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toll-like receptor 4 in severe
disease outcomes
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Innate immunity is the first line of defense against infections, including the

detection and response to SARS-CoV-2. Cells of the innate system are usually

activated within hours after pathogen exposure and do not generate

conventional immunological memory. In this review, the current knowledge of

the innate immune cells and of pattern-recognition receptors in sensing and

responding to SARS-CoV-2 to mount a protective response has been shortly

reviewed. Subsequently, the evasion strategies of the virus, as the inhibition of

IFN-I/III production and autophagic response, counteracting the innate cell

activity (including NK cells), have been briefly outlined. In the course of the

infection, these strategies are also capable of rendering dysfunctional most

innate cells, thus deeply interfering with the onset and maintenance of

adaptive immunity. Possible mechanism(s) for the maintenance of

dysfunctional innate immune response are also discussed. In this context, the

importance of a rapid and robust activation of innate immunity through toll-like

receptor (TLR) 4 as a key paradigm central to host defense against COVID-19

pathogenesis is also illustrated. We also discuss how the viral excess plus

inflammatory signals upregulating TLR4 on innate cells may initiate a vicious

loop which maintains and improves hyperinflammation, leading to the most

critical outcomes. Targeting the TLR4 or its signaling pathway may be a

promising therapeutic strategy, offering the dual benefits of viral suppression

and decreasing inflammation.
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1 Introduction

COVID-19 pandemic has been caused by the b-coronavirus
SARS-CoV-2, that had a dreadful impact, resulting in more than

seven million documented deaths worldwide and four hundred

million (underestimated) of Long-COVID cases as far as 2024 (1).

Although originally defined as a respiratory viral infection, COVID-

19 is now clearly recognized as a more complex, multistep, multi-

organ immune-mediated disease. The virus infects primarily the cells

of the upper- and then of the lower respiratory tract, triggering a wide

spectrum of clinical manifestations, from asymptomatic, mild, and

moderate to severe and critical symptoms (2). While most SARS-

CoV-2 infections are mild, some patients develop uncontrolled

inflammatory cell death, systemic inflammation with severe

cytokine storm (a general term applied to maladaptive cytokine

release in response to infection and other stimuli) (3), pneumonia,

acute respiratory distress syndrome -ARDS-, thrombosis, and

multiorgan failure with fatal outcomes (4–6).

The innate immune system plays a primary role against

infections, including SARS-CoV-2. It is usually activated within

hours after pathogen exposure and does not generate

immunological memory. It can be distinguished in immediate or

induced innate immunity. The former is rapidly activated (0–4 h)

and relies on the activity of preformed soluble antimicrobial

molecules, including antimicrobial enzymes and complement (C‘)

system proteins. The induced innate immunity begins later (4–72

h), involves the activation and the recruitment of cells (as

neutrophils, monocytes, macrophages and natural killer -NK

cells), and lasts few days after the first exposure to pathogens. In

this phase, innate cells can mount a process of resistance to

reinfection, termed “trained immunity”, which involves structural

chromatin modifications, alterations in DNA methylation, histone

acetylation, upregulation of inflammation-related genes and

changes in metabolic intermediates. This “trained immunity”

provides the innate system with a memory-like activity, allowing

to respond more effectively to re-exposure to pathogens (7).

In this review, we will briefly examine the current knowledge of

innate immune cells and pattern-recognition receptors (PRRs) in

sensing and responding to SARS-CoV-2 as well as evasion strategies

of the virus counteracting the innate immunity. We will focus on

mechanism(s) for maintenance of dysfunctional innate immune

cells through the upregulation/activation of toll-like receptor (TLR)

4 and leading to the most severe outcomes.
2 SARS-CoV-2 structure and
activation of the innate immune
response

2.1 SARS-CoV-2 genome and virus cell
cycle

SARS-CoV-2 is made up of an enveloped structure containing a

genome of approximately 30 kb, constituted by single-stranded
Frontiers in Immunology 02
RNA (ss-RNA) encoding 29 proteins with diverse functions (8).

Four are structural virion components such as the spike (S),

envelope (E), membrane (M), and nucleocapsid (N) proteins (9).

The S glycoprotein (SP), assembled into homotrimers on virion

particles, mediates viral entry by attaching to and fusing with the

host cell membrane (10). SP is cleaved by convertases (as

transmembrane serine protease type II -TMPRSS2-, cathepsins,

furin or metalloproteases), into a mature protein formed by the

two non-covalently associated S1 and S2 subunits (11). S1 consists

of the amino-terminal (NTD), the receptor-binding (RBD), and two

carboxy-terminal (CTDs) domains protecting the inner S2 subunit.

S1 binds the receptor Angiotensin-Converting Enzyme 2

(ACE2) through the RBD, while S2 links the cell membrane

allowing viral entry (12). Endocytosis is another viral entry

modality involving ACE2 plus other co-factors (as HSPG, PS

receptors, NRP, CD147, C-type lectins) whose mechanism is

partially defined. ACE2 is scarcely expressed on circulating

immune cells, while it is highly present on cells (as Monocytes,

Dendritic cells -DC-, Epithelial cells, type 2 Pneumocytes, Alveolar

macrophages, etc.) of tissues and organs, especially in the

respiratory and digestive mucosa and myocardium (13), making

these tissues more susceptible to infection.

Within the host cell, the viral genome encodes nine accessory

proteins that promote viral shape. The genome is immediately

translated by producing two long polyproteins (pp1a and pp1ab)

which are cleaved by virus-encoded proteases to 16 nonstructural

proteins (Nsp) that are devoted to assembly the replication–

transcription complex, to modulate host cell compartments for

generation of new virions and to release them through exocytosis.

They are effective upon interaction with multiple genetically

encoded PRRs (14).
2.2 Virus-mediated activation of immunity

2.2.1 PRRs engagement
Thanks to the expression of different PRRs most of innate cells

sense pathogen-associated- and damage-associated molecular

patterns (PAMPs DAMPs) along the infection. Activated

receptors drive the expression of pro-inflammatory cytokines,

chemokines, adhesion molecules and interferons (IFNs), which

recruit and activate other innate immune cells. This further

amplifies the immune response and cell death to eliminate

infected cells, promotes pathogen clearance, and, if the infection

is not eradicated, activates adaptive immune response (15, 16).

Among different PRRs, SARS-CoV-2 engages and triggers retinoic

acid-inducible gene I (RIG-I)-like receptors (RLRs), TLRs, cGAS

and stimulator of interferon genes (STING) pathway, the

inflammasome nucleotide-binding oligomerization domain

(NOD)-like- (NLRs)/absent in melanoma 2 like- AIM2 (ALRs)

and C-type lectin (CLRs) receptors (17). SARS-CoV-2 proteins

induce also mitochondria damage which release of mitDNA

activating cGAS-STING pathway, contributing to IFN-b
expression (18) and, in endothelial cells, to vascular damage and

coagulopathy in patients with severe COVID-19 (19). Importantly,
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TLR, RLR, cGAS engagement have a prevalent anti-viral impact

(beneficial in early clearing the virus but detrimental if stimulation

persists), while NLRs/ALRs or CLRs triggering are essentially

devoted to promote inflammation and apoptosis of infected cells

(14, 20). Some extensive reviews on the PRRs and their signaling

pathways activated by SARS-CoV-2 has been recently reported (14,

21–25).

2.2.2 Autophagy induction
Macro-autophagy is part of the antiviral innate response (26,

27) and can be activated upon viral infection, stress sensing kinases,

or triggered PRRs (28). During autophagy, cytoplasmic cargo,

including viruses, is engulfed by double-layered membrane

vesicles, named autophagosomes, and degraded upon fusion with

lysosomes in a tightly regulated process that involves more than 30

autophagy-related proteins (ATGs) (29, 30). Following DNA/RNA

virus entry, autophagy is the most active promoter of innate

immunity through DAMP release. The molecular interplay

between SARS-CoV-2 proteins and the immune-related process

of autophagy is described in the section 2. Viral peptides derived

from autophagic degradation are subsequently presented on MHC

class I/II antigens by lymph nodal DCs to CD8+ and CD4+ T cells

to initiate the virus-specific adaptive response (31).
2.2.3 SARS-CoV-2 full protection
It involves a plethora of immune cells of both innate and adaptive

immunity (32–34). Monocytes play the major role in the very early

response being recruited into lymph nodes where they differentiate into

immature-DCs and subsequently in mature DCs which present viral

peptides to T cells (35). Primed CD8+ T cells home to the site of

infection to directly kill infected cells or secrete antiviral cytokines as

IFN-g and tumor necrosis factor alpha (TNF-a). In the lymph nodal

germinal center, CD4+ T follicular helper (Tfh) cells promote B cell

affinity maturation and their activation into antibody-secreting cells

(31). Monocytes, recruited into infected tissues as lung, differentiate

into macrophages; when activated by the virus, they promote M1-like

polarization and release of chemokines favoring homing/activation of

circulating (NK/NKT cells and neutrophils) and other tissue effector

cells as mucosal-associated invariant T -MAIT-, gd T, innate lymphoid

cells -ILCs-, T resident memory -Trm-. NK and virus-specific CD8+ T

cells play the major role in limiting infection through their ability to

lyse infected cells and produce antiviral cytokines. When infected cells

and viral load are significantly reduced, monocytes/macrophages turn

off inflammation by reducing effector cells through the production of

anti-inflammatory/suppressive cytokines (IL-10, IL-27, IL-35, TGF.b)
(32–34, 36).
2.3 SARS-CoV-2 variants of concern (VOCs)

VOCs are characterized by mutations in the viral genome,

particularly in the SP playing a crucial role in the virus’s ability to

infect host cells (Table 1). Variants such as Alpha (B.1.1.7), Beta
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(B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529)

have been identified and classified by the World Health

Organization as VOCs due to their different transmissibility,

virulence, pathogenicity, ability to induce Long-Covid-19 and

resistance to neutralizing antibodies induced by vaccines (37).

The Omicron variant demonstrated a substantial increase in

transmissibility compared to previous strains, likely linked to the

high number of SP mutations. Even though the Delta variant’s R0

was estimated to be very high (between 5 and 8), however, R0 of

Omicron VOC was found to be even higher (approximately 3.19

times greater than that of Delta) (38, 39). Moreover, Omicron VOC

displays lower pathogenicity, high immune escape potential and a

significant reduction in Long COVID induction and vaccine efficacy

for infection (37, 40). Table 1 summarizes the main features of

VOCs, including their interaction/activation of SP of each variant

with TLR4/MD-2 complex (41).
3 Evasion strategies of SARS-CoV-2
counteracting innate immunity

The principal function of the innate system is to induce an

inflammatory response devoted to limiting viral replication.

However, the virus may evolve some evasion strategies to

suppress host defense: of note, more than 50% of the SARS-CoV-

2-encoded proteins may counteract innate response (42, 43). SARS-

CoV-2 has evolved distinct, sometimes overlapping, mechanisms to

antagonize IFN production and autophagy at multiple levels, all

promoting viral replication.

The major IFN antagonists are Nsp1, Nsp3, ORF6 and ORF3a/

b/c. Nsp1 was shown to block the mRNA channel of the ribosome,

turning off the expression of cytokines or IFN-stimulated antiviral

genes in infected cells (44). By harnessing its de-ubiquitinase

activity exerted by papain-like protease (PLP) 2 domain, Nsp3

inhibits various steps of PRR signaling (45, 46), cleaving the

ubiquitin-like ISG15 protein, thus antagonizing MDA5 and IRF3

activation (47, 48). SARS-CoV-2 induces multiple proteins encoded

in the Open Reading Frame (ORF) loci. ORF3a reduces STAT1

phosphorylation, the main transcription factor of IFN (49), while

ORF3b and ORF3c inhibit type I IFN production by targeting

mitochondrial antiviral-signaling protein (MAVS) for cleavage by

caspase-3 (50). ORF6 disrupts nucleocytoplasmic trafficking by

binding the nuclear pore Nup98-Rae1 complex, inhibiting STAT1

nuclear translocation (51, 52). Even though ORF6 alone is not

sufficient to antagonize IFN pathway (53), its high levels could

increase IFN resistance of SARS-CoV-2 VOCs compared to original

strain (54–57).

SARS-CoV-2 infection leads to an incomplete/dysfunctional

autophagy with a higher turnover of autophagosomes.

Pharmacological activation of autophagy reduces replication of

human Coronaviruses (huCoVs) and spreading (58).

ORF3a and ORF7a are the key viral components causing

impaired autophagy (59–64), by preventing viral clearance and

favoring viral replication by the accumulation of autophagosomes.
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ORF3a interacts with autophagy process at different levels.: it

prevents the fusion between autophagosomes and lysosomes,

decreasing the autophagic flux and providing an immune escape

from autophagy (42, 61, 63). In addition, it shows activity on endo-

lysosomal compartments promoting lysosomal exocytosis and

improving viral release (65). Lastly, ORF3a has been reported to

counteract the flux, modulating the antiviral effect of the non-

canonical STING1-mediated autophagy (66).

ORF7a dysregulates the late stages of autophagy by inhibiting

the acidification of lysosomes (42, 67) and prevents

autophagosome-lysosome fusion by promoting the degradation of

the SNARE protein SNAP29 (62).

SARS-CoV-2 can also block autophagy turnover through the

structural proteins M and E, which leads to the accumulation of

autophagosomes and p62 in the cell (42, 67). Similarly, M and

ORF10 are able to counteract innate immunity by promoting the

autophagic degradation of MAVS (through mitophagy), which are

important antiviral elements associated with mitochondria, leading
Frontiers in Immunology 04
to a reduction of type I IFN (IFNI) production (68, 69). Like ORF3a

ORF10 also counteracts non-canonical autophagy by inhibiting

STING1 activation (70).

Non-structural proteins also are able to downregulate

autophagy: SARS-CoV-2 papain-like protease Nsp3 reduces the

starvation-induced autophagy and disrupts the formation of the

initiation complex that involves ULK1 and ATG13 (71). Nsp4

promotes accumulation of autophagosomes (42), while Nsp6

inhibits the autophagy initiation by preventing the formation of

pre-autophagosomal structures (72). The helicase Nsp13 mediates

the autophagic degradation of TBK1, impairing IFN-I production

and reducing innate immunity (53), while Nsp15, as ORF3a alters

early phases of autophagy with the reduction of autophagosome

formation (42).

The interplay beween SARS-CoV-2 proteins and the process of

autophagy are extensively reviewed in three recent reports (73–75).

Overall, the principal effect of SARS-CoV-2 evasion strategies is

the increased viremia which favors the persistent viral stimulation
TABLE 1 Structural and pathophysiological features of the main SARS-CoV-2 VOCs.

SARS-CoV-2
VOCs’
features

Wuhan
strain

Alpha
B.1.1.7

Beta
B.1.351

Gamma
P.1

Delta
B.1.617.2

Omicron
B.1.1.529

Ref

Spike protein
mutations
(Deletions)

8 (3) 9 (3) 11 (3) 7 30 (240)

S1 - TLR4 affinity
(no. of hydrogen
bonds - Modes of

TLR4/MD2
dimerization)

+
(15 - 6)

++
(14 - 7)

+
(ND -ND)

+
(ND - 5)

+
(17 - 4)

+++
(16 - 3)

(41, 241)

Innate immunity:
Pro- and anti-
inflammatory
cytokines

IL6, IL10,
IL18, IL27

+++ +++ ++ ++ ++ +/- (242, 243)

IFN-g, IL-4 +/- + + + + ++ (243)

R0 range detected
(vs Wuhan strain)

2.24-5.71
2,26-11,38
(> 35-45%)

(> 50%) (> 150%)
3.2-8

(> 100%)
4.2 times > Delta
VOC (> 250%)

(40, 240)

Immune escape Moderate
High (due to

E484K mutation)

Moderate
(due to
E484K

mutation)

Moderate

High (due to
multiple mutations
in RBD as E484A,

Q493K)

(37)

Pathogenicity
(vs Wuhan strain)

Increased
severity

No significant
increase of
severity

No significant
increase of
severity

Increased severity
in unvaccinated

people

Lower severity (risk
only for not

vaccinated people)
(37)

Association with
Long-COVID

Olfactory
dysfunctions

50% of
infected
people

50% of
infected
people

ND ND
40% of infected

people
17% of infected

people
(244)

Risk to
develop

Long Covid
++ ++ ND ND ++ +/- (245, 246, 247)

Impact on vaccine
efficacy (percent
of protection vs
Original mRNA

vaccines)

90%
Minor

reduction in
efficacy;

Efficacy for
severe
disease

90%
Reduction in

neutralization by
mRNAvaccines.

Boosters
recommend ed

90%
Moderate

reduction in
efficacy.
Boosters

recommended

80%
Reduced efficacy
after one dose;
full vaccination
and boosters
recommended

52%
Reduction in vaccine
efficacy for infection,
boosters increase

protection to severe
disease

(37, 248, 249)
ND, not defined.
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with two main consequences: an increased programmed cell death

(PCD) and an inc reas ed dys func t ion /unba l ance o f

innate immunity.
3.1 Increased programmed cell death

Some PCD pathways are upstream of inflammatory processes,

playing a critical role in favoring severe outcomes. Cytokines,

PAMPs, and DAMPs promote some lytic forms of inflammatory

cell death, contributing to fatal evolution of COVID-19 (76–79). For

instance, the combination of IFN-g and TNF-a induces PANoptosis

(77), an inflammatory lytic cell death pathway of innate immunity

driven by caspases and receptor-interacting protein kinases (RIPKs)

that are regulated by multiprotein PANoptosome complexes. The

IFN signaling molecules STAT1, IRF-1, NOS2 also promote

activation of caspase-8-dependent complex inducing PANoptosis

(77, 79, 80).

Proteins induced by IFN-a-activated IFN Signature Genes

(ISG) (as ZBP1, AIM2, and ISG-15) may sense viral components

forming similar multiprotein complexes leading to PANoptosis

(76). In addition, AIM2 recognizing mitochondrial DNA, cell-free

DNA, or endogenous DNA, forms another multiprotein complex

(AIM2-PANoptosome) leading to PANoptosis. NLR pirin

domain containing 1 and 3 (NLRP1/3) and AIM2 bind cytosolic

DAMPs and PAMPs and activate the inflammasome, leading

to pyroptosis.

PANoptosis induces the death of cells which, in turn, release

DAMPs and alarmins engaging PRRs resulting in amplification of

inflammation (77, 81). PCD is induced during the entire SARS-

CoV-2 progression: initially, the virus infects the upper-airways,

sensitizing epithelial cells to cell death (82, 83). Subsequently, it may

spreads to alveoli infecting type II pneumocytes and trigger innate

cells (84, 85) that undergo pyroptosis (61), releasing PAMPs/

DAMPs and cytokines further recruiting and activating other cells

(86, 87). Neutrophils mainly undergo neutrophil-extracellular traps

(NETs) PCD (82, 88–91). Similarly, PANoptosis contributes to

endothelial cell death and organ damage in adults with severe

COVID-19 and children with Multisystem inflammatory

syndrome (MIS-C) (92), possibly resulting in abnormal blood

clots, lung damage, myocardial infarction, and stroke (93).
3.2 Dysfunction of innate cells

The virus and soluble S1 can interact with some active

receptors/molecules (membrane binding lectins – MBL-, CD26,

CD147, CD209, Histamine receptor H1, TLRs) expressed on many

cell types by directly or indirectly interfering with functions of the

majority of innate- and, subsequently, adaptive cells (94, 95). It also

displays sequences with super antigenic- and/or self-antigen-like

activity inducing activation of polyclonal- or autoreactive T cells.

Herein we will briefly examine how Virus/S1 protein-receptors

interplay can modify the features of infected- and not infected cells

of innate immunity during SARS-CoV-2 infection.
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Thus, the number of circulating monocytes is reduced, showing

an activated immature phenotype that does not result in production

of excess of cytokines (96). In contrast, PB DCs appear much more

dysfunctional expressing reduced anti-viral ISGs, MHC-Class II

antigens and cytolytic activity (97, 98). Lung alveolar macrophages

are replaced by inflammatory CD163+monocyte-derived (not tissue

resident) macrophages sharing some regulatory activities with

myeloid-derived suppressor cells (MDSCs), overexpressing

inflammasome-, pro-fibrotic- and C’-related genes and producing

pro-inflammatory chemokines and cytokines (99, 100). These

molecules start and amplify a vicious loop further promoting lung

homing of blood activated monocytes and T (Th17 and cytolytic

CD8+) cells, that improve DAMP release and tissue damage, further

activation of macrophages with increase of cytokine release (97).

It is not clear if neutrophils can be directly infected (89, 91, 101):

TLR engagement activates downstream NF-kB and interferon

regulatory factor 7 (IRF7) with the production of proteases,

cationic polypeptides and pro-inflammatory cytokines/

chemokines. Virus engagement of neutrophil TLR7/8, activates

protein arginase deiminase 4 (PAD4), inducing chromatin de-

condensation and NET formation (102, 103). NETs trigger a

positive loop with macrophages that are activated, produce IL-1b,
CCL1, CCL2, IL-6 and TNF-a, and further recruit neutrophils.

Extracellular histones from NETs cause cell cytotoxicity promoting

ARDS, sepsis and organ failure, while extracellular DNA, favors

autoimmunity and, through mucus hyperproduction, bacteria

superinfection with respiratory failure. Lastly, NETs release

fibrinogen, Von Willebrand Factor (VWF) causing thrombosis in

lung, kidney, liver and peripheral vessels (104). Endothelium

damage and thrombosis can also be improved by SARS-CoV-2-

mediated C’ activation through all three C’ pathways: they are

started up S1 and N proteins, producing anaphylatoxins C3a and

C5a, whose receptors are present on endothelial cells, platelets and

most leukocytes, inducing a prothrombotic state frequently

triggering thrombo-inflammatory events (105–107).

Increased mononuclear (M-) (108) and polymorphonuclear

(PMN) MDSCs (109, 110) have been reported in COVID-19

patients (111). The MDSC gene signature is predominant in PB

from severe patients: M-MDSC number is higher in severe vs mild

patients (112), is related to viral load (113) and associated with

secondary infections and mortality (114). The reduced/delayed IFN

production associates with enhanced chemokines that recruit

MDSCs into the lung, while high IL-6 may favor MDSC

proliferation (115). PMN-MDSCs use reactive oxygen species

(ROS) and L-arginase, whereas M-MDSCs use inducible nitric

oxide synthase (iNOS) and L-arginase to suppress bystander

immune cells (116). Regulatory functions of MDSCs include i.

Induction of high PD-L1 expression decreasing antigen-specific

T-cells through interaction with PD-1+ T-cells, ii. increased

signaling through Galectin-9 and Tim-3 pathways inhibiting Th1

and CD8+T cells, iii. enhanced TGF-b and IL-10 enhancing

suppressive function of M2-macrophages and proliferation of

Treg cells, iv. upregulation of TGF-b, ROS and L-arginase

inhibiting NK and CD8+ T cells, v. elevated pro-inflammatory

cytokines contributing to cytokine storm (117).
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Few reports on helper Innate Lymphoid Cells (ILCs) indicated

decreased ILC- and ILC precursor subsets in all COVID-19

patients: however, the percentage of ILC2 upon total ILCs is

increased in patients vs not infected controls (118, 119).

CD117low ILC2, a subset secreting more type 2 cytokines, is

expanded in COVID-19 patients as also confirmed by single cell

RNA sequencing (scRNAseq) (118, 119). ILC2 and ILC precursors

display enhanced CD69 and NKG2D and reduced CXCR3 and

CCR4, CD25 and KLRG1 expression (118, 119). At present it is not

clear whether ILC changes are related to worse or improved

outcomes or may be considered a simple epiphenomenon (101).

The NK cell dysfunction in early infected- or severe patients has

been repeatedly reported (118–120), the absolute number being

reduced during infection (121) and restored after recovery (122).

Patients with severe disease usually show at the early onset

increased pro-inflammatory cytokines, including IFN−g produced

by NK cells (123). These cells are strongly activated (106) and highly

express inhibitory checkpoint- (LAG3, PD-1, TIM-3) or inhibiting

receptors mainly in CD56dim subset, suggesting a dysfunctional/

exhausted profile (124), favoring the pathogenesis rather than

limiting infection (125). Even though some reports indicated that

NK alterations are due to enviromental signals (94, 123, 126), we

recently demonstrated that the virus can directly activate NK cells

till their exhaustion (127). HLA-E-binding S1 peptide(s) expressed

by infected epithelial cells may favor lung homing and recognition

of inhibitory CD94/NKG2A+ NK cells (128). NK cell dysfunction

also associates with low NK-stimulating cytokines (as IL-12, IL-15)

from APCs which, instead, produce IL-10 and TGF-b (129), as

virus-stimulated fibroblasts, epithelial and endothelial cells (109).

The IL-6 overproduction inhibits in vitro NK cell cytotoxicity (130)

indirectly confirmed by the in vivo treatment with anti-IL-6R mAb

which increases NK cell function in COVID-19 patients (131).

Dysfunctional innate cells have a great impact also on the

upgrowth of altered adaptive immunity (110). Modified function

of APCs impairs the induction of virus-specific T cells which also

display lower cytotoxicity and IFN-g production. M2-type

macrophages and MDSCs lead to expanded non cytolytic type 2

cells in tissues (Th2, ILC2, Tfh2, etc) that, at lymph nodal level,

stimulate antibody- and, sometimes, autoantibody production by B

cells. Increased viral components (expressing superantigens or

autoantigens) favor the expansion of non-specific polyclonal- or

autoreactive T cells. Lastly, the cytokine milieu (TGF-b, IL-1b, IL-6,
IL-23) of tissue inflamed cells favors the development and

expansion of Th17 and Treg cells which can switch each other

along the infection (126).
4 TLR4-SARS-CoV-2 interaction: role
for inflammation maintenance

The maintenance of inflammation evolving to critical outcomes

is essentially due to vicious circles involving the virus, dysfunctional

innate cells and soluble molecules released from cells of the

inflamed tissues. SARS-CoV-2 and its soluble proteins activate
Frontiers in Immunology 06
innate sensors, as TLRs, mostly expressed in innate cells and

detecting not only pathogens but also DAMPs (132). TLR

engagement initiates downstream signaling cascade, leading to the

release of effector molecules such as inflammatory cytokines/

chemokines (132). In the chapter below, we will discuss how,

among extracellular TLRs, TLR4 plays a crucial role in

maintaining SARS-CoV-2 infection.
4.1 The virus preferentially activates TLR4
signaling

Several viruses such as the respiratory syncytial-, vesicular

stomatitis- and Ebola virus, can directly engage and activate TLR4

through their surface glycoproteins (133). Although the precise

mechanism(s) by which these viruses activate TLR4 remains

partially unknown, some authors emphasize the role of

glycosylation or hydrophobic (hydrophobic pocket of MD-2

linked to TLR4) interactions. In silico studies have demonstrated

that soluble S1 protein can bind TLR2 and TLR4, with a higher

affinity for TLR4 (134, 135). This prediction was further validated

by in vitro, ex vivo, and in vivo experiments clearly indicating that

TLR4 is a high-affinity (~300 nM) cognate receptor for the trimeric

S glycoprotein, suggesting its role as a mediator of the

proinflammatory response in COVID-19 (127, 136–138).

4.1.1 Direct or endotoxin-mediated S1-TLR4
interactions

The S1-TLR4 direct interaction was debated for long time since

a computational modeling analysis revealed a high affinity also

between LPS and S1 (139), suggesting that endotoxin

contamination in recombinant S1 preparations (produced in E.

coli or human cells) might be responsible for TLR4 engagement and

human macrophage activation. According to these authors, the

compound Spike/LPS should act synergistically to induce cell

activation, while individual components do not (140). Indeed,

some evidence suggests that LPS may be involved in the

hyperinflammation of SARS-CoV-2 infection: hospitalized severe

COVID-19 patients exhibit elevated levels of LPS in circulation,

which increase as the disease progresses (141). Moreover,

subclinical infections with Gram-negative bacteria or low levels of

LPS from the gut could contribute to interactions between LPS and

the S protein in infected patients (142).

In odds with these findings, however, many reports underlined

that endotoxin contamination is unlikely to be the sole driver for

proinflammatory responses reiterating the direct activation of TLR4

by S1 (136). In agreement, our results indicate that a large spectrum

of doses of exogeneous LPS did not potentiate the NK cell functions

induced by ultrapure S1, but, rather, resulted in a decrease (127). In

addition, S1 induces the NK cell release of TNF-a and IFN-g that
enhance the transcription of CD40 which, interacting with its

ligand, stabilizes the membrane expression of TLR4 that serves as

a receptor of S1 (143). Omicron S protein which exerts stronger

binding affinity for TLR4 than the other VOCs, has been reported to
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bind LPS with reduced affinity compared to other variants (41, 144).

Finally, taking into account that LPS directly binds CD14 and MD2,

but not TLR4 (145), the recent in silico definition of the fine

hydrophobic bonds between residues of S1 and TLR4 and their

ability to induce TLR4 dimerization, strongly suggests that, at least

in part, S protein binds TLR4 and triggers subsequent signaling

(146). Further insights are, however, mandatory to define the exact

role of LPS in S1-TLR4 interaction mainly in severe

COVID19 patients.

4.1.2 The TLR4 structure and signaling
The structure of TLR4 includes an extracellular leucine rich

repeat (LRR) domain, a transmembrane domain, and an

intracellular Toll/Interleukin-1 receptor like (TIR) domain

interacting with adaptor proteins TIR domain-containing adaptor

protein (TIRAP) and TRIF-related adaptor molecule (TRAM)

(147). The TLR4 signaling complex consists of cluster of

differentiation 14 (CD14), myeloid differentiation factor-2 (MD-

2), TLR4, and TIRAP or TRAM that initiate downstream signaling

pathways in a dynamic manner. S1 protein from SARS-CoV-2

triggers two pathways, starting with TLR4 transformation and

binding with Myeloid differentiation primary response 88

(MyD88) and TIR domain-containing adaptor protein inducing

interferon beta (TRIF) proteins. The first pathway (MyD88-

dependent) leads to inflammation through the activation of the

IRAK4-IRAK1/IRAK2 complex and of TAK1, allowing the

degradation of IkBa and favoring the entry of NF-kB into the

nucleus to start the transcription of proinflammatory cytokine

genes. TAK1 also triggers MAPK pathways with AP1 activation,

which is crucial for cell survival and proliferation. The second

pathway (via TRIF, MyD88-independent pathway), essential for the

antiviral response, induces the activation of TRAF3 and TRAF6 and

later of TBK1 of IKKe, two enzymes phosphorylating IRF3, which

enters the nucleus and begins the transcription of type I IFN genes

(ISG) (132).

4.1.3 TLR4 activation by soluble Spike protein
The entire virions, soluble S1 proteins and S1-bound exosomes

are involved in TLR4 activation. The presence of soluble S1 is a

relatively frequent event in SARS-CoV-2 inflamed environment due

to its release from virus-infected and apoptotic cells. The cleavage of

SP from each viral particle can produce about 50–100 molecules/

virion of soluble S1, that can elicit multiple biological activities

(148). High serum S1 levels have been reported during early onset

and severe outcomes (124, 125). In post-acute sequelae of SARS-

CoV-2 infection (PASC or Long-COVID19) high levels of soluble

S1 and TLR4 expression have been described: importantly, in mice

and humans, soluble SP may induce TLR4-mediated long-term

cognitive dysfunction (135, 149–151). However, there is no

evidence that TLR4 activation in PASC persists independently of

detectable viral antigens. Clinical studies indicate that antagonizing

TLR4 signaling dampens the cytokine storm of severe COVID-19,

reduces mortality rates (152, 153), and has therapeutic effects in

PASC patients (154).
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High serum S1 levels have been also reported in post-

vaccination side effects (155): indeed, the S1-coding mRNA,

e s t a b l i s h e d b y r e p l a c emen t o f u r i d i n e w i t h N1 -

methylpseudouridine (156) and packaged into lipid nanoparticles,

is able to accumulate at the injection site and transported to lymph

nodes through DCs. The unprocessed residual vaccine particles are

spilled into bloodstream and high S1 levels may persist in blood and

tissues for a long time after vaccination. The persistence of soluble

S1 in some vaccinated individuals may induce pathogenic processes,

being associated with increased expression of TLR4 in specific target

cells (157–161).

SARS-CoV-2 can also indirectly activate TLR4 and

hyperinflammatory pathways through high plasma levels of

DAMPs or alarmins mostly produced by increased apoptosis of

infected cells and causing cytokine storm in severe COVID-19

patients (162–165). DAMPs include i. Heat Shock Protein 70 which

triggers inflammatory responses during chronic stress through

TLR4 (166); ii. S100A8/A9, calcium-binding proteins that activate

TLR4–MyD88 pathway (167, 168), thus favoring the output of cells

as MDSCs (168); iii. Fibrinogen which stimulates the production of

pro-inflammatory cytokines/chemokines in macrophages via TLR4

(169); iv. Secreted Protein, Acidic and Rich in Cysteines-like 1

(SPARCL1) that, through TLR4, induces lung inflammation

inducing M1-macrophages and activating the NF-kB pathway

(170); v. High Mobility Group Box 1 (HMGB1), released upon

necrotic or hypoxic conditions, which promotes inflammation

through TLR4 (171). HMGB1 serum level is higher in COVID-19

patients admitted to ICU compared to mild infection (172), whereas

SPARCL1 plasma levels are increased in fatal COVID-19 compared

to survivors (170).
4.2 SARS-CoV-2 infection contributes to
upregulation of TLR4

Since peripheral blood mononuclear cells (PBMCs) from

COVID-19 patients show enhanced TLR4 expression and

phosphorylated NF-kB in circulating monocytes compared to

healthy donors (HD) (173, 174), it has been hypothesized that

some viral proteins or inflammatory signals may upregulate TLR4

during infection, thus facilitating the amplification of inflammatory

circuits. Even though there is no evidence that soluble S1 or S1-

bound exosomes can directly upregulate TLR4 after triggering

innate cells, other mechanisms indirectly due to SARS-CoV-2

infection have been shown to enhance TLR4 expression.

The first signal is constituted by the decrease of surfactant

proteins: the alveolar type II (ATII) pneumocytes represent the

targets for SARS-CoV-2 infection due to high co-expression of

ACE2 and TMPRSS2 (175, 176). ATII cells are also the sole

producers of surfactants, a group of molecules selectively

downregulating TLR4 expression on many cell types (177).

Surfactant is a mixture of lipids (90%) and proteins (10%),

e x c l u s i v e l y p r oduc ed by ATI I . P a lm i t o y l - o l e o l y l -

phosphatidylglycerols (POPG) present in extracellular
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compartment of alveoli are the molecules most implicated in

blocking TLR4 in the lung to avoid untowards proinflammatory

effects. The viral induced-ATII apoptosis leads to the decrease of

surfactant and the contemporary break of suppressed TLR4

expression (22, 178, 179). Indeed, several reports indicated that

reduced levels of POPG in the lung might contribute to develop, or

cause, lung diseases as ARDS, because of insufficient suppression of

inflammation due to high TLR4 expression and activation (180,

181). The increased TLR4 expression upregulates its interaction

with S1, further increasing proinflammatory signaling pathways

with enhancement of ISG and ACE2 expression (177). This favors

viral replication and innate cell infiltration with a bias towards the

signaling pathway leading to hyperinflammation within the alveoli

(21). Engagement of overexpressed TLR4 can be considered a

critical factor for the severity and mortality of COVID-19

patients, mainly those with comorbidities (177, 182), and for

long-COVID-19 cardiac abnormalities (183).

Another signal upregulating TLR4 expression is related to platelet

activation (184). Platelets expressing ACE2 and TMPRSS2 are

activated by S1 proteins, favoring the release of Tissue Factor

converting prothrombin to thrombin and starting clot formation

(185). Some reports showed an increased expression of TLR4 on the

surface of thrombin-activated platelets of severe COVID-19 patients.

Indeed, thrombin can signal through the protease-activated (PAR1 or

PAR4) receptors expressed on platelets to induce a phospholipase C

(PLC)-dependent intracellular calcium mobilization, which activates

calpain and favors intracellular a-granules-containing TLR4

trafficking towards the surface of platelets (186). This event may

have relevant inflammatory consequences, since S1 and TLR4 co-

localize on platelets isolated from COVID-19 patients with

aggregated platelets and thrombus growth (186). Additionally,

SARS-CoV-2-containing S100A8/A9+megakaryocytes, exhibit high

TLR4 surface expression that correlates with NF-kB activation and

the levels of released IL-6 and IL-1b (187). These cells are considered

significant risk factors for mortality and multiorgan injury in

COVID-19 patients (187). The platelet activation by S1 and the

subsequent TLR4 overexpression are responsible for the

thrombophilia state associated with severe outcomes (184).

A third mechanism upregulating TLR4 expression is the direct

consequence of S1-ACE2 interaction which is usually associated with

downregulation of ACE2 via different mechanisms (188). ACE2

reduction favors the increase of angiotensin II (AngII) which, by

interacting with AngII type 1 receptors (AT1-R), induces

vasoconstriction, hypoxemia, increased endothelial injury, and tissue

necrosis which further contribute to increase both inflammation and

diffuse thromboembolic effects (189, 190). Downstream signaling as

receptor tyrosine kinases, NF-kB, MAP Kinases and, above all, the

upregulation of TLR4 are linked to the AngII-AT1-R interaction,

especially in SARS-CoV-2-related cardiovascular diseases (191).

Interestingly, the increase of TLR4/NF-kB signaling and cytokines by

M1macrophages following AngII-AT1-R interaction have been largely

confirmed in animal models (192).

Finally, the elevated testosterone levels and some TLR4

polymorphisms could also be implicated in the upregulation of TLR4.
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4.3 TLR4 activation of immune- and non
Immune cells

4.3.1 Immune cells
The viral infection has a deep impact on the increase of TLR4

expression on innate (macrophages, DC, neutrophils, NK) immune

and non-immune (neurons, epithelial) cells, which, in turn, upgrow

inflammatory responses through the same receptor (137).

4.3.2 Macrophages/DCs
S1-TLR4 interplay can primarily activate macrophages/DCs in

murine models leading to the release of inflammatory mediators

such as IL-1b, TNF-a, IL-6 and nitric oxide through the NF-kB and

JNK signaling pathways, which are deeply suppressed with specific

antagonists. In agreement, the proinflammatory response to S1 was

abrogated in macrophages from TLR4−/− mice (136) or with siRNA

targeting TLR4 (193). TLR4 engagement favors ACE2 expression, viral

entry and hyperinflammation of macrophages, playing the major role

in amplifying inflammatory circuits during severe COVID-19 (194).

4.3.3 Neutrophils
TLR4 also contributes to the formation of neutrophil extracellular

traps (NETs) that exacerbates and prolongs the deleterious

proinflammatory environment in severe patients (195). TLR4-

induced expression of ACE2 was higher in the myeloid cells of

severe COVID-19 patients and was associated with elevated levels of

the immune checkpoint molecule PD-L1 that can suppress antiviral T

cell response upon interaction with PD-1 on effector cells (196, 197).

4.3.4 NK cells
Furthermore, S1-TLR4 interaction involves directly also NK cells.

We have recently shown that S1 from the Wuhan strain and other

VOCs bind and activate TLR4 (and less TLR2) on purified PB NK cells

by increasing phosphorylation of NFkB, activation marker expression,

cytokine release, and cytolytic activity (127). Of note, S1-TLR2/4

interaction does not trigger ACE2 on NK cells or their activating

receptors (DNAM1, NKGD2 Nkp30/44, etc) (127). Recently recovered

patients displayed a higher proportion of circulating NK cells (vs HD)

which can be stimulated in vitro by S1. This likely explains why NK

cells are currently highly activated in vivo during infection and

recovery. In addition, S1 significantly amplified in vitro NKG2C

+CD56dim NK cells, a phenotype typical of “trained cells” (127). In

agreement, some studies observed that increased adaptive response is

followed by expansion of exhausted NKG2C+CD57+NK cells (198,

199). Notably, since signals inducing trained immunity, such as BCG,

initiate their activity via TLR2/TLR4 engagement, it is conceivable that

S1 induces expansion of trained NK cells through a similar mechanism

(200). It is likely that S1-driven NK cell activation can induce initially

the amplification of protective trained (NKG2C+CD56dim) cells

favoring cytolytic activity of infected cells and upregulation of IFN-g
activating a response characterized by M1- and Th1 cells. Persistent

viral load and chronic S1 stimulation may, however, lead to exhaustion

of NK cells downregulating cytotoxicity and IFN-g production and

favoring sustained inflammation and viral spread (Figures 1A, B).
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4.3.5 Non-immune cells
Beyond the effects on endothelial cells, TLR4 triggering has also

been shown to directly mediate neuroinflammation or renal tubular

epithelial cell damages.

Indeed, in murine models S1 induces neuro-inflammation and

memory dysfunction in post-COVID-19 syndrome through TLR4

pathway (149, 201). Other in vivo studies have revealed the

possibility that S1 may induce neuroinflammation and memory

dysfunction through TLR4-expressing microglial cells and neurons

(149). The pediatric cerebral cortical neuronal cell line (HCN-2)

lacking ACE2 exhibited elevated TLR4 transcript levels alongside

increased secretion of proinflammatory cytokines and chemokines,

indicating that TLR4 can mediate neurological effects (202).

Remarkably, by crossing the blood–brain barrier S1 triggers

neuroinflammation thus supporting the hypothesis that the virus

may produce comparable effects in human Long COVID-19 patients

experiencing cognitive dysfunction (203).

Lastly, it has been shown that TLR4 is one of the risk genes

associated with immune-inflammation-promoting renal injury in

severe COVID-19 patients (204). By using human kidney cell lines,

it has been demonstrated that SARS-CoV-2 directly induces damage of

renal tubular epithelial cells via TLR4 and IL-1R signaling (205).
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Moreover, TLR4 contributes to kidney damage favoring SARS-CoV-

2-induced inhibition of albumin endocytosis through decreased Akt

activity in proximal tubule epithelial cells (206).
4.4 Population genetics and comorbilities

TLR4 polymorphisms can also play a role in the pathogenesis of

COVID-19. Human TLR4 presents two notable single nucleotide

polymorphisms (SNPs)—896 A/G and 1196 C/T—favoring COVID-

19 severity (207). On the other hand, the 896 A/G variant has recently

been identified as a protective factor against COVID-19 progression

among younger individuals without cardiovascular abnormalities

(208). Patients carrying the 1196 C/T SNP develop more frequently

pneumonia, leading to critical manifestations (209), whereas the

rs4986790 (896) GG genotype displays a defective TLR4 signaling

leading to cellular dysfunction, associated with severe disease (210).

Other TLR4 polymorphisms linked to COVID-19 severity as SNP

-2604G>A has been associated with increased neuroinflammation and

cognitive dysfunction (149). TLR4 polymorphism is likely to be

involved also in Long-COVID-19: 52% of severe long-COVID

patients carried at least one disease signature variant in TLR4 (154).
FIGURE 1

(A) Protective Immunity loops to fight SARS-CoV-2 infection. (B) Persistent viral load and high soluble S1 protein impair innate immunity leading to
detrimental effects.
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Lastly, beyond genetic polymorphisms, TLR4 expression is higher in

men vs women due to testosterone levels, correlating with elevated pro-

inflammatory cytokine levels, mainly in COVID-19 (195).

Some recent reports on the quantitative analysis of public

transcriptomic datasets on TLR4 expression levels in COVID 19

have been published, even though they do not relate it to the disease

severity. By comparing two or three gene expression datasets and

performing bioinformatic methods to construct protein-protein

interaction (PPI) networks, in three separate reports TLR4 always

resulted among the hub genes more expressed (211–213). By contrast,

metanalyses on TLR4 expression in COVID-19 are at present lacking.

The role of TLR4 hyperexpression and signaling on innate immune

cells is summarized on Figure 2.
4.5 Clinical relevance of S1-TLR4 interplay

Clearcut results indicated that TLR4 is broadly upregulated in

COVID-19 patients and participates in various COVID-19-related

pathologies. TLR4 (and less TLR2) expression is upregulated in

PBMCs or BALF from severe patients compared to mild cases or

HD (173, 214). Critical COVID-19 patients exhibit higher levels of

TLR4 and phosphorylated NF-kB in CD14+ HLA-DRhigh circulating

monocytes, with increased NF-kB p65 phosphorylation in the CD14+

HLA-DRlow monocyte subset (174, 215). Moreover, severe patients

exhibited a two-fold increase of TLR4 expression in nasopharyngeal

cell samples as compared to patients with mild disease (216) and TLR4

plasma levels correlated positively with COVID-19 severity (217).

Lastly, in the autopsy of COVID-19 patients a massive TLR4

upregulation in the lung was associated with increased macrophage

infiltration, presenting a shift from GAL-3+ alveolar macrophages to

CD163+ myeloid-derived monocyte-macrophages: even though these
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results do not show any direct cause/effect relationship, however, they

indicate that TLR4 expression may induce a persistent inflammation,

with inefficient resolution, and pathological macrophage shift which

could be one of the mechanisms of lethal COVID-19 (218). Notably,

COVID-19 non-survivors have higher plasma levels of LPS (the most

usual TLR4 ligand) than survivors, due to virus-related intestinal

permeabilization and translocation into the blood of enteric

pathogens or their products (141). Hospitalized severe COVID-19

patients also display elevated LPS levels increasing with the disease

progression, thus confirming that the endotoxin itself may play a role

in SARS-CoV-2 hyperinflammation (141). Finally, TLR4 activation

also exhibited reduced cytokine secretion from monocytes of

convalescent COVID-19 patients (219). These data suggest that

following SARS-CoV-2 infection, chronically stimulated monocytes

exhibit exhausted steady-state gene expression and reduced

responsiveness. This may be also due to the increased levels of

soluble TLR4 and CD14 acting as decoy receptors (probably released

upon an excess of TLR4 activation) which decrease TLR4-mediated

signaling and inflammatory responses (220). A clinical consequence of

a sustained decrease in the response of these PRRs could also be an

increased susceptibility to other unrelated infections or superinfection

with other pathogens (221, 222).

Lastly, as previously underlined, TLR4 is also involved in SARS-

CoV-2-associated extra-pulmonary immune-pathologies as the

kidney injury and the neurological symptoms (149, 206).
4.6 Central role of TLR4 to orient the
outcomes of infection

TLR4 does not fully encompass the disease’s complex and intricate

immune mechanisms of SARS-CoV-2 infection, involving a wide
FIGURE 2

Role of TLR4 expression and signaling on innate cells in the pathogenesis of severe COVID-19.
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network of immune sensors andpathways.However, theTLR4pathway

plays a significant role in severe inflammation since, as described, the

inflammatory signals enhancing TLR4 expression make TLR4-bearing

cellsmore susceptible to triggering by viral components, thus increasing

andmaintaining inflammation (22). Thus, it is possible to speculate on a

dual role of TLR4, both protective and deleterious, depending on the

phase of the disease. As long as the type I IFN induced by the TLR4

signalingpathwayremainsunmodified, theantiviral response iseffective;

the viral load is at low levels and clinical remission occurs. In this phase

S1-activatedTLR4+NKcells favor theantiviral effectsby increasing their

function, mounting a “trained immunity” response and contributing to

protection towards thevirus.However,when the evasion strategiesof the

virus mainly impairing IFN release and activity, predominates, the viral

load increases and the pro-inflammatory responses induced by TLR4

signaling greatly prevail. Under these conditions a vicious circle is

established essentially due to multiple mechanisms increasing TLR4

expressionand its active signaling. In the absenceof avalid IFNresponse,

the upregulation ofTLR4, in turn, stimulatesACE2 expression,NETosis

and PANoptosis, with a substantial increase of cytokines/chemokines

recruiting new circulating cells. In this phase persistent S1 activation of

NK cells through TLR4 leads to cell exhaustion and consequentially to

the enhancement of viral load. Such events facilitate stimulation of

macrophages by viral S1 and DAMPs which further upregulate TLR4,

thus creating a feedback loop, where heightened TLR4 levels increase

accessibility to S protein leading to the inflammation maintenance and

favoring severe outcomes. According with some authors TLR4 can be

considered a critical “fate-deciding molecule” for the pathogenesis of

severe COVID-19 (22, 153, 179) (Figure 2).
5 Targeting TLR4 is a novel
therapeutic option for SARS-CoV-2
infection

By considering the TLR4 role in immune response and disease

pathogenesis, molecules or vaccines targeting TLR4 may provide a

therapeuticl option for SARS-CoV-2 and for the majority of huCoV

infections (22). A complete and exhaustive review on TLR4 agonists

and antagonists and drugs interfering with TLR4-S1 interaction has

been recently reported (21). It is important to underline, however, that

few papers are at present available on TLR4 inhibition in animal

models of severe SARS-CoV-1 infection and COVID-19 (223, 224). In

addition, the majority of these approaches often failed when employed

in other types of diseases such as sepsis and ischemic stroke (225–227).

A variety of natural products, particularly biomacromolecules (LPS

from the bacterium Rhodobacter sphaeroides and TLR4-binding peptide

derived from Bacillus-fermented soybean), have been investigated as

alternative options to block TLR4 or disrupt downstream signaling

pathways (228). Phytochemicals, such as jacareubin, cajastelebenic acid,

andrographolide, cannabidiol, and berberine, have been documented as

potent blockers of TLR4, some also being validated with clinical trials

(229). A series of chemically synthesized compounds and peptides have

been identified for their ability to interfere with TLR4 activity that might

help in combating COVID-19. For example, TLR4 antagonists such as
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Eritoran sulfate (E5564) and FP7 have shown efficacy in reducing lethal

damage associated with severe influenza and sepsis (230).

Other potentially useful compounds are Opioids (naloxone,

naltrexone, and tramadol), which exhibit TLR4-antagonizing

properties. Many small molecules (as Disulfiram, dimethyl

fumarate, fluoroquinolone antibiotics) that directly or indirectly

antagonize TLR4 are also in development or undergoing preclinical

validation. Some TLR4 agonists and antagonists have reached

various phases of clinical trials, including peptides (EC-18),

chemical compounds like imiquimod, hydroxychloroquine, and

artesunate, DPP4 inhibitors or small molecules (as PUL-042) (153).

Moreover, the administration of probiotic bacterial strains has

emerged as a promising approach to impair the harmful effects of

TLR4 activation with potential benefit in COVID-19 patients.

Genetically engineered probiotic (bacterium Lactobacillus

paracasei F19 producing palmitoyl-ethanolamide) has been

intranasal administered resulting effective in reducing SARS-CoV-

2-associated lung injury by blocking TLR4- mediated NLRP3

activation and decreasing pro- inflammatory cytokines (231).

Alternative strategies targeting TLR4 include monoclonal

antibodies (mAbs) with inhibitory activity (232). For instance,

paridiprubart (EB05) prevents TLR4 dimer formation, thereby

blocking the response to TLR4 agonists such as S1. Importantly,

this compound resulted in 100% survival in coronavirus mouse

model (168). It has potential for yielding similar beneficial effects in

impairing the extreme inflammatory response observed in

Interstitial lung fibrosis and ARDS. Even though approved for

advanced phase 3 trials, unfortunately they were suspended or

ended inconclusively for the lack of patient recruitment (https://

clinicaltrials.gov/study/NCT04401475, https://clinicaltrials.gov/

study/NCT05293236). Since many VOCs and their subvariants

have developed resistance to mAb treatments, the design of

chimeric mAbs incorporating complementarity-determining

regions (CDRs) from regdanivimab and sotrovimab, or from

bebtelovimab and adintrevimab, has been proposed (233–235).

Aptamers are a further innovative approach to target TLR4 in

COVID-19 since they: i. are small size, single-stranded DNA or RNA,

molecules folded into unique 3D structures, ii. are specifically bound to

target molecules with high affinity (236), usually displaying less steric

hindrance and better access to binding sites compared to antibodies, iii.

are of easy synthesis, low immunogenicity, and useful in detection and

therapy. APToll is a notable aptamer currently in clinical use for

cerebral ischemic events, demonstrating the potential benefit of

aptamer-based therapies (236).

The emergence of new VOCs often evading the protection

provided by the antibody-induced response elicited by Spike-

based vaccines imposes to develop new type of vaccines based on

pathogenetic, poorly mutagenic molecular structures (153). In the

AbhiSCoVac vaccine the constructed peptide is designed to stably

engage major immune sensors like TLR4, TLR2, MHC class I and II

(237). Due the Spike-TLR4 interaction a common feature of huCVs,

studies are presently focused to identify specific sequences

responsible for this interaction, to develop a multi-epitope multi-

target chimeric vaccine effective against not only SARS-CoV-2

VOCs but also virtually all huCVs (237).
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Table 2 summarizes the most recent therapeutic approaches

antagonizing TLR4 engagement and signaling.

In conclusion, even though some data are highly promising,

more studies are needed to define how any proposed TLR4-related

therapeutic strategies would be relevant in real world practice, due

to the complexities (as host-genetic polymorphisms, VOC-specific

immune engagement, correct timing and duration of treatment)

and risks (potential losing antiviral and even a general
Frontiers in Immunology 12
immune protection) to interfering with such an innate

fundamental receptor.
6 Conclusions

The innate immune system is the first line of defense against

infections, including SARS-CoV-2. In this review we have examined
TABLE 2 Therapeutical compounds to inhibit TLR4 engagement or its signaling.

Therapy antagonizing
TLR4 signaling

Reagent Function
Pathogenic
activity

Clinical trials References

Vaccines AbhiSCoVac

Multi-epitopic, multi-targeted
chimeric vaccine (Constructed
Peptide) to stable engage TLR4,

TLR2, MHC Class I/II

To generate protective
immunity against all six
virulent members of the

huCoV family

In vivo and in silico
studies

(21, 153, 237)

Peptide/mAbs

Paridiprubart (EB05)
Peptide blocking dimerization of

TLRs, blocking S1-TLR4
interaction

To block LPS-induced
IL-6 release

NCT04401475 Phase
2 (in progress)

(21)

Chimeric EB05 or
other anti-TLR4 mAb
(NI0101) linked to an

anti-CDR mAbs

To block Spike-TLR4 interaction
Proposed for new
pathogenic VOCs

(21, 225, 233–
235)

Bio-Macro molecules

Lung Surfactant-BL
To decrease cytokine
storm and ARDS in

severe COVID19 patients

NCT04568018 Open-
labeled Observational

trial
(21)

LPS from the
bacterium
Rhodobacter

sphaeroides, TLR4-
binding peptide from
Bacillus-fermented

soybeans

(21, 227, 228,
250)

Repurposed Drugs/
Synthetic molecules

Linagliptin DPP4 and cytokine inhibitor
To decrease cytokine

storm in severe patients
NCT04341935 Case

control study
(251)

Eritoran (mimicking
Lipid A)

To ameliorate
community-acquired

pneumonia in CAVID19
patients

NCT02735707 Phase
3 trial

(226, 230)

Opioids (Naltrexone,
naloxone)

TLR4 antagonizing activity
To reduce pathologic

outcomes of COVID-19
NCT04604704 Phase

2 trial
(21, 252)

Opioid (Tramadol)
To reduce inflammation
and hypercoagulability

NCT04454307 Phase
1/2 DBC trial

(21)

Small Molecules
(Disulfiram, dimethyl

fumarate,
fluoroquinolone
antibiotics)

To inhibit TLR4 (directly or
indirectly)

(253, 254)

Aptamers ApTOLL
High affinity small size single-

stranded RNAs or DNAs bound to
targets

To block cytokine storm
in infected patients

NCT05293236
(Stopped since
COVID-19 cases

drastically reduced in
Spain)

(236)

Phytochemicals

Jacareubin,
Cajastelebenic acid,
Andrographolide,
Cannabidiol,
Berberine

(21, 229)
(229, 255, 256)
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cells and molecules of the innate immunity playing a critical role in

the early phase of infection and conditioning the subsequent

adaptive response and clinical outcome towards recovery. In this

phase, TLRs has a beneficial effect, since the early and strong

protective TLR-mediated innate immune response against viruses

or viral components is essential for viral clearance, though the

secretion of antiviral cytokines, chemokines and type I IFNs.

However, the virus exploits evasion strategies to counteract the

innate response prevalently through the inhibition of type I/III IFN

and autophagic mechanisms: this leads to C’ overactivation,

hyperinflammation, pan-apoptosis and increased viral load which

exert a deep dysfunctional impact on cells of both innate- and

adaptive immunity.

The maintenance of SARS-CoV-2-related inflammation

evolving into critical outcomes is essentially sustained by vicious

loops involving dysfunctional innate cells and signals from inflamed

environmental cells. In this phase TLRs may be harmful for SARS-

CoV-2 infection eliciting dysregulated immune signaling: the

excessive TLR activation due to overstimulation by viral proteins

or DAMPs released from apoptotic cells can lead to the untoward

production of proinflammatory cytokines and chemokines,

resulting in severe disease.

In this context the principal vicious circle involves in particular

TLR4, which is selectively engaged by S1 protein. These receptors are

triggered not only on all APC but also on NK cells: S1 protein strongly

increases the function of these cells, selectively expanding initially

NKG2C+NK (trained) cells. The persistent S1 stimulation by soluble

protein which may be elevated along the infection and in Long-

COVID-19, turns this protective mechanism into a progressive

exhaustion which increases inflammation and favors virus

persistence. The viral excess (S1 protein and Nsps blocking IFN and

protective mechanisms) plus various inflammatory signals

upregulating TLR4 on innate cells creates a vicious circle

maintaining and further enhancing hyperinflammation mediated

primarily by monocytes and macrophages, leading to severe or even

fatal outcomes. Thus, TLR-dependent anti-viral response or excessive

inflammation may tip the balance towards the former or the latter,

altering the equilibrium that drives the severity of disease (216). For

these reasons, therapeutics targeting the TLR4 signaling pathway may

be a promising strategy, potentially offering the dual benefits of viral

suppression and inflammation shutdown. Persistent inflammation and

immune dysregulation sustained by TLR4 involvement are thought to

play an important role also in the case of Long-Covid-19 (238).

Pharmacologic agents targeting TLR4 could help in rebalancing the

immune system, reducing the likelihood of autoimmune-like

conditions observed in these patients (239). Thus, TLR4 inhibitors

not only offer a means to mitigate the acute inflammatory response

during the initial infection but also provide an option to address the

long-term sequelae of COVID-19, mitigating symptoms and

accelerating patient recovery.
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