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Distinct from conventional Foxp3* regulatory T cells (Tregs), T-bet* Tregs
represent a stable subset of immunosuppressive T cells characterized by co-
expression of the transcription factors (TFs) Foxp3 and T-bet. Given that Tregs
were also reported to co-express Foxp3 together with effector T cell TFs such as
GATA3, or RORyt, we propose the term hybrid Tregs (hTregs) to distinguish
between these Tregs that co-express Foxp3 together with effector T cell TFs
from conventional Foxp3* Tregs. Therefore, this review will focus on hTreg cells, a
specific subset of CD4" T cells, and discuss the different types of hTregs with
particular emphasis on T-bet" hTregs. T-bet* hTregs exhibit unique features
including IFN-y production, high expression of immune checkpoints (PD-1,
CTLA-4, GITR, OX40, TIGIT), and chemokine receptors (CXCR3, CCR5). Through
secretion of I1L-10, TGF-B and IFN-y, T-bet® hTregs modulate both innate and
adaptive immune responses within the tumor microenvironment (TME). Their high
expression of CD73 contributes to adenosine-mediated immunosuppression,
while CXCR3 and CCR5 facilitate their recruitment to inflammatory sites. T-bet*
hTregs were reported to accumulate in multiple human cancers, including lung,
ovarian, and colorectal carcinomas. Despite these advancements, the function of
hTregs in diseases such as cancer remains poorly understood, and requires further
investigations. For instance, some studies suggest T-bet+ hTregs to be anti-
inflammatory due to their production of I1L-10, TGF-B, and superior suppressive
capacity compared to conventional Tregs. Yet, other studies have reported that T-
bet™ hTregs exhibit enhanced proinflammatory functions in colitis and other
pathologies. We will then highlight current known mechanisms that promote the
differentiation and functions of T-bet™ hTregs in cancer. Lastly, we will discuss the
advancements and opportunities for therapeutic targeting of T-bet+ hTregs in
cancer immunotherapy.
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1 Introduction

The tumor microenvironment (TME) comprises of cancerous
cells, and a diverse array and interaction of non-cancerous cells,
including stromal and immune cells (1). Within such an ecosystem,
the diversity of cell-cell interactions, cellular synapses, and
secretome within the TME define the fate of tumor progression,
metastasis rates, and treatment outcomes in patients (2-4). Tumor
infiltrated T cells (TILs) exhibit substantial heterogeneity in their
phenotypes, functional states, and spatial distributions within
tumors (5, 6). Regulatory T cells (Tregs) that express the
transcription factor Foxp3 are among the most abundant T cell
subsets within the TME (7). Similar to conventional T cells, Tregs
respond to T cell antigen receptor (TCR) stimulation by
transitioning from a resting state to a more suppressive effector
Treg (eTreg) phenotype (8). Although, the immunosuppressive
capacity of Tregs play an indispensable role in maintaining
tolerance and immune homeostasis, it suppresses antitumor
immune responses in the TME (7, 9). Currently, one of the
challenges in the Treg field is successfully manipulating Tregs in
cancer without triggering autoimmunity. However, Tregs should
not be considered as a homogeneous population. During the last
decade, different hybrid subsets of Tregs such as Thl-like Tregs and
Th17-like Tregs have been discovered in various human and mouse
diseases (10). Nevertheless, the terms “Thl-like” or “Th17-like”
Tregs, which have been widely used do not properly describe these
unique cells. For instance, in cancer, T-bet™ Tregs exhibit
characteristics that more closely resemble conventional Tregs
than Thl cells. Likewise, RORyt" Tregs and GATA3" Tregs
display properties that are similar to conventional Tregs than
their helper T cell counterpart. Simply, these cells are not
equivalent to the helper T cells and only partially share certain
characteristics. We propose the term ‘hybrid Tregs’ to reflect their
expression of two T cell lineage master transcription factors that
regulate T cell fate and differentiation. Henceforth, we will use the
term hybrid Tregs (hTregs) to refer to these subsets of regulatory T
cells. Notably, hybrid subsets of Tregs are functionally different,
compared to conventional Foxp3™ Tregs. For example, while
conventional Tregs broadly suppress diverse immune responses,
T-bet™ hTregs specifically target and suppress Thl-type immune
responses and associated inflammation.

T-bet” hTregs are defined by the co-expression of the Thl cell
transcription factor T-box transcription factor TBX21 (T-bet) and
the Treg signature transcription factor Foxp3 (11). A significant
accumulation of T-bet” hTregs is reported in several tumors
including oropharyngeal squamous cell carcinoma and lung
carcinoma (11, 12). T-bet" hTregs exhibit high resistance to
oxidative stress, which may contribute to their accumulation in
tumor tissues (13). In addition, T-bet" hTregs primarily execute
their immunosuppressive characteristics by dampening type 1
immune responses including the activation of Thl cells and
cytotoxic CD8" T cells which are essential for antitumor
immunity and defense against intracellular pathogens (14).
Despite their immunosuppressive functions and abundance
within the TME, the precise contribution of T-bet” hTregs to
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tumor progression remains poorly understood. Given that they
share features with both Tregs and Thl cells, T-bet+ hTregs were
suggested to influence the tumor immune landscape by suppressing
antitumor immunity, yet their exact role in promoting or inhibiting
tumor growth, metastasis, and response to immunotherapy remains
less understood. In this review, we aim to shed light on the possible
functional mechanisms of T-bet” hTregs by exploring their
resemblance to conventional Tregs.

2 Plasticity of Tregs and hybrid Tregs
within tumors

Given the central role of conventional Tregs in regulating and
maintaining immune homeostasis, they require steady and robust
suppressor functions. Nonetheless, Tregs have been shown to
exhibit substantial plasticity which enables them to effectively
suppress a wide range of immune responses. Although this
flexibility is driven by intrinsic molecular signaling pathways,
such as the PI3K/AKT pathway, the activation of these pathways
is also influenced by the surrounding environment of the Tregs,
including various cytokines and metabolic factors (15, 16). This
adaptability gives rise to specialized subsets of Tregs called hybrid
Tregs which further refine immune regulation. Hybrid Tregs co-
express lineage-defining transcription factors typically associated
with other T helper (Th) subsets, such as T-bet (Thl), GATA3
(Th2), RORyt (Th17), and Bcl6 (Tth) (16). These hybrid
populations are thought to be crucial for suppressing their
corresponding effector T cell counterparts. For instance, RORYt"
hTregs play a role in regulating Th17 responses in the gut (17).

2.1 T-bet* hTregs

The frequency of T-bet” hTregs among CD4" T cells in the
peripheral blood of healthy humans has been reported to be less
than 2% (~6 cells/uL). In contrast, their frequency among memory
Tregs has been reported to be approximately 40% in rheumatoid
arthritis (18). Under specific inflammatory conditions T-bet"
hTregs differentiate from Tregs and their presence in different
disease including Type 1 diabetes, Rheumatoid arthritis, and
cancer have been reported (18, 19). Like conventional Tregs, T-
bet” hTregs also express Foxp3 and Helios, but in addition, they
upregulate T-bet and CXCR3 (20). In settings with elevated
cytokines including IFN-y, interleukin-27 (IL-27) and IL-12,
conventional Tregs sense and upregulate T-bet, as well as secrete
IFN-y and TGF-f, and exhibit other Th1-related markers such as
CXCR3 and CCR5 (13, 19, 21-23). Table 1 provides a detailed
comparison of key characteristics among human T-bet” hTregs,
GATA3" hTregs, and RORyt" hTregs, highlighting their unique
profiles, including transcriptional profiles and cytokine production
(24, 25).

The presence of T-bet” hTregs in the TME and lymph nodes of
cancer bearing patients suggests that the TME is not the sole site
where these cells can differentiate. Instead, T-bet” hTregs are likely
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TABLE 1 Comparison of key characteristics among T-bet*, GATA3*, and RORyt* hTregs.

Characteristic celtype T-bet™ hregs
Key transcription factors FoxP3, T-bet

Foxp3 expression (MFI) > 1500

CD25 expression (MFI) < 6000

PD-1 expression (MFI) ~ 2000

CTLA-4 expression (MFI) ~ 500

TIGIT expression (MFI) ~ 3000

GARP expression (RNA-seq) Low expression

Secreted cytokines IFN-y, TNF-ou

Upregulated Th-lineage genes IL7, IL15, TBX21, IRF1, CXCR3, IFNg

Upregulated chemokine receptors CCR2, CCR5, CXR6, CXCR3

Upregulated chemokine Not Available

GATA3* hTregs RORt* hTregs

FoxP3, GATA3 FoxP3, RORyt
> 1000 ~ 1500

< 6000 ~ 7000

> 4000 < 4000

< 1000 > 500

> 4000 >3000

Low expression High expression

IL-2, IL-4, IL-5, IL-13, IL-21 IL-17A, IL-17F

GATA3, FOSL1, IRF4, IL1A, IL4, IL5,
1L9, IL13, IL21, IL24, IL2, CEBPB,
IRF8, RUNX3, IL6, NFATC1

RORA, RORC, RUNX1, CCRe6, IL17A,
IL17C, IL7, IL15

CXCR5, CXCR4 CCR2, CCR5, CXR6, CCR6, CCR9

CCL24, CXCL8, CXCL16, CCL3,

CXCL13
CCL17

recruited and retained in the TME, contributing to their high
abundance in this environment (14). Tumors can attract and
retain CXCR3-expressing cells through the secretion of specific
chemokines, primarily C-X-C motif chemokine ligand (CXCL) 9,
CXCL10, and CXCL11, which are ligands for the CXCR3 receptor.
These chemokines create a gradient that guides CXCR3-expressing
immune cells, such as activated CD8" T cells and natural killer (NK)
cells, toward the tumor site (26, 27). Also, CXCR3 plays a crucial
role in stabilizing intravascular adhesion of T cells, facilitating their
extravasation into the tumor tissue (28). Understanding the
mechanisms governing the recruitment and retention of CXCR3-
expressing cells including T-bet" hTregs within the TME is crucial
for developing therapeutic strategies aimed at modulating immune
cell infiltration to improve antitumor immunity.

2.2 GATA3" hTregs

GATA3" hTregs are known to suppress Th2 cell responses (29).
The function of Th2 cells in tumor response is complex and
multifaceted, with evidence suggesting context-dependent
antitumor and pro-tumor effects. Th2 cell were suggested to
impair the growth of colon and pancreatic tumors by secreting
cytokines, including IL-4, IL-5, and IL-13, which can recruit and
activate eosinophils, and other cytotoxic cells into the TME (30, 31).
In breast cancer, Th2 cells were shown to induce terminal
differentiation of cancer cells, effectively suppressing their
malignant potential (32). Of note, Th2 cell responses can also
promote tumor growth and metastasis (31). Tregs require IL-4 to
differentiate into GATA3" hTregs (33). GATA3" hTregs are
abundant in melanoma and colorectal cancers. While T-bet"
hTregs and RORYt" hTregs are prevalent hybrid Tregs in colon,
GATA3" hTregs were found preferentially in tissues compared to
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the circulation, even in the skin and colon. Although lower
expression of Foxp3 is observed in GATA3" hTregs compared to
T-bet” hTregs and RORyt" hTregs, these cells are characterized by
high levels of IL-2, IL-4, IL-5, and IL-13 cytokines and increased
chemotaxis toward CCL17/22 compared to other hybrid Tregs.
GATA3" hTregs demonstrate superior survival and enhanced
proliferative capacity driven by the autocrine IL-2/STATS5 signaling
pathway. Additionally, these cells exhibit reduced suppression of
Th2-like effector T cells relative to other Treg subsets, likely due to
their elevated expression of TIGIT, the only key protein
differentially expressed upon activation. Due to enhanced
survival, greater migratory potential, and specific suppression of
effector T cells, it is suggested that GATA3™ hTregs might promote
a tumor-supportive environment (24). GATA3" hTregs exhibit
unique characteristics that may contribute to a tumor-supportive
environment, emphasizing the need for further investigation into
their role in cancer to uncover potential therapeutic opportunities.

2.3 RORyt" hTregs

Tregs require IL-6, IL-21, and IL-23 to differentiate into RORyt"
hTregs with capacity to produce IL-17A (33-35). RORYt" hTregs
that secrete IL-17 and express CCR6" exhibited the highest levels of
RORYt, indicating a close resemblance to Th17 cells (36). They are
known to suppress Th17 cell responses (37, 38). Th17 cells,
particularly through the secretion of IL-17A, can promote tumor
angiogenesis (39). Th17 cells contribute to tumor progression as IL-
17 triggers IL-6 production, which activates oncogenic signaling
pathways, including STAT3. STAT3, in turn, promotes tumor
growth by regulating genes involved in angiogenesis (40). It is
shown that RORYt" hTregs are the dominant population in the skin,
while the colon is enriched with T-bet” hTregs and RORyt" hTregs
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(24). The equilibrium between Th17 and Tregs is governed by the
glycolytic pathway driven by mTOR signaling (41). Overall, there is
a lack of comprehensive studies investigating the role of RORYt"
hTregs and their interaction with Th17 cells in tumor immunity.
Understanding this dynamic could provide valuable insights into
the balance between pro-tumor and antitumor responses with
potential clinical applications for targeting these cell populations
in cancer therapies.

2.4 T follicular regulatory (Bcl-6* hTregs)
cells

CD4" T follicular helper (Tfh) cells play a crucial role in
supporting B cell functions and are commonly located within
tertiary lymphoid structures in tumors. In malignancies derived
from Tth cells or B cells, an elevated frequency of Tth cells is often
linked to poor outcomes. In contrast, in solid organ tumors of non-
lymphocytic origin, higher Tth cell levels are frequently associated
with improved prognoses, underscoring their dual and context-
dependent roles in cancer (42). In Tth cells, STAT5 and Bcl-6" have
been reported to bind to shared DNA sequences (43). Bcl-6" hTregs
produce IL-10 and TGF-f, and play a complex and dual roles in
tumor immunity (44). Anti-PD-1 and anti-CTLA-4 monotherapy
significantly increased the frequency of Bcl-6" hTregs within

Function, proliferation
& memory formation ¢

CD8* T cell

M1

Autocrine

Antigen processing inicfoH

& presentation

Tumor IFN-Q*“
immunogenicity <& o
Tumor cell
PD-L1
Evade anti-tumor
immunity
CXCL1
FIGURE 1

T-bet* hTreg cell

10.3389/fimmu.2025.1658576

tumors (45). Given Bcl-6" hTregs’ complex and dual role in
tumor immunity, further investigation into Bcl-6" hTregs is
crucial to understanding their impact on antibody responses and
potential therapeutic strategies in cancer treatment.

3 T-bet" hTregs in tumor immune
regulation

The role of T-bet” hTregs in cancer is multifaceted and highly
context-dependent, exhibiting both pro-tumor and antitumor
functions. This duality highlights their remarkable plasticity and
ability to adapt to the TME while preserving their regulatory
phenotype. It is suggested that T-bet" hTregs exhibit more rebuts
inhibitory capacity in comparison to other hybrid Tregs (18). The
inhibitory function of T-bet” hTregs might rely on different
mechanisms, including:

3.1 Cytokine production

Although, T-bet” hTregs produce cytokines such as IFN-y
typically associated with Thl cell responses, they also secrete IL-
10, and transforming growth factor-beta (TGF-f), produced by
conventional Treg cells (Figure 1) (18, 21).

=) Differentiation

Treg cells
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fo-i : =) cytotoxic functions
Pro-|nﬂammatory CranzymediE)
cytokines CD8' T cell
& chemokines
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Dual roles of T-bet* hTregs in tumor progression. The T-bet™ hTregs, characterized by Foxp3 and T-bet expression, exhibits complex interactions
through its mainly produced cytokines (IFN-v, IL-10, and TGF-B). IL-10 production suppresses CD4" T cell responses and pro-inflammatory cytokine
production; potential autocrine function(s) are unclear. TGF-f signaling orchestrates multiple immunomodulatory effects such as Treg differentiation,
CD8* T cell regulation, NK cell chemotaxis, and dendritic cell maturation. These functions demonstrate a potential role of T-bet* hTregs in
coordinating both immunosuppressive and pro-tumoral responses within the TME. Finally, the IFN-y production influences antigen presentation
through APCs, macrophage polarization, and tumor cell responses, including immunogenicity and immune evasion mechanisms.
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3.1.11L-10

IL-10 is a member of the IL-10 cytokine family with a crucial
role in maintaining epithelial tissue integrity, defending against
pathogens, and preserving self-tolerance (46). It plays a dual role in
cancer immunity exhibiting both antitumor and pro-tumor
functions (47). Traditionally, IL-10 was regarded as an
immunosuppressive cytokine in the TME. However, recent
studies have revealed its antitumor functions. The antitumor or
pro-tumor role of IL-10 is linked to the phosphorylation of signal
transducer and activator of transcription (STAT) 1 or STAT3. The
IL-10 receptor is a heterotetrametric complex consisting of two IL-
10R0o and two IL-10Rp subunits. Upon IL-10 binding, this receptor
forms a hexamer, initiating a signaling cascade primarily involving
Janus kinase 1 (JAK1) and tyrosine kinase 2 (TYK2), which leads to
the phosphorylation of STAT3. Activated STAT3 suppresses
excessive immune responses by inhibiting mitogen-activated
protein kinase (MAPK), nuclear factor kappa B (NF-«B), and IL-
1R production. Conversely, the hexamer can phosphorylate STATI,
enhancing granzyme and IFN-y production specifically in tumor-
resident CD8" T cells. This effect is not observed in CD8" T cells
isolated from lymph nodes or in CD4" T cells (48). Therefore, the
balance between STAT1 and STAT3 abundance within IL-10R-
expressing cells, such as macrophages, dictates the functional
outcome of IL-10 signaling. Secretion of IL-10 by T-bet" hTregs
requires a strong TCR activation, STAT4 signaling, and IL-12
signaling (49). IL-4 stimulates IL-10 production in CD4" T cells,
helping to regulate the balance between pro-inflammatory and anti-
inflammatory cytokines while encouraging the development of a T-
bet” hTregs phenotype (50). In addition, IL-10 dampens the ability
of dendritic cells (DCs) and macrophages to activate antigen-
specific CD4" T cells. In activated macrophages, IL-10 signaling
downregulates major histocompatibility complex class (MHC) II
and CD86, ultimately disrupting the antigen presentation process to
CD4" T cells by upregulating the E3 ubiquitin ligase, Marchl (51,
52). IL-10 also reduces the expression of MHC-I on tumor cells,
resulting in tumor immune escape (53). IL-10 plays a pivotal role in
modulating both innate and adaptive immune responses by
restricting T cell activation and differentiation in lymph nodes,
and suppressing pro-inflammatory activity in tissues. This
suppression occurs through the reduction of pro-inflammatory
cytokines (e.g., IL-1, IL-6, IL-12, IL-18, and TNF-o) and
chemokines (e.g., MCP1, MCP5, RANTES, IL-8, IP-10, and MIP-
2), potentially leading to impaired pathogen clearance or reduced
immunopathology (54). IL-10 can directly inhibit T cell functions
by suppressing proliferation, cytokine production (IFN-v, IL-2) by
CD4" T cells and promoting T cell anergy (54, 55).

3.1.2 Transforming growth factor-beta

TGF-P exhibits a dual role in cancer progression, functioning as
a tumor suppressor during the early stages but shifting to promote
tumor growth, metastasis, and immune evasion in advanced stages
(56-58). TGF-B is produced by a variety of immune and non-
immune cells. It is synthesized in an inactive form that requires
activation to become functionally active. This activation step serves
as a vital regulatory mechanism to control the biological activity of
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TGEF-B (59). Tregs are the primary source of latent TGF-B1 (LTGF-
B1) among CD4" T cells, and uniquely express glycoprotein-A
repetitions predominant (GARP) on their surface upon activation.
GARP functions as a docking receptor for LTGF-B1, facilitating the
release of active TGF-P by integrins (60). TGF-B secreted by Tregs
functions in both an autocrine and paracrine manner (61). In
normal cells and early-stage cancers, TGF- acts as a tumor
suppressor by inhibiting cell proliferation through repression of
c-Myc and induction of cyclin-dependent kinase inhibitors
(CDKIs) (62). Within the TME, TGF-3 can be secreted by tumor
cells, fibroblasts, immune cells, and endothelial cells, and promotes
epithelial to mesenchymal transition (EMT) in cancer cells. This
process allows advanced-stage tumor cells to migrate from their
primary site, enter the bloodstream, colonize distant locations, and
form secondary tumors. TGF-f also induces Foxp3 expression, and
supports differentiation of naive CD4" T cells into peripherally-
induced Tregs (pTregs), while simultaneously suppressing
their conversion to other immune cell types. It inhibits the
proliferation and function of cytotoxic CD8" T cells, reduces the
cytotoxicity and chemotactic activity of NK cells, and impairs
the maturation of DCs and naive CD4" T cells (63, 64). TGF-B
also impairs the effector functions of neutrophil and induces
apoptosis in B cells. In addition to promoting Foxp3 expression
in Tregs, TGF-B inhibits IFN-y production, and blocks expression
of multiple NK cell-related makers, including MHC class I chain-
related molecule A (MICA), granzyme A/B, natural killer group 2
member D (NKG2D), natural cytotoxicity receptor 3 (NKP30), and
perforin, thereby suppressing immune activity (63). In transformed
epithelial cells, TGF-f supports metastasis by upregulating IL-11,
parathyroid hormone-related peptide (PTHrP), and matrix
metalloprotease (MMP) 9. It also enhances the expression of
connective tissue growth factor (CTGF), vascular endothelial
growth factor (VEGF), and MMP2, to promote angiogenesis (63).
Overall, the pro-tumor effects of TGF-f outweigh its tumor-
suppressive functions. Although bulk RNA-seq analysis revealed
low GARP expression in T-bet” hTregs (25), whether GARP in this
subset can activate latent TGF-B and modulate T-bet”™ hTreg
function in an autocrine manner remains to be determined.

313 IFN-y

While IFN-y is widely recognized for its crucial role in
stimulating anti-tumor immune responses, it can also have a
paradoxical protumor function depending on its concentration
and the context within the TME (65). Tregs can acquire Thl-like
effector properties while maintaining Foxp3 expression, resulting in
IFN-y" T-bet” hTregs. This process is stimulated by IFN-y, IL-12, or
IL-27 and ultimately driven by activation of the PI(3)K-Akt-FOXO
signaling pathway (66). Culturing thymic Treg (tTreg) cells with
IFN-y and TGF-B upregulates T-bet and CXCR3 expression.
Notably, in the absence of IFN-y, TGF-B downregulates T-bet
expression through a Foxp3-independent mechanism. T-bet also
directly enhances the expression of Ifng and IL12rb by binding to
their loci. IFN-y plays a key role in the differentiation of T-bet"
hTregs and is also produced by these cells (20). IFN-y can activate
macrophages and promotes their differentiation into Ml
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macrophages. IFN-y also enhances tumor immunogenicity by
increasing MHC class I expression on tumor cells, improving
antigen presentation, and activating cytotoxic CD8" T cells to
target and eliminate the tumor (67). Deficiency in IFN-y may
cause spontaneous tumor development (60); but in some settings
it may function as a pro-tumor molecule. It was reported that IFN-y
can induce programmed cell death ligand 1 (PD-L1), indoleamine
2, 3 dioxygenase (IDO), and CXCLI12 in tumor cells supporting
their antitumor immune evasion (68-70). Of note, the net pro-
tumor or antitumor effects of IFN-y like that of many other
cytokines is determined by a broader network of factors,
including the tumor microenvironment (e.g., cytokine milieu,
immune cell composition, hypoxia, and metabolic state), tumor
type, and the timing and duration of IFN-y signaling (acute versus
chronic exposure) (65, 71, 72). For instance, IFN-y in melanoma
acts through a negative feedback mechanism to constrain anti-
tumor immune responses by diminishing the longevity of stem-like
T cells (73). During acute and chronic infections, T-bet" hTregs
suppress the function, proliferation, and memory formation of
CD8" T cells (74). A study using a USP15-deficient mouse model
revealed that elevated IFN-y secretion by T cells transforms the
TME into an immunosuppressive state, promoting the
accumulation of T-bet”™ hTregs and CD11b*Gr-1" myeloid-
derived suppressor cells at the tumor site (70). Despite the well-
characterized role of IFN-y in shaping the TME, the mechanistic
function of IFN-y secreted specifically by T-bet™ hTregs remains
poorly understood. It is unclear whether the IFN-y produced by
these cells dictates an immunosuppressive TME. Furthermore, the
potential autocrine effects of IFN-y on T-bet” hTregs is yet to
explored. This raises intriguing questions about whether IFN-y
regulates the stability, suppressive function, or metabolic activity
of T-bet” hTregs through self-signaling mechanisms. Further
investigation is needed to clarify these pathways and their

implications in tumor immunity and therapeutic interventions.

3.2 Expression of immune checkpoint

3.2.1 Programmed cell death 1

PD-1 is a immunosuppressive checkpoint expressed by various
immune cells, including macrophages, B lymphocytes, DCs, tumor-
specific activated T cells, and NK cells under conditions of chronic
antigen exposure (75). In addition to activated T cells, tumor
infiltrated CD8" T cells and Tregs also express PD-1, which
interacts with its ligands, PD-L1 and PD-L2 (76, 77). It was
demonstrated previously that activated T-bet” hTregs express
high levels of PD-1 (14). TCR signaling triggers the activation of
various transcription factors, including NFAT2, AP-1, Notch,
FOXOI, and TOX, leading to the upregulation of PD-1 (77). PD-
1 is critical for the extrathymic differentiation of pTreg cells in the
periphery. PD-1-deficient conventional CD4" T cells show a
markedly reduced ability to differentiate into pTregs in various in
vivo settings (76). PD-1 signaling also promotes lipid metabolism in
tumor-infiltrating Tregs, contributing to their proliferation and
suppressive function (Figure 2) (78). Moreover, PD-1 signaling
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enhances Foxp3 expression in Tregs and strengthens their
suppressive characteristics (79). Through PD-1 and PD-L1/PD-L2
signaling with APCs, Tregs maintain immune tolerance in CD4"
and CD8" T cells. In the TME, Tregs can promote upregulation of
PD-1 in tumor-infiltrating antitumor T cells, leading to their
exhaustion, and consequently promoting immune evasion tumor
cells (80). It was proposed that intermediate levels of PD-1
expression promote T-bet expression during chronic infection,
and support the survival of T-bet" cells. In turn, T-bet maintains
PD-1 expression at intermediate levels by repressing Pdcdl
transcription (81). While PD-1 is known to play a significant role
in immune regulation, the specific mechanisms by which PD-1 on
T-bet” hTregs may modulate immune responses against tumors
remain unclear and warrant further investigation.

3.2.2 Cytotoxic T-lymphocyte associated protein 4

CTLA-4 is an inhibitory receptor on T cells and a member of
the CD28 family. CD80 and CD86 are known ligands of CTLA-4,
and are mostly present on the surface of APCs. Of note, CD80 and
CD86 binding to CTLA-4 inhibits T cell activation, while binding to
CD28 to activates T cells. Therefore, CTLA-4 and CD28 compete
for binding to CD80 or CD86 (82). CTLA-4 is crucial for the
suppressive function of Tregs. It interacts with CD80 and CD86 on
dendritic cells, transmitting inhibitory signals that downregulate
CD80 and CD86 expression and upregulate IDO in dendritic cells,
promoting immune tolerance (83, 84). Under normal physiological
conditions, IDO maintains immune tolerance; however, in the
TME, it acts as an immunosuppressive enzyme (85). Tregs
express higher levels of CTLA-4 compared to conventional T
cells, and have a greater affinity for binding CD80 and CD86 than
CD28. As a result, Tregs outcompete with conventional T cells for
CD80 and CD86 binding, leading to reduced activation of
conventional T cells (86). Despite reports that T-bet™ hTregs
express CTLA-4, the mechanism by which CTLA-4 regulates
their suppressive function remains unclear (14).

3.2.3 Glucocorticoid-induced TNFR family related
protein

As a member of the TNF receptor family, the GITR immune
checkpoint is expressed at low levels on CD8" and CD4" T cells but
highly expressed on Tregs (87, 88). Its expression levels are
frequently associated with proliferation and the
immunosuppressive activity of Tregs (89, 90). GITR expression
has been reported on T-bet” hTregs (91). Anti-GITR treatment
shifts the immunosuppressive TME of glioblastoma to an
immunostimulatory one by specifically targeting glioblastoma
Tregs. This treatment converts immunosuppressive Tregs into
antitumor Thl-like CD4" T cells, enhancing the immune
response and overcoming resistance to o-PD1 therapy in
experimental glioblastoma models (92). The function of GITR in
TME is somewhat controversial due to its context-dependent role in
T cells. Some studies have reported that triggering GITR signaling
with Fc-GITR-L inhibits intratumoral Treg suppressive function
but drives CD4" effector T cell to proliferate (87). Overall, the role
of GITR in Tregs, particularly in T-bet" hTregs remains an area that
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FIGURE 2

The complex immunoregulatory interactions of T-bet™ hTregs. T-bet* hTregs express key transcription factors (Foxp3 and T-bet). These cells utilize
various immune checkpoints to regulate their activities on the surrounding immune environment. For instance, CD73 promotes pro-tumor immune
responses and suppresses antitumor immunity. PD-1 induces the expression of both Foxp3, T-bet, and lipid metabolism. CTLA-4, through the
upregulation of IDO in antigen-presenting cells (APCs) can enhance the immunosuppressive nature of the TME.

requires further investigation. Understanding how GITR signaling
influences the stability, suppressive function, and interaction of T-
bet” hTregs within the TME could provide valuable insights into
their contribution to immune regulation in cancer. Due to the
complex nature of Treg cell plasticity, investigating the mechanism
behind the function of GITR could help refine therapeutic strategies
that target Tregs to enhance antitumor immunity.

3.2.4 Tumor necrosis factor receptor superfamily,
member 4

0X40 is a member of the tumor necrosis factor (TNF) receptor/
nerve growth factor (NGF) receptor superfamily and a
costimulatory molecule expressed on T cells, including Tregs. It
plays a complex role in regulating Treg function, typically acting as
a negative regulator. Excessive OX40 signaling can impair the
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suppressive abilities of Tregs and enhance effector T cell
responses, potentially disrupting immune tolerance (93, 94).
TNEF-o. signaling elevates OX40 expression and enhances the
suppressive capacity of Tregs (19). OX40~ T-bet" hTregs express
IFN-y and exhibit reduced suppressive function, whereas OX40" T-
bet" hTregs have a suppressive effect on immune responses. OX40*
Tregs are more abundant in cirrhosis and TME, while OX40™ Tregs
preferentially accumulate in non-cirrhotic chronic HCV liver tissue.
OX40 stimulation has been explored as a potential strategy to
abolish Treg function and target tumors (19). It was reported that
Tregs express higher levels of OX40 in comparison to CD8" T cells
and blockade of OX40 reduced Tregs (95). However, the precise
mechanisms underlying the differential effects of OX40 signaling on
T-bet™ hTregs remain poorly understood, particularly in terms of
their functional plasticity and role in the TME.
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3.2.5 T cell immunoreceptor with Ig and ITIM
domains

TIGIT is a key inhibitory receptor on Tregs that suppresses pro-
inflammatory Thl and Thl7 responses, thereby maintaining
immune tolerance (96). The expression of TIGIT has been
reported on T-bet” hTregs (24); however, despite the well-
established role of TIGIT in various T cell subsets, its specific
function within T-bet” hTregs remains poorly characterized and is
supported by only limited experimental evidence. TIGIT signaling
inhibits the production of IFN-y and the expression of T-bet, while
also restoring the suppressive function of Tregs treated with IL-12.
Blocking FOXO1 function eliminates the protective effects of
TIGIT, suggesting that TIGIT signaling enhances the nuclear
localization of FOXO1 (97).

3.2.6 CD73

T-bet” hTregs express higher levels of CD73 compared to other
hybrid Tregs subsets (18). Adenosine triphosphate (ATP) and
adenosine diphosphate (ADP) can be released to the extracellular
space due to inflammatory conditions such as hypoxia, acute injury,
and cancer. Extracellular ATP is dephosphorylated to ADP by
CD39, and ADP is further dephosphorylated to adenosine
monophosphate (AMP) by CD73 (98). Extracellular AMP triggers
intracellular signaling through adenosine receptors such as 1R,
A2AR, A2BR, and A3R. These signaling activities result in an
anti-inflammatory responses, including boosting accumulation of
Tregs, myeloid-derived suppressor cells (MDSCs) and M2
macrophages in tumors (98, 99). CD73 expression has been
reported in a wide range of tumors, including ovarian cancer,
melanoma, and prostate cancer (98). T-bet” hTregs might use a
similar strategy to suppress antitumor immunity; however, the
exact mechanism of CD73 function in these cells remains to
be discovered.

3.3 Chemokine receptors

3.3.1 C-X-C motif chemokine receptor 3

As a chemokine receptor, CXCR3 plays a crucial role in T cell
trafficking and function. CXCR3 is highly expressed on Thl-type
CD4" T cells and effector CD8" T cells, and its signaling can be
triggered by CXCL9, CXCL10, and CXCL11 (100). T-bet
upregulates CXCR3 to enhance the migration of Thl effector cells
to inflammatory sites. Similarly, Foxp3™ Tregs can also express T-
bet in response to IFN-y, which drives CXCR3 expression and
facilitates the recruitment of these suppressive T cells to
inflammatory sites (101). In contrast to Tregs, T-bet" hTregs
express high levels of CXCR3 (14). Within the TME, different
cells in response to IFN-y (e.g. monocytes, endothelial cells,
fibroblasts, and cancer cells) secrete CXCL9, CXCLI10, and
CXCL11 (102). Therefore, paracrine actions of CXCL9, CXCL10,
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and CXCLI1 attract immune cells including Tregs to the TME.
CXCR3 also plays an important role in the accumulation and
immune suppressive function of tumor-infiltrating Tregs. Treg
expression of CXCR3 enables their interaction with type I
dendritic cells within the TME to limit the antitumor activities of
CD8" T cells (103). T-bet"” hTregs influence CD8" T cell activation
in the tumor-draining lymph node, although this effect appears to
be unrelated to CXCR3 activity (104). CXCR3" Treg cells
demonstrated a greater ability to suppress CD4°CD44" Thl
effector cells obtained from LCMV-infected mice in vitro (105).

3.3.2 C-C chemokine receptor type 5

CCR5 (CD195) plays an important role during T cell migration
by guiding activated T cells to sites of inflammation (106). CCR5
expression is markedly higher on Thl-like Tregs, making it a
reliable marker for identifying T-bet” hTregs (91). T-bet" hTregs
in the peripheral blood of untreated, relapsing-remitting MS
(RRMS) patients exhibit higher levels of T-bet, CXCR3, CCR5,
and IFN-v, along with reduced levels of TGF-B and CTLA-4 (19).
CCR5 expression on T-bet” hTregs allows their migration to
inflammatory sites where CCLS5, the ligand for CCR5 is produced,
and potentially facilitates their immune suppressive function (107).

3.4 Self-regulation and plasticity

Cell fate is determined by the interplay between extrinsic
environmental signals and intrinsic, cell-autonomous programs.
The relative influence of these factors varies by cell type and
developmental stage (108). Self-regulation: While Thl responses
clear pathogens, it can also damage healthy host tissues (109).
CD4" T cells including Thl cells can utilize IL-10 as a self-
regulatory mechanism during pathogen clearance to reduce
immunopathology (110). During Leishmania major, Toxoplasma
gondii infection and excessive inflammation, IL-10 production by
Th1 cells is suggested to function as a self-regulatory mechanism that
helps limit tissue damage (109, 111). Indeed, therapeutically inducing
the switch from IFN-y" to IL-10" Thl cells is a promising approach;
however, this depends on identifying the molecular checkpoints that
govern Thl development and evaluating their therapeutic potential
(112). Tregs also possess an intrinsic self-regulatory system. Foxp3, in
particular, interacts with multiple cofactors to create complex positive
and negative feedback loops that precisely control Treg development,
stability, and suppressive function (113). For instance, the positive
feedback loop is reinforced by IL-2, which binds to the high-affinity
IL-2 receptor on most Treg cells, preventing apoptosis through
upregulation of MCL1 expression (114). Plasticity: While IL-4
treatment induces Thl cells to upregulate GATA-3 and adopt a
hybrid T-bet"GATA-3" Th1/Th2 phenotype, high T-bet expression
remains essential for maintaining Thl phenotypic stability (115). In
tumors, IFN-y producing Thl cells can differentiate into Treg cells

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1658576
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Azimnasab-Sorkhabi et al.

under the influence of TGF-f signaling (116). Plasticity in Tregs is
controlled by both metabolic and transcriptional mechanisms. T-bet”
hTregs differentiate via IL-12—driven activation of the PI3K/Akt/Foxo
pathway, with HIF-1o. promoting glycolysis and directly binding the
Ifng gene to enhance IFN-y expression (117). T-bet” hTregs can arise
from Th1 cells or conventional Tregs through cellular plasticity (116,
118, 119). However, the extent to which self-regulation and plasticity
contribute to their development from each source remains unclear.
Overall, understanding the balance between self-regulation and
plasticity during differentiation of T-bet” hTregs is essential to
unveiling how they establish and maintain their identity.

4 T-bet* hTregs as a new candidate to
fight cancer

Tregs play a crucial role in maintaining immune homeostasis by
suppressing excessive immune responses. Nevertheless, within the
TME Tregs can inhibit antitumor immunity, promoting tumor
progression. In cancer patients, increased infiltration of Tregs
within tumor tissues is often associated with poor clinical
outcomes (120). As a result, targeting Tregs has become a key
focus in cancer immunotherapy. Depletion of Tregs has been shown
to significantly boost antitumor immunity; however, systemic
depletion of Tregs can lead to severe autoimmune diseases (7).
Different immunotherapies have been examined to target Tregs,
including anti-CTLA-4 agents such as ipilimumab and
tremelimumab, but their effectiveness in depleting intratumoral
Tregs in humans has been limited. It was previously shown that
while these agents increase infiltration of CD4" and CD8" T cells
within tumors, they do not significantly reduce the number of
Foxp3™ Tregs in the tumor microenvironment (121). Immune
checkpoint blockade therapy often produces longer-lasting
responses compared to chemotherapy or targeted treatments
(122, 123). Yet, as global clinical data continues to grow, its
limitations and adverse effects are becoming evident. A significant
challenge with immune checkpoint blockade therapy is its low
efficacy in many cancers, with response rates typically ranging from
10% to 30%. Moreover, for some major cancer types, such as
microsatellite-stable colorectal cancer, anti-PD-1/PD-L1 therapy
demonstrates minimal effectiveness (124). In addition to immune
checkpoint blockade therapies, other strategies have been employed
to target Tregs in cancer, including antibody-drug-conjugates
(ADC), small-interfering RNA (siRNA), and peptide-based
approaches. Various clinical trials and preclinical studies have
used these strategies to target molecules such as CD25, CCR4,
CTLA-4, STAT3, PD-1, Foxp3, and 4-1BB (CD137) in the TME.
More specifically, peptide targeting has been used to target Foxp3,
B-catenin, TGF-f1, NRP-1, and CXCR4 in Tregs within tumors.
Although knowledge about these strategies is growing, their side
effects remain largely unknown (125). Therefore, more effective
therapies are still required to combat cancer. A promising strategy
involves appreciating the heterogeneity of Tregs within the TME
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and investigating the roles of specific Tregs subsets. This approach
could open new opportunities for developing treatments that
selectively target these subsets in cancer patients.

Tregs within tumors exhibited elevated expression of T-bet,
which was crucial for their activity in the TME. Furthermore, CD39
was prominently expressed on T-bet” Tregs in both mouse and
human tumors and played a key role in enabling these cells to
suppress CD8" T cell responses (116). For instance, the presence of
T-bet” hTregs has been reported in various human cancers,
including ovarian cancer, lung cancer, colorectal cancer,
hepatocellular carcinoma, and oral squamous cell carcinoma (20).
This Treg subset is stable even under inflammatory or otherwise
unfavorable conditions (126). T-bet” hTregs represent a specific
subset of Tregs characterized by the expression of CXCR3.
Therefore, combining immunotherapies such as anti-CTLA-4 and
anti-PD-1 with CXCR3 blockade could offer a novel approach to
targeting T-bet” hTregs. Several CXCR3 blockers have been
reported in preclinical studies for various diseases, including
autoimmune, inflammatory diseases, and transplant rejection
(127). Preclinical studies using AMG487, CXCR3 blocker,
demonstrated significant reductions in metastasis in murine
models of breast cancer and osteosarcoma (128, 129). AMG487
has also been evaluated in clinical trials for the treatment of
psoriasis and rheumatoid arthritis (130). In another clinical trial,
ACT-777991 was evaluated for safety, tolerability, and
pharmacokinetics in single- and multiple-ascending doses in
healthy subjects. However, neither AMG487 nor ACT-777991 has
yet been assessed in clinical trials for cancer (131). Inhibition of
CXCR3 on T-bet” hTregs could hinder their migration to tumor
sites, potentially reducing their ability to suppress local immune
responses. However, targeting CXCR3 may also impair the
migration of antitumor immune cells to the tumor site. By
selectively inhibiting the recruitment of T-bet” hTregs to the
TME, it may be possible to enhance the effectiveness of existing
therapies and improve clinical outcomes. Furthermore, targeting
this subset could help mitigate the off-target effects seen with
broader Treg depletion strategies, minimizing the risk of
autoimmune complications. Thus, refining our understanding of
Treg subtypes and their specific roles in cancer immunity is crucial
for advancing therapeutic strategies aimed at overcoming the
challenges associated with current cancer immunotherapies.

5 Discussion and future perspectives

In conclusion, the discovery of T-bet” hTregs has added a new
layer of complexity to our understanding of tumor immunology
and the potential for cancer immunotherapy. These cells,
characterized by the co-expression of Foxp3 and T-bet, along
with the production of IFN-y, represent a unique subset of Tregs
with high plasticity and context-dependent functions within the
TME. T-bet" hTregs exhibit both pro-tumor and antitumor
properties, highlighting their adaptability to the TME. They
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suppress antitumor immunity through various mechanisms,
including cytokine production (IL-10, TGF-B, IFN-y, and TNF-c)
and expression of immune checkpoint molecules (PD-1, CTLA-4,
GITR, OX40, and TIGIT). Their high expression of chemokine
receptors, particularly CXCR3 and CCR5, facilitates their migration
to inflammatory sites and tumors, potentially enhancing their
immunosuppressive functions. The heterogeneity of Tregs within
the TME, including the T-bet" hTregs subset, presents both
challenges and opportunities for cancer immunotherapy. While
global Treg depletion has shown promise in boosting antitumor
immunity, it carries the risk of severe autoimmune complications.
Targeting specific Tregs subsets, such as T-bet” hTregs could offer a
more nuanced approach to cancer treatment. However, strategies to
selectively target specific cell types remain limited. For example, the
emerging PROTAC (Proteolysis-Targeting Chimera) platform can
efficiently degrade a defined protein within a cell, yet achieving
selective degradation of a specific protein in a particular cell type
introduces additional layers of complexity and challenges in
feasibility. If such a system were available, selectively targeting
both FOXP3 and T-bet, rather than each factor individually, in T-
bet" hTreg cells could more effectively diminish their capacity to
suppress antitumor immunity. Currently, feasible strategies for
targeting T-bet™ hTregs include combining existing
immunotherapies (e.g., anti-CTLA-4 and anti-PD-1) with CXCR3
blockade or developing drugs that specifically inhibit CXCR3
expression on these cells. Such approaches could prevent their
migration to tumor sites and reduce their immunosuppressive
effects, potentially enhancing the efficacy of current therapies
while minimizing off-target effects. In addition, emerging
technologies, including spatial transcriptomics, hTreg-specific
gene editing models, and single-cell multi-omics approaches
(such as scRNA-seq and CITE-seq), now enable precise dissection
of T-bet” hTreg heterogeneity, localization, and function within the
TME. These tools provide unprecedented insight into their
suppressive mechanisms and interactions with other immune
cells. Together, they pave the way for developing targeted
strategies to modulate Treg subsets while minimizing off-target
effects. It is worth noting that only limited information is currently
available regarding the specific roles of T-bet™ hTregs in cancer and
their potential as therapeutic targets. More research is needed to fill
these knowledge gaps and inform the development of more effective
cancer immunotherapies.
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