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Dendritic cells (DCs) are sentinels of the immune system and potent professional

antigen-presenting cells with the ability to encounter antigens in the periphery,

migrate to draining lymph nodes, and activate naive T cells. A major challenge in

studying DC biology is the poor efficacy of engineering them and generating

stable genetically modified DC subsets for preclinical studies and transplantation

purposes. Here, we extend studies on Hoxb8-immortalized progenitor cells,

previously documented to differentiate into functional DCs, to another Hox-

based strategy, namely, constitutive NUP98Hoxa10HD (NUPA10hd) expression in

murine hematopoietic progenitor cells. We show that both NUPA10hd- and

Hoxb8-immortalized progenitors give rise to functional DCs in vitro, which are

capable of CCR7-driven migration and T-cell priming. In contrast to Hoxb8

progenitors, NUPA10hd progenitors show efficient and stable in vivo

differentiation into plasmacytoid DCs (pDCs), conventional DC1s (cDC1s), and

cDC2s. Finally, we demonstrate the efficacy of the NUPA10hd system in

producing genetically modified DCs, allowing the monitoring of DC–T cell

interactions and signaling events in migrating DCs. Collectively, NUPA10hd-

immortalized progenitors represent a versatile and effective system for

investigating immune functions of wild-type and genetically engineered DCs.
KEYWORDS
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Introduction

Dendritic cells (DCs) hold a central role in the immune system by acting as key

mediators between innate and adaptive immunity (1). They are responsible for initiating

and coordinating adaptive immune responses, relying on their ability to migrate to distinct

locations (2). As rather immobile and immature DCs (iDCs), they are present in most
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tissues and function as immune sentinels, sampling and processing

pathogen-derived antigens (Ags) (3). Upon pathogen encounter,

DCs take up Ags and undergo an intrinsic process of maturation

characterized by increased expression of MHC-II, co-stimulatory

molecules, and chemokine receptor CCR7 (1, 4, 5). Guided by the

CCR7 ligands, CCL19 and CCL21, mature DCs (mDCs) migrate

from interstitial tissues via afferent lymphatics to draining lymph

nodes (6, 7). Once within the lymph nodes, DCs enter the T-cell

zone in a CCR7-dependent manner where they engage with naive T

cells, expressing the cognate T-cell receptor (TCR) to initiate an

adaptive immune response (8).

Investigating the migration and cellular interactions of DCs is

important to better understand their function during infections,

vaccination, or anti-tumor responses. Studies on ex vivo DCs are

limited by their low abundance and the difficulty of genetically

modifying them. Instead, in vitro-generated primary bone marrow

(BM)-derived DCs (BMDCs) from wild-type or transgenic mice are

often used. In vitro-generated BMDCs have greatly facilitated and

accelerated studies on DC functions (9, 10), especially DC migration.

However, the lifetime of mature BMDCs (mBMDCs) is rather short,

and introducing genetic modifications turns out to be inefficient.

Over the past years, extensive research has led to the development

of Hoxb8 DCs that can be generated in vitro from conditionally

immortalized murine Hoxb8 progenitors (11–16). Hoxb8 DCs closely

resemble the phenotype of BMDCs concerning the expression of

surface molecules and their ability to prime naive T cells and to

migrate in a CCR7-dependent manner in vitro and in vivo (12–14),

thereby providing an experimental platform to study DC biology.

Hoxb8 and other members of the Hox family of homeodomain

transcription factors have been shown to block differentiation and

to enhance self-renewal of hematopoietic progenitors (17–20).

Accordingly, Hoxb8 expression promotes the in vitro expansion

of hematopoietic progenitor cells in the presence of growth factors.

Upon the removal of Hoxb8 expression, the progenitors

differentiate into effector cells depending on the supplemented

cytokines. Originally, the Hoxb8 system was used to generate

macrophages and neutrophils from mouse progenitors (21). With

ongoing research, various forms of Hoxb8, such as fusion constructs

or untagged versions, have been used in combination with distinct

cytokines, enabling the system’s extension to generate multiple

myeloid cells in vitro (11–14, 16, 21–24). Although Hoxb8

progenitors bear significant potential concerning gene targeting

and differentiation into DCs, a major drawback is the lack of

peripheral DC reconstitution beyond 2 weeks after engraftment of

mice (11, 14). This short-term reconstitution is insufficient for

investigating DC immune functions in infection, tumor models, or

vaccine studies.

Other studies have demonstrated that the constitutive

expression of the fusion protein NUP98Hoxa10HD (NUPA10hd),

comprising the N-terminus of nucleoporin 98 (NUP98) linked to

the homeodomain (HD) of Hoxa10, in short-term in vitro-

expanded BM progenitors enhances their in vivo reconstitution

potential (25–28). NUPA10hd-immortalized lin−Sca-1+c-Kit+

(LSK) cells transplanted into lethally irradiated mice efficiently

differentiated into T and B lymphocytes, monocytes, and
Frontiers in Immunology 02
granulocytes (26). This prompted us to study the potential of

NUPA10hd-immortalized mouse progenitor cells to differentiate

into functional DCs in vitro and in vivo and to use them as targets

for genetic engineering.

Here, we show that NUPA10hd and Hoxb8 progenitors

efficiently give rise to functional DCs in vitro, but only

NUPA10hd progenitors retain the capacity to efficiently

reconstitute all DC subsets in various organs over 6 weeks.

Moreover, we established two novel genetically engineered

NUPA10hd progenitor cell lines to study migration events and

cell–cell interactions of mouse DCs. Altogether, we identified

NUPA10hd progenitors as a promising tool to investigate DC

immune functions in vitro and in vivo and to test engineered DCs

for future optimized DC vaccines in preclinical models.
Methods

Mice

C57BL/6J, B6.CD45.1/J (B6.SJL-Ptprc<a> Pepc<b>/BoyJ),

Rag2−/−Il-2rg−/− (B6.129S6-Rag2<tm1Fwa> x B6.129P2OlaHsd-

Il2rg<tm1Krf>), CD45.1.SMARTA/J (B6.Tg(TcrLCMV)Aox;

B6.SJL-Ptprc<a>Pepc<b>/BoyJ), and B6.OT2/Crl (C57BL/6-Tg

(TcraTcrb)425Cbn/Crl) mice were bred and maintained under

Specific pathogen free (SPF) conditions in the animal facilities of

the Department of Biomedicine (DBM; University of Basel,

Switzerland). All animal experiments were conducted according

to the Swiss Veterinary Law and Institutional Guidelines and were

approved by the Cantonal Veterinary Office Basel City. Male or

female mice aged 6–12 weeks were used for all experiments. Mice

were housed under pathogen-free conditions in individually

ventilated cages in a 22°C temperature-controlled room with 12 h

light–12 h dark cycles and free access to food and water. Mice were

euthanized by terminal CO2 inhalation.
Cell lines and culture medium

PlatE cells were cultured in Dulbecco's Modified Eagle Medium

(DMEM) (Thermo Fischer Scientific, Waltham, USA; Pan-Biotech,

Aidenbach, Germany) supplemented with 10% fetal calf serum (FCS;

Gibco, Waltham, USA), 1% penicillin/streptomycin (pen/strep; Gibco/

PAN-Biotech, Waltham, USA), 50 µM b-mercaptoethanol (b-ME;

Gibco), 2 mM L-glutamine (L–Glut; Gibco/PAN-Biotech), 1x non-

essential amino acids (NEAAs; Gibco/PAN-Biotech), and 1 mM

sodium pyruvate (NaPyr; Gibco/Sigma-Aldrich, St. Louis, USA). Lenti-

X 293T cells (Takara Bio, Kusatsu, Japan) were grown in Iscove's

Modified Dulbecco's Medium (IMDM) (PAN-Biotech) supplemented

with 10% heat-inactivated FCS, 1% pen/strep, and 4 mM L-Glut.

X63 IL-6, X63 Granulocyte-macrophage colony-stimulating

factor (GM-CSF), and Chinese hamster ovary (CHO) cells Stem

cell factor (SCF) cells were maintained in IMDM complete medium

consisting of IMDM (Sigma-Aldrich, I3390-500ML) supplemented

with 2 mM L-Glut, 10% FCS, 5 mL insulin-transferrin-selenium-
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sodium pyruvate (Gibco), 1.5 mL 10% Primatone (Sigma-Aldrich),

1x NEAAs, 1% pen/strep, and 50 µM b-ME. Cells were seeded into a

roller bottle and incubated for 3 to 5 days at 37°C. Supernatant was

harvested, filtered, and stored at −20°C.

R10 medium used for the culture of primary cells and immortalized

progenitors consisted of Roswell Park Memorial Institute (RPMI) 1640

medium (PAN-Biotech) supplemented with 2 mM L-Glut, 10% heat-

inactivated FCS, 1% pen/strep, and 50 µM b-ME.
Generation of expression plasmids

Standard restriction cloning was performed using FastDigest

restriction enzymes and the T4 DNA ligase (all from Thermo Fisher

Scientific). DNA assembly cloning was performed using either the

GenBuilder cloning kit (GenScript, Piscataway, USA, Cat# L00701)

or the NEBuilder® HiFi DNA assembly master mix (New England

Biolabs, Ipswich, USA, Cat# E2621L). Primers were custom-

designed and ordered from Microsynth, Balgach, Switzerland.

PCR amplifications were performed using the Phusion Plus

polymerase (Thermo Fisher Scientific, Cat# F630S). All plasmid

DNA sequences were verified by Sanger sequencing (Microsynth).

For the pMY-Puro-P2A-NUP98Hoxa10HD construct, an

intermediate pMY-Puro-P2A plasmid was first generated by

amplifying the Puro-P2A fragment by PCR from the pLenti-

U6sgbbBsmbI-puro-2A-Fluc plasmid, kindly provided by Sidi

Che (Addgene #100277 (29)), and subcloned it into EcoRI and

SalI sites of a pMY-IRES-GFP plasmid, a gift from Louis Ates and

Teunis Geijtenbeek (Addgene plasmid #163361 (30)). Next, a DNA

assembly reaction was performed to generate the pMY-Puro-P2A-

NUP98Hoxa10HD plasmid. To do so, the pMY-Puro-P2A vector

was amplified by PCR (forward primer: AAACTGAAGAAA

ATGAACTAGTCGACCGGGCCGC; reverse primer: CCAAA

TGATTTGTTAAACATCGGTCCAGGATTCTCTTCGAC) as

well as the NUP98Hoxa10HD fragment (forward primer:

TCGAAGAGAATCCTGGACCGATGTTTAACAAATCATTTG

GAACACC; reverse primer: GTGCTGGCGGCCCGGTCGA

CTAGTTCATTTTCTTCAGTTTCATCCTG) from the pMY-

NUP98Hoxa10HD plasmid, kindly provided by Klaus

Karjalainen. The amplified fragments were subsequently used in a

DNA assembly reaction.

The pBabe-5xUAS-Hoxb8-SV40-Puro-GEV16 vector was

generated by DNA assembly cloning. Therefore, the 5xUAS-

Hoxb8-SV40-Puro-GEV16 sequence was amplified by PCR

(forward primer: CTTTCGTCGTCGAGTTTACCAGGTT

AATTAATAGCTTGCATG; reverse primer: GCGGGTCGTG

GGGCGGGCGGTCAATTCCAAGGGCATCGGTAAACATC)

from the pF-5xUAS-mHoxb8-SV40-Puro-GEV16 plasmid, kindly

provided by Thomas Kaufman (20). The pBABE vector backbone

was amplified by PCR (forward primer: GATGTTTACCGA

TGCCCTTGGAATTGACCGCCCGCCCCACGACCCGC; reverse

pr imer : CATGCAAGCTATTAATTAACCTGGTAAAC

TCGACGACGAAAG) from pBabe-tetoff-mVenus-PICdc42 [a

kind gift from Klaus Hahn; Addgene plasmid #91876 (31)] To

generate pLenti-CMV-PHAkt-GFP-Blast-DEST, the PHAkt-GFP
Frontiers in Immunology 03
sequence from pEGFP-N1-PHAkt–GFP [a gift from Tamas Balla;

Addgene plasmid #51465 (32)] was cloned into the HindIII and

XbaI sites of the plasmid pENTR1A-GFP-N2 [a gift from Eric

Campeau and Paul Kaufman; Addgene plasmid #19364 (33)]. Using

the Gateway™ LR clonase™ II enzyme-mix (Invitrogen, Waltham,

USA), PHAkt–GFP was cloned into the pLenti-CMV-Blasticidin-

DEST vector [a gift from Eric Campeau and Paul Kaufman;

Addgene plasmid #17451 (33)].
Production of recombinant viral particles

Retroviral particles were generated by transfecting PlatE

cells using Mirus TransIT®-LT1 transfection reagent or

Polyethylenimine (PEI) (Sigma-Aldrich) with retroviral

expression plasmids pMY-Puro-P2A-NUP98Hoxa10HD,

pMP71-GFP-P2A-G5-myc-CD40, pMP71-Tomato-P2A-CD40L-

SrtA-flag, and pBabe-5xUAS-Hoxb8-SV40-Puro-GEV16.

Supernatant containing retroviral particles was collected at 48

and 72 h post-transfection, filtered (0.45 mm, Polyethersulfone

(PES) membrane; VWR, Radnor, USA/TPP, Trasadingen,

Switzerland), and digested with DNase I (RocheRoche, Basel,

Switzerland/Sigma-Aldrich). pMP71-GFP-P2A-G5-myc-CD40

(Addgene plasmid #121166) and pMP71-Tomato-P2A-CD40L-

SrtA-flag (Addgene plasmid #121167) were kindly gifted by

Gabriel Victora (34).

Lentiviral particles were generated by transfecting Lenti-X 293

T cells using Mirus TransIT®-LT1 transfection reagent (MIR2300;

Mirus) with lentiviral expression plasmid pLenti-CMV-PHAkt-

GFP-Blast-DEST, envelope plasmid pMD2.G, and packaging

plasmid psPAX2. Plasmids pMD2.G and psPAX2 were kindly

provided by Didier Trono (Addgene plasmids #12259 and

#12260). Supernatant containing lentiviral particles was collected

at 48 and 72 h post-transfection, filtered (0.45 mm), and digested

with DNase I.
Generation and maintenance of
immortalized progenitor cells

BM was flushed from the femur and tibia of 6–9-week-old

B6.CD45.1/J mice and depleted of lineage-positive cells using the

direct lineage cell depletion kit for mouse (Miltenyi Biotech,

Bergisch Gladbach, Germany; 130-110-470). Lineage-negative

(lin−) BM cells were cultured in R10 medium (Hoxb8 system) or

IMDM complete medium (NUPA10hd system) supplemented with

50 ng/mL SCF, 20 ng/mL IL-6, and 10 ng/mL IL-3 (all from

PeproTech, Waltham, USA) for 2 days.

To transduce lin− BM cells with pBabe-5xUAS-Hoxb8-SV40-

Puro-GEV16 containing retroviral particles, cells were resuspended

in viral supernatant supplemented with 100 µg/mL protamine sulfate

(MP Biomedicals, Santa Ana, USA) at a concentration of 5 × 105

cells/mL. Cell suspension (1 mL) was added to wells of a 12-well plate

previously coated with human fibronectin (10 µg/mL; isolated in-

house). Spinfection (600 g, 30 min, 30°C) was performed three times,
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with at least 5 h in between to allow the cells to recover in media

supplemented with 20 ng/mL GM-CSF (PeproTech) and 1 µM 4-

hydroxytamoxifen (4-OHT; Sigma, Cat# 579002). Forty-eight hours

after the last spinfection, antibiotic selection with 1 mg/mL puromycin

(InvivoGen, San Diego, USA) was initiated for 2 weeks. Hoxb8

progenitor cells were cultured in R10 medium supplemented with

20 ng/mL GM-CSF and 1 mM 4-OHT.

To transduce lin− BM cells with pMY-Puro-P2A-

NUP98Hoxa10HD containing viral particles, 5 × 105 cells were

seeded in a 12-well plate, and 2 mL retroviral supernatant was

added together with 1 mg/mL polybrene (Sigma-Aldrich).

Spinfection was conducted twice at 600 g for 30 min at 32°C with

a 5 h interval and a third time on day 3. After spinfection, cells were

further incubated with the retroviral supernatant for 1.5 h at 37°C,

and medium was then replaced with IMDM complete medium

containing 5% SCF supernatant and 2% IL-6 supernatant. The next

day, antibiotic selection was started by adding 1 mg/mL puromycin

and initiated for 2 weeks. Cells were maintained in IMDM complete

medium containing 5% SCF supernatant and 2% IL-6 supernatant.

Hoxb8 and NUPA10hd progenitors can be maintained in culture

for at least 12 weeks.
Genetic engineering of NUPA10hd
immortalized progenitor cells

PHAkt-GFP-expressing NUPA10hd progenitor cells were

generated by lentiviral transduction. Cells were resuspended in

viral supernatant supplemented with 100 µg/mL protamine

sulfate (MP Biomedicals) at a concentration of 5 × 105 cells/mL.

Cell suspension (1 mL) was added to wells of a 12-well plate

previously coated with human fibronectin (10 µg/mL; isolated in-

house), and a spinfection (600 g, 30 min, 30°C) was performed three

times, with at least 5 h in between to allow the cells to recover.

Forty-eight hours after the last spinfection, antibiotic selection with

8 mg/mL blasticidin (InvivoGen) was initiated. PHAkt-GFP

progenitors were kept under selection pressure and sorted for

GFP+ cells prior to functional assays.

G5-CD40-expressing NUPA10hd progenitor cells were

generated by retroviral transduction. Cells were resuspended in

retroviral supernatant supplemented with 1 mg/mL polybrene at a

concentration of 5 × 105 cells/mL. Cell suspension (1 mL) was

added to wells of a 12-well plate, and a spinfection (600 g, 30 min,

32°C) was performed three times, with at least 5 h in between to

allow the cells to recover. Four days later, NUPA10hd progenitors

were sorted for GFP+ cells and further maintained in IMDM

complete medium containing 5% SCF supernatant and 2% IL-

6 supernatant.
Generation of DCs from progenitor cells

BMDCs were generated as described before (35). In brief,

murine BM suspensions were isolated from the femurs and tibiae
Frontiers in Immunology 04
of B6.CD45.1/J mice, cultured, and differentiated in R10 medium

supplemented with 20 ng/mL GM-CSF, either recombinant (315-

03; PeproTech) or from conditioned supernatant (determined by

ELISA), for 9 days. On day 3, fresh media were added, and half of

the media were exchanged on day 6 of the culture. iDCs were

matured with 100 ng/mL Lipopolysaccharide (LPS) from

Escherichia coli O111:B4 (L4391, Sigma-Aldrich) for 24 h.

Alternatively, 500,000 Hoxb8 or 50,000 NUPA10hd progenitor

cells were washed three times to remove 4-OHT or SCF and IL-6,

respectively, followed by DC differentiation and maturation as

described for BMDCs. Prior to functional assays, mDCs were

enriched for MHC-II using anti-MHC Class II microbeads for

mouse (Miltenyi Biotec; 130-052-401) (Supplementary Figure S1).
Reconstitution of RAGgc−/− mice with
progenitor cells

CD45.2+ Rag2−/−Il-2rg−/− (RAGgc−/−) mice were sub-lethally

irradiated at 450 cGy. The next day, 1 × 107 Hoxb8 or NUPA10hd

progenitors (+/− genetically modified) or 1 × 106 isolated c-Kit+

(CD117) microbeads (Miltenyi Biotec)-enriched BM progenitors

from CD45.1+ B6 mice were injected i.v. into RAGgc−/− mice. Mice

were sacrificed at 3 to 6 weeks post-cell transfer.
Isolation of primary cells from lymphoid
organs and small intestine

Spleen and small intestine (SI) cells were isolated as described

previously (36, 37). In brief, the SI was opened longitudinally,

incubated with 30 mM Ethylenediaminetetraacetic acid (EDTA) in

1x PBS (Carl Roth AG, Karlsruhe, Germany), and washed several

times with 1x Phosphate-buffered saline (PBS) to remove feces and

mucus. Tissue pieces were digested in DMEM supplemented with

0.025 mg/mL DNase I and 1 mg/mL collagenase D (Sigma-Aldrich)

for 15 min at 37°C. Supernatant was collected after washing with

plain DMEM. Digestion steps were repeated three times with the

remaining tissue. After digestion, SI cells were purified by Percoll

density gradient (40%/80%) centrifugation.

The spleens were cut into pieces and digested similarly to the SI

in DMEM supplemented with DNase I and collagenase D in three

steps, each for 15 min at 37°C. After erythrolysis, the cell suspension

was applied to a 70 µm cell strainer (Bioswisstec, Schaffhausen,

Switzerland). BM was isolated by crushing the bones in a mortar

and pestle. Cells were filtered through a 70 µm cell strainer and

washed with PBS, erythrocytes were lysed, and cells were

resuspended in R10 medium. Popliteal lymph nodes (PLNs) were

harvested and incubated in digestion buffer [5 mg/mL collagenase

IV (Gibco), 0.04 mg/mL DNase I, and 3 mM CaCl2 in R10] for 45

min at 37°C, as previously described (38).

To isolate naive CD4+ T cells, the spleen was smashed through a

70 µm cell strainer and washed, and splenocytes were resuspended

in PBE buffer (PBS + 2% FCS + 2 mM EDTA). Subsequently, the
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EasySep mouse naive CD4+ T-cell isolation kit was performed

according to the manufacturer’s protocol.

To isolate splenic DCs for 3D collagen migration assays, the

spleens were ex vivo injected with 500 mL digestion solution (R10

medium supplemented with 400 ng/mL collagenase D and 0.004

mg/mL DNase I), incised using scissors, and subsequently

incubated in 2 mL digestion solution for 30 min at 37°C. The

resulting cell suspension was applied to a 70 µm cell strainer. DCs

were obtained by magnetic cell separation (MACS) using the pan

dendritic cell isolation kit (mouse; 130-100-875) as per the

manufacturer’s instructions and sorted for GFP+ cells by

flow cytometry.
T-cell proliferation assay in vitro and in
vivo

To test T-cell proliferation in vitro, mDCs were loaded with 1 µM

LCMV-GP61–80 peptide (GeneCust, Boynes, France) and co-

incubated with CellTrace Violet (CTV; 5 µM; Thermo Fisher

Scientific)-labeled naive SMARTA CD4+ T cells for 72 h at an

effector to target ratio of 1:20 (5,000 DCs:100,000 T cells). During

the last 4 h of the assay, cells were treated with 10 mg/mL brefeldin A

(Sigma-Aldrich) to stop cytokine secretion. Naive T cells were

incubated separately and maintained with 10 ng/mL IL-7

(PeproTech) for 72 h as a control. CTV dilution was used to gate

on cells that had proliferated. CD62L and CD25 expression, as well as

the frequency and expression of TNF+ CD4+ T cells, on proliferated

cells were determined. Proliferation and division indices were

calculated using the proliferation tool with the FlowJo™ software.

To test T-cell proliferation in vivo, 1 × 106 mDCs loaded with 5

mM LCMV-GP61–80 peptide were injected into the hind hock of

CD45.2+ C57BL/6J recipient mice. The next day, naive CD45.1+

SMARTA CD4 T cells were labeled with CTV following the

manufacturer’s guidelines, and 3 × 105 cells were i.v. injected. Three

days later, mice were sacrificed, and draining as well as contralateral

PLNs were harvested. For re-stimulation, single-cell suspensions from

draining PLNs were incubated with or without 1 µM LCMV-GP61–80
peptide for 4 h. Brefeldin A (10 mg/mL) was added during the last 3.5 h

of re-stimulation. The proliferation index was calculated based on

CTV dilution profiles by dividing the total number of cell divisions by

the number of cells that went into division.
In vivo DC migration assay

Hoxb8 and NUPA10hd mDCs were separately labeled with

CellTracker green (CTG; Invitrogen; 4 µM) or CellTracker deep red

(CTDR; Invitrogen; 150 nM) according to protocols provided by

the manufacturer. Dyes were alternated within the same experiment

to minimize dye-induced artifacts. Labeled Hox mDCs were mixed

at a 1:1 ratio in PBS, and a total of 2 × 106 Hox mDCs in 10 mL were

injected into the hind hock of C57BL/6J recipient mice. Twenty-

four hours later, mice were sacrificed, and draining as well as

contralateral PLNs were harvested.
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In vitro 3D migration assay of DCs

DC migration through a 3D collagen matrix was performed in

µ-slide chemotaxis chambers (Ibidi, Fitchburg, USA) according to

the manufacturer’s protocol. Briefly, the collagen I (5005; Advanced

BioMatrix, Carlsbad, USA) solution was prepared as described (39),

mixed with mBMDCs or Hox mDCs (final concentration of 1.67

mg collagen and 0.9 × 106 cells/mL), and allowed to polymerize in

µ-slide chemotaxis chambers for 35 min in a 5% CO2, humidified

incubator at 37°C. The left reservoir was filled with R10 medium

and the right reservoir with 100 nM CCL19 in R10 medium to

establish a CCL19 gradient (40). mDCs were allowed to migrate for

8 h, and bright-field images were recorded at 2 min intervals on an

inverted Zeiss Axiovert 200M microscope at 37°C in a humidified

incubation system (Tokai Hit Co, Shizuoka, Japan). Bright-field

images were analyzed using ImageJ (Fiji, Washington, USA).

Individual cells were tracked using the “manual tracking plugin”

from Fiji. For illustration and quantification, the “chemotaxis and

migration tool” software (ibidi) was used.

To monitor the localization of PHAkt-GFP in ex vivo DCs, sorted

splenic GFP+ DCs from RAGgc−/− mice reconstituted with PHAkt-

GFP-transduced NUPA10hd progenitors were cultured overnight in

R10medium supplemented with 100 ng/mL LPS, 200 ng/mL Flt3L, 20

ng/mL GM-CSF, and 10 ng/mL IL-3 (all from PeproTech). Migration

chambers were prepared as described, and cells were allowed to

migrate along a CCL19 gradient for 30 to 60 min at 37°C.

Migration was stopped by applying 4% freshly prepared

Paraformaldehyde (PFA) to both reservoirs. After an incubation

period of 5 min, reservoirs were washed five times with PBS. Images

were acquired on a Nikon Ti2 Cicero Confocal using an oil 63x CFI

Plan Apo lD oil objective (z-stacks of 0.2-µm step size). ImageJ (Fiji)

was used for image analysis. Briefly, the z-stacks were maximum

projected, and a rolling ball background subtraction with a radius of

50.0 pixels was performed on the Green fluorescent protein (GFP)

channel, followed by a Gaussian blur (0.5). Imaris (Bitplane, Belfast,

United Kingdom) was used for 3D reconstruction.
LIPSTIC cell–cell interaction assay

Naive CD4+ T cells isolated from B6.OT2 mice were activated

with anti-CD3/anti-CD28 Dynabeads (Thermo Fisher Scientific)

for 24 h and transduced with retroviral particles containing Tomato

and CD40L-SrtA, as previously described (41). Three days later,

transduced CD4+ T cells were sorted for Tomato+ cells and

maintained in R10 medium supplemented with 10 ng/mL IL-7

and 20 IU/mL IL-2 (all from PeproTech).

GFP+ G5-CD40+ NUPA10hd mDCs were generated from

progenitor cells in vitro, loaded with 1 µM OVA323–339 peptide

(cognate peptide; Sigma-Aldrich) or LCMV-GP61–80 peptide (non-

cognate peptide), and seeded into a U-bottom 96-well plate together

with dTomato+ CD40L-SrtA+ OT-II CD4+ T cells in a 1:1 ratio

(total of 100,000 cells) for 6 h. Biotin-LPETG (biotin–

aminohexanoic acid–LPETGS, LifeTein, Somerset, USA) was

added in the last 20 min of co-culture at a final concentration of
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10 µM. Some CD4+ T cells were incubated with an aCD40L
blocking antibody (Bio X Cell, Lebanon, USA) or an isotype

antibody (Bio X Cell, Lebanon, USA) for 30 min before the

beginning of co-culture at a final concentration of 150 mg/mL. At

the end of co-culture, cells were washed three times with PBE before

Fluorescence-activated cell sorting (FACS) staining to remove

excess biotin-LPETG substrate.
Flow cytometry

Single-cell suspensions derived from mouse tissue were

incubated with anti-FcgRII/RIII antibody supernatant of clone

2.4G2 and surface marker-specific antibody for 40 min at 4°C in

brilliant stain buffer (BSB; BD Biosciences). Live/dead staining was

conducted using the fixable viability dye FVS575V (BD Biosciences)

or Zombie Aqua™ (BioLegend). Cells stained for surface antigens

only were fixed with the Cytofix buffer (BD Biosciences) for 20 min

at 4°C. For the intracellular staining of transcription factors, cells

were fixed and permeabilized with the Foxp3 transcription factor

staining buffer set (Thermo Fisher Scientific) according to the

manufacturer’s instructions. For intracellular cytokine staining,

cells were fixed and permeabilized with the Cytofix/Cytoperm kit

(BD Biosciences). Data were acquired on an LSRFortessa (BD

Biosciences), CytoFLEX (Beckman Coulter), or Aurora (Cytek,

Fremont, USA). Cell sorting was conducted using a FACS Aria II

(BD Biosciences). The Diva software (BD FACS Aria II and BD

LSRFortessa), CytExpert software (CytoFLEX, Beckman Coulter),

and SpectroFlow software (Aurora, Cytek) were used for data

collection. Data were analyzed using the FlowJo™ v10.9 software

(BD Life Sciences, Franklin Lakes, USA). The full list of antibodies is

available in Supplementary Material: Table 1.
Statistical analysis

Statistical differences were determined by unpaired or paired

Student’s t-test, or when comparing more than two sets of values, by

ordinary one-way or two-way analysis of variance (ANOVA) using

the GraphPad Prism 10 software. Statistical significance was

indicated as follows: p > 0.05 (ns), p < 0.05 (*), p < 0.01 (**),

p < 0.001 (***), and p < 0.0001 (****).
Results

NUPA10hd and Hoxb8 BM progenitors
efficiently differentiate into DCs in vitro

The overexpression of the modified Hox-containing fusion

protein NUPA10hd has a remarkable potential to expand

hematopoietic progenitors with a transient myeloid repopulating

activity (25–28). However, the ability of NUPA10hd-immortalized

progenitors to differentiate into functional DCs has thus far never

been tested. To assess this, we first constitutively expressed the
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NUPA10hd fusion protein in lin− BM progenitors and compared

their differentiation potential with 4-OHT-inducible Hoxb8

progenitor cells in vitro (20, 23, 24, 42), known for their capacity

to differentiate into DCs (11–16) (Figure 1A). Both systems

generated stably proliferating progenitors that can be cultured

and expanded in vitro for months. Upon withdrawal of SCF and

IL-6 or 4-OHT, progenitors could be further differentiated in the

presence of GM-CSF into iDCs. Thus, the expression of the

NUPA10hd fusion protein persists in NUPA10hd-immortalized

cells, while Hoxb8 expression is switched off by removing 4-OHT

from the Hoxb8 culture. Upon LPS-induced maturation, both cell

cultures were mostly composed of CD11c+MHC-IIhigh mDCs

(Figure 1B) that upregulated the co-stimulatory molecules CD40,

CD86, and CD80 as well as the chemokine receptor CCR7

(Figures 1C–F). Notably, expression levels of these molecules

were significantly higher on Hoxb8 mDCs than on NUPA10hd

mDCs. Both NUPA10hd and Hoxb8 mDCs expressed CD11b but

not XCR1 (Figure 1G), indicating a cDC2-like phenotype as

previously described for DCs generated from Hoxb8 progenitors

(15). Taken together, NUPA10hd and Hoxb8 progenitors possess

the potential to differentiate into DCs in vitro.
NUPA10hd and Hoxb8 mDCs show CCR7-
dependent migration and activate T cells in
vitro

To evaluate the functionality of NUPA10hd and Hoxb8 mDCs

in vitro, we assessed their chemokine-driven migration and T-cell

priming capacity. First, we embedded Hox mDCs in a 3D collagen

matrix, and we monitored their migration along a CCL19 gradient

(Figures 2A, B). As controls, we used mBMDCs, a state-of-the-art

model of in vitro-generated DCs (9). In this setup, NUPA10hd (3.3

µm/min) and Hoxb8 (3.2 µm/min) mDCs migrated in response to

CCL19 with a similar velocity through the 3D matrix as compared

to mBMDCs (3.0 µm/min) (Figure 2C). NUPA10hd and Hoxb8

mDCs underwent constant shape changes by regularly extending

protrusions and retracting a few deviating ones for an efficient

migratory behavior (Supplementary Videos 1–3). Their migration

was directional and along the CCL19 gradient as indicated by a

forward migration index (xFMI) of 0.92 and 0.89, respectively

(Figure 2C). Next, we evaluated whether NUPA10hd and Hoxb8

mDCs induce CD4+ T-cell activation and proliferation in a cognate

Ag-dependent manner in vitro. To this end, we co-cultured LCMV-

GP61–80 peptide-loaded NUPA10hd and Hoxb8 mDCs, as well as

mBMDCs, with CTV-labeled naive TCR transgenic SMARTA

CD4+ T cells at a 1:20 (DC:T cell) ratio for 72 h (Figure 2D). We

observed comparable T-cell proliferation and division indices in all

co-cultures (Figures 2D, E). In line with this, proliferated T cells

showed an activation phenotype with CD25 upregulation and

CD62L downregulation (Figure 2F). The frequency and median

fluorescence intensity (MFI) of tumor necrosis factor (TNF)+

proliferated T cells were also comparable (Figure 2G). Thus,

NUPA10hd and Hoxb8 mDCs were as efficient as mBMDCs in

CCR7-driven migration and T-cell activation in vitro.
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TABLE 1 List of antibodies.

Antibodies Company Catalog#

APC-conjugated anti-mouse CCR7 (4B12) Thermo Fisher Scientific Cat#17-1971-82

APC-conjugated rat IgG2a kappa isotype control (CCR7 isotype; eBR2a) Thermo Fisher Scientific Cat#17-4321-81

APC-conjugated anti-mouse CD25 (PC61.5) Thermo Fisher Scientific Cat#17-0251-82

PE/Cy7-conjugated anti-mouse CD4 (RM4-5) Biolegend Cat#100528

FITC-conjugated anti-mouse CD62L (MEL-14) Biolegend Cat#104406

PE-conjugated anti-mouse CD4 (RM4-5) Biolegend Cat#100512

FITC-conjugated anti-mouse CD4 (GK1.5) Biolegend Cat#100406

PE-conjugated anti-mouse IL-2 (JES6-5H4) BD Biosciences Cat#554428

PE/Cy7-conjugated anti-mouse TNF (MP6-XT22) BD Biosciences Cat#557644

APC/Cy7-conjugated anti-mouse CD4 (GK1.5) Biolegend Cat#100414

PerCP/Cy5.5-conjugated anti-mouse CD45.1 (A20) Biolegend Cat#110728

BV785-conjugated anti-mouse CD44 (IM7) Biolegend Cat#103059

BV421-conjugated anti-mouse CD11c (N418) Biolegend Cat#117329

PE-conjugated anti-mouse CD11c (N418) Biolegend Cat#117308

BV421-conjugated anti-mouse IA/IE (M5/114.15.2) Biolegend Cat#107632

BUV395-conjugated anti-mouse CD11b (M1/70) BD Biosciences Cat#563553

BUV496-conjugated anti-mouse CD45.2 (04) BD Biosciences Cat#569670

BUV805-conjugated anti-mouse CD48 (HM48-1) BD Biosciences Cat#741945

BV421-conjugated anti-mouse CD115 (AFS98) Biolegend Cat#135513

BV605-conjugated anti-mouse CD45.1 (A20) Biolegend Cat#110737

BV786-conjugated anti-mouse Sca-1 (D7) Biolegend Cat#108139

FITC-conjugated anti-mouse CD3e (145-2C11) Biolegend Cat#100204

FITC-conjugated anti-mouse CD8a (53-6.7) Thermo Fisher Scientific Cat#11-0081-82

FITC-conjugated anti-mouse Ter119 (Ter119) Biolegend Cat#116215

FITC-conjugated anti-mouse Ly6G (1A8) Biolegend Cat#127606

FITC-conjugated anti-mouse NK1.1 (PK136) Thermo Fisher Scientific Cat#11-5941-85

FITC-conjugated anti-mouse CD11c (N418) Biolegend Cat#117306

FITC-conjugated anti-mouse CD19 (6D5) Biolegend Cat#115506

FITC-conjugated anti-mouse TCRb (H57-597) Biolegend Cat#109205

FITC-conjugated anti-mouse F4/80 (BM8) Biolegend Cat#123107

PerCP/Cy5.5-conjugated anti-mouse B220 (RA3-6B2) Biolegend Cat#103236

PE-conjugated anti-mouse CD127 (A7R34) Biolegend Cat#135009

PE/Dazzle 594-conjugated anti-mouse CD150 (TC15-12F12.2) Biolegend Cat#115935

PE/Cy7-conjugated anti-mouse CD135 (A2F10) BD Biosciences Cat#567594

APC-conjugated anti-mouse CD117 (2B8) Biolegend Cat#105812

APC/Cy7-conjugated anti-mouse Ly6C (HK1.4) Biolegend Cat#128026

BUV496-conjugated anti-mouse IA/IE (M5/114.15.2) BD Biosciences Cat#750281

BUV563-conjugated anti-mouse CD11c (N418) BD Biosciences Cat#749040

(Continued)
F
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NUPA10hd and Hoxb8 mDCs induce T-cell
activation and proliferation in vivo

To evaluate the capacity of NUPA10hd and Hoxb8 mDCs to

home to draining PLNs (dPLNs) and to induce Ag-specific CD4+

T-cell responses in vivo, first, differentially labeled mDCs of both

origins were co-injected in a 1:1 ratio into the hind hock of

C57BL/6J recipient mice. mDCs that migrated to dPLNs were

quantified after 24 h (Figures 3A, B). While both NUPA10hd and

Hoxb8 mDCs immigrated to dPLNs, Hoxb8 mDCs were twice as

efficient as NUPA10hd mDCs (Figures 3C, D). To determine Ag-

specific T-cell proliferation, mDCs were loaded with the LCMV-

GP61–80 peptide and injected into the hind hock of C57BL/6J
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recipient mice. mBMDCs were injected as controls. The next day,

CTV-labeled naive SMARTA CD4+ T cells were injected i.v., and

T-cell proliferation was assessed 72 h later (Figure 3E). Despite a

slightly higher number of SMARTA CD4+ T cells in dPLNs of

mice primed with NUPA10hd mDCs, a similar T-cell

proliferation was observed with Hoxb8 mDCs or mBMDCs

(Figures 3F–H). In line with these observations, significant

differences were not detected in the effector T-cell phenotype in

terms of CD44 upregulation and CD62L downregulation, as well

as TNF and IL-2 release after re-stimulation ex vivo (Figures 3I–

L). Taken together, NUPA10hd mDCs were as efficient as Hoxb8

mDCs or mBMDCs to mount an Ag-specific effector T-cell

response in vivo.
TABLE 1 Continued

Antibodies Company Catalog#

BUV805-conjugated anti-mouse Ly6G (1A8) BD Biosciences Cat#741994

BV421-conjugated anti-mouse XCR1 (ZET) Biolegend Cat#148216

BV711-conjugated anti-mouse CD45.2 (104) Biolegend Cat#109847

BV786-conjugated anti-mouse BST2 (927) BD Biosciences Cat#747603

PerCP/Cy5.5-conjugated anti-mouse CD172 (P84) Biolegend Cat#144009

PE-conjugated anti-mouse B220 (RA3-6B2) Biolegend Cat#103208

PE/Cy7-conjugated anti-mouse Ly6C (HK1.4) Biolegend Cat#128018

APC-conjugated anti-mouse Siglec-H (551) Biolegend Cat#129611

AF700-conjugated anti-mouse CD45.1 (A20) Biolegend Cat#110724

APC/Cy7-conjugated anti-mouse F4/80 (BM8) Biolegend Cat#123118

PE-conjugated anti-mouse CD8a (53-6.7) Thermo Fisher Scientific Cat#12-0081-83

BV605-conjugated anti mouse Gr-1 (RB6-8C5) Biolegend Cat#108440

BV605-conjugated anti-mouse CD27 (LG.3A10) Biolegend Cat#124249

BV605-conjugated anti-mouse CD11b (M1/70) Biolegend Cat#101257

FITC-conjugated anti-mouse IA/IE (M5/114.15.2) Biolegend Cat#107606

PE-conjugated anti-mouse CD40 (3*23) Biolegend Cat#124609

PE Rat IgG2a, k isotype control (CD40 isotype) Biolegend Cat#400507

PE/Cy7-conjugated anti-mouse CD86 (GL-1) Biolegend Cat#105014

PE/Cy7 Rat IgG2a, k isotype control (CD86 isotype) Biolegend Cat#400521

BV605-conjugated anti-mouse CD80 (16-10A1) Biolegend Cat#104729

BV605 Armenian Hamster IgG isotype control (CD80 isotype) Biolegend Cat#400943

BV786-conjugated anti-mouse XCR1 (ZET) Biolegend Cat#148225

APC-conjugated anti-biotin (REA746) Mitenyi Biotec Cat#130-110-952

APC/Fire750-conjugated anti-mouse CD69 (H1.2F3) Biolegend Cat#104549

PE-conjugated anti-mouse CD3e (145-2C11) Biolegend Cat#100307

BV785-conjugated anti-mouse CD19 (6D5) Biolegend Cat#115543

AF700-conjugated anti-mouse CD34 (RAM34) BD Biosciences Cat#560518
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NUPA10hd progenitors efficiently
reconstitute RAGgc−/−mice and give rise to
all DC subsets

To test the potential of Hox-immortalized progenitors for in vivo

engraftment and differentiation into DC subsets, NUPA10hd or Hoxb8

progenitors, or freshly c-Kit+ sorted BM progenitors as a control (all

CD45.1) were injected into sub-lethally irradiated RAGgc−/− recipient
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mice (CD45.2). The engraftment was evaluated at 3 and 6 weeks post-

transfer in the BM, spleen, and SI (Figure 4A). When sub-lethally

irradiated mice were injected with c-Kit+ BM progenitors or

NUPA10hd progenitor cells, reconstitution of the BM, spleen, and SI

was observed, whereas Hoxb8 progenitor cells failed to engraft any of

these organs (Figure 4B). In line with this, in vitro-cultured NUPA10hd

progenitors comprised a heterogeneous population of committed and

lin−c-Kit+CD27+ uncommitted progenitors (43, 44), whereas Hoxb8
FIGURE 1

NUPA10hd and Hoxb8 BM progenitors efficiently differentiate into DCs in vitro. (A) Scheme of generation, maintenance, and in vitro DC
differentiation of lineage-negative (lin−) BM progenitors immortalized by constitutive NUP98Hoxa10HD (NUPA10hd) or inducible Hoxb8 expression.
(B) Representative dot plots depicting differentiated CD11c+MHC-II+ iDCs and mDCs. (C–F) Representative histograms and quantifications (mean FI)
of the surface expression of the co-stimulatory molecules CD40 (C), CD86 (D), and CD80 (E), as well as the chemokine receptor CCR7 (F) on iDCs
and mDCs. (G) Representative contour plots of CD11b and XCR1 expression on NUPA10hd and Hoxb8 mDCs. Mean values ± SEM of three
independent experiments. Statistical significance was determined by two-way ANOVA, followed by Šıd́ák’s multiple-comparisons test. p < 0.001 (***)
and p < 0.0001 (****).
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progenitors showed a preferential commitment toward myeloid

lineages (Supplementary Figures S2A–C). Accordingly, the potential

of NUPA10hd progenitor cells to restore the hematopoietic stem cell

and progenitor compartment (HSPC) was further determined by

assessing the presence of distinct BM progenitor subsets at 6 weeks

post-transfer. The following BM subsets were discriminated: self-

renewing multipotent hematopoietic stem cells (HSCs)

(Lin−B220−Ly6C−CD11b−Sca1+cKit+ [LSK] CD150+CD48−),

erythroid and megakaryocytic-biased multipotent progenitors 2

(MPP2s; LSK CD150+CD48+), myeloid-biased MPP3s (LSK

CD135−CD150−CD48+), lymphoid-biased MPP4s (LSK

CD135+CD150−CD48+), common lymphoid progenitors (CLPs;

B220−Lin−Sca1intcKitintCD127+CD135+), common myeloid
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progenitors (CMPs; B220−Lin−c-Kit+CD135+CD115−), macrophage–

d e n d r i t i c c e l l p r o g e n i t o r s (MDP s ; B 2 2 0 − L i n − c -

Kit+CD135+CD115+CD34+), and common dendritic progenitors

(CDPs; B220−Lin−Ly6Cloc-KitintCD135+CD115+). Donor-derived

MPP2s were present in NUPA10hd progenitor cell-reconstituted

mice, although at a lower frequency compared to c-Kit controls

(Supplementary Figures S3A–C). CLPs were present at lower

frequencies and absolute numbers (Supplementary Figure S3D),

while CMPs were increased in NUPA10hd-reconstituted mice

compared to c-Kit controls (Supplementary Figure S3E). MDPs and

CDPs were similar in both settings (Supplementary Figures S3F, G).

Taken together, NUPA10hd progenitors show multi-lineage

reconstitution with a CMP bias at the expense of CLP development.
FIGURE 2

NUPA10hd and Hoxb8 mDCs show CCR7-dependent migration and activate T cells in vitro. (A) Hox mDCs and mBMDCs were embedded into a 3D
collagen matrix and allowed to migrate toward CCL19 in a µ-slide chemotaxis chamber. (B) Migration tracks of 25 mDCs centered on the same
starting point from one representative experiment. (C) Quantifications of velocity, directionality, and xFMI of migrating mDCs. Mean values ± SEM of
three independent experiments. (D) Scheme of the in vitro proliferation assay and representative proliferation profiles of SMARTA CD4+ T cells after
72 h Parental peak is represented in black. (E) Quantifications of the proliferation and division indices of SMARTA CD4+ T cells. (F) Quantifications of
CD25 and CD62L expression (median FI) on naive and proliferated SMARTA CD4+ T cells. (G) Frequency and median FI of TNF+ SMARTA CD4+ T
cells were determined on naive and proliferated cells. Mean values ± SEM of three independent experiments. Statistical significance was determined
by ordinary one-way ANOVA, followed by Tukey’s multiple-comparisons test. p < 0.01 (**), p < 0.001 (***), p>0.05 (ns; not significant).
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Finally, we compared the potential of NUPA10hd vs. c-Kit+

progenitors to differentiate into plasmacytoid DCs (pDCs;

Ly6G−CD3−CD19−CD172intB220+PDCA-1+Siglec-H+) and

conventional DCs (cDCs; Ly6G−CD3−CD19−B220−F4/

80−CD11c+MHC-II+) (Figures 5A, B). pDCs and cDCs from both

donor models were present in the spleen and SI, with some

variations in frequency or numbers at single time points

(Figures 5C–G). Interestingly, cDCs tended to preferentially

differentiate into cDC2s rather than cDC1s (Figure 5H, I). Taken
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together, NUPA10hd progenitors efficiently generated committed

progenitors and mature DC subsets for at least 6 weeks in vivo.
Generation of genetically engineered DCs
using the NUPA10hd system

The unlimited proliferative potential of NUPA10hd progenitors

and their successful differentiation into DCs in vitro and in vivo
FIGURE 3

NUPA10hd and Hoxb8 mDCs induce T-cell activation and proliferation in vivo. (A) Scheme of the experimental setup for the in vivo LN homing
assay. (B) Ratio of injected NUPA10hd and Hoxb8 mDCs determined by flow cytometry. (C) Representative flow cytometry contour plots of
immigrated labeled mDCs within the migratory DC population (CD11c+MHC-IIhigh) in dPLNs and clPLNs at 24 h after injection. (D) Frequencies of
immigrated, fluorescently labeled CD11c+MHC-IIhigh mDCs to dPLNs are quantified. Data of nine mice from two independent experiments; paired
two-tailed Student’s t-test. (E) Scheme of the experimental setup for the in vivo T-cell proliferation assay. (F) Representative contour plots of
SMARTA CD45.1+CD4+ T cells in CD45.2 recipient mice. (G) Absolute numbers of SMARTA CD45.1+CD4+ T cells in dPLNs and clPLNs; two-way
ANOVA, followed by Šıd́ák’s multiple-comparisons test. (H) Representative proliferation profiles and quantification of the proliferation index of
SMARTA CD45.1+CD4+ T cells in dPLNs. Parental peak is represented in black; ordinary one-way ANOVA with Tukey’s multiple-comparisons test.
(I, J) Quantifications of CD44 (I) and CD62L (J) expression (median FI) on SMARTA CD45.1+CD4+ T cells in dPLNs. Parentally naive SMARTA
CD45.1+CD4+ T cells were used as control; ordinary one-way ANOVA with Tukey’s multiple-comparisons test. (K, L) Frequencies of TNF+ (K) and
IL-2+ (L) SMARTA CD45.1+CD4+ T cells from dPLNs after ex vivo re-stimulation with LCMV-GP61–80 peptide; two-way ANOVA, followed by Tukey’s
multiple-comparisons test. Mean values ± SEM of 5-9 mice from at least two independent experiments. p>0.05 (ns; not significant), p < 0.05 (*), p <
0.01 (**), p < 0.001 (***) and p < 0.0001 (****).
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prompted us to develop genetically engineered NUPA10hd

progenitor cell lines. To gain insights into their potential to serve

as a model for investigating cell–cell interactions and intracellular

signaling events during migration, we generated two novel

NUPA10hd progenitor cell lines. In the first approach, we used

the “Labeling Immune Partnerships by SorTagging Intercellular

Contacts” (LIPSTIC) method as a proof of principle to test specific

cell–cell interactions between mDCs and primary T cells in vitro.

Based on published work using CD40L-sortase A (CD40L-SrtA)

and five N-terminal glycine residues (G5)-CD40 as costimulatory

ligand–receptor pairs (34), we generated G5-CD40-expressing

mDCs in vitro from NUPA10hd progenitors (Figure 6A) and

CD40L-SrtA-expressing CD4+ T cells from T cells of TCR

transgenic OT-II mice. The addition of the substrate LPETG-

biotin leads to its binding to SrtA via the formation of an acyl

intermediate. Upon cell–cell contact and ligand–receptor

interaction, the substrate is transferred to the G5-tagged receptor

(Figure 6B). Intercellular labeling occurred successfully when

CD40L-SrtA+ CD4 T cells (donors) were co-cultured with

OVA323–339 peptide-pulsed NUPA10hd G5-CD40+ mDCs

(acceptors) (Figure 6C). Notably, NUPA10hd mDC labeling was

inhibited when T cells were treated with an aCD40L blocking

antibody, confirming that labeling was dependent on the engineered

receptor–ligand pair (34) (Figures 6C–E). Finally, G5-CD40-

expressing NUPA10hd mDCs were fully functional, as they

induced peptide-specific T-cell activation, monitored by CD69

upregulation (Figures 6F, G).
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As a second proof of concept for the genetic engineering of

NUPA10hd progenitors, we took advantage of the already described

biosensor PHAkt-GFP (32, 45), which is known to bind the major

second messenger lipid phosphatidylinositol-3,4,5-triphosphate

(PIP3). Upon CCL19-induced CCR7 activation, a G-protein-

dependent s igna l ing cascade i s in i t i a t ed , invo lv ing

phosphoinositide-3-kinase (PI3K) activation. PI3K phosphorylates

phosphatidylinositol-4,5-bisphosphate (PIP2) to produce PIP3,

preferentially at the front of migrating cells. Subsequently, PIP3
recruits and activates downstream signaling proteins, which are

important to maintain the cell’s polarity and directionality (46, 47).

Lentivirus-PHAkt-GFP-transduced NUPA10hd progenitors

(Figure 7A) were transferred into sub-lethally irradiated RAGgc−/−

recipients (Figures 7A, B). The spleens were harvested at 3 to 4 weeks

post-transfer, and cDC populations were analyzed (Figure 7B).

Notably, the frequencies of cDCs, including the cDC2 to cDC1

ratio, were comparable to those observed in mice reconstituted

with wild-type NUPA10hd progenitors at 3 weeks post-transfer

(Figure 7C). Some splenic cDCs lost or silenced PHAkt-GFP

expression (Figure 7D), which can be attributed to the backbone of

the expression vector used (data not shown). Next, PHAkt-GFP-

expressing splenic ex vivo DCs derived from NUPA10hd-

reconstituted mice were allowed to migrate along a CCL19 gradient

established in a 3D collagen matrix. PHAkt-GFP localizes at the front

of migrating DCs, as previously described (45) (Figure 7E,

Supplementary Video 4). In summary, we demonstrate that the

NUPA10hd system allows the generation of stable genetically
FIGURE 4

NUPA10hd, but not Hoxb8, progenitors reconstitute BM, spleen, and SI of RAGgc−/− mice. (A) Scheme of the experimental setup for the in vivo
reconstitution of Hox progenitors. (B) Frequencies of donor CD45.1+ cells in bone marrow (BM), spleen, and small intestine (SI) in CD45.2 RAGgc−/−

recipient mice at 3 and 6 weeks (wks) post-transfer. Mean values ± SEM of 6-8 mice from at least two independent experiments. Statistical
significance was determined by two-way ANOVA, followed by Tukey’s multiple-comparisons test. p>0.05 (ns; not significant), p < 0.001 (***) and
p < 0.0001 (****).
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engineered DCs that can be used to monitor Ag-specific DC–T cell

interactions and signaling events during DC migration.
Discussion

In this study, we describe a NUPA10hd-based strategy to efficiently

generate functional DCs from hematopoietic progenitor cells in vitro

and in vivo. NUPA10hd mDCs were as efficient as Hoxb8 mDCs or

mBMDCs as controls to migrate along a CCL19 gradient and to induce
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Ag-specific CD4+ T-cell activation, proliferation, and cytokine release.

We further demonstrate that, in contrast to Hoxb8 progenitors,

NUPA10hd progenitors retained the capacity to reconstitute

lymphoid and myeloid progenitors and to restore all DC subsets for

at least 6 weeks in vivo. Finally, we established two genetically

engineered NUPA10hd progenitor cell lines with unlimited in vitro

expansion potential, which can be used to monitor Ag-specific T cell/

DC interactions and intracellular signaling events in migrating DCs.

Studying DC cell biology and immune functions in vivo has been

limited by the lack of experimental models, in which DCs or their
FIGURE 5

NUPA10hd progenitors give rise to pDCs and cDCs in lymphoid and non-lymphoid organs. (A, B) Gating strategy to determine CD45.1+ pDCs (A)
and cDCs (B) in CD45.2 RAGgc−/− recipient mice. Representative contour plots of NUPA10hd mice at 3 weeks post-transfer. (C–E) Frequencies (top
panels) and absolute numbers (bottom panels) of CD45.1+ pDCs at 3 and 6 weeks in BM (C), spleen (D), and SI (E) of c-Kit and NUPA10hd mice.
(F, G) Frequencies (top panels) and absolute numbers (bottom panels) of CD45.1+ cDCs at 3 and 6 weeks in spleen (F) and SI (G) of c-Kit and
NUPA10hd mice. (H, I) Frequencies of CD45.1+ cDC1s and cDC2s within cDCs at 3 and 6 weeks in spleen (H) and SI (I) of c-Kit and NUPA10hd mice.
Mean values ± SEM of 6-7 mice from at least two independent experiments. Statistical significance was determined by two-way ANOVA with Šıd́ák’s
multiple-comparisons test. p>0.05 (ns; not significant), p < 0.05 (*), p < 0.01 (**), p< 0.0001 (****).
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progenitors can be easily expanded and genetically modified in vitro

and persist in vivo for functional analysis in disease models. In recent

years, Hox-immortalized hematopoietic progenitor cells turned out to

be promising systems for studying DCs in vitro and in vivo (11–16).

For example, consistent with an in vitro DC-lineage potential, Flt3L-

maintained Hoxb8 progenitors were shown to possess a phenotype

comparable to that of primary lymphoid-primed multipotent

progenitors (LMPPs) that, among others, retain DC differentiation

potential in vivo (11). However, myeloid cells, including DCs, were

undetectable after a few weeks (11). In line with this, in our study,

GM-CSF-maintained inducible Hoxb8 progenitors also did not persist

in vivo. In contrast, we show the successful in vitro generation and in

vivo persistence for 6 weeks of DCs derived from constitutively

expressing NUPA10hd progenitors.
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NUPA10hd and Hoxb8 progenitors were able to generate

functional mDCs in vitro (Figures 1, 2), and progenitor-derived

mDCs migrated to draining LNs and primed T cells in vivo

(Figure 3). In the first 24 h after s.c. transfer, NUPA10hd mDCs

migrated less efficiently to draining LNs as compared to Hoxb8 mDCs,

most likely because of lower CCR7 expression (Figure 1F). We cannot

rule out that, despite comparable in vitro velocity, the in vivomigration

speed of NUPA10hd and Hoxb8 DCs was different. However, this had

no impact on the Ag-specific effector T-cell response in dPLNs in

terms of proliferation, activation marker expression, and cytokine

release (Figures 3H–L). Notably, SMARTA CD4+ T cells isolated

from dPLNs released TNF even without being re-stimulated ex vivo,

which is most likely a result of recent activation by local specific

peptide-pulsed mDCs in the recipient mice (Figure 3K).
FIGURE 6

Generation of genetically engineered NUPA10hd mDCs to monitor Ag-specific T cell/DC interactions using the LIPSTIC approach. (A) Scheme
illustrating the generation of G5-CD40-expressing NUPA10hd mDCs. (B) Scheme of the LIPSTIC approach. (C) Co-culture of OVA323-339-loaded G5-
CD40+ NUPA10hd mDCs with CD40L-SrtA+ OT-II CD4+ T cells pre-treated or not with a blocking aCD40L or isotype antibody. Representative flow
cytometry contour plots of biotin labeling of mDCs (intercellular transfer) and CD4+ T cells (acyl intermediate). (D) Frequency of biotin+ mDCs.
(E) Frequency of biotin+ CD4+ T cells. (F, G) Co-culture of LCMV-GP61-80 or OVA323–339 peptide-loaded G5-CD40+ NUPA10hd mDCs with CD40L-
SrtA+ OT-II CD4+ T cells pre-treated or not with a blocking aCD40L or isotype antibody. (F) Representative flow cytometry contour plots of CD69
expression on CD4+ T cells. (G) Frequency of CD69+CD4+ T cells. Mean values ± SEM of five independent experiments. Statistical significance was
determined by ordinary one-way ANOVA, followed by Tukey’s multiple-comparisons test. p>0.05 (ns; not significant), p < 0.001 (***) and p < 0.0001
(****).
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As noted, NUPA10hd progenitors preserved a stemness

phenotype, even after long-term in vitro culture (>8 weeks)

(Supplementary Figure S2). In contrast, Hoxb8 progenitors,

maintained in GM-CSF, showed a rather committed phenotype

into myeloid lineages in vitro (Supplementary Figure S2). In line

with this, only NUPA10hd progenitors were able to engraft

RAGgc−/− mice with lymphoid and myeloid progenitor cells

(Supplementary Figure S3). By assessing the frequency of

NUPA10hd progenitors at 6 weeks after transplantation, we did

not detect NUPA10hd HSCs by flow cytometry. One possible

explanation is that in our study, immortalization was performed

on a heterogeneous population of lin⁻ BM cells rather than on

purified HSCs or LSKs (26). Adoptively transferred NUPA10hd

progenitors showed a strong bias toward myeloid progenitor cells in

vivo and were able to engraft pDCs, cDC1, and cDC2 in the BM,

spleen, and SI (Figure 5). Compared to the engraftment with c-Kit+

progenitor BM cells, we observed a reduction of CLPs in

NUPA10hd-reconstituted mice, but without affecting the

development of lymphoid cells such as T cells, B cells, NKs, and

ILC3s (data not shown). Overall, the NUPA10hd system

demonstrates a significant potential for reconstitution over 6

weeks and in vivo differentiation into lymphoid and myeloid

lineages, including all DC subsets. It remains to be investigated

whether immortalization of sorted HSCs will improve the duration

of engraftment beyond 6 weeks.

Finally, we demonstrate the value of NUPA10hd progenitors

as a reliable source to generate genetically modified DCs. We

generated two NUPA10hd progenitor cell lines to monitor DC–T

cell interactions and intracellular signaling events of migrating

DCs. First, in vitro-generated G5-CD40-expressing NUPA10hd
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mDCs were fully functional to monitor Ag-peptide-specific DC–

T cell interactions using the LIPSTIC approach (Figure 6).

Second, PHAkt-GFP-expressing NUPA10hd progenitors were

generated to confirm that biosensor PHAkt-GFP accumulates at

the front of a DC migrating along a CCL19 gradient, similar to

what has been described for various immune cell lines (45, 48, 49)

(Figure 7). Hence, both cell lines are valuable tools for studying

cell–cell interactions and signaling events during the migration

of DCs.

Future applications could benefit from exploring the potential of

an inducible expression system for the genetic engineering of

NUPA10hd progenitors. Indeed, the constitutive expression of

chemokine receptors (i.e., mutated CCR7) or modified co-

stimulatory molecules (G5-CD40; LIPSTIC) may hamper the

homing of progenitors and thereby affect the reconstitution

potential of recipient mice. Under inducible conditions, however,

the expression of the molecule of interest can be induced at any

desired time either in vivo or in bona fide ex vivo isolated cells. This

could be especially useful for LN homing experiments to investigate ex

vivoDCs’migratory behaviors or DC–T cell interactions (LIPSTIC) in

dPLNs. Importantly, the NUPA10hd system does not limit itself to

DCs. Indeed, other genetically modified immune cells, such as T and B

cells, ILCs, and other myeloid cells, can be investigated and used for in

vitro as well as adoptive transfer experiments in vivo.

In summary, we have developed a promising strategy to

investigate wild-type and genetically engineered DCs in vitro and

in vivo. In line with other studies, NUPA10hd serves as an efficient

tool for high and stable expansion of progenitors in vitro. The fact

that NUPA10hd progenitor cells can be easily genetically modified

and can engraft all DC subsets in vivo opens new avenues for both
FIGURE 7

Generation of genetically engineered ex vivo DCs using the NUPA10hd system to monitor the subcellular localization of PIP3 in migrating DCs. (A)
Scheme illustrating the generation of PHAkt-GFP-expressing NUPA10hd progenitor cells. (B) Scheme of the experimental setup. (C) Frequencies of
CD45.1+ cDCs and corresponding cDC1 to cDC2 ratio at 3 to 4 weeks post-transfer in spleen of NUPA10hd mice. The dashed line represents the
frequency of CD45.1+ cDCs in wild-type NUPA10hd mice at 3 weeks post-transfer. (D) Frequencies of GFP+/− CD45.1+ cDCs at 3 to 4 weeks post-
transfer in spleen of NUPA10hd mice. (E) A PHAkt-GFP-expressing splenic DC is shown migrating along a CCL19 gradient in 3D. The image
represents a maximum intensity projection of confocal z-stacks (0.2 mm z-steps). Scale bar: 10 mm. Mean values ± SEM of four mice from at least
two independent experiments.
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basic research and pre-clinical studies on optimized vaccines in

infection and tumor models.
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