (19,
20), and is accompanied by changes in reactive oxygen species
(ROS) levels and the regulation of apoptosis-related signaling
pathways (21-23). These mechanisms promote the
decondensation of chromatin and histones, allowing chromatin to
expand from the nucleus into the cytoplasm. Ultimately, the
neutrophil cell membrane ruptures, releasing chromatin and
antimicrobial proteins to form the NET structure (24).

Under physiological conditions, NET's play a critical role in host
defense by directly capturing and eliminating pathogens and
modulating cytokine release to influence local inflammatory
responses. This trapping mechanism, facilitated by the web-like
structure of NETs, enhances pathogen clearance by concentrating
antimicrobial proteins and promoting phagocytosis by other
immune cells (25). Additionally, NETs modulate local
inflammatory responses by releasing cytokines such as IL-8,
which recruit and activate immune cells to coordinate acute
infection resolution (26). In certain contexts, NETs may
contribute to tissue repair by clearing necrotic debris and
supporting wound healing (27). However, aberrant or persistent
activation of NETs can lead to chronic inflammation, immune
dysregulation, and tissue damage. For instance, in autoimmune
diseases such as systemic lupus erythematosus (SLE), impaired
clearance of NETs may result in sustained exposure to self-
antigens, thereby promoting the production of autoantibodies and
the deposition of immune complexes, which exacerbates
inflammatory responses (28, 29). Additionally, the role of NETs
in the tumor microenvironment has garnered increasing attention.
NETs not only facilitate cancer metastasis through the capturing
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cancer cells but may also enhance tumor cell resistance to
chemotherapy (30, 31). The induction of NETs can be achieved
through various stimulatory methods, with classic inducers
including phorbol 12-myristate 13-acetate (PMA) and
lipopolysaccharide (LPS) (32, 33).

NETs damage vascular endothelial
cells and exacerbate vascular
dysfunction

In 2024, Professor Mahmoud Abdellatif innovatively proposed
eight molecular hallmarks as common markers of cardiovascular
aging: autophagy dysfunction, loss of proteostasis, genomic
instability, epigenetic alterations, mitochondrial dysfunction,
cellular senescence, neurohormonal dysregulation, and
inflammation (34). Aging endothelial cells (ECs) are recognized
as a primary hallmark of vascular diseases (35). The clearance of
senescent cells has been shown to alleviate aging-associated
symptoms and extend healthspan (36). Endothelial cell
senescence exhibits characteristic features of normal cellular
aging, such as irreversible growth arrest, increased expression or
activation of p53, upregulation of p21WAM™/PL and cell cycle
inhibitor p16™
activity (SA-B-Gal) (37), and the presence of the senescence-

, elevated senescence-associated P-galactosidase

associated secretory phenotype (SASP) (38). Endothelial cell
senescence often begins with endothelial cell damage, which leads
to endothelial dysfunction, induces a pro-inflammatory state,
further exacerbates endothelial senescence, and promotes the
progression of vascular diseases such as atherosclerosis,
hypertension, and stroke (39). Current experiments have
demonstrated that NETs have significant toxic effects on Human
Umbilical Vein Endothelial Cells (HUVECs). NETs not only
promote the proliferation of HUVECs but also activated the
nuclear factor-xb (NF-kB) pathway, up-regulated the expression
of important inflammatory and angiogenic molecules, including
vascular cell adhesion molecule-1 (VCAM-1), intercellular
adhesion molecule-1 (ICAM-1), metallopeptidase-14 (MMP-14),
vascular endothelial growth factor A (VEGFA), and interleukin-6
(IL-6), and induced the formation of immature neovascularization
(40, 41). Another study revealed a significant enrichment of
mitophagy- and ferroptosis-related signaling pathways in
HUVECs incubated with NETs (42). NETs convert HUVECs into
procoagulant and pro-inflammatory phenotypes (43, 44).
Vascular dysfunction is an early hallmark of various age-related
diseases. Its core feature is closely linked to endothelial cell
dysfunction. As a single layer of cells lining the lumen of blood
vessels, endothelial cells serve as the direct interface between blood
and the vessel wall (45). Endothelial cells regulate vascular tone by
releasing vasodilators such as nitric oxide (NO) and
vasoconstrictors such as endothelin-1 (ET-1) in response to
changes in blood flow (46). Recent studies have further uncovered
the critical role of NETs in endothelial dysfunction and vascular
pathological processes (47). In the progression of atherosclerosis,
NETs induce endothelial cell damage, promote monocyte adhesion,
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and drive macrophages toward a pro-inflammatory phenotype,
thereby accelerating the formation and instability of
atherosclerotic plaques (48). Furthermore, NETs act as scaffolds
for platelets and coagulation factors, enhancing the coagulation
cascade and inhibiting fibrinolysis, which promotes thrombus
formation and stabilization in deep vein thrombosis (DVT) and
arterial thrombosis (49, 50). NETSs are also closely linked to vascular
aging, as they accelerate vascular aging by promoting endothelial
damage, immune dysregulation, and a procoagulant state.
Inflammaging can enhance NETs formation, while NETs-
mediated inflammatory cytokine release and increased oxidative
stress further exacerbate vascular dysfunction (51, 52).

NETs promote age-related diseases

A substantial body of research demonstrates that NET's interact
extensively with various proteins and participate in numerous
physiological pathways, including inflammation and oxidative stress.
This delicate balance underscores the significant role of NETs in
growth and development. However, NETs produced during the aging
process disrupt vascular function, potentially exacerbating the
progression of CVDs and neurodegenerative disorders.

Cardiovascular disease

In cardiovascular diseases, NETs primarily drive vascular
remodeling, thrombosis, and chronic inflammation, amplifying

10.3389/fimmu.2025.1657938

arterial stiffness and cardiac dysfunction common in aging.
Increased vascular resistance due to reduced vessel diameter is a
key pathophysiological mechanism contributing to hypertension
(53). Several signaling pathways are involved in vascular
dysfunction and the progression of hypertension, including
calcium channels, the nitric oxide-nitric oxide-soluble guanylyl
cyclase-cyclic guanosine monophosphate (NO-NOsGC-cGMP)
pathway, vascular remodeling pathways, and upstream regulators
such as the renin-angiotensin-aldosterone system (RAAS),
oxidative stress-related pathways, and immune/inflammatory
pathways (53). Changes in intracellular calcium concentration are
a key mechanism regulating the contractile state of vascular smooth
muscle cells. Treatment of neutrophils with the mechanosensitive
calcium channel transient receptor potential vanilloid 4 (TRPV4)
agonist increases intracellular calcium and NETosis, both in a dose-
dependent manner. Jaya et al. further discovered that citrullinated
histones in NETSs disrupt endothelial cell integrity, contributing to
vascular dysfunction (54). NETs not only activate innate immunity
via the release of extracellular DNA and histones but also attack the
vascular endothelium through the release of MPO and NE, which
further increase oxidative stress and disrupt the endothelial barrier
(55). Concurrently, elevated MPO-DNA complexes, as reported by
Smith et al.,, correlate with endothelial apoptosis in hypertensive
patients, highlighting NETS’ role in amplifying oxidative stress (56)
(Figure 1). Isolevuglandins (IsoLGs), products of lipid peroxidation,
further stimulate NET formation, with studies showing that the
IsoLG scavenger 2-hydroxybenzylamine (2-HOBA) reduces NET
accumulation and improves blood pressure in animal models (57).
Another point of concern is that NETs, through their interactions
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FIGURE 1

NETs in vascular diseases. Peroxidation products, inflammation directly stimulate neutrophil migration and induce NETs formation. DNase | and
PAD4 inhibitor reduce NET formation. (A) NETs activate innate immunity by releasing extracellular DNA and histones, and also attack the vascular
endothelium by releasing MPO and NE, which further increase oxidative stress and drive the formation of inflammatory mediators IL-6 and IL-1B,
and ultimately disrupts the endothelial barrier. (B) NETs induce mitochondrial damage in cardiomyocytes, leading to autophagic apoptosis and
further cardiac dysfunction. NETs, neutrophil extracellular traps; IsoLGs, Isolevuglandins; HMGB1, high-mobility group box 1; oxLDL, oxidized low-
density lipoprotein; DNase |, deoxyribonuclease |; PAD4, Protein arginine deiminase 4; CitH3, citrullinated histone H3; MPO, Myeloperoxidase; NE,

neutrophil elastase; IL-6, interleukin-6; IL-1B, interleukin-1.
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with endothelial cells and coagulation factors, directly enhance
coagulation activity, inducing a hypercoagulable state and
increasing thrombotic risk (58). In patients with primary
hypertension and hyperhomocysteinemia (HHcy), studies show
that circulating deoxyribonuclease I (DNase I) can effectively
degrade NETs, thereby reducing the risk of thrombosis (56).
These findings collectively suggest that NETs integrate
inflammatory, thrombotic, and oxidative pathways to drive
hypertension, with potential therapeutic implications for targeting
NETosis to mitigate vascular damage.

Atherosclerosis, as a hallmark of vascular aging, is closely
associated with age-related cellular dysfunction (59). NETs exert
multifaceted effects across different stages of atherosclerosis.
Warnatsch et al. demonstrated that NETs activate
proinflammatory immune responses during early plaque
formation by releasing DNA and granule protein, driving the
production of inflammatory mediators such as interleukin-1f (IL-
1B) (60). This process is further exacerbated by oscillating high-fat
diets (alternating between high-fat diets and regular diets), which
create a more pronounced proinflammatory microenvironment
(61). As plaques mature, hypercholesterolemia impairs DNase-
mediated NET clearance, allowing persistent NETs accumulation
that enlarges the necrotic core, as shown by Doring et al. (62).
Concurrently, oxidized low-density lipoprotein (oxLDL) promotes
NETosis by increasing intracellular chloride concentrations (63).
Notably, histone H2A within NETs promotes monocyte adhesion
and amplifies inflammatory dissemination under endotoxemic
conditions, accelerating plaque progression (64). In experimental
models of recurrent ischemic stroke associated with atherosclerosis,
circulating cell-free DNA (cfDNA) was found to induce NETosis
and activate the absent in melanoma 2 (AIM2) inflammasome
within atherosclerotic plaques, thereby exacerbating inflammation
and destabilizing the plaques (65). Researchers at Harvard Medical
School demonstrated that the delivery of PAD4 inhibitors via
collagen IV-targeted nanoparticles effectively reduces NET
formation, preserves endothelial integrity, and prevents plaque
erosion (66). These studies collectively underscore NETs as a
central mediator of chronic inflammation and plaque
destabilization in atherosclerosis, highlighting their potential as a
therapeutic target to alleviate vascular aging.

These thrombotic and inflammatory contributions in
atherosclerosis and hypertension parallel the acute injury and
remodeling effects of NETs in myocardial infarction, where they
amplify local damage and long-term cardiac consequences. NET's
accumulate at the culprit site and correlate with infarct size in ST-
segment elevation myocardial infarction (STEMI) (67). NETs
enhance local thrombosis and inflammation and directly promote
fibrotic remodeling through the activation of fibrocytes at the infarct
site (68). This dual eftect makes them critical mediators of both
initial myocardial injury and long-term cardiac dysfunction
following STEMI. Reducing neutrophil infiltration and NETs
formation attenuates myocardial ischemia/reperfusion injury (I/R)
(69, 70). Interestingly, NETs released after tissue injury in
myocardial infarction (MI) fundamentally disrupt humoral
immunity by inducing widespread lymphocyte death and
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immunoglobulin loss, leading to impaired mucosal defenses and
higher risk of infection (71). However, another study found that
NETs in MI also act as modulators of post-infarction inflammation
and tissue repair, promoting better cardiac healing and function in
MI, especially when pathological thrombosis is not a dominant
feature (72). Pharmacological or genetic strategies to inhibit NET
formation—for example, PAD4 knockdown, inhibitors such as
DNasel, the leukotriene C4 (LTC4) receptor antagonist
pranlukast—reduce myocardial injury and improve cardiac
function after MI, highlighting the translational potential of
targeted NETs in MI therapy (73).

NETs exacerbate chronic cardiac dysfunction in heart failure by
promoting inflammation, mitochondrial damage, and pathological
remodeling. Elevated NET formation, triggered by inflammatory
signals and oxidative stress, amplifies myocardial injury (74-76).
For instance, Zhang et al. showed that high-mobility group box 1
(HMGBI) promotes neutrophil recruitment and NETosis in a heart
failure with preserved ejection fraction (HFpEF) mouse model,
exacerbating diastolic dysfunction. Suppression of the HMGBI-
NET axis using sodium-glucose cotransporter 2 (SGLT2) inhibitors
such as empagliflozin successfully improves diastolic function (77).
In the pathophysiological process of heart failure, NET levels are
closely associated with disease severity, with NET-induced
mitochondrial damage in cardiomyocytes serving as a critical
factor. Professor Bo Yu’s team identified a novel VWF-SLC44A2-
NET axis involved in the progression of heart failure and
demonstrated that elevated NET levels impair mitochondrial
function and cardiac performance via the NE-TLR4-PGC-lo
pathway (78). Additionally, low-density neutrophils (LDNs) in
acutely decompensated HFpEF patients exhibit heightened NET-
forming capacity, intensifying chronic inflammation. This suggests
that LDNs may serve as a key source of NET formation (79). Studies
using a pressure overload model show that the deficiency of
developmental endothelial locus-1 (DEL-1) promotes neutrophil
infiltration and NET formation via activation of the p38 signaling
pathway, leading to myocardial remodeling and dysfunction (80).
DEL-1 exerts its protective effects by inhibiting P38 signaling and
suppressing NET formation, highlighting its potential as a
therapeutic target. Clinical studies show that the dynamic changes
in NET markers before and after left ventricular assist device
(LVAD) implantation further highlight the close relationship
between NETs, inflammation, and thrombosis. The significant
post-surgical decrease in NET levels may be associated with the
alleviation of inflammatory responses (81).

Similar to heart failure, the formation and functional
mechanisms of NETs in atrial fibrillation (AF) are closely
associated with inflammation, fibrosis, and thrombosis
development. In patients with AF, NET levels are significantly
elevated and positively correlate with abnormalities in left atrial
hemodynamics, the grade of spontaneous echocardiographic
contrast (SEC), and a prothrombotic state (82). NETs activate
fibrosis-related signaling pathways, such as Smad and MAPK,
promoting the production of extracellular matrix (ECM) proteins,
including collagen and fibronectin, thereby driving fibrosis
progression. Additionally, NETs facilitate fibroblast differentiation
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into myofibroblasts, which exacerbates atrial structural remodeling
in AF patients (83, 84). NETs also induce autophagic apoptosis and
mitochondrial membrane potential depolarization in
cardiomyocytes, resulting in cardiomyocyte atrophy, increased
perinuclear granules, and further impairment of mitochondrial
function (83, 85). AF induces NET formation predominantly in
the left atrial appendage, potentially contributing to the
development of left atrial mural thrombi (86). Specific markers of
NETosis may serve as prognostic indicators for adverse events in
AF, offering novel insights and potential clinical applications for
predicting thrombotic risk and optimizing the CHA,DS,-VASc
score (87).

Cerebrovascular diseases

In cerebrovascular diseases, NETs exacerbate neurovascular
unit dysfunction, including blood-brain barrier disruption and
neuronal damage, contributing to both acute and chronic aging-
related pathologies. NETSs play a detrimental role in various stages
of ischemic stroke. During the acute phase, platelet-derived
HMGBI mediates NET formation, worsening stroke outcome by
promoting local thrombosis and inflammation (50, 88). Notably,
MPO inhibitors stabilize atherosclerotic plaques, reduce the
incidence and severity of vascular occlusion, limit inflammation-
driven tissue damage, and prevent adverse cardiovascular events
(89). A common phenomenon in stroke is the destruction of the
blood-brain barrier (BBB). The BBB is a specialized vascular
structure formed by endothelial cells that separates the CNS from
the peripheral circulation, and plays a crucial role in regulating
molecular pathways in and out of the brain, and protecting neural
tissues from pathogens (90, 91). After reperfusion in ischemic
stroke, partial recovery of the BBB leads to increased
permeability, allowing neutrophils to enter the brain by altering
the tight junctions of endothelial cells (92). During the delayed
phase, a significant influx of peripheral neutrophils migrates to the
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affected brain tissue, where they release NETs (Figure 2). This
process exacerbates BBB disruption, triggers microglial activation,
and ultimately contributes to neuronal cell death (93). Researchers
have demonstrated that overexpression of PAD4 exacerbates BBB
breakdown and reduces revascularization in an ischemic mouse
model (94). These findings indicate NETs impair revascularization
and vascular remodeling after stroke. NETs contribute to
cerebrovascular complications via cyclic guanosine
monophosphate-adenosine monophosphate synthase-stimulator
of interferon gene(cGAS-STING) activation and type 1 interferon
response in the ischemic brain (95). A team has developed a self-
assembled liposomal nanocarriers loaded with a PAD4 inhibitor to
inhibit NETosis and reduce downstream inflammatory factors by
inhibiting the cGAS-STING pathway to ameliorate brain injury in
mice with ischemic stroke (96). Similarly, another team achieved
neuroprotection by targeting neutrophils to deliver NETs inhibitors
to the site of brain injury, thereby reducing neuroinflammation and
oxidative damage (97). This strategy may provide a foundation for
the development of stroke-targeted therapeutic diagnostics.
Alzheimer’s disease (AD) is a gradual, progressive
neurodegenerative disease characterized by the accumulation of
neuritic plaques of B -amyloid (amyloid-f3, AB) in neuronal cytosol
outside of neurons and the accumulation of abnormally
hyperphosphorylated tau proteins within neurons (98, 99).
Neutrophil accumulation has been reported at amyloid plaques
(100). NETs are also detected in both the blood vessels and
parenchyma of AD model mice and in patients with AD. These
NETs are often located near AP plaques (101). NETs components
such as MPO, citrullinated histone H3 (CitH3), NE and PAD4 are
significantly elevated in the prefrontal cortex of AD model mice.
These elevations are associated with increased levels of
inflammatory cytokines including tumor necrosis factor-o. (TNF-
o), IL-1B, IL-6, and interferon-y (IFN-y) (102). NETs are pro-
inflammatory and cytotoxic, and their release is associated with
increased vascular permeability and tissue destruction (103). The
formation of NETs contributes to BBB disruption and neuronal
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damage in AD (104). Strategies that block neutrophil trafficking or
directly inhibit NETs reduce the formation of NETs, improve
cognitive function, decrease microgliosis, and lower AP and
phospho-tau pathology in AD model mice (101, 105). These
findings suggest that NETs are not only biomarkers of
inflammation but active contributors to the progression of AD,
driving neurodegeneration and impaired cognition.

Angiotensin Il and NETs synergistically
induce vascular senescence

In recent years, the interplay between NETs and the renin-
angiotensin system (RAS) has garnered significant attention.
Angiotensin II (Ang II), a key effector molecule of the RAS, not
only directly induces NETosis but also indirectly facilitates NET
release in complex pathophysiological settings via inflammation
and oxidative stress. Moreover, NETs, by promoting the release of
inflammatory cytokines and ROS, further activate the renin-
angiotensin system, establishing a positive feedback loop that may
play a pivotal role in vascular aging and the progression of
related diseases.

A growing body of evidence reveals the pathophysiological role of
Ang II in cardiovascular diseases, including inflammation, metabolic
dysfunction, and aging (106). Ang II induces oxidative stress in
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neutrophils via its Ang II type 1 receptor (AT1R), stimulating the
excessive production of ROS and further amplifying this process
through the activation of nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase. This ROS-mediated oxidative stress
directly activates PAD4, leading to histone citrullination and
triggering NET release (107). In an abdominal aortic aneurysm
(AAA) model Ang II promotes extensive NET formation by
inducing DNA extrusion through signaling pathways such as p38
MAPK and PI3K (108). In contrast, researchers at West China
Hospital reported that Ang II does not directly activate NETSs;
rather, when combined with other stimulatory factors such as
PMA, the NET-releasing ability of neutrophils was significantly
enhanced, accompanied by an increase in AKT phosphorylation
and elevated autophagy levels (83).

In addition to direct pathways, Ang II indirectly promotes NET
formation by enhancing neutrophil activation and the
inflammatory microenvironment. For instance, Ang II
significantly activates neutrophils and increases their propensity
to release NETs by downregulating Kriippel-like factor 2 (KLF2)
within these cells (109). At Ang II-induced lesion sites, the
aggregation of NETs not only causes endothelial cell damage but
also leads to microthrombosis, resulting in impaired blood
perfusion, myocardial ischemia, and capillary rarefaction. This
effects ultimately exacerbating downstream organ fibrosis and
functional decline (110).
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FIGURE 3

The positive feedback loops between NETs and angiotensin. Ang Il acts directly on AT1R, activating NADPH oxidase, upregulating ROS and PAD4
levels, and downregulating KLF2, while activating p38 MARK and PI3K/AKT signaling pathways, promoting DNA efflux to form NETs, which release
the pro-inflammatory factors IL-13 and HMGBI, creating a local inflammatory environment and enhancing Ang Il expression, resulting in the
pathological features of inflammation, vascular remodeling, and fibrosis. All of these may lead to vascular senescence. AT1R, Ang Il type 1 receptor;
NAPDH, nicotinamide adenine dinucleotide phosphate; ROS, reactive oxygen species; KLF2, Kruppel-like factor 2; IL-1, interleukin-13; HMGB1,
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The formation of NETs is not only a result of Ang IT and RAS
activation but also enhances RAS activity by promoting
inflammatory responses and oxidative stress, creating a positive
feedback loop (Figure 3). This feedback mechanism may play a
critical role in vascular aging and the progression of related diseases.
The release of substantial amounts of ROS and inflammatory
factors (such as IL-1B and HMGB1) during NET formation
significantly amplifies RAS activation (83, 110). For instance, in
AF studies, NET-associated markers such as CitH3 and cfDNA
exhibit a positive correlation with RAS activation. Notably, Ang II
further promotes NET formation, resulting in cardiomyocyte
damage and mitochondrial DNA (mtDNA) release, with these
damage-associated signals driving NET generation via a positive
feedback mechanism, thereby exacerbating fibrosis and structural
remodeling in AF (83). Components released during NET
formation (MPO and DNA) accelerate vascular pathology by
inhibiting the PI3K/AKT signaling pathway in smooth muscle
cells (SMCs), leading to smooth muscle ferroptosis, exacerbated
inflammation, and further increase in Ang II levels within the lesion
site (108). This positive feedback mechanism may serve as a critical
driving force behind vascular aging and vascular-
associated diseases.

Conclusions and future perspectives

The review synthesizes the multifaced role of NETSs in vascular
aging and related disease. This discussion revolves around the dual
nature of NETs in physiological and pathological contexts. From a
physiological perspective, NETs hold significant importance in
immune defense by capturing pathogens and facilitating their
clearance. However, over-activation drives a shift toward
pathological drivers such as chronic inflammaging, oxidative
stress, endothelial dysfunction and thrombosis.

NETs exacerbate vascular diseases by promoting vascular
remodeling, hypercoagulability, and neuroinflammtion, often
amplified through positive feedback loops with Ang II. The review
also elucidates the interaction between NETs and vascular diseases.
Therapeutically, targeting NET formation (e.g, PAD4 inhibitors) and
degradation (e.g, DNase) or upstream modulators (e.g., SGLT2
inhibitors, IsoLG scavengers) holds promise for mitigating these
effects and improving outcomes in aging populations.

Unresolved questions include the functional differences in NETs
across age groups and populations; for instance, while elderly
individuals produce more NETs, their function and value-added
stimulation of cells may diminish (111). Controversies persist
regarding NETs" context-dependent roles—beneficial in controlled
inflammation versus detrimental in chronic states—and the precise
mechanisms linking NET overactivation to vascular senescence. Future
research should prioritize elucidating molecular pathways of NET-
vascular interactions, developing NET-based biomarkers for early risk
stratification and personalized medicine, and conducting in vitro/in
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vivo studies to validate population-specific effects. These efforts could
advance NET-targeted therapies, ultimately reducing the burden of
age-related vascular diseases and enhancing healthspan.
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