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Single-cell profiling uncovers
PTPRG-driven stemness in
malignant plasma cells and
signatures of treatment failure
in multiple myeloma
Jiewen Tan †, Jinman Zhong †, Yueping He, Yunman Xu,
Chang Chen and Dan Xiong*

Department of Hematology, The Eighth Affiliated Hospital, Southern Medical University (The First
People’s Hospital of Shunde, Foshan), Foshan, China
Background: Multiple myeloma (MM) is characterized by extensive intratumoral

heterogeneity and complex interactions within the bone marrow

microenvironment, yet the cellular and molecular drivers of treatment

resistance remain poorly defined. Protein tyrosine phosphatase receptor

gamma (PTPRG) has emerged as a candidate tumor suppressor in various

malignancies by antagonizing proliferative and survival signaling, but its

functional and prognostic relevance in MM has not been established.

Methods: We analyzed 103,171 single‐cell transcriptomes from 18 MM samples

(10 optimal responders [OR] and 8 suboptimal responders [SOR] to bortezomib–

melphalan–prednisone) to investigate cell‐type composition, malignant plasma

cell subclusters, and tumor–microenvironment crosstalk. InferCNV was used to

distinguishmalignant plasma cells, which were further reclustered and correlated

with bulk prognostic phenotypes. Differential expression, pathway enrichment,

transcription‐factor activity, pseudotime trajectory, and ligand–receptor

interaction analyses were performed. Finally, bulk datasets (GSE9782, GSE2658,

MMRF-CoMMpass) and in vitro knockdown assays in U266 and NCI-H929 cells

were used to validate the prognostic and functional role of PTPRG.

Results: Eleven major cell types were annotated, with plasma cells, T/NK cells,

and CD14+ monocytes predominating; SOR samples exhibited an expanded

plasma‐cell fraction and reduced T/NK, CD14+ monocyte, pre-B, and HSPC

populations. Among 35,944 malignant plasma cells, five subclusters were

defined; one subcluster (MalPlasma3) was enriched in SOR samples and

harbored 93.1% of cells associated with poor survival. MalPlasma3 and “worse‐

survival” cells showed activation of stemness, E2F/MYC targets, and G2M

checkpoint pathways, driven by transcription factors E2F8, E2F7, FOXM1, E2F1,

and TIMELESS. Pseudotime analysis revealed a bifurcating differentiation toward

a resistant phenotype, accompanied by upregulation of cell‐cycle and

proliferation modules. In the OR group, enhanced cytotoxic features in NK,

effector, and naïve T cells, along with IGF1–IGF1R and IFNG–IFNGR signaling,

suggested a supportive microenvironment. In contrast to the known role as a

tumor suppressor in solid and hematologic cancers, our integrative analyses

identified PTPRG among seven stemness‐related genes upregulated in

MalPlasma3 and poor‐survival cells, which was echoed in the observed
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reduced cell viability and increased apoptosis in MM cell lines following siRNA‐

mediated PTPRG knockdown.

Conclusions: This single‐cell multi‐omic dissection implicates a proliferative,

stem‐like MalPlasma3 subcluster and identified PTPRG as a key mediator of drug

resistance and poor outcome in MM, offering novel prognostic biomarkers and

therapeutic targets.
KEYWORDS

multiple myeloma, single-cell RNA sequencing, cancer stemness, PTPRG,
immunotherapy resistance
1 Introduction

Multiple Myeloma (MM) is a hematological malignancy

characterized by the clonal proliferation of aberrant plasma cells

within the bone marrow, leading to osteolytic lesions, renal

insufficiency, anemia, and hypercalcemia (1). Despite significant

advancements in therapeutic strategies over the past decades,

including proteasome inhibitors, immunomodulatory drugs, and

monoclonal antibodies, MM remains largely incurable, with a

substantial proportion of patients ultimately experiencing

multiple cycles of relapse as the tumor acquires resistance to each

line of treatment (2, 3). This heterogeneity is observed not only at

the genomic and transcriptomic levels within malignant plasma

cells but also in the composition and functional state of the

surrounding tumor microenvironment (TME) (4, 5).

The interplay between malignant plasma cells and various

cellular components of the TME, such as immune cells and

stromal cells, is increasingly recognized as a critical determinant

of disease progression, treatment response, and the emergence of

resistance (6, 7). However, a comprehensive understanding of the

specific cell populations, their molecular characteristics, and their

interactions that distinguish patients with different responses to

therapy is still elusive. In recent years, high-throughput single-cell

RNA sequencing (scRNA-seq) has emerged as a powerful approach

to dissect the cellular composition of MM at high resolution. By

profiling gene expression in individual cells, scRNA-seq can unveil

rare malignant subpopulations, distinct differentiation states, and

cell–cell interaction networks that are indiscernible in bulk analyses

(8), thus offering an unprecedented opportunity to dissect this

complexity and enabling the identification of rare cell populations

and subtle transcriptional shifts that may underpin therapeutic

failure (9, 10). Previous single-cell studies have identified minor

subclones of malignant plasma cells with stem cell-like properties in

relapsed/refractory myeloma – highly proliferative, therapy-

resistant cells with elevated “stemness” gene signatures that are

thought to drive disease recurrence (11).

Among the molecular regulators that may contribute to drug

resistance in MM, the role of protein tyrosine phosphatases has

gained attention (12, 13). In particular, Protein Tyrosine
02
Phosphatase Receptor Type G (PTPRG) stands out as a candidate

tumor suppressor and signaling modulator in hematologic

malignancies (12, 13). Notably, in chronic myeloid leukemia

(CML), PTPRG is significantly downregulated in leukemic cells at

diagnosis, and PTPRG hypermethylation has been identified as an

independent mechanism of resistance to tyrosine kinase inhibitor

therapy (12). However, the involvement of PTPRG in plasma cell

myeloma has not been well explored, and it remains unclear

whether PTPRG dysfunction might promote therapy resistance in

MM and involved signaling pathways.

In this study, we utilized single-cell RNA sequencing (scRNA-

seq ) to comprehens i v e l y p rofi l e the bone mar row

microenvironment of MM patients stratified by their response to

treatment. Our primary objectives were to: (i) delineate the cellular

heterogeneity of malignant plasma cells and identify subclones

associated with poor prognosis and treatment resistance; (ii)

characterize the functional states and pathway activities within

these aggressive plasma cell populations; (iii) investigate

alterations in the immune cell landscape, particularly T/NK cell

subsets, between OR and SOR groups; and (iv) elucidate the cell-

cel l communication networks that may contribute to

suboptimal treatment outcomes. By integrating these single-cell

insights with bulk transcriptomic data and performing in vitro

functional validation, we aimed to uncover novel molecular

mechanisms and potential therapeutic targets associated with

drug resistance in MM.
2 Materials and methods

2.1 Single cell data

We retrieved the single cell RNA sequencing (scRNA-seq) data

from Gene Expression Omnibus via the access number GSE189460

(8), which includes pre-treatment bone marrow specimens from 18

patients with multiple myeloma (MM) who underwent

bortezomib–melphalan–prednisone therapy. Based on clinical

response, 10 of these 18 samples were optimal responders (OR),

while the rest 8 samples were suboptimal responders (SOR).
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2.2 Bulk transcriptomics data

We also retrieved bulk mRNA-seq data from three studies,

including two from GEO and one from MMRF database.

Specifically, mRNA-seq data, together with complete survival

records, were retrieved from a study of 113 responders (R) and

126 non-responders (NR) who were enrolled in bortezomib (PS-

341) clinical trial for MM treatment (8). Two sets of transcriptome

data are available given that two Affymetrix platforms (GPL96 [HG-

U133A] and GPL97 [HG-U133B]) were applied for mRNA

sequencing two sets of transcriptome data are available.

Meanwhile, the mRNA-seq data from 558 cases who enrolled in

Total Therapy 2 (TT2) and Total Therapy 3 (TT3) was retrieved

GEO (GSE2658) (14). In addition, we also obtained mRNA-seq

profiles for 764 MM patients from CoMMpass (MMRF) database

deposited in the Multiple Myeloma Research Foundation

(https://research.themmrf.org).
2.3 Single-cell quality control and
annotation

Single-cell preprocessing was performed in Seurat v4.1.1. Cells

exceeding 10% mitochondrial gene content or 5% hemoglobin gene

expression, or expressing fewer than 200 or more than 5,000 genes,

were filtered out in line with previous studies (15–17). Doublets

were detected and removed using the DoubletFinder package. Batch

effects were corrected via the RunHarmony function in the

harmony package (18). Prior to differential, enrichment and

statistical analyses, data normalization (i.e., log-transformation),

clustering, and dimensionality reduction analyses were performed

to all scRNA-seq data using Seurat. We use FindVariableFeatures to

select genes (n=2000) and conducted principal component analysis

(PCA, via RunPCA), in which the top 20 PCs were retained for the

following analysis. Cell clustering (resolution: 0.6) was conducted

using FindClusters, with the identified clusters being annotated

according to marker genes from CellMark2.0 and well-

characterized lineage markers.
2.4 Functional enrichment

Differentially expressed genes (DEGs) for each cluster were

identified using Seurat’s FindMarkers function. In our study, we

focused on upregulated genes in downstream analyses. The potential

biological pathways of these genes were identified via Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analyses using clusterProfiler v4.8.2 (19).
2.5 Identification of malignancy status of
plasma cell

We applied Infercnvpy with default parameters to distinguish

malignant from non-malignant plasma cells. Normal cells from the
Frontiers in Immunology 03
tumor microenvironment (TME), specifically T/NK cells, were used

as the reference population.
2.6 Prognosis-associated subcluster
detection

We utilized the “Scissor” (v 2.0.0) (20) algorithm to link the

survival status of 764 bulk transcriptomic samples with complete

transcriptome data (expression data using log2(fpkm+1)) and

complete survival status in the MMRF_COMMPASS dataset to

single-cell data of multiple myeloma. Patients with OS status of

death were classified as worse status, while those with OS status of

alive were classified as good status. The Scissor function was run on

epithelial cells with the following parameter settings: alpha=0.05,

family = “cox”. Scissor+ cells were associated with worse status,

while Scissor- cells were associated with good status.
2.7 Transcription factor regulatory network
analysis

SCENIC analysis was performed using the pySCENIC v0.12.1

pipeline (21) to infer regulon activity scores (RAS) in malignant

plasma cells. GRNBoost2 was used to infer co-expression modules

of transcription factors (TFs) and candidate targets. RcisTarget

identified enriched DNA motifs within these modules, defining

each TF and its direct targets as a regulon. Regulon activity per cell

was quantified using AUCell.
2.8 Pseudotime trajectory inference

Monocle v2.28.0 (22) was used to reconstruct differentiation

trajectories among malignant plasma cel ls . Fol lowing

dimensionality reduction and cell ordering, cells were mapped onto

branched trajectories. Branch Expression Analysis Modeling (BEAM)

was then used to identify genes exhibiting branch-dependent

expression dynamics, shedding light on fate decision mechanisms.
2.9 Cell–cell communication analysis

The CellChat v1.6.1 algorithm (23) was applied to a merged

Seurat object containing malignant plasma cells and other TME

populations. After constructing the CellChat object with a curated

ligand–receptor database, we used computeCommunProb and

computeCommunProbPathway to infer the interaction probabilities

at both individual receptor–ligand and signaling pathway levels.
2.10 Functional scoring with AUCell

We scored malignant plasma cells for “cancer stemness” and T

cells for “cytotoxicity” using AUCell. Gene sets were sourced from
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the Molecular Signatures Database (MsigDB v2023.1; https://

www.gsea-msigdb.org/gsea/index.jsp), with the T-cell cytotoxicity

signature detailed in Supplementary Table S1.
2.11 Survival analysis

We dichotomized samples into PTPRG-high and PTPRG-low

groups based on the determined cut-offs (via surv_cutpoint in

survminer package). The survival rate of these two groups and

comparisons were visualized using Kaplan–Meier curves.
2.12 Cell culture and siRNA transfection

The multiple myeloma cell lines U266 and NCI-H929 were

cultured in RPMI-1640 medium supplemented with 10% fetal

bovine serum (Gibco), 100 U/mL penicillin G, and 100 mg/mL

streptomycin at 37°C in a humidified incubator containing 5% CO2.

Cells in the logarithmic growth phase (~4 × 105) were

transfected with 5 nM gene-specific siRNA or negative control

siRNA (si-NC; GenePharma, Shanghai) using Lipofectamine

3000 (Invitrogen), following the manufacturer’s protocol.

Knockdown efficiency was confirmed by quantitative reverse

transcription PCR (qRT-PCR); Primer sequences are listed in

Supplementary Table S2.
2.13 RNA extraction and qRT-PCR

Total RNA was extracted from MM cells using TRIzol reagent

(Thermo Fisher Scientific) and reverse-transcribed using

PrimeScript™ RT (Takara). Quantitative reverse transcription

PCR (qRT-PCR) was performed using HiScript II Q RT

SuperMix (TRANS, AU341) to assess the expression of target

genes, with b-actin used as the internal control. Each experiment

included three biological replicates, each with technical triplicates.

Primer sequences used in this study are listed in Supplementary

Table S3.
2.14 CCK-8 proliferation assay

We used the CCK8 assay to detect the viability of cells in

accordance with the manufacturer’s protocol. U266 and NCI-H929

cells transfected with siNC, siPTPRG-1, and siPTPRG-2 were

seeded into 96-well plates at a density of 5,000 cells per well. At

0, 24, 48, 72, and 96 hours, 10 mL of CCK-8 solution (Biosharp,

Shanghai, China) was added to each well, followed by incubation for

1 hour at 37°C. Absorbance was then measured at 450 nm using a

microplate reader (BD Biosciences, USA). The data were analyzed

and visualized using GraphPad Prism software.
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2.15 Apoptosis assay

Apoptosis was assessed using an Annexin V-FITC/PI apoptosis

detection kit (BD Biosciences, Franklin Lakes, NJ, USA). U266 and

NCI-H929 cells were harvested 24 hours after siRNA treatment and

resuspended in 1× binding buffer. A total of 100 mL of the cell

suspension was incubated with 5 mL Annexin V-FITC and 2.5 mL
propidium iodide (PI) for 30 minutes at 37°C in the dark. Samples

were then analyzed using a BD FACSCanto II flow cytometer (BD

Biosciences). Cells positive for Annexin V but negative for PI were

considered early apoptotic, while double-positive cells were

considered late apoptotic or necrotic. Flow cytometry data were

analyzed using FlowJo software (BD Biosciences).
2.16 Western blotting

In order to analyze the effect of PTRPG on downstream pathway

proteins, cells and tissues were lysed with RIPA lysis buffer containing

1% PMSF. The lysates were then centrifuged, and the supernatant

was collected. The quantified protein supernatant was supplemented

with 4× protein loading buffer proportionally, boiled for 10min to

denature the protein, and stored at −80°C. Proteins were then

separated by 10% SDS-PAGE and electrophoretically transferred

onto polyvinylidene fluoride membranes where they were blocked

with 5% skimmilk and incubated with b-actin (Proteintech, 20536-1-
AP, 1:10,000), anti-PTRPG (Abclonal, A14253, 1:1000), caspase-3

(CST, 24232, 1:800), and cleaved caspase-3 (Proteintech, 68773-1,

1:3,000). overnight at 4°C. Next, the membranes were incubated with

horseradish peroxidase-conjugated anti-rabbit IgG. Antigen–

antibody complexes were then detected with enhanced

chemiluminescence reagent. The resulting images were processed

and analyzed using ImageJ software.
2.17 Statistical analysis

We performed a minimum of three independent biological

replicates for all experiments. Continuous variables were

compared using the Mann–Whitney U test (two groups) or

Kruskal–Wallis test (more than two groups); categorical variables

were assessed by c² test. All analyses were conducted in R v4.0.5.

Two-tailed p < 0.05 was considered statistically significant

otherwise stated.
3 Results

3.1 Cell-type classification and annotation

A total of 18 samples with single-cell data were obtained from

the GSE189460 dataset (Figure 1, Figure 2A), including 10 OR
frontiersin.org
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tissue samples and 8 SOR tissue samples (Figure 2B, Supplementary

Table S4). After data quality control, a total of 103,171 single cells

were retained. Dimensionality reduction and clustering analysis

identified 27 cell clusters (Supplementary Figure S1A). Based on the

expression of cell marker genes, 11 cell types were annotated as

plasma cells, T/NK cells, CD14+ monocytes, B cells, CD16+

monocytes, Proliferative cells, Hematopoietic Stem and

Progenitor Cells (HSPCs), Megakaryocytes, myeloid Dendritic

Cells (mDCs), plasmacytoid Dendritic Cells (pDCs), and Pre-B

cells (Figure 2C, D). The three most abundant cell types were

Plasma cells, T/NK cells, and CD14+ monocytes (Figure 2C,

Supplementary Figure S1B). The calculated proportion of each

cell type was consistent across examined samples indicating a

good data integration (Supplementary Figure S1C). Analysis of

the changes in the proportion of various cell types between the two

groups revealed that the proportion of plasma cells in the SOR

group was significantly higher than in the OR group, while the

proportions of T/NK cells, CD14+ monocytes, pre-B cells, and

HSPCs were significantly lower in the SOR group (Figure 2E,

Supplementary Figure S1D). Furthermore, the copy number

variation (CNV) score for each plasma cell was calculated using
Frontiers in Immunology 05
inferCNV (Supplementary Figure S1E), leading to the identification

of 35,944 malignant plasma cells (Figure 2F, Supplementary

Figure S1F).
3.2 Reclustering of malignant plasma cells

We then focused on malignant plasma cells to explore the

potential heterogeneity. By conducting clustering analyses, the

identified malignant plasma cells were reclassified into 5 cell

subclusters (Figure 3A). By correlating with prognostic

phenotypes from bulk transcriptome data, we identified a

subcluster containing 1,331 malignant plasma cells associated

with poor prognosis (i.e., worse survival) while a subcluster

containing 3,520 malignant plasma cells shows good prognosis

(i.e., good survival) (Figure 3B, D). Cell proportion analysis

revealed that in malignant plasma cell subcluster 3 (MalPlasma3),

the proportion of cells from the SOR group was higher than that

from the OR group (Figure 3C, E). Furthermore, 93.1% of the worse

survival malignant plasma cells originated from the MalPlasma3

subcluster (Figure 3F), indicating that the MalPlasma3 subcluster
FIGURE 1

Overview of the study design.
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might be a core driver of poor prognosis, being enriched in the SOR

group and highly correlated with treatment resistance. Additionally,

worse survival malignant plasma cells were exclusively present in

the SOR group (Figure 3G, H), suggesting these cells might be the

direct cause of treatment failure.
3.3 Functional analysis of malignant plasma
cell subclusters

We then conducted differential gene expression analysis to

identify genes differing across malignant plasma cell subclusters

(Figure 4A) and between worse survival and good survival
Frontiers in Immunology 06
malignant plasma cells (Figure 4E) (padj<0.05, |log2FC|>0.25)

and conducted functional enrichment analysis to reveal potential

pathways these differential genes involved (Figure 4B, C, F, G).

KEGG results indicated that the Stemness up pathway was

significantly activated in the MalPlasma3 subcluster and worse

survival malignant plasma cells. HALLMARK results showed

significant activation of E2F targets, MYC targets V1/V2, and

G2M checkpoint pathways in the MalPlasma3 subcluster and

worse survival malignant plasma cells. These pathways are closely

related to cell stemness, cell cycle, and cell proliferation and

differentiation. These findings collectively suggest that the

MalPlasma3 subcluster and worse survival malignant plasma cells

play important roles in promoting cell proliferation, differentiation,
FIGURE 2

UMAP visualization technology was used for unsupervised clustering analysis of cells, where each dot represents a single cell. (A) Cells colored by
individual sample. (B) Cells colored by treatment response group. (C) Cells colored by annotated cell type. (D) Shows characteristic marker genes for
each cell type. (E) Shows the proportion of cells in the two groups. (F) Shows large-scale copy number variations (CNVs) in plasma cells via a
hierarchical heatmap to identify malignant plasma cells.
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and invasion, which directly leads to patient drug resistance and

poor prognosis. Furthermore, transcription factor analysis

(Figure 4D) showed that in the malignant cell MalPlasma3

subcluster, the top 5 transcription factors with the highest activity

were E2F8, E2F7, FOXM1, E2F1, and TIMELESS, a group of

regulators known to be related to cell proliferation, invasion, and

cell cycle. These results suggested that worse survival malignant

plasma cells exhibit significant characteristics in terms of cell

stemness and cycle regulation, leading to poor prognosis.

Therefore, AUCELL analysis was further used to assess the

activity of the Cancer stemness pathway signature in worse

survival, good survival, and background malignant plasma cells.

The results showed that the Cancer stemness signature activity was

significantly higher in worse survival malignant plasma cells than in

good survival and background malignant plasma cells (Figure 4H),

whereas the differences between good survival and background

malignant plasma cells were nonsignificant (Figure 4H).
Frontiers in Immunology 07
3.4 Pseudotime analysis of malignant
plasma cells

We then investigated the dynamic evolution process of

malignant plasma cells through psuedotime analysis. As shown in

Fig4, malignant plasma cells exhibit 5 different states: cells in state 1

were considered potential starting points, followed by a bifurcation

at branch point 1, where cells in state 2 developed towards the left of

the trajectory, and cells in state 5 developed towards the right

(Figure 5A, B). Furthermore, we found that more SOR group

malignant plasma cells and worse survival malignant plasma cells

were located at the terminal end of the differentiation time after

branch point 1 as visually documented in cell trajectory plot

(Figure 5C, D) and ridge plot (Figure 5E). Using the branched

expression analysis modeling (BEAM), we identified 50 branch-

dependent genes that play key roles in regulating cell differentiation

from pre-branch to post-branch (Cell fate 1, Cell fate 2). Based on
FIGURE 3

Reclustering analysis of malignant plasma cells. (A) UMAP plot showing the distribution of malignant plasma cells, colored by subcluster. (B) UMAP
plot showing the distribution of malignant plasma cells selected by the Scissor algorithm, classified by prognostic risk and protection. Red and blue
dots represent cells associated with poorer and better prognosis phenotypes, respectively. (C) UMAP plot showing the distribution of malignant
plasma cells, colored by group. (D) Number of poor prognosis, good prognosis, and background (prognosis-unrelated) malignant plasma cells.
(E) Boxplot showing the proportion of origins from the two groups within each malignant plasma cell subcluster. (F) Stacked bar plot showing the
proportion of poor prognosis, good prognosis, and background malignant plasma cells within each malignant plasma cell subcluster. (G) Stacked bar
plot showing the proportion of malignant plasma cells from OR and SOR groups within the poor prognosis, good prognosis, and background
malignant plasma cell categories. (H) Stacked bar plot showing the proportion of poor prognosis, good prognosis, and background malignant
plasma cells within the OR and SOR groups.
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expression similarity, these genes were further divided into 6

modules (clusters). As shown in Figure 5F, Cluster 1 exhibited an

overall upward trend in gene expression levels during

differentiation from pre-branch towards the left of the trajectory

after branch point 1 (Cell fate 1). Furthermore, HALLMARK

enrichment analysis showed that Cluster 1 genes were mainly

enriched in pathways related to cell cycle, proliferation, and

differentiation, such as G2M checkpoint and E2F targets

(Figure 5G). Consistent with the previous differential gene

enrichment results, these results further indicate that malignant

plasma cells gradually differentiate into a worse survival phenotype,

which is accompanied by dramatically enhanced abilities in

proliferation, differentiation, and invasion, thus affecting drug

efficacy and leading to patient drug resistance.
Frontiers in Immunology 08
3.5 Subcluster characterization of T/NK
Cells

To further investigate the potential role of tumor

microenvironment (TME) in MM, we further reclustered T/NK

cells using unsupervised dimensionality reduction and clustering

analysis. We found that T/NK cells were grouped into 12 cell

clusters (Supplementary Figure S2A). Based on gene expression of

cell marker, a total of 7 cell subclusters were identified, including

Natural Killer cells (NK), Effector T cells (Effect T), Helper T cells

(Th), Naïve T cells, Memory T cells, Regulatory T cells (Treg), and

Interferon T cells (IFN T) (Figure 6A, C). Notably, all T/NK cell

subclusters were shared between the OR and SOR groups, but they

exhibited heterogeneous cell proportions (Supplementary Figure
FIGURE 4

Functional analysis of malignant plasma cell subclusters. (A) Heatmap showing the expression levels of the top 10 marker genes for the 5 malignant
plasma cell subclusters. (B) Bar chart showing the KEGG enrichment analysis results for differentially upregulated genes in malignant cell subtype 3.
(C) Bar chart showing the HALLMARK enrichment analysis results for differentially expressed genes in malignant cell subtype 3. (D) Scatter plot
showing the RSSs (regulon specificity score) in poor prognosis malignant cells. The top 5 regulons are highlighted. (E) Heatmap showing the
expression levels of the top 10 marker genes in worse survival and good survival malignant plasma cells. (F) Bar chart showing the KEGG enrichment
analysis results for differentially upregulated genes in worse survival malignant plasma cells. (G) Bar chart showing the HALLMARK enrichment
analysis results for differentially expressed genes in worse survival malignant plasma cells. (H) AUCell calculation of the Cancer stemness pathway
signature in worse survival, good survival, and background malignant plasma cells. UMAP plot shows the Cancer stemness signature score in each
malignant plasma cell; yellower color indicates higher relevant gene expression. Box plot shows the difference in Cancer stemness signature scores
among the 3 cell subclusters.
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S2B, D-E). Analysis of cell counts and proportions between these

two groups revealed that the top 3 most abundant cell types were

NK cells, T-effect cells, and T naïve cells, respectively

(Supplementary Figure S2C). Furthermore, Naïve T and Th cells

showed a significant increase in proportion in the OR group, while

Memory T cells showed a significant decrease in proportion in the

OR group (Figure 6B, D, Supplementary Figure S2F). This finding

suggests that remodeling of the immune microenvironment may be

a key factor for good treatment response. It has been shown that

Naïve T cells are unactivated T cells with high proliferative potential

and differentiation capacity, while Th cells can enhance anti-tumor

immune responses. In the OR group, the increased proportion of

Naïve T and Th cells may reflect stronger anti-tumor immune

potential and indicate that patients are more sensitive to the

bortezomib-melphalan-prednisone regimen. Given that memory

T cells have long-term survival and rapid response capabilities to

antigens, the significant decrease in the proportion of these cells in

the OR group may reflect their effectively activation and

differentiation into effector T cells while reduced proportions of

Memory T cells during treatment. Further scoring analysis of the

cytotoxic features of T/NK cell subclusters (Figure 6E) showed that

compared to the SOR group, the cytotoxicity feature scores of NK

cells, Effect T cells, and Naïve T cells were all significantly elevated

in the OR groups, indicating that these cells have stronger
Frontiers in Immunology 09
cytotoxicity and immune killing effects in the OR group, enabling

them to effectively attacking and clearing tumor cells, and

exhibiting stronger sensitivity to drugs.
3.6 Cell-cell communication

To better interpret the communication between cellular

components in TME, we constructed cell interaction networks of

potential receptor-ligand pairs for the OR and SOR groups,

respectively (Figure 7A, B). We observed that compared to the

OR group, the communication between different cellular

components in SOR group samples varied considerably. Given

the observed significant activation of pathways related to cell

stemness, cell cycle, and differentiation in the MalPlasma3

subcluster and worse survival malignant plasma cells, we thus

focused on the interaction of cells in this subcluster with HSPCs.

We found that MalPlasma3 subcluster, acting as signal-sending

cells, presented significant larger number of interactions with

HSPCs in OR groups as compared to the interactions in SOR

group (Figure 7C, D). Further comparative analysis of ligand-

receptor pairs between the two groups revealed that in the OR

group, the MalPlasma3 subcluster specifically regulated HSPCs via

IGF1-IGF1R, a signaling pathway regulating cell growth,
FIGURE 5

Trajectory analysis of malignant plasma cell subtypes. (A) Cell state trajectory (color represents different differentiation states). (B) Color represents
pseudotime order. (C) Cell color represents worse survival and other cells. (D) Groups marked by color. (E) Cell differentiation ridge plot. (F)
Heatmap showing dynamic changes in gene expression along pseudotime. (G) KEGG enrichment results for Cluster 1 genes.
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proliferation, and apoptosis by activating signaling pathways such

as PI3K/Akt and MAPK (Figure 7E). These results were echoed

with previously observed increased proportion of HSPCs in the OR

group, reflect ing a re lat ive ly healthier bone marrow

microenvironment, but stronger hematopoietic/immune

reconstruction ability, and potential anti-tumor immune

regulatory effects in this group. In addition, we found that in the

OR group, Memory T, NK, and Effect T cells specifically regulated

the MalPlasma3 subcluster via IFNG-(IFNGR1+IFNGR2)

(Figure 7F). Furthermore, in the OR group, Pre-B cells were

found to specifically regulate the MalPlasma3 subcluster via

CCL28-CCR10.
Frontiers in Immunology 10
3.7 PTPRG affects prognosis and drug
resistance

We further leveraged bulk transcriptomics data from GSE9782

(parallel detection using GPL96 and GPL97 platforms) to assess the

relationship between tumor stemness-related genes and prognosis.

As shown in Fig8A, a total of 2298 differentially expressed genes

(DEGs) were identified in the GPL96 platform data in tumor

samples, of which 785 genes were upregulated and 1513 genes

were downregulated. In the GPL97 platform data, 1119 DEGs were

identified in tumor samples, with 613 genes upregulated and 506

genes downregulated (Figure 8A) (P<0.05). Furthermore, we
FIGURE 6

Reclustering of T/NK cells. (A) UMAP plot showing the distribution of T/NK cell subclusters. (B) UMAP plot showing the distribution of T/NK cell
subclusters in OR and SOR groups. (C) Dot plot showing the average expression levels of typical marker genes for T/NK cell subclusters. (D) Shows
the proportion of T/NK cell subclusters in OR and SOR group samples. (E) Analysis of T cell cytotoxicity using AUCell scores. UMAP projection
showing cytotoxicity scores per T cell (higher scores in yellow indicate increased expression of cytotoxicity-related genes). Box plot demonstrates
cytotoxicity signature scores among T cell subtypes across the analyzed sample groups.
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mapped the upregulated DEGs from the MalPlasma3 subcluster

(compared to other malignant plasma cell subclusters, a total of

1485 upregulated DEGs) and worse survival malignant plasma cells

(compared to good survival malignant plasma cells, a total of 2679

up DEGs) with Cancer stemness pathway genes. We found that
Frontiers in Immunology 11
Cancer stemness pathway related DEGs were upregulated,

including 449 genes in the MalPlasma3 subcluster and 693 genes

in worse survival malignant plasma cells. Finally, these genes were

overlapped with the upregulated DEGs from the two GSE9782

datasets, resulting in 7 tumor stemness-related genes, including
FIGURE 7

Cell interactions in the MM microenvironment. (A, B) Heatmaps showing the overall interaction strength between specific cell subtypes in the OR
group (A) and SOR group (B). (C, D) Chord diagrams showing the interaction network of MalPlasma3 subcluster cells with other cells in the OR
group (C) and SOR group (D). (E) Bubble plot showing the differences in specific ligand-receptor interactions between malignant plasma cells as
signal-sending cells and other cells in the OR and SOR groups. (F) Bubble plot showing the differences in specific ligand-receptor interactions
between malignant plasma cells as signal-receiving cells and other cells in the OR and SOR groups.
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NONO, CBX3, SLC25A3, PTPRG, NPM1, HINT1, HNRNPA1

(Figure 8B). Among the 7 genes, PTPRG was specifically highly

expressed only in MalPlasma3 and MalPlasma5 subclusters

(Figure 8D). Considering factors such as whether candidate genes

were highly expressed in the responder group (i.e., R group) of the

bulk dataset (GSE9782) and in worse survival malignant plasma

cells, as well as poor prognosis, PTPRG was ultimately selected.

Notably, we found that PTPRG was highly expressed in the NR

group of the GSE9782 dataset (GPL96 platform) (Figure 8C) and in

worse survival malignant plasma cells (Figure 8E). Further

prognostic validation of PTPRG using bulk datasets GSE9782

(best cutoff:6.8011457193872), GSE2658 (best cutoff:9.417325114),

and MMRF-CoMMpass (best cutoff: 2.119787759) revealed that
Frontiers in Immunology 12
samples with high PTPRG expression had significantly poorer

prognosis (Figure 8F, Supplementary Figure S3).
3.8 PTPRG affects tumor cell function

To better reveal potential functional role of PTPRG in MM, we

performed in vitro knockdown studies using two distinct siRNAs in

U266 and NCI-H929 cell lines. Effective suppression of PTPRG

expression was confirmed by qRT-PCR (Figure 9A, B), and

subsequent CCK-8 assays revealed a significant reduction in cell

viability upon PTPRG knockdown (Figure 9C, D). Consistently,

both flow cytometric analysis and Western blotting demonstrated
FIGURE 8

PTPRG affects prognosis and drug resistance. (A) Volcano plots of differentially expressed genes (tumor vs normal) in the GSE9782 dataset: (left)
GPL96 platform data, (right) GPL97 platform data. (B) Venn diagram for obtaining key genes. (C) Violin plot of PTPRG expression levels in the
GSE9782 dataset (GPL96 platform). (D) Violin plot of PTPRG expression levels in the 5 malignant plasma cell subclusters. (E) Violin plot of PTPRG
expression levels in good survival and worse survival malignant plasma cells. (F) Prognostic analysis of PTPRG in bulk datasets. A p-value of <0.05
from the Log-rank test was considered statistically significant.
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FIGURE 9

Functional validation of PTPRG. (A, B) mRNA expression analysis of PTPRG. Two siRNAs targeting PTPRG were transfected into MM cell lines U266
(A) and NCI-H929 (B), followed by RT-qPCR to analyze PTPRG mRNA expression. All data are expressed as mean ± SD. **P<0.01, ***P<0.001, vs
si-NC group. (C-D) Cell viability analysis. Two siRNAs targeting PTPRG were transfected into MM cell lines U266 (C) and NCI-H929 (D), followed by
CCK8 assay to analyze cell viability in U266 (left) and NCI-H929 (right). All data are expressed as mean ± SD. ***P<0.001, vs si-NC group. (E-F) Cell
apoptosis analysis. Annexin V-FITC/PI staining fluorescence-activated cell sorting analysis of MM cell lines U266 (E) and NCI-H929 (F); bar chart
shows apoptosis rate. All data are expressed as mean ± SD. **P<0.01, ***P<0.001, vs si-NC group. (G-H) Apoptotic protein expression analysis. Two
siRNAs targeting PTPRG were transfected into MM cell lines U266 and NCI-H929, followed by immunoblotting to analyze protein expression of
Caspase-3, Cleaved-caspase-3, and PTPRG in U266 (G) and NCI-H929 (H). All data are expressed as mean ± SD. *P<0.05, **P<0.01, ***P<0.001, vs
si-NC group.
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an increased apoptotic fraction in PTPRG-depleted cells

(Figure 9E–H), indicating that PTPRG loss inhibits proliferation

and promotes apoptosis in MM.
4 Discussions

MM remains a formidable hematologic malignancy,

characterized by significant inter- and intra-tumoral heterogeneity

that profoundly influences therapeutic response and patient

outcomes. Our scRNA-seq analysis provides a comprehensive

view of the cellular and molecular dynamics in MM, shedding

light on the roles of malignant plasma cell heterogeneity and the

TME in shaping treatment response and prognosis. By combining

single-cell insights with bulk transcriptomics and functional assays,

we identified critical cellular subclusters (e.g., a stem‐like plasma‐

cell subcluster) and highlighted PTPRG as a novel regulator of

MM progression.

The diversity of malignant plasma cells in MM is a well-

recognized driver of disease complexity and therapeutic

challenges. A central finding of our investigation is the

delineation of distinct malignant plasma cell subclusters, with the

MalPlasma3 subcluster notably enriched in patients exhibiting SOR

and strongly associated with a poor prognosis. This aligns with

previous work showing that clonal heterogeneity in MM

contributes to aggressive disease behavior and resistance to

therapies like proteasome inhibitors (24, 25). The prevalence of

MalPlasma3 in the SOR group suggests this subpopulation may

harbor intrinsic features conferring resistance to the administered

therapy or a heightened capacity for adaptive resistance. The

enrichment of pathways such as E2F and MYC targets in this

subcluster echoes reports that these molecular drivers underpin

MM cell survival and rapid growth (26, 27). This is further

corroborated by our pseudotime analysis, which depicted a

developmental trajectory where malignant plasma cells,

particularly those enriched in the SOR group and within

MalPlasma3, progress towards a more aggressive, “worse survival”

phenotype. Such clonal evolution, where more aggressive or

resistant subclones expand, is a known characteristic of MM

progression and relapse (28, 29). The enrichment of G2M

checkpoint pathways further indicates active cell cycling, a

hallmark of aggressive tumor behavior. The identification of

E2F8, E2F7, FOXM1, E2F1, and TIMELESS as top active

transcription factors in MalPlasma3 provides specific regulatory

nodes potentially driving these aggressive characteristics. These

insights refine our understanding of how specific malignant

subclusters influence MM outcomes, pointing to the need for

targeted strategies to address this heterogeneity.

The immune microenvironment is increasingly recognized as a

determinant of MM treatment success. Our analysis revealed

distinct T-cell subcluster profiles between OR and SOR, with

higher proportions of naïve and helper T cells in the OR group.

This suggests that a more active immune response may enhance

treatment efficacy, consistent with studies linking effective anti-

tumor immunity to improved MM (30, 31). Naïve T cells, capable of
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differentiating into potent effector cells, and helper T cells, which

coordinate immune activity, likely bolster anti-tumor defenses (32).

The relative scarcity of memory T cells in the OR group could reflect

their transition into effector states during therapy, a process known

to amplify immune attack (33). These shifts in T-cell composition

highlight the adaptability of the immune landscape in MM and its

potential as a therapeutic lever, particularly for patients with

suboptimal responses.

Interactions within the TME further shape MM progression

and response to treatment. Our findings point to enhanced

communication between malignant plasma cells and HSPCs in

the OR group, mediated by pathways like IGF1-IGF1R. The

enrichment of this interaction in the OR group, specifically

involving the “poor-prognosis” MalPlasma3 cells, is complex.

However, this interaction may foster a supportive bone marrow

niche, aiding immune reconstitution and treatment sensitivity (34).

It’s conceivable that this interaction, while typically pro-myeloma,

might render MalPlasma3 cells more susceptible to certain

therapeutic effects in a specific niche context or influence their

metabolic state. This contrasts with the general understanding of

IGF-1 signaling promoting MM cell fitness (35) and warrants

deeper investigation. Additionally, cytokine-driven interactions,

such as those involving interferon-gamma and CCL28, in the OR

group suggest a more robust immune regulatory environment,

corroborating the role of cytokines in MM immune responses

(36). These communication patterns emphasize how the TME

modulates disease behavior and therapeutic outcomes, offering

clues for microenvironment-targeted interventions.

One of our main findings is the identification of PTPRG as a key

mediator of the MalPlasma3 phenotype and an independent

predictor of poor outcome. PTPRG has been characterized as a

receptor‐type phosphatase with tumor‐suppressive functions in

solid and hematologic malignancies, where its deletion,

methylation, or downregulation unleashes oncogenic kinases such

as ABL1 (12, 37). In chronic myeloid leukemia, PTPRG

hypermethylation drives resistance to tyrosine‐kinase inhibitors,

underscoring its role in constraining aberrant growth signals (38).

Our demonstration that high PTPRG expression marks the stem‐

like, drug‐resistant MalPlasma3 subcluster and that its knockdown

impairs proliferation while promoting apoptosis unveils a

previously unrecognized function for PTPRG in MM and

positions it as both a novel prognostic biomarker and a tractable

target for therapy. The apparent contrast between PTPRG’s

canonical tumor-suppressive role elsewhere and its adverse

prognostic association in MM likely reflects substrate and

network context-dependence. Mechanistically, PTPRG likely

modulates phosphorylation‐dependent pathways critical for

stemness and cell‐cycle control. Its potential interaction with

proliferative pathways, like PI3K/Akt or MAPK, aligns with the

broader role of tyrosine phosphatases in cancer signaling (39). In

the bone-marrow microenvironment, while IGF-1 provided by

stromal elements is a well-established driver of myeloma growth

and survival via IGF1R-PI3K/ERK signaling (34, 35)and direct

IGF1R dephosphorylation by PTPRG has not been demonstrated,

PTPRG dephosphorylates and dampens collaborating RTKs (e.g.,
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FGFR family members), thereby possibly lowering shared adaptors

(FRS2-RAS–MAPK; PI3K–AKT) (40) and tuning the effective gain

of IGF1R signaling. PTPRG-low states would thus be predicted to

elevate RTK tone and amplify IGF-1 to common nodes. In parallel,

PTPRG acts as a JAK phosphatase (e.g., JAK2 Y1007/Y1008) (41),

positioning it upstream of IFN-g-JAK-STAT1 signaling. Because

IFN-g robustly induces PD-L1 in myeloma plasma cells (42, 43),

reduced PTPRG would be expected to prolong/augment STAT1

signaling and enhance PD-L1 induction, whereas higher PTPRG

should blunt this response. These clues highlight that PTPRG may

co-tune both IGF1–IGF1R/PI3K–ERK and IFN-g–JAK–STAT1/
PD-L1 axes, offering a mechanistic bridge that ties the

microenvironmental cues we observe in the OR group to the

poor-prognosis biology of MalPlasma3 and nominating PTPRG

as both a prognostic marker and a therapeutically tractable node. Of

note, it has been shown that R5 receptor–type PTP inhibitors with

PTPRG activity (NAZ2329: cell-permeable, allosteric; SCB4380:

competitive, effective with liposomal delivery) suppress tumor

growth and stem-like properties in glioma models (44); and

murine monoclonal antibodies against the PTPRG ectodomain

have been generated and used on CML samples, demonstrating

surface accessibility and a plausible route for myeloma-directed

biologics (12, 37). Nonetheless, this druggability has not been

comprehensively explored in MM and therapeutic value of

targeting in PTPRG will require preclinical studies (target

engagement, selectivity, delivery) followed by appropriately

designed early-phase clinical trials.

Our study possesses several notable strengths. The application

of scRNA-seq provides a high-resolution, unbiased view of cellular

heterogeneity and transcriptional states within both the malignant

plasma cell compartment and the TME, offering insights often

obscured by bulk analytical methods. The identification and

functional annotation of the MalPlasma3 subcluster, its

association with poor prognosis, and the detailed pathway

analyses contribute significantly to understanding MM biology. A

key strength is the identification of PTPRG as a gene linked to this

aggressive phenotype and poor outcomes, further supported by in

vitro validation demonstrating its role in MM cell viability and

apoptosis. The comprehensive characterization of T/NK cell

subclusters and the delineation of specific cell-cell interaction

networks provide a more nuanced understanding of the TME’s

contribution to treatment response.

Nevertheless, our study is not without limitations. The small

sample size of 18 patients, while informative for scRNA-seq, may

limit the statistical power for certain sub-analyses and the broader

generalizability of some findings to the diverse MM patient

population. While our data integration methods appeared robust,

scRNA-seq studies can be susceptible to batch effects and technical

variability. The findings are based on patients treated with a specific

regimen (bortezomib-melphalan-prednisone), and the identified

resistance mechanisms or TME alterations might differ with other

therapeutic modalities. The intriguing association of high PTPRG

expression with poor prognosis alongside its in vitro pro-survival

role warrants extensive further validation, particularly through in

vivo studies using patient-derived xenografts from distinct PTPRG-
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expressing subclones, and in larger, independent patient cohorts to

fully elucidate its mechanistic contributions in different MM

contexts. The functional consequences of some observed cell

proportion changes (e.g., the apparently contradictory HSPC

proportions) and the newly identified cell-cell interactions require

more direct experimental validation to establish causality and

precise mechanisms.

In conclusion, our study provides a detailed single-cell

transcriptomic atlas of the MM bone marrow microenvironment

in the context of differential treatment responses. We have

identified a prognostically significant malignant plasma cell

subcluster, MalPlasma3, characterized by activated stemness and

proliferation pathways. Our findings highlighted PTPRG as a gene

whose high expression is linked to this aggressive phenotype and

poor clinical outcomes in MM, yet intriguingly, its knockdown in

vitro impairs MM cell survival, suggesting a complex, context-

dependent pro-survival function in these cells that warrants deeper

exploration as a potential therapeutic vulnerability. Furthermore,

we delineate distinct TME compositions, particularly within T/NK

cell subsets, and specific cell-cell interaction networks involving

IGF1-IGF1R, IFNG, and CCL28-CCR10, that are associated with

optimal versus suboptimal treatment responses.
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SUPPLEMENTARY FIGURE 1

UMAP visualization technology was used for unsupervised clustering analysis
of cells, where each dot represents a single cell. A Cells colored by cluster. B
Dot plot showing the cell counts for different cell types. C Shows the cell type
proportion in each sample. D Shows the proportion of each cell type in the

two sample groups. E Shows CNV score values. F UMAP plot showing CNV
score values for plasma cells and T/NK cells.

SUPPLEMENTARY FIGURE 2

Details of T/NK cell reclustering. A UMAP plot showing the distribution of

different T/NK cell clusters. B UMAP plot showing the distribution of different
samples within T/NK cell subclusters. C Bar chart showing the cell counts of

T/NK cell subclusters. D Stacked bar plot showing the proportion of T/NK cell
subclusters in each sample. E Stacked bar plot showing the proportion of

each sample within T/NK cell subclusters. F Stacked bar plot showing the

proportion of OR and SOR groups within T/NK cell subclusters.

SUPPLEMENTARY FIGURE 3

The univariate Cox results of the PTPRG gene in three datasets.

SUPPLEMENTARY TABLE 1

The gene set related to the “cancer stemness” and “Cytotoxicity” function of

T cells.

SUPPLEMENTARY TABLE 2

The target sites of siRNA for PTPRG.

SUPPLEMENTARY TABLE 3

The primers of b-ACTIN and PTPRG.

SUPPLEMENTARY TABLE 4

Description of patients and single cell data included in this study.
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