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Single-cell profiling uncovers
PTPRG-driven stemness in
malignant plasma cells and
sighatures of treatment failure
in multiple myeloma

Jiewen Tan', Jinman Zhong', Yueping He, Yunman Xu,
Chang Chen and Dan Xiong*

Department of Hematology, The Eighth Affiliated Hospital, Southern Medical University (The First
People's Hospital of Shunde, Foshan), Foshan, China

Background: Multiple myeloma (MM) is characterized by extensive intratumoral
heterogeneity and complex interactions within the bone marrow
microenvironment, yet the cellular and molecular drivers of treatment
resistance remain poorly defined. Protein tyrosine phosphatase receptor
gamma (PTPRG) has emerged as a candidate tumor suppressor in various
malignancies by antagonizing proliferative and survival signaling, but its
functional and prognostic relevance in MM has not been established.

Methods: We analyzed 103,171 single-cell transcriptomes from 18 MM samples
(10 optimal responders [OR] and 8 suboptimal responders [SOR] to bortezomib—
melphalan—prednisone) to investigate cell-type composition, malignant plasma
cell subclusters, and tumor—microenvironment crosstalk. InferCNV was used to
distinguish malignant plasma cells, which were further reclustered and correlated
with bulk prognostic phenotypes. Differential expression, pathway enrichment,
transcription-factor activity, pseudotime trajectory, and ligand—receptor
interaction analyses were performed. Finally, bulk datasets (GSE9782, GSE2658,
MMRF-CoMMpass) and in vitro knockdown assays in U266 and NCI-H929 cells
were used to validate the prognostic and functional role of PTPRG.

Results: Eleven major cell types were annotated, with plasma cells, T/NK cells,
and CD14* monocytes predominating; SOR samples exhibited an expanded
plasma-cell fraction and reduced T/NK, CD14* monocyte, pre-B, and HSPC
populations. Among 35,944 malignant plasma cells, five subclusters were
defined; one subcluster (MalPlasma3) was enriched in SOR samples and
harbored 93.1% of cells associated with poor survival. MalPlasma3 and “worse-
survival” cells showed activation of stemness, E2F/MYC targets, and G2M
checkpoint pathways, driven by transcription factors E2F8, E2F7, FOXM1, E2F1,
and TIMELESS. Pseudotime analysis revealed a bifurcating differentiation toward
a resistant phenotype, accompanied by upregulation of cell-cycle and
proliferation modules. In the OR group, enhanced cytotoxic features in NK,
effector, and naive T cells, along with IGF1-IGF1R and IFNG-IFNGR signaling,
suggested a supportive microenvironment. In contrast to the known role as a
tumor suppressor in solid and hematologic cancers, our integrative analyses
identified PTPRG among seven stemness-related genes upregulated in
MalPlasma3 and poor-survival cells, which was echoed in the observed
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reduced cell viability and increased apoptosis in MM cell lines following siRNA-
mediated PTPRG knockdown.

Conclusions: This single-cell multi-omic dissection implicates a proliferative,
stem-like MalPlasma3 subcluster and identified PTPRG as a key mediator of drug
resistance and poor outcome in MM, offering novel prognostic biomarkers and

therapeutic targets.

multiple myeloma, single-cell RNA sequencing, cancer stemness, PTPRG,
immunotherapy resistance

1 Introduction

Multiple Myeloma (MM) is a hematological malignancy
characterized by the clonal proliferation of aberrant plasma cells
within the bone marrow, leading to osteolytic lesions, renal
insufficiency, anemia, and hypercalcemia (1). Despite significant
advancements in therapeutic strategies over the past decades,
including proteasome inhibitors, immunomodulatory drugs, and
monoclonal antibodies, MM remains largely incurable, with a
substantial proportion of patients ultimately experiencing
multiple cycles of relapse as the tumor acquires resistance to each
line of treatment (2, 3). This heterogeneity is observed not only at
the genomic and transcriptomic levels within malignant plasma
cells but also in the composition and functional state of the
surrounding tumor microenvironment (TME) (4, 5).

The interplay between malignant plasma cells and various
cellular components of the TME, such as immune cells and
stromal cells, is increasingly recognized as a critical determinant
of disease progression, treatment response, and the emergence of
resistance (6, 7). However, a comprehensive understanding of the
specific cell populations, their molecular characteristics, and their
interactions that distinguish patients with different responses to
therapy is still elusive. In recent years, high-throughput single-cell
RNA sequencing (scRNA-seq) has emerged as a powerful approach
to dissect the cellular composition of MM at high resolution. By
profiling gene expression in individual cells, scRNA-seq can unveil
rare malignant subpopulations, distinct differentiation states, and
cell-cell interaction networks that are indiscernible in bulk analyses
(8), thus offering an unprecedented opportunity to dissect this
complexity and enabling the identification of rare cell populations
and subtle transcriptional shifts that may underpin therapeutic
failure (9, 10). Previous single-cell studies have identified minor
subclones of malignant plasma cells with stem cell-like properties in
relapsed/refractory myeloma - highly proliferative, therapy-
resistant cells with elevated “stemness” gene signatures that are
thought to drive disease recurrence (11).

Among the molecular regulators that may contribute to drug
resistance in MM, the role of protein tyrosine phosphatases has
gained attention (12, 13). In particular, Protein Tyrosine
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Phosphatase Receptor Type G (PTPRG) stands out as a candidate
tumor suppressor and signaling modulator in hematologic
malignancies (12, 13). Notably, in chronic myeloid leukemia
(CML), PTPRG is significantly downregulated in leukemic cells at
diagnosis, and PTPRG hypermethylation has been identified as an
independent mechanism of resistance to tyrosine kinase inhibitor
therapy (12). However, the involvement of PTPRG in plasma cell
myeloma has not been well explored, and it remains unclear
whether PTPRG dysfunction might promote therapy resistance in
MM and involved signaling pathways.

In this study, we utilized single-cell RNA sequencing (scRNA-
seq) to comprehensively profile the bone marrow
microenvironment of MM patients stratified by their response to
treatment. Our primary objectives were to: (i) delineate the cellular
heterogeneity of malignant plasma cells and identify subclones
associated with poor prognosis and treatment resistance; (ii)
characterize the functional states and pathway activities within
these aggressive plasma cell populations; (iii) investigate
alterations in the immune cell landscape, particularly T/NK cell
subsets, between OR and SOR groups; and (iv) elucidate the cell-
cell communication networks that may contribute to
suboptimal treatment outcomes. By integrating these single-cell
insights with bulk transcriptomic data and performing in vitro
functional validation, we aimed to uncover novel molecular
mechanisms and potential therapeutic targets associated with
drug resistance in MM.

2 Materials and methods
2.1 Single cell data

We retrieved the single cell RNA sequencing (scRNA-seq) data
from Gene Expression Omnibus via the access number GSE189460
(8), which includes pre-treatment bone marrow specimens from 18
patients with multiple myeloma (MM) who underwent
bortezomib-melphalan-prednisone therapy. Based on clinical
response, 10 of these 18 samples were optimal responders (OR),
while the rest 8 samples were suboptimal responders (SOR).
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2.2 Bulk transcriptomics data

We also retrieved bulk mRNA-seq data from three studies,
including two from GEO and one from MMRF database.
Specifically, mRNA-seq data, together with complete survival
records, were retrieved from a study of 113 responders (R) and
126 non-responders (NR) who were enrolled in bortezomib (PS-
341) clinical trial for MM treatment (8). Two sets of transcriptome
data are available given that two Affymetrix platforms (GPL96 [HG-
U133A] and GPL97 [HG-U133B]) were applied for mRNA
sequencing two sets of transcriptome data are available.
Meanwhile, the mRNA-seq data from 558 cases who enrolled in
Total Therapy 2 (TT2) and Total Therapy 3 (TT3) was retrieved
GEO (GSE2658) (14). In addition, we also obtained mRNA-seq
profiles for 764 MM patients from CoMMpass (MMRF) database
deposited in the Multiple Myeloma Research Foundation
(https://research.themmrf.org).

2.3 Single-cell quality control and
annotation

Single-cell preprocessing was performed in Seurat v4.1.1. Cells
exceeding 10% mitochondrial gene content or 5% hemoglobin gene
expression, or expressing fewer than 200 or more than 5,000 genes,
were filtered out in line with previous studies (15-17). Doublets
were detected and removed using the DoubletFinder package. Batch
effects were corrected via the RunHarmony function in the
harmony package (18). Prior to differential, enrichment and
statistical analyses, data normalization (i.e., log-transformation),
clustering, and dimensionality reduction analyses were performed
to all scRNA-seq data using Seurat. We use FindVariableFeatures to
select genes (n=2000) and conducted principal component analysis
(PCA, via RunPCA), in which the top 20 PCs were retained for the
following analysis. Cell clustering (resolution: 0.6) was conducted
using FindClusters, with the identified clusters being annotated
according to marker genes from CellMark2.0 and well-
characterized lineage markers.

2.4 Functional enrichment

Differentially expressed genes (DEGs) for each cluster were
identified using Seurat’s FindMarkers function. In our study, we
focused on upregulated genes in downstream analyses. The potential
biological pathways of these genes were identified via Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses using clusterProfiler v4.8.2 (19).

2.5 Identification of malignancy status of
plasma cell

We applied Infercnvpy with default parameters to distinguish
malignant from non-malignant plasma cells. Normal cells from the
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tumor microenvironment (TME), specifically T/NK cells, were used
as the reference population.

2.6 Prognosis-associated subcluster
detection

We utilized the “Scissor” (v 2.0.0) (20) algorithm to link the
survival status of 764 bulk transcriptomic samples with complete
transcriptome data (expression data using log2(fpkm+1)) and
complete survival status in the MMRF_COMMPASS dataset to
single-cell data of multiple myeloma. Patients with OS status of
death were classified as worse status, while those with OS status of
alive were classified as good status. The Scissor function was run on
epithelial cells with the following parameter settings: alpha=0.05,
family = “cox”. Scissor+ cells were associated with worse status,
while Scissor- cells were associated with good status.

2.7 Transcription factor regulatory network
analysis

SCENIC analysis was performed using the pySCENIC v0.12.1
pipeline (21) to infer regulon activity scores (RAS) in malignant
plasma cells. GRNBoost2 was used to infer co-expression modules
of transcription factors (TFs) and candidate targets. RcisTarget
identified enriched DNA motifs within these modules, defining
each TF and its direct targets as a regulon. Regulon activity per cell
was quantified using AUCell.

2.8 Pseudotime trajectory inference

Monocle v2.28.0 (22) was used to reconstruct differentiation
trajectories among malignant plasma cells. Following
dimensionality reduction and cell ordering, cells were mapped onto
branched trajectories. Branch Expression Analysis Modeling (BEAM)
was then used to identify genes exhibiting branch-dependent
expression dynamics, shedding light on fate decision mechanisms.

2.9 Cell-cell communication analysis

The CellChat v1.6.1 algorithm (23) was applied to a merged
Seurat object containing malignant plasma cells and other TME
populations. After constructing the CellChat object with a curated
ligand-receptor database, we used computeCommunProb and
computeCommunProbPathway to infer the interaction probabilities
at both individual receptor-ligand and signaling pathway levels.

2.10 Functional scoring with AUCell

We scored malignant plasma cells for “cancer stemness” and T
cells for “cytotoxicity” using AUCell. Gene sets were sourced from
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the Molecular Signatures Database (MsigDB v2023.1; https://
www.gsea-msigdb.org/gsea/index.jsp), with the T-cell cytotoxicity
signature detailed in Supplementary Table SI.

2.11 Survival analysis

We dichotomized samples into PTPRG-high and PTPRG-low
groups based on the determined cut-offs (via surv_cutpoint in
survminer package). The survival rate of these two groups and
comparisons were visualized using Kaplan-Meier curves.

2.12 Cell culture and siRNA transfection

The multiple myeloma cell lines U266 and NCI-H929 were
cultured in RPMI-1640 medium supplemented with 10% fetal
bovine serum (Gibco), 100 U/mL penicillin G, and 100 pg/mL
streptomycin at 37°C in a humidified incubator containing 5% CO,.
Cells in the logarithmic growth phase (~4 x 10°) were
transfected with 5 nM gene-specific siRNA or negative control
siRNA (si-NC; GenePharma, Shanghai) using Lipofectamine
3000 (Invitrogen), following the manufacturer’s protocol.
Knockdown efficiency was confirmed by quantitative reverse
transcription PCR (qRT-PCR); Primer sequences are listed in
Supplementary Table S2.

2.13 RNA extraction and qRT-PCR

Total RNA was extracted from MM cells using TRIzol reagent
(Thermo Fisher Scientific) and reverse-transcribed using
PrimeScriptTM RT (Takara). Quantitative reverse transcription
PCR (qRT-PCR) was performed using HiScript II Q RT
SuperMix (TRANS, AU341) to assess the expression of target
genes, with B-actin used as the internal control. Each experiment
included three biological replicates, each with technical triplicates.
Primer sequences used in this study are listed in Supplementary
Table S3.

2.14 CCK-8 proliferation assay

We used the CCK8 assay to detect the viability of cells in
accordance with the manufacturer’s protocol. U266 and NCI-H929
cells transfected with siNC, siPTPRG-1, and siPTPRG-2 were
seeded into 96-well plates at a density of 5,000 cells per well. At
0, 24, 48, 72, and 96 hours, 10 uL of CCK-8 solution (Biosharp,
Shanghai, China) was added to each well, followed by incubation for
1 hour at 37°C. Absorbance was then measured at 450 nm using a
microplate reader (BD Biosciences, USA). The data were analyzed
and visualized using GraphPad Prism software.
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2.15 Apoptosis assay

Apoptosis was assessed using an Annexin V-FITC/PI apoptosis
detection kit (BD Biosciences, Franklin Lakes, NJ, USA). U266 and
NCI-H929 cells were harvested 24 hours after siRNA treatment and
resuspended in 1x binding buffer. A total of 100 UL of the cell
suspension was incubated with 5 uL Annexin V-FITC and 2.5 uL
propidium iodide (PI) for 30 minutes at 37°C in the dark. Samples
were then analyzed using a BD FACSCanto II flow cytometer (BD
Biosciences). Cells positive for Annexin V but negative for PI were
considered early apoptotic, while double-positive cells were
considered late apoptotic or necrotic. Flow cytometry data were
analyzed using FlowJo software (BD Biosciences).

2.16 Western blotting

In order to analyze the effect of PTRPG on downstream pathway
proteins, cells and tissues were lysed with RIPA lysis buffer containing
1% PMSF. The lysates were then centrifuged, and the supernatant
was collected. The quantified protein supernatant was supplemented
with 4x protein loading buffer proportionally, boiled for 10 min to
denature the protein, and stored at —80°C. Proteins were then
separated by 10% SDS-PAGE and electrophoretically transferred
onto polyvinylidene fluoride membranes where they were blocked
with 5% skim milk and incubated with -actin (Proteintech, 20536-1-
AP, 1:10,000), anti-PTRPG (Abclonal, A14253, 1:1000), caspase-3
(CST, 24232, 1:800), and cleaved caspase-3 (Proteintech, 68773-1,
1:3,000). overnight at 4°C. Next, the membranes were incubated with
horseradish peroxidase-conjugated anti-rabbit IgG. Antigen-
antibody complexes were then detected with enhanced
chemiluminescence reagent. The resulting images were processed
and analyzed using Image]J software.

2.17 Statistical analysis

We performed a minimum of three independent biological
replicates for all experiments. Continuous variables were
compared using the Mann-Whitney U test (two groups) or
Kruskal-Wallis test (more than two groups); categorical variables
were assessed by x* test. All analyses were conducted in R v4.0.5.
Two-tailed p < 0.05 was considered statistically significant
otherwise stated.

3 Results
3.1 Cell-type classification and annotation

A total of 18 samples with single-cell data were obtained from
the GSE189460 dataset (Figure 1, Figure 2A), including 10 OR
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FIGURE 1
Overview of the study design.

tissue samples and 8 SOR tissue samples (Figure 2B, Supplementary
Table S4). After data quality control, a total of 103,171 single cells
were retained. Dimensionality reduction and clustering analysis
identified 27 cell clusters (Supplementary Figure S1A). Based on the
expression of cell marker genes, 11 cell types were annotated as
plasma cells, T/NK cells, CD14+ monocytes, B cells, CD16+
monocytes, Proliferative cells, Hematopoietic Stem and
Progenitor Cells (HSPCs), Megakaryocytes, myeloid Dendritic
Cells (mDCs), plasmacytoid Dendritic Cells (pDCs), and Pre-B
cells (Figure 2C, D). The three most abundant cell types were
Plasma cells, T/NK cells, and CD14+ monocytes (Figure 2C,
Supplementary Figure S1B). The calculated proportion of each
cell type was consistent across examined samples indicating a
good data integration (Supplementary Figure S1C). Analysis of
the changes in the proportion of various cell types between the two
groups revealed that the proportion of plasma cells in the SOR
group was significantly higher than in the OR group, while the
proportions of T/NK cells, CD14+ monocytes, pre-B cells, and
HSPCs were significantly lower in the SOR group (Figure 2E,
Supplementary Figure S1D). Furthermore, the copy number
variation (CNV) score for each plasma cell was calculated using
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inferCNV (Supplementary Figure S1E), leading to the identification
of 35,944 malignant plasma cells (Figure 2F, Supplementary
Figure S1F).

3.2 Reclustering of malignant plasma cells

We then focused on malignant plasma cells to explore the
potential heterogeneity. By conducting clustering analyses, the
identified malignant plasma cells were reclassified into 5 cell
subclusters (Figure 3A). By correlating with prognostic
phenotypes from bulk transcriptome data, we identified a
subcluster containing 1,331 malignant plasma cells associated
with poor prognosis (i.e., worse survival) while a subcluster
containing 3,520 malignant plasma cells shows good prognosis
(i.e., good survival) (Figure 3B, D). Cell proportion analysis
revealed that in malignant plasma cell subcluster 3 (MalPlasma3),
the proportion of cells from the SOR group was higher than that
from the OR group (Figure 3C, E). Furthermore, 93.1% of the worse
survival malignant plasma cells originated from the MalPlasma3
subcluster (Figure 3F), indicating that the MalPlasma3 subcluster
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FIGURE 2

UMAP visualization technology was used for unsupervised clustering analysis of cells, where each dot represents a single cell. (A) Cells colored by
individual sample. (B) Cells colored by treatment response group. (C) Cells colored by annotated cell type. (D) Shows characteristic marker genes for
each cell type. (E) Shows the proportion of cells in the two groups. (F) Shows large-scale copy number variations (CNVs) in plasma cells via a

hierarchical heatmap to identify malignant plasma cells.

might be a core driver of poor prognosis, being enriched in the SOR
group and highly correlated with treatment resistance. Additionally,
worse survival malignant plasma cells were exclusively present in
the SOR group (Figure 3G, H), suggesting these cells might be the
direct cause of treatment failure.

3.3 Functional analysis of malignant plasma
cell subclusters

We then conducted differential gene expression analysis to
identify genes differing across malignant plasma cell subclusters
(Figure 4A) and between worse survival and good survival
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malignant plasma cells (Figure 4E) (padj<0.05, [log2FC|>0.25)
and conducted functional enrichment analysis to reveal potential
pathways these differential genes involved (Figure 4B, C, F, G).
KEGG results indicated that the Stemness up pathway was
significantly activated in the MalPlasma3 subcluster and worse
survival malignant plasma cells. HALLMARK results showed
significant activation of E2F targets, MYC targets V1/V2, and
G2M checkpoint pathways in the MalPlasma3 subcluster and
worse survival malignant plasma cells. These pathways are closely
related to cell stemness, cell cycle, and cell proliferation and
differentiation. These findings collectively suggest that the
MalPlasma3 subcluster and worse survival malignant plasma cells
play important roles in promoting cell proliferation, differentiation,
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FIGURE 3

Reclustering analysis of malignant plasma cells. (A) UMAP plot showing the distribution of malignant plasma cells, colored by subcluster. (B) UMAP
plot showing the distribution of malignant plasma cells selected by the Scissor algorithm, classified by prognostic risk and protection. Red and blue
dots represent cells associated with poorer and better prognosis phenotypes, respectively. (C) UMAP plot showing the distribution of malignant
plasma cells, colored by group. (D) Number of poor prognosis, good prognosis, and background (prognosis-unrelated) malignant plasma cells.

(E) Boxplot showing the proportion of origins from the two groups within each malignant plasma cell subcluster. (F) Stacked bar plot showing the
proportion of poor prognosis, good prognosis, and background malignant plasma cells within each malignant plasma cell subcluster. (G) Stacked bar
plot showing the proportion of malignant plasma cells from OR and SOR groups within the poor prognosis, good prognosis, and background
malignant plasma cell categories. (H) Stacked bar plot showing the proportion of poor prognosis, good prognosis, and background malignant

plasma cells within the OR and SOR groups.

and invasion, which directly leads to patient drug resistance and
poor prognosis. Furthermore, transcription factor analysis
(Figure 4D) showed that in the malignant cell MalPlasma3
subcluster, the top 5 transcription factors with the highest activity
were E2F8, E2F7, FOXMI, E2F1, and TIMELESS, a group of
regulators known to be related to cell proliferation, invasion, and
cell cycle. These results suggested that worse survival malignant
plasma cells exhibit significant characteristics in terms of cell
stemness and cycle regulation, leading to poor prognosis.
Therefore, AUCELL analysis was further used to assess the
activity of the Cancer stemness pathway signature in worse
survival, good survival, and background malignant plasma cells.
The results showed that the Cancer stemness signature activity was
significantly higher in worse survival malignant plasma cells than in
good survival and background malignant plasma cells (Figure 4H),
whereas the differences between good survival and background
malignant plasma cells were nonsignificant (Figure 4H).
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3.4 Pseudotime analysis of malignant
plasma cells

We then investigated the dynamic evolution process of
malignant plasma cells through psuedotime analysis. As shown in
Fig4, malignant plasma cells exhibit 5 different states: cells in state 1
were considered potential starting points, followed by a bifurcation
at branch point 1, where cells in state 2 developed towards the left of
the trajectory, and cells in state 5 developed towards the right
(Figure 5A, B). Furthermore, we found that more SOR group
malignant plasma cells and worse survival malignant plasma cells
were located at the terminal end of the differentiation time after
branch point 1 as visually documented in cell trajectory plot
(Figure 5C, D) and ridge plot (Figure 5E). Using the branched
expression analysis modeling (BEAM), we identified 50 branch-
dependent genes that play key roles in regulating cell differentiation
from pre-branch to post-branch (Cell fate 1, Cell fate 2). Based on
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FIGURE 4
Functional analysis of malignant plasma cell subclusters. (A) Heatmap showing the expression levels of the top 10 marker genes for the 5 malignant
plasma cell subclusters. (B) Bar chart showing the KEGG enrichment analysis results for differentially upregulated genes in malignant cell subtype 3.
(C) Bar chart showing the HALLMARK enrichment analysis results for differentially expressed genes in malignant cell subtype 3. (D) Scatter plot
showing the RSSs (regulon specificity score) in poor prognosis malignant cells. The top 5 regulons are highlighted. (E) Heatmap showing the
expression levels of the top 10 marker genes in worse survival and good survival malignant plasma cells. (F) Bar chart showing the KEGG enrichment
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expression similarity, these genes were further divided into 6
modules (clusters). As shown in Figure 5F, Cluster 1 exhibited an
overall upward trend in gene expression levels during
differentiation from pre-branch towards the left of the trajectory
after branch point 1 (Cell fate 1). Furthermore, HALLMARK
enrichment analysis showed that Cluster 1 genes were mainly
enriched in pathways related to cell cycle, proliferation, and
differentiation, such as G2M checkpoint and E2F targets
(Figure 5G). Consistent with the previous differential gene
enrichment results, these results further indicate that malignant
plasma cells gradually differentiate into a worse survival phenotype,
which is accompanied by dramatically enhanced abilities in
proliferation, differentiation, and invasion, thus affecting drug
efficacy and leading to patient drug resistance.
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3.5 Subcluster characterization of T/NK
Cells

To further investigate the potential role of tumor
microenvironment (TME) in MM, we further reclustered T/NK
cells using unsupervised dimensionality reduction and clustering
analysis. We found that T/NK cells were grouped into 12 cell
clusters (Supplementary Figure S2A). Based on gene expression of
cell marker, a total of 7 cell subclusters were identified, including
Natural Killer cells (NK), Effector T cells (Effect T), Helper T cells
(Th), Naive T cells, Memory T cells, Regulatory T cells (Treg), and
Interferon T cells (IFN T) (Figure 6A, C). Notably, all T/NK cell
subclusters were shared between the OR and SOR groups, but they
exhibited heterogeneous cell proportions (Supplementary Figure
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S2B, D-E). Analysis of cell counts and proportions between these
two groups revealed that the top 3 most abundant cell types were
NK cells, T-effect cells, and T naive cells, respectively
(Supplementary Figure S2C). Furthermore, Naive T and Th cells
showed a significant increase in proportion in the OR group, while
Memory T cells showed a significant decrease in proportion in the
OR group (Figure 6B, D, Supplementary Figure S2F). This finding
suggests that remodeling of the immune microenvironment may be
a key factor for good treatment response. It has been shown that
Naive T cells are unactivated T cells with high proliferative potential
and differentiation capacity, while Th cells can enhance anti-tumor
immune responses. In the OR group, the increased proportion of
Naive T and Th cells may reflect stronger anti-tumor immune
potential and indicate that patients are more sensitive to the
bortezomib-melphalan-prednisone regimen. Given that memory
T cells have long-term survival and rapid response capabilities to
antigens, the significant decrease in the proportion of these cells in
the OR group may reflect their effectively activation and
differentiation into effector T cells while reduced proportions of
Memory T cells during treatment. Further scoring analysis of the
cytotoxic features of T/NK cell subclusters (Figure 6E) showed that
compared to the SOR group, the cytotoxicity feature scores of NK
cells, Effect T cells, and Naive T cells were all significantly elevated
in the OR groups, indicating that these cells have stronger
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cytotoxicity and immune killing effects in the OR group, enabling
them to effectively attacking and clearing tumor cells, and
exhibiting stronger sensitivity to drugs.

3.6 Cell-cell communication

To better interpret the communication between cellular
components in TME, we constructed cell interaction networks of
potential receptor-ligand pairs for the OR and SOR groups,
respectively (Figure 7A, B). We observed that compared to the
OR group, the communication between different cellular
components in SOR group samples varied considerably. Given
the observed significant activation of pathways related to cell
stemness, cell cycle, and differentiation in the MalPlasma3
subcluster and worse survival malignant plasma cells, we thus
focused on the interaction of cells in this subcluster with HSPCs.
We found that MalPlasma3 subcluster, acting as signal-sending
cells, presented significant larger number of interactions with
HSPCs in OR groups as compared to the interactions in SOR
group (Figure 7C, D). Further comparative analysis of ligand-
receptor pairs between the two groups revealed that in the OR
group, the MalPlasma3 subcluster specifically regulated HSPCs via
IGF1-IGF1R, a signaling pathway regulating cell growth,
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Reclustering of T/NK cells. (A) UMAP plot showing the distribution of T/NK cell subclusters. (B) UMAP plot showing the distribution of T/NK cell
subclusters in OR and SOR groups. (C) Dot plot showing the average expression levels of typical marker genes for T/NK cell subclusters. (D) Shows
the proportion of T/NK cell subclusters in OR and SOR group samples. (E) Analysis of T cell cytotoxicity using AUCell scores. UMAP projection
showing cytotoxicity scores per T cell (higher scores in yellow indicate increased expression of cytotoxicity-related genes). Box plot demonstrates
cytotoxicity signature scores among T cell subtypes across the analyzed sample groups.

proliferation, and apoptosis by activating signaling pathways such
as PI3K/Akt and MAPK (Figure 7E). These results were echoed
with previously observed increased proportion of HSPCs in the OR
group, reflecting a relatively healthier bone marrow
microenvironment, but stronger hematopoietic/immune
reconstruction ability, and potential anti-tumor immune
regulatory effects in this group. In addition, we found that in the
OR group, Memory T, NK, and Effect T cells specifically regulated
the MalPlasma3 subcluster via IFNG-(IFNGR1+IFNGR2)
(Figure 7F). Furthermore, in the OR group, Pre-B cells were
found to specifically regulate the MalPlasma3 subcluster via
CCL28-CCR10.
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3.7 PTPRG affects prognosis and drug
resistance

We further leveraged bulk transcriptomics data from GSE9782
(parallel detection using GPL96 and GPL97 platforms) to assess the
relationship between tumor stemness-related genes and prognosis.
As shown in Fig8A, a total of 2298 differentially expressed genes
(DEGs) were identified in the GPL96 platform data in tumor
samples, of which 785 genes were upregulated and 1513 genes
were downregulated. In the GPL97 platform data, 1119 DEGs were
identified in tumor samples, with 613 genes upregulated and 506
genes downregulated (Figure 8A) (P<0.05). Furthermore, we
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Cell interactions in the MM microenvironment. (A, B) Heatmaps showing the overall interaction strength between specific cell subtypes in the OR
group (A) and SOR group (B). (C, D) Chord diagrams showing the interaction network of MalPlasma3 subcluster cells with other cells in the OR
group (C) and SOR group (D). (E) Bubble plot showing the differences in specific ligand-receptor interactions between malignant plasma cells as
signal-sending cells and other cells in the OR and SOR groups. (F) Bubble plot showing the differences in specific ligand-receptor interactions
between malignant plasma cells as signal-receiving cells and other cells in the OR and SOR groups.

mapped the upregulated DEGs from the MalPlasma3 subcluster
(compared to other malignant plasma cell subclusters, a total of
1485 upregulated DEGs) and worse survival malignant plasma cells
(compared to good survival malignant plasma cells, a total of 2679
up DEGs) with Cancer stemness pathway genes. We found that
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Cancer stemness pathway related DEGs were upregulated,
including 449 genes in the MalPlasma3 subcluster and 693 genes
in worse survival malignant plasma cells. Finally, these genes were
overlapped with the upregulated DEGs from the two GSE9782
datasets, resulting in 7 tumor stemness-related genes, including
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PTPRG affects prognosis and drug resistance. (A) Volcano plots of differentially expressed genes (tumor vs normal) in the GSE9782 dataset: (left)
GPL96 platform data, (right) GPL97 platform data. (B) Venn diagram for obtaining key genes. (C) Violin plot of PTPRG expression levels in the
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from the Log-rank test was considered statistically significant.

NONO, CBX3, SLC25A3, PTPRG, NPM1, HINTI1, HNRNPA1
(Figure 8B). Among the 7 genes, PTPRG was specifically highly
expressed only in MalPlasma3 and MalPlasma5 subclusters
(Figure 8D). Considering factors such as whether candidate genes
were highly expressed in the responder group (i.e., R group) of the
bulk dataset (GSE9782) and in worse survival malignant plasma
cells, as well as poor prognosis, PTPRG was ultimately selected.
Notably, we found that PTPRG was highly expressed in the NR
group of the GSE9782 dataset (GPL96 platform) (Figure 8C) and in
worse survival malignant plasma cells (Figure 8E). Further
prognostic validation of PTPRG using bulk datasets GSE9782
(best cutoft:6.8011457193872), GSE2658 (best cutoff:9.417325114),
and MMRE-CoMMpass (best cutoff: 2.119787759) revealed that
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samples with high PTPRG expression had significantly poorer
prognosis (Figure 8F, Supplementary Figure S3).

3.8 PTPRG affects tumor cell function

To better reveal potential functional role of PTPRG in MM, we
performed in vitro knockdown studies using two distinct siRNAs in
U266 and NCI-H929 cell lines. Effective suppression of PTPRG
expression was confirmed by qRT-PCR (Figure 9A, B), and
subsequent CCK-8 assays revealed a significant reduction in cell
viability upon PTPRG knockdown (Figure 9C, D). Consistently,
both flow cytometric analysis and Western blotting demonstrated
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FIGURE 9

Functional validation of PTPRG. (A, B) mRNA expression analysis of PTPRG. Two siRNAs targeting PTPRG were transfected into MM cell lines U266
(A) and NCI-H929 (B), followed by RT-qPCR to analyze PTPRG mRNA expression. All data are expressed as mean + SD. **P<0.01, ***P<0.001, vs
si-NC group. (C-D) Cell viability analysis. Two siRNAs targeting PTPRG were transfected into MM cell lines U266 (C) and NCI-H929 (D), followed by
CCK8 assay to analyze cell viability in U266 (left) and NCI-H929 (right). All data are expressed as mean + SD. ***P<0.001, vs si-NC group. (E-F) Cell
apoptosis analysis. Annexin V-FITC/PI staining fluorescence-activated cell sorting analysis of MM cell lines U266 (E) and NCI-H929 (F); bar chart
shows apoptosis rate. All data are expressed as mean + SD. **P<0.01, ***P<0.001, vs si-NC group. (G-H) Apoptotic protein expression analysis. Two
siRNAs targeting PTPRG were transfected into MM cell lines U266 and NCI-H929, followed by immunoblotting to analyze protein expression of
Caspase-3, Cleaved-caspase-3, and PTPRG in U266 (G) and NCI-H929 (H). All data are expressed as mean + SD. *P<0.05, **P<0.01, ***P<0.001, vs

si-NC group.
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an increased apoptotic fraction in PTPRG-depleted cells
(Figure 9E-H), indicating that PTPRG loss inhibits proliferation
and promotes apoptosis in MM.

4 Discussions

MM remains a formidable hematologic malignancy,
characterized by significant inter- and intra-tumoral heterogeneity
that profoundly influences therapeutic response and patient
outcomes. Our scRNA-seq analysis provides a comprehensive
view of the cellular and molecular dynamics in MM, shedding
light on the roles of malignant plasma cell heterogeneity and the
TME in shaping treatment response and prognosis. By combining
single-cell insights with bulk transcriptomics and functional assays,
we identified critical cellular subclusters (e.g., a stem-like plasma-
cell subcluster) and highlighted PTPRG as a novel regulator of
MM progression.

The diversity of malignant plasma cells in MM is a well-
recognized driver of disease complexity and therapeutic
challenges. A central finding of our investigation is the
delineation of distinct malignant plasma cell subclusters, with the
MalPlasma3 subcluster notably enriched in patients exhibiting SOR
and strongly associated with a poor prognosis. This aligns with
previous work showing that clonal heterogeneity in MM
contributes to aggressive disease behavior and resistance to
therapies like proteasome inhibitors (24, 25). The prevalence of
MalPlasma3 in the SOR group suggests this subpopulation may
harbor intrinsic features conferring resistance to the administered
therapy or a heightened capacity for adaptive resistance. The
enrichment of pathways such as E2F and MYC targets in this
subcluster echoes reports that these molecular drivers underpin
MM cell survival and rapid growth (26, 27). This is further
corroborated by our pseudotime analysis, which depicted a
developmental trajectory where malignant plasma cells,
particularly those enriched in the SOR group and within
MalPlasma3, progress towards a more aggressive, “worse survival”
phenotype. Such clonal evolution, where more aggressive or
resistant subclones expand, is a known characteristic of MM
progression and relapse (28, 29). The enrichment of G2M
checkpoint pathways further indicates active cell cycling, a
hallmark of aggressive tumor behavior. The identification of
E2F8, E2F7, FOXMI1, E2F1, and TIMELESS as top active
transcription factors in MalPlasma3 provides specific regulatory
nodes potentially driving these aggressive characteristics. These
insights refine our understanding of how specific malignant
subclusters influence MM outcomes, pointing to the need for
targeted strategies to address this heterogeneity.

The immune microenvironment is increasingly recognized as a
determinant of MM treatment success. Our analysis revealed
distinct T-cell subcluster profiles between OR and SOR, with
higher proportions of naive and helper T cells in the OR group.
This suggests that a more active immune response may enhance
treatment efficacy, consistent with studies linking effective anti-
tumor immunity to improved MM (30, 31). Naive T cells, capable of
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differentiating into potent effector cells, and helper T cells, which
coordinate immune activity, likely bolster anti-tumor defenses (32).
The relative scarcity of memory T cells in the OR group could reflect
their transition into effector states during therapy, a process known
to amplify immune attack (33). These shifts in T-cell composition
highlight the adaptability of the immune landscape in MM and its
potential as a therapeutic lever, particularly for patients with
suboptimal responses.

Interactions within the TME further shape MM progression
and response to treatment. Our findings point to enhanced
communication between malignant plasma cells and HSPCs in
the OR group, mediated by pathways like IGF1-IGFIR. The
enrichment of this interaction in the OR group, specifically
involving the “poor-prognosis” MalPlasma3 cells, is complex.
However, this interaction may foster a supportive bone marrow
niche, aiding immune reconstitution and treatment sensitivity (34).
It’s conceivable that this interaction, while typically pro-myeloma,
might render MalPlasma3 cells more susceptible to certain
therapeutic effects in a specific niche context or influence their
metabolic state. This contrasts with the general understanding of
IGF-1 signaling promoting MM cell fitness (35) and warrants
deeper investigation. Additionally, cytokine-driven interactions,
such as those involving interferon-gamma and CCL28, in the OR
group suggest a more robust immune regulatory environment,
corroborating the role of cytokines in MM immune responses
(36). These communication patterns emphasize how the TME
modulates disease behavior and therapeutic outcomes, offering
clues for microenvironment-targeted interventions.

One of our main findings is the identification of PTPRG as a key
mediator of the MalPlasma3 phenotype and an independent
predictor of poor outcome. PTPRG has been characterized as a
receptor-type phosphatase with tumor-suppressive functions in
solid and hematologic malignancies, where its deletion,
methylation, or downregulation unleashes oncogenic kinases such
as ABL1 (12, 37). In chronic myeloid leukemia, PTPRG
hypermethylation drives resistance to tyrosine-kinase inhibitors,
underscoring its role in constraining aberrant growth signals (38).
Our demonstration that high PTPRG expression marks the stem-
like, drug-resistant MalPlasma3 subcluster and that its knockdown
impairs proliferation while promoting apoptosis unveils a
previously unrecognized function for PTPRG in MM and
positions it as both a novel prognostic biomarker and a tractable
target for therapy. The apparent contrast between PTPRG’s
canonical tumor-suppressive role elsewhere and its adverse
prognostic association in MM likely reflects substrate and
network context-dependence. Mechanistically, PTPRG likely
modulates phosphorylation-dependent pathways critical for
stemness and cell-cycle control. Its potential interaction with
proliferative pathways, like PI3K/Akt or MAPK, aligns with the
broader role of tyrosine phosphatases in cancer signaling (39). In
the bone-marrow microenvironment, while IGF-1 provided by
stromal elements is a well-established driver of myeloma growth
and survival via IGF1R-PI3K/ERK signaling (34, 35)and direct
IGFIR dephosphorylation by PTPRG has not been demonstrated,
PTPRG dephosphorylates and dampens collaborating RTKs (e.g.,
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FGFR family members), thereby possibly lowering shared adaptors
(FRS2-RAS-MAPK; PI3K-AKT) (40) and tuning the effective gain
of IGFIR signaling. PTPRG-low states would thus be predicted to
elevate RTK tone and amplify IGF-1 to common nodes. In parallel,
PTPRG acts as a JAK phosphatase (e.g., JAK2 Y1007/Y1008) (41),
positioning it upstream of IFN-y-JAK-STAT1 signaling. Because
IFN-y robustly induces PD-L1 in myeloma plasma cells (42, 43),
reduced PTPRG would be expected to prolong/augment STAT1
signaling and enhance PD-L1 induction, whereas higher PTPRG
should blunt this response. These clues highlight that PTPRG may
co-tune both IGF1-IGFIR/PI3K-ERK and IFN-y-JAK-STAT1/
PD-L1 axes, offering a mechanistic bridge that ties the
microenvironmental cues we observe in the OR group to the
poor-prognosis biology of MalPlasma3 and nominating PTPRG
as both a prognostic marker and a therapeutically tractable node. Of
note, it has been shown that R5 receptor-type PTP inhibitors with
PTPRG activity (NAZ2329: cell-permeable, allosteric; SCB4380:
competitive, effective with liposomal delivery) suppress tumor
growth and stem-like properties in glioma models (44); and
murine monoclonal antibodies against the PTPRG ectodomain
have been generated and used on CML samples, demonstrating
surface accessibility and a plausible route for myeloma-directed
biologics (12, 37). Nonetheless, this druggability has not been
comprehensively explored in MM and therapeutic value of
targeting in PTPRG will require preclinical studies (target
engagement, selectivity, delivery) followed by appropriately
designed early-phase clinical trials.

Our study possesses several notable strengths. The application
of scRNA-seq provides a high-resolution, unbiased view of cellular
heterogeneity and transcriptional states within both the malignant
plasma cell compartment and the TME, offering insights often
obscured by bulk analytical methods. The identification and
functional annotation of the MalPlasma3 subcluster, its
association with poor prognosis, and the detailed pathway
analyses contribute significantly to understanding MM biology. A
key strength is the identification of PTPRG as a gene linked to this
aggressive phenotype and poor outcomes, further supported by in
vitro validation demonstrating its role in MM cell viability and
apoptosis. The comprehensive characterization of T/NK cell
subclusters and the delineation of specific cell-cell interaction
networks provide a more nuanced understanding of the TME’s
contribution to treatment response.

Nevertheless, our study is not without limitations. The small
sample size of 18 patients, while informative for scRNA-seq, may
limit the statistical power for certain sub-analyses and the broader
generalizability of some findings to the diverse MM patient
population. While our data integration methods appeared robust,
scRNA-seq studies can be susceptible to batch effects and technical
variability. The findings are based on patients treated with a specific
regimen (bortezomib-melphalan-prednisone), and the identified
resistance mechanisms or TME alterations might differ with other
therapeutic modalities. The intriguing association of high PTPRG
expression with poor prognosis alongside its in vitro pro-survival
role warrants extensive further validation, particularly through in
vivo studies using patient-derived xenografts from distinct PTPRG-
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expressing subclones, and in larger, independent patient cohorts to
fully elucidate its mechanistic contributions in different MM
contexts. The functional consequences of some observed cell
proportion changes (e.g., the apparently contradictory HSPC
proportions) and the newly identified cell-cell interactions require
more direct experimental validation to establish causality and
precise mechanisms.

In conclusion, our study provides a detailed single-cell
transcriptomic atlas of the MM bone marrow microenvironment
in the context of differential treatment responses. We have
identified a prognostically significant malignant plasma cell
subcluster, MalPlasma3, characterized by activated stemness and
proliferation pathways. Our findings highlighted PTPRG as a gene
whose high expression is linked to this aggressive phenotype and
poor clinical outcomes in MM, yet intriguingly, its knockdown in
vitro impairs MM cell survival, suggesting a complex, context-
dependent pro-survival function in these cells that warrants deeper
exploration as a potential therapeutic vulnerability. Furthermore,
we delineate distinct TME compositions, particularly within T/NK
cell subsets, and specific cell-cell interaction networks involving
IGF1-IGF1R, IENG, and CCL28-CCRI10, that are associated with
optimal versus suboptimal treatment responses.
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