
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Gunnur Deniz,
Istanbul University, Türkiye

REVIEWED BY

Umut Can Kucuksezer,
Istanbul University, Türkiye
Jiaxuan Jiang,
Nanjing University, China
Yun He,
Nanjing Drum Tower Hospital, China

*CORRESPONDENCE

Junji Xing

jxing@houstonmethodist.org

†These authors have contributed
equally to this work

RECEIVED 02 July 2025
ACCEPTED 15 August 2025

PUBLISHED 29 August 2025

CITATION

Nguyen P, Jacobs B, Mohanram A,
Hammons C and Xing J (2025) Tug of war:
innate immunity and herpes simplex keratitis.
Front. Immunol. 16:1658579.
doi: 10.3389/fimmu.2025.1658579

COPYRIGHT

© 2025 Nguyen, Jacobs, Mohanram,
Hammons and Xing. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 29 August 2025

DOI 10.3389/fimmu.2025.1658579
Tug of war: innate immunity
and herpes simplex keratitis
Preston Nguyen1†, Betty Jacobs1†, Athul Mohanram1†,
Caleb Hammons1† and Junji Xing1,2,3*

1Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist
Academic Institute, Houston Methodist, Houston, TX, United States, 2Department of Cardiovascular
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Herpes simplex keratitis (HSK), caused by herpes simplex virus type I (HSV-1)

ocular infection, is a leading cause of visual morbidity worldwide, and although

cases of HSK can be managed with current medications, new developments are

required to make treatments more effective and satisfactory. Current evidence

suggests that corneal scarring and vascularization result from chronic

inflammation triggered by HSV-1 antigens. The pathogenesis of HSK remains

complex and incompletely understood, but there have been many recent

advancements have improved our knowledge of HSV-1 and its interactions

with the host immune system, particularly in regard to various signaling

pathways and regulators. In this review, we discuss the roles of innate

immunity in corneal epithelial cells and innate immune cells, DNA sensors and

regulators of DNA sensing pathways in HSK caused by acute and recurrent HSV-1

ocular infection and present potential immune-based therapeutic targets for

novel HSK treatments.
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1 Introduction

Herpes simplex keratitis (HSK) is a leading cause of infectious blindness worldwide (1,

2). HSK is primarily caused through ocular infection by herpes simplex virus type 1 (HSV-

1), a member of the Herpesviridae family commonly associated with oral infections (3).

Based on data from 2020, the global incidence of HSK is estimated to be 24 cases per

100,000 people, translating to around 1.7 million cases per year (4). HSV-1 is a double-

stranded DNA (dsDNA) virus that exhibits a strong neurotropic nature, meaning that it

infects and persists in neuronal tissues (3, 5). After primary infection through mucosal or

skin contact, HSV-1 travels retrograde along sensory nerve axons to establish latent

infection within the trigeminal ganglia (6). During the latent phase, HSV-1 produces

latency-associated transcripts (LATs), which maintain the virus’s non-replicative state and

prevent host immune clearance (7). HSV-1 can then periodically reactivate, resuming viral

replication in response to various stimuli such as stress, fever, ultraviolet (UV) exposure, or
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immunosuppression (3). The reactivated virus travels anterogradely

to the cornea, causing recurrent HSK, which can be split into several

clinical subtypes, such as stromal, epithelial, and endothelial, based

on the affected corneal layer (1, 8). A study on tree shrews has

shown that the HSV-1 viral genes are still active in the corneal and

ciliary ganglion tissues even after the acute infection, which

demonstrates the complex pathogenesis of this virus since it can

have multiple reservoirs (9). Other experimental models are widely

used to study HSV-1 keratitis as well, including murine models (10–

13), which have been fundamental in dissecting innate and adaptive

mechanisms (14); rabbit models (15), which has been used to study

corneal latency; and guinea pig models (16), which have provided

insights into ocular viral shedding. Because of the high rate of

recurrence, several complications may occur, including ulcerations,

scarring, and blindness (17). Blindness mainly results from an

exaggerated inflammatory response by innate immune cells to

HSV-1 infection (18). Innate immunity serves as the first line of

defense against HSV-1 (19), playing a critical role in controlling

HSK. Understanding the mechanisms by which antiviral innate

immunity regulates HSK and how HSV-1 evades these defenses in

innate immune cells is essential. Pattern recognition receptors

(PRRs), such as DNA sensor cyclic GMP-AMP synthase (cGAS)

(20), on innate immune cells detect pathogen-associated molecular

patterns (PAMPs) from HSV-1, such as dsDNA, triggering

downstream DNA-sensing signaling pathways (19, 21). These

pathways recruit innate immune cells, including dendritic cells

(DCs), macrophages, natural killer (NK) cells, and neutrophils, to

the infection site. These cells secrete inflammatory molecules,

promoting effects such as enhanced cell metabolism and further

immune cell recruitment (1, 22). Diagnosis of HSK is primarily

clinical, and it is usually supplemented with a slit-lamp

examination, which uses using a low-power microscope to

provide a detailed view of the eye’s structures (8, 23). HSK is

typically treated with the antiviral drug acyclovir, which is often

supplemented with topical corticosteroids depending on the HSK

subtype (24). Alternative approaches for treating HSV-1 include

gene-editing strategies, such as mRNA-carrying lentiviral particles

delivering SpCas9 mRNA and viral-gene-targeting guide RNAs.

These methods have demonstrated inhibition of HSV-1 replication

in preclinical studies (2). However, managing HSK remains

challenging due to high recurrence rates, immune-mediated

corneal damage, and impaired corneal nerve regeneration.

Current treatments cannot prevent viral latency or reactivation

(8, 25).
2 Classification and pathophysiology
of HSK

According to the clinical signs of HSV-1 infection in the cornea,

HSK is classified into different clinical types, including epithelial

HSK, stromal HSK, and endothelial HSK. Their distinct

pathological processes and immune mechanisms are

discussed below.
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2.1 Epithelial HSK

Epithelial HSK is the most common form of ocular HSV-1

infection and is characterized by active viral replication in the

corneal epithelium, which is the outermost layer of the eye’s cornea

that plays a vital role in vision and protection, resulting in the

destruction of corneal epithelial cells (CECs) (18, 26). It presents as

dendritic ulcers, which are superficial corneal ulcers that extend in

tree-like patterns, and geographic ulcers, which are a progression of

dendritic ulcers and appear as amoeboid-shaped ulcers with

scalloped borders (27). The primary symptoms are eye pain,

photophobia, tearing, decreased vision, and reduced corneal

sensitivity (23). During reactivation, HSV-1 travels from the

trigeminal ganglion via the ophthalmic nerve branch and infects

corneal epithelial cells, resulting in localized inflammation and

corneal scarring (28). PRRs detect dsDNA and other PAMPs

from HSV-1, initiating a type I interferon (IFN) response and

releasing inflammatory cytokines and chemokines (22, 29–31). The

first responders in epithelial HSK are neutrophils, which clear the

virus while also causing tissue damage through reactive oxygen

species (ROS) (32).
2.2 Stromal HSK

Unlike epithelial HSK, which occurs due to active viral

replication, stromal HSK is primarily immune-mediated, meaning

that it can occur without detectable viral presence due to the

immune system continuing to react even after the virus has been

cleared. It is characterized by recurrent inflammation in the corneal

stroma, which is the thickest layer of the cornea that provides

structural support and facilitates wound healing, and its primary

symptoms are scarring, thinning, and vision loss (18, 33). Stromal

HSK is a CD4+ T-cell-mediated delayed-type hypersensitivity

(DTH) reaction, meaning that even after the initial HSV-1

infection is resolved, CD4+ T cells become activated and secrete

pro-inflammatory cytokines, recruiting and activating local

macrophages that cause inflammation and tissue damage in the

corneal stroma (1, 34).
2.3 Endothelial HSK

Endothelial HSK is characterized by inflammation of the

corneal endothelium, the innermost layer of the cornea

responsible for nutrient transport and maintaining corneal

deturgescence, and it can lead to stromal edema, keratic

precipitates, iritis, and elevated intraocular pressure (18, 35). Like

stromal HSK, endothelial HSK is primarily immune-mediated and

occurs due to a reactive hypersensitivity response to viral antigens

in the corneal endothelium that persist even in the absence of live

virus (36). Antigen-presenting cells (APCs), such as DCs and

macrophages, can migrate to the cornea and express major

histocompatibility complex class II (MHC-II) molecules, which
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activate CD4+ T cells (37). CD4+ T cells infiltrate the posterior

stroma and endothelium and produce cytokines in response to

residual HSV-1 antigens in the endothelium, activating resident

immune cells and leading to the inflammation of the

endothelium (38).
3 Role of CECs in HSK

CECs are the outermost layer of cells that cover the front surface

of the cornea, and studies have shown that CECs secrete

extracellular vesicles whenever the cornea is wounded (39). The

immune response of the cornea is predominantly controlled by

Anterior Chamber Immune Deviation (ACAID), which prevents

the immune system from responding too extremely to various

particles, microorganisms, or viruses that enter the eye, which

protects the eye from inflammation that can lead to blindness

(40). ACAID is initiated when APCs capture antigens in the

anterior chamber and migrate to the spleen, where they induce

the expansion of regulatory T cells (Tregs). These Tregs secrete

immunosuppressive cytokines, such as interleukin-10 (IL-10),

which suppress Th1-driven and Th17-driven responses that

would otherwise promote neutrophil and macrophages infiltration

and corneal scarring (41). By promoting the activity of CD4+ and

CD8+ Tregs, ACAID reduces the risk of destructive stromal

inflammation by suppressing antigen-specific DTH and effector T

cell activity (42). The CECs play an important role in the immune

response because they recognize PAMPs and damage-associated
Frontiers in Immunology 03
molecular patterns (DAMPs), activating neutrophils and causing

inflammation (1). After HSV-1 infection, ROS are produced in

CECs, which is essential for activating key immune signaling

pathways (43). Increased ROS induces Jagged1 (JAG1)

expression, and the JAG1-NOTCH1-pULK1 pathway inhibits

autophagy and leads to apoptosis of CECs since increased JAG1

leads to the activation of pULK1, which suppresses autophagy and

leads to apoptosis (44) (Figure 1). CECs also exhibit antiviral

functions, notably through the production of type III IFN. CECs

primarily produce type III IFN, which suppresses viral replication

and modulates the inflammatory response, and they also produce

type I IFN, which activates antiviral mechanisms and recruit

immune cells to the site of the infection (45). CECs secrete

extracellular vesicles carrying proteins, lipids, and signaling

molecules upon injury, which activate neutrophils and initiate

inflammation (46). They also produce cytokines, such as IL-18

and IFN-g, to recruit DCs and macrophages, which process antigens

and present them to T cells, activating the adaptive immune

response (47).
4 Role of innate immune cells in HSK

4.1 DCs

DCs are a special type of antigen-presenting cell that act as the

“sentinels” of the immune system and bridge the innate and adaptive

immune system by presenting antigens to T cells (48–50). It used to
FIGURE 1

A visual diagram that illustrates how HSV-1 induces corneal epithelial cells (CECs) apoptosis by suppressing autophagy through the ROS-JAG1-
NOTCH1-pULK1 signaling pathway. Reactive oxygen species (ROS) are produced during HSV-1 infection, inducing the Jagged1 (JAG1) signaling
pathway. ROS modulates JAG1 expression, and when JAG1 binds to a notch receptor on a neighboring cell, it triggers a series of proteolytic
cleavages to release the Notch Intracellular Domain (NICD). NICD interacts with ULK1 in the cytoplasm, resulting in its phosphorylation. Through
mitochondrial interaction, ULK1 inhibits autophagy and leads to apoptosis.
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be believed that there were no DCs directly on the cornea, but now it

is known that there is a stratified network of DCs throughout the

cornea (51). The interesting thing about DCs is that a study has

shown that reducing DCs reduces the severity of stromal disease

since DCs induce an inflammatory response through the activation

of T cells, causing more damage (52). Tripartite Motif 29 (TRIM29)

is strongly induced by cytosolic dsDNA in DCs, and TRIM29

deficiency has been shown to increase resistance to HSV-1

through increasing the production of type I IFN (23), suggesting

the possible role of TRIM29 in controlling HSK. There are several

subsets of DCs present in the peripheral cornea including CD11c+

conventional DCs (cDCs) and plasmacytoid DCs (pDCs). In murine

HSV-1 infection, resident cDCs promote local recruitment of NK

cells and inflammatory monocytes, which leads to early viral

clearance (53). While cDCs promote systemic viral dissemination,

resident pDCs play a protective role by limiting viral burden and

preserving the function of Tregs, making them extremely important

in preventing clinical disease and nerve loss (37). Before infection,

many corneal DCs are in an immature state, which supports ACAID.

This regulatory environment favors tolerogenic DCs that induce

Tregs and dampen inflammation (54). However, upon HSV-1

infection corneal DCs undergo rapid maturation, upregulating

MHC-II and producing pro-inflammatory cytokines, thereby

promoting the differentiation of effector CD4+ T cells, which

contribute to stromal immunopathology (52).
4.2 Macrophages

Macrophages are another type of white blood cell that remove

dead cells, kill microorganisms, and stimulate other immune cells

(55, 56). Unlike DCs, macrophages are not present in naive corneas,

but CCR2+ migratory macrophages are the predominant innate

infiltrate within 48 hours, contributing to early viral sensing and

cytokine production (57). M1 macrophages are classically activated

and produce pro-inflammatory mediators such as IL-6 and TNF-a.
These responses promote viral clearance while also causing corneal

damage through the recruitment of neutrophils and the

amplification of stromal inflammation (58). In contrast, M2

macrophages are alternatively activated and secrete anti-

inflammatory mediators like IL-10, which supports tissue repair,

resolution of inflammation, and angiogenesis (59). A study has been

done that tested a ganglioside GM1 liposome vaccine that

encapsulated HSV-1 glycoprotein D and targeted CD169+

macrophages, and the study showed that the vaccine increased

the number of corneal infiltrating macrophages, polarizing them

toward M1, and there were also significantly more T cells and DCs

(10). The Mal adaptor protein plays an important role in TLR9

signaling through ERK1/2 kinases, making it essential for TLR9-

mediated expression of IFN-b and TNF-a in macrophages exposed

to HSV-1 (60). Macrophages play a key role in the early immune

response to HSV-1 in the olfactory epithelium, causing

inflammation as the virus spreads from the apical layers to the

basal layers and into the underlying tissues (61). Furthermore, the

deletion of TRIM18 increases the production of type I IFN response
Frontiers in Immunology 04
in macrophages, protecting mice from HSV-1 infection (62),

suggesting the possible role of TRIM18 in HSK. In addition,

overexpression of NOD-like receptor family pyrin domain

containing 12 (NLRP12) triggers IL-18-meidated pyroptosis in

infected macrophages, amplifying antiviral signaling cascades to

alleviate HSK (63).
4.3 Innate lymphoid cells

ILCs are innate lymphocytes that produce cytokines in response

to viral infection and inflammation (64). Group 1 ILCs are comprised

of noncytotoxic ILC1s and cytotoxic NK cells (65). ILC1s produce

IFN-g in response to IL-12, IL-15, and IL-18, acting as a first line of

defense against viral infections (66). Given IFN-g role as a signature
pro-inflammatory cytokine, ILC1s likely stimulate inflammation in

response to HSV-1 infection (67). NK cells are a type of white blood

cell that can kill their targets autonomously, recognizing and

eliminating cells infected with viruses or tumors (68–70). Their

recruitment is mediated by chemokines such as CXCL9, CXCL10,

and CCL5, which are secreted by infected corneal cells and resident

DCs (53). NK cells expressing CD16 can kill HSV-infected cells

opsonized with HSV-specific IgG (71). A study has been done that

shows that invariant natural killer T (iNKT) cells help protect against

HSV-1 because asymptomatic mice had high levels of iNKT1 cells

while symptomatic mice had no iNKT cells (72). On the other hand,

other studies have shown that NK cells greatly contribute to corneal

damage because researchers chemically depleted NK cells in some

mice, leading to the severity and frequency of HSK dropping

significantly (73). Interestingly, NK cell activity is reduced even

though the number of NK cells stays the same in HSK patients,

meaning that the impaired function of NK cells might allowHSV-1 to

reactivate more easily (74).
4.4 Neutrophils

Neutrophils are another type of white blood cell and act as the

first line of defense by engulfing and digesting microorganisms while

also releasing enzymes and toxins to kill pathogens and promote

inflammation (75). Neutrophils are recruited the earliest either by

chemokines such as CXCL1, CXCL2, and CCL3 or by TLR2-myeloid

differentiation primary response 88 (MyD88) signaling, which is

when HSV-1 glycoproteins via TLR2 induce neutrophil-recruiting

chemokines (76). Through phagocytosis, degranulation, and the

release of antiviral cytokines and neutrophil extracellular traps

(NETs), neutrophils help limit viral spread during the acute phase

of infection (77). Neutrophils also produce cytokines and

extracellular matrix-degrading proteases, which cause

inflammation and tissue destruction, often leading to blindness

(18). Most of the damage is done through neutrophil infiltration

and neovascularization since neutrophils release cytokines and

chemokines, which are proinflammatory agents; however, there are

some cytokines and chemokines that are anti-inflammatory agents,

which could be further studied and used in future therapies (78).
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4.5 Mast cells

MCs function as effector, initiator, and regulator cells in innate

immune responses, acting as important sentinels against infection

by releasing a diverse array of inflammatory molecules such as

cytokines and chemokines (79). MCs typically operate through TLR

signaling, using TLR3, TLR7, and TLR9 induced activation to

initiate production of an inflammatory response to virus related

PAMPs (80). A previous study has shown evidence of MCs

contribution to protection against HSV-2, using a “MC knock-in”

mouse model to show increased production of TNF-a and IL-6

following skin infection by HSV-2 (81). However, the contribution

of MCs to both ocular infection and infection by HSV-1 still

requires further evidence to establish a potential relationship

between MCs and HSK.
5 Role of sensors in DNA sensing
signaling pathway in HSK

Innate immunity is the first line of defense against DNA virus

HSV-1. Activation of innate immunity usually requires the

recognition of viral PAMPs, such as dsDNA from HSV-1, by

PRRs on innate immune cells (19, 29, 82). However, DNA

sensors can also recognize endogenous DNA released during

cellular damage or stress, triggering immune responses that clear

damaged cells and induce cytokines release (83).The cytoplasmic

DNA sensors involved in HSV-1 detection include cGAS (20),

interferon gamma-inducible protein 16 (IFI16) (84), DEAD-box
Frontiers in Immunology 05
helicase 41 (DDX41) (85), and absent in melanoma 2 (AIM2) (86),

which recognize double-stranded DNA in the cytoplasm and trigger

the production of type I IFN through stimulator of interferon genes

(STING) signaling (29, 30, 87). The roles of these DNA sensors in

HSV-1 recognition are discussed below.
5.1 cGAS

The cGAS-STING pathway plays an important role in host

antiviral immune responses and its interactions with viral immune

escape mechanisms are very important for limiting HSV-1 lysis and

latent infection (88, 89). When HSV-1 virus is being replicated, the

cGAS enzyme senses aberrant DNA and catalyzes the cyclic

cGAMP to activate STING receptors inside the cell (90, 91).

Recognition of this process activates the interferon regulatory

factor 3 (IRF3) and nuclear factor kappa-light-chain-enhancer of

activated B cells (NF-kB) signaling pathways, which in turn

promotes the secretion of type I IFN and other pro-inflammatory

cytokines (92). Beta-conjugated proteins can also promote type I

IFN production in the cGAS-cGAMP-STING pathway, which can

better apply anti-HSV-1 effects (93) (Figure 2).
5.2 IFI16

IFI16 has an important role in antiviral defense by activating the

canonical STING/TANK binding kinase 1 (TBK1)/IRF3 signaling

pathway in response to viral infections (87). During the HSV-1
FIGURE 2

A visual diagram of the cGAS-cGAMP-STING pathway in HSV-1 infection. When cGAS detects double-stranded DNA (dsDNA) from HSV-1, it binds to
it and activates enzymatic activity. This catalyzes the formation of cGAMP, which binds it to STING. STING recruits TANK-binding kinase 1 (TBK1),
which phosphorylates IRF3, activating type I IFN. STING also activates IkB kinase (IKK) complex, which activates NF-kB. NF-kB translocates to the
nucleus and initiates the transcription of inflammatory genes. It also works with IRF3 to initiate type I IFN.
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infection, IFI16 recognizes and binds dsDNA in the nucleus,

blocking the virus’s ability to turn its genes into proteins (94).

This then leads to the production of interferons and many antiviral

proteins, such as mucosal viral resistance (MxA, a GTPase), 2′-5′-
oligoadenylate synthetase (OAS), and ribonuclease L (RNase L)

(95). All of this stops the virus from spreading. Additionally, if IFI16

is absent, then expression of type I IFN and type III IFN is

significantly reduced (96). Ubiquitin-specific peptidase 12

(USP12) promotes antiviral responses by removing ubiquitin

molecules from proteins and stabilizing IFI16 (97). Like the

duality of TLR2/TLR9, cGAS and IFI16 can co-recognize HSV-1

and stimulate the IRF3 pathway while also restricting viral

replication by binding to viral genomes and activating

inflammasomes, which are an essential part of the immune

system response (98) (Figure 3).
5.3 DDX41

DDX41 is an intracellular DNA sensor that triggers the

downstream pathway, requiring the adaptor STING, the kinase

TBK1, and the transcription factor IRF3 to activate the type I IFN

response (85), and it also plays an important role in modulating

dsDNA and ssDNA from HSV-1 while also activating the DDX41–

Receptor-interacting protein kinase 3 – Mixed lineage kinase

domain-like protein (DDX41-RIPK3-MLKL), which results in
Frontiers in Immunology 06
necroptosis (99). A study was performed to screen, identify, and

characterize HSV-1-encoded microRNA H2-3p (miR-H2-3p) as a

suppressor of the cytosolic DNA-stimulated antiviral innate

immune pathway by targeting DNA sensor DDX41 to neutralize

the production of type I IFN and strengthen HSV-1 immune

evasion (100) (Figure 4).
5.4 AIM2

AIM2 is a DNA sensor that detects foreign dsDNA in the

cytoplasm, which comes from viruses like cytomegalovirus (CMV)

and HSV-1 (101). When AIM2 detects dsDNA from HSV-1, it

assembles an inflammasome, which is a multi-protein complex that

forms inside the cell as part of the innate immune system (102). The

role of inflammasomes is to detect dangerous signals from foreign

invaders and trigger proptosis, a form of programmed cell death

(103). The activation of the AIM2 inflammasome is triggered by

dsDNA, which then results in the activation of caspase-1 and the

release of pro-inflammatory cytokines IL-1b and IL-18, which play

an important role in the inflammatory response of cells (86).

Investigation into the AIM2 inflammasome unveiled that HSV-1

triggered the activation of AIM2 in macrophages independently of

the dsDNA sensor, which means that HSV-1 can activate AIM2

without relying on the usual DNA-sensing mechanism (104). HSV-

1 tegument protein VP22 (VP22), was identified as a specific
FIGURE 3

A visual diagram of the IFI16 DNA sensing pathways in HSV-1 infection. IFI16 binds to dsDNA from HSV-1. In the first pathway, IFI16 binds to the
specificity protein 1 (SP1), modulating SP1’s ability to regulate antiviral genes, which ultimately leads to the restriction of HSV-1 viral replication by
inducing an antiviral state. In the second pathway, the STING-TBK1-IRF3 pathway is activated, leading to type I and type III IFN production. In the
third pathway, IFI16 binds to the apoptosis-associated speck-like protein (ASC), which binds to procaspase 1 (proCasp-1), facilitating the activation of
Casp-1 and completing the activation of the inflammasome. Casp-1 then cleaves pro-interleukin-1 beta (proIL-1b) so that it can become mature IL-
1b, which is a highly inflammatory cell signaling molecule that leads to pyroptotic cell death.
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inhibitor of the AIM2 inflammasome during HSV-1 infection,

meaning that HSV-1 tries to block AIM2 using the protein VP22

to inhibit detection (105) (Figure 5).
6 Role of regulators in DNA sensing
signaling pathway in HSK

6.1 TRIM family proteins

TRIM proteins, including 80 members in humans, are E3

ubiquitin ligases and play extremely important roles in regulating

innate immune sensing, interferon production, and antiviral

restriction (106, 107). TRIM21 can play a significant role in HSK

(108). TRIM21 regulates the type I IFN response to viruses (109),

and also serves as a cytosolic Fc receptor for immunoglobulin (110).

HSV-1 is sensitive to type I IFN and neutralizing antibody, and the

role of TRIM21 in the response to ocular HSV-1 infection in mice

has been investigated (111). It has been shown that the absence of

TRIM21 results in a significant increase in HSV-1 titers recovered

from the thapsigargin (TG) of TRIM21 KO mice during HSV-1

infection (112). In epithelial HSK mice models, the expression

TRIM21 was detected, and the clinical relationship was then

investigated between TRIM21 and epithelial HSK in which
Frontiers in Immunology 07
TRIM21 was silenced, significantly controlling viral particle

release at 1, 3, and 5 days post-HSV-1 infection (113). Ultimately,

clinical scores and histopathology examinations have shown that

TRIM21 can successfully reduce the severity of epithelial

HSK (114).

TRIM29 has been shown to play important roles in host defense

against both DNA and RNA viruses through regulating host innate

immune responses mediated by type I IFN, IFN-g, and

inflammasomes (49, 69, 115–118). Specifically, TRIM29 interacts

with STING to induce K48-linked ubiquitination and degradation

of STING, thereby reducing type I IFN production in DCs, leading

to increased HSV-1 replication and pathogenesis in vivo (116). Our

unpublished data shows that TRIM29 is highly expressed in CECs,

suggesting that TRIM29 plays a key role in controlling HSV-1

infection and may influence the severity of HSK.

TRIM18 is an E3 ubiquitin ligase that plays a negative regulatory

role in the innate immune response to both DNA and RNA viruses.

TRIM18 is shown to recruit protein phosphatase 1A (PPM1A) to

dephosphorylate TBK1, which deactivates TBK1 to block TBK1 from

interacting with its upstream adaptor STING in macrophages,

thereby dampening type I IFN-mediated antiviral signaling during

HSV-1 infection (62). Given that the critical role of macrophages in

regulating HSK, we hypothesize that TRIM18 could regulate antiviral

innate immunity in macrophages to control HSK.
FIGURE 4

A visual diagram of the DDX41 DNA sensing pathways in HSV-1 infection. DDX41 modulates the state of cytosolic DNA by unwinding dsDNA and
annealing ssDNA. This is very important in regulating cGAS activation. Like cGAS, DDX41 can also activate the STING-TBK-IRF3 pathway. miR-H2-3p
targets DDX41, preventing it from activating the STING pathway and reducing the cell’s immune response. DDX41 also binds with Receptor-
Interacting Serine/Threonine-Protein Kinase 3 (RIPK3) to activate the Mixed Lineage Kinase Domain-Like protein (MLKL), which translocates to the
cell membrane and forms pores, disrupting the cell’s ion balance to cause necroptosis.
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6.2 TLR2

TLR2 is shown to detect viral glycoproteins, including HSV-1

glycoproteins gB and gH, signaling through MyD88 to activate NF-

kB and mitogen-activated protein kinase (MAPK) pathways, leading to

pro-inflammatory cytokine production (76). While not a DNA sensor

itself, TLR2 can indirectly regulate DNA sensing pathways, such as

cGAS-STING, through inflammatory priming and signaling crosstalk

(119). For example, TLR2-induced cytokines like IL-1b can enhance

STING pathway activation, thereby regulating type I IFN production

downstream of DNA sensors (120). In murine models, TLR2 is critical

for early innate responses in the cornea, with TLR2-deficient mice

showing lower early inflammatory cytokine levels, reduced recruitment

of neutrophils and monocytes, and decreased severity of corneal

immunopathology (121). Therefore, while TLR2 helps detect HSV

early, excessive TLR2 signaling drives corneal opacity,

neovascularization, and scarring, ultimately damaging the cornea and

causing the progression of HSK (122).
6.3 NLRP3

NLRP3 is a cytosolic PRR that forms the NLRP3 inflammasome,

and upon activation, NLRP3 recruits apoptosis-associated speck-like

protein containing a CARD (ASC) and caspase-1, driving

inflammation (123). HSV-1 infection triggers NLRP3
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inflammasome activation in corneal epithelial cells, stromal

keratocytes, and infiltrating leukocytes (124). NLRP3-deficient mice

infected with HSV-1 show reduced IL-1b secretion, lower neutrophil

infiltration, and less corneal opacity and neovascularization. However,

viral titers can remain similar, indicating that NLRP3 mainly drives

immunopathology rather than clearance (125).
7 HSV-1 evasion of host innate
immunity

Although the cytosolic DNA sensing signaling pathway is

activated during viral infection, HSV-1 has developed multiple

mechanisms to evade host antiviral innate immunity and to

facilitate viral infection and replication (22, 89, 126). HSV-1

encoded proteins US11 (127), US3 (128), UL36 (129), and VP16

(130) can evade RNA sensing antiviral signaling pathways, while

UL41 (131), VP24 (132), ICP0 (133), and ICP27 (134) proteins

evade DNA sensing antiviral signaling pathways. Additionally, the

tegument protein VP22 inhibits AIM2-dependent inflammasome

responses (102). HSV-1 can also block autophagy in order to evade

innate immunity. It accomplishes this through ICP34.5, which

binds to Beclin-1, a key autophagy protein (135). Finally, HSV-1

can interfere with NK cells activation signals by downregulating

ligands that bind to the NK-cell activating receptor NKG2D, which

limits NK cells recognition and cytotoxic killing (136).
FIGURE 5

A visual diagram of the AIM2 DNA sensing pathways in HSV-1 infection. AIM2 binds to ASC, which binds to proCasp-1, facilitating the activation of
Casp-1 and completing the activation of the inflammasome. Casp-1 then cleaves proIL-1b so that it can become mature IL-1b, which is a highly
inflammatory cell signaling molecule that leads to pyroptotic cell death. This pathway can be inhibited by HSV-1 encoded protein VP22, which
suppresses the AIM2 inflammasome activation.
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8 Therapeutic treatments for HSK

8.1 Antiviral drug therapies

Antiviral drugs, including acyclovir, trifluridine, ganciclovir,

vidarabine, and famciclovir (137), are commonly used to treat

HSK. Oral acyclovir, when added to primary treatment with

topical corticosteroids and trifluridine, does not significantly

improve initial outcomes but may provide long-term vision

benefits (138). Trifluridine, a nucleoside analog, inhibits viral

DNA synthesis, preventing HSV-1 replication. Higher doses have

been shown to reduce the risk of antiviral resistance (139). In

epithelial HSK, topical trifluridine or ganciclovir is standard, with

optional oral acyclovir. For stromal and endothelial HSK, oral

acyclovir is combined with topical corticosteroids (140).
8.2 Host-directed therapies

Host-directed therapies (HDTs) enhance host immune

responses by targeting host factors critical for viral pathogenesis,

offering a promising alternative to conventional antivirals for HSK

(141). Unlike traditional antivirals, HDTs focus on host pathways to

disrupt viral entry, replication, or immune evasion, potentially

overcoming resistance to drugs like acyclovir. HSV-1 entry begins

with glycoproteins binding to host cell receptors, such as heparan

sulfate proteoglycans (HSPGs), followed by interactions with key

glycoprotein D (gD) receptors: herpesvirus entry mediator (HVEM),

nectin-1, and 3-O-sulfated heparan sulfate (3-OS HS). These

interactions activate gB, facilitating membrane fusion and viral
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entry. HDTs can block or modify these attachment sites,

particularly 3-OS HS, or use inhibitors, antagonists, or decoy

molecules to disrupt HVEM or nectin-1 binding, preventing viral

entry (142). HSV-1 infection also upregulates host kinases, which

serve as viable therapeutic targets. For instance, the cyclin-dependent

kinase (CDK) inhibitor FIT-039 disrupts mRNA transcription,

inhibiting replication of various DNA viruses, including HSV-1, as

shown in animal models (143). Similarly, BX795 hydrochloride, a

serine/threonine kinase inhibitor, blocks viral protein synthesis,

demonstrating efficacy against acyclovir-resistant HSV-1 strains in

a mouse HSKmodel (144). Additionally, HDTs can amplify antiviral

immunity by targeting immune cells. For example, overexpression of

NLRP12 enhances macrophage immune responses to alleviate HSK

(63), and targeted delivery of HSV-1 gD to CD169+ macrophages

using ganglioside liposomes reduces HSK severity in mice (10). DCs

are also critical targets, as local cDCs depletion results in decreased

corneal nerve infection and mortality of mice (145), while pDCs

depletion leads to severe HSK (37). Modulating DCs function could

thus enhance antiviral defenses and mitigate HSK progression (146).

Overall, HDTs offer a multifaceted approach to HSK treatment by

targeting viral entry, host kinases, and immune cell responses,

providing potential solutions for drug-resistant strains and

improving therapeutic outcomes.
8.3 Anti-inflammatory therapies

Corticosteroids are anti-inflammatory and immunosuppressive

drugs that decrease the production of inflammatory cytokines by

binding to glucocorticoid receptors inside cells, and they are
FIGURE 6

Diagram of therapeutic treatments for HSK. There are five categories of therapeutic treatments: antiviral drug therapies, host-directed therapies,
anti-inflammatory therapies, novel gene therapies, and combination therapies. Antiviral drug therapies include acyclovir, trifluridine, ganciclovir, and
vidarbine. Host-directed therapies include viral entry inhibitors, host kinase inhibitors, and enhancing antiviral effects of immune cells. Anti-
inflammatory therapies include corticosteroids and non-steroidal anti-inflammatory drugs (NSAIDs). Novel gene therapies include HSV-1-erasing
lentiviral particles, meganuclease-based gene editing, and host gene targeting. Finally, combination therapies include antivirals and corticosteroids,
antivirals and NSAIDs, and antivirals and surgical interventions.
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important in treating HSK because they can prevent inflammatory

complications, slowing down vision impairment (147). Some

corticosteroids include prednisolone acetate and dexamethasone,

and they are always used with antivirals to prevent uncontrolled

HSV-1 replication (148). Another type of anti-inflammatory therapy

is non-steroidal anti-inflammatory drugs (NSAIDs), which are a type

of medication that block cyclooxygenase enzymes in order to reduce

inflammation (137). Topical NSAIDs, such as flurbiprofen and

diclofenac, inhibit prostaglandin synthesis, thereby decreasing

vasodilation, vascular permeability, and pain signaling (149).
8.4 Novel gene therapies

One of the most promising novel gene therapies is HSV-1-

erasing lentiviral particles (HELP). This gene therapy uses virus-like

particles to deliver SpCas9 mRNA and single-guide RNAs

(sgRNAs) targeting HSV-1 genes UL8 and UL29 via corneal

intrastromal injection. Preclinical studies demonstrate complete

inhibition of HSV-1 replication and prevention of HSK in

multiple animal models (2). Another gene therapy is

meganuclease-based gene editing, which uses a meganuclease to

target HSV-1 UL19, and it is delivered via adeno-associated virus

serotype 2 (AAV2) to corneal grafts. In rabbit models, treated

corneal transplants resisted HSV-1 infection, preventing opacity

and edema (150). Host gene targeting is another type of gene

therapy that uses CRISPR to edit NECTIN-1, an essential HSV-1

entry receptor on CECs. Studies have shown that lentiviral delivery

in vitro dramatically lowered infection rates and viral load (151).
8.5 Combination therapies

Combination therapies address both viral replication and

immune-mediated corneal damage in HSK management. The

most common type of combination therapy is antivirals and

corticosteroids. This is especially effective in treating stromal and

endothelial HSK, and an example would be oral acyclovir combined

with topical prednisolone acetate (152). Another type of

combination therapy is antivirals and NSAIDS, which is typically

used when steroids are contraindicated. An example is topical

trifluridine and topical flurbiprofen, but the downside to this

combination treatment is that NSAIDs are less effective than

corticosteroids for stromal inflammation (153). Finally, antivirals

can be combined with surgical interventions, which is a treatment

method that is used in severe recurrent HSK with scarring. An

example is oral acyclovir prophylaxis and penetrating keratoplasty,

which is a treatment plan that has been shown to reduce the risk of

HSK recurrence and graft failure (154) (Figure 6).
9 Conclusions and future perspectives

HSK is a complex disease that involves many different aspects,

including the viral infection itself, the immune system’s reaction,
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molecular regulation, and inflammation. HSK is the most common

cause of infectious blindness, and the current methods of treatment

are unsatisfactory. As a dsDNA virus that exhibits a strong

neurotropic nature, treatment can be extremely difficult since it

persists in neuronal tissues and can exist in a latent phase while

preventing host immune clearance. With many different DNA

sensing pathways, the immune system’s response to HSV-1 is

extremely complex and involves many interconnected interactions

between various immune cells. Novel insights into disease

immunopathogenesis could allow for the development of more

efficient and effective therapeutic options. Current therapies, while

effective at controlling viral replication, are limited in preventing

corneal scarring, opacity, and neovascularization. Because of this,

increasing attention has turned toward host-directed therapies that

modulate innate immune responses. Some potential targets for

future host-directed therapies include cGAS-STING, NLRP3, IL-

17, and TRIM proteins. Looking forward, integrating antiviral

agents with precision immunomodulation offers a path forward

for more effective and personalized HSK management. Future

research should prioritize clinical translation of host-targeted

interventions as well as combination strategies that balance viral

control with immune regulation.
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60. Zyzak J, Mitkiewicz M, Leszczyńska E, Reniewicz P, Moynagh PN, Siednienko J.
HSV-1/TLR9-mediated IFNb and TNFa Induction is mal-dependent in macrophages.
J Innate Immun. (2020) 12:387–98. doi: 10.1159/000504542

61. Niemeyer CS, Merle L, Bubak AN, Baxter BD, Gentile Polese A, Colon-Reyes K,
et al. Olfactory and trigeminal routes of HSV-1 CNS infection with regional microglial
heterogeneity. J Virol. (2024) 98:e0096824. doi: 10.1128/jvi.00968-24

62. Fang M, Zhang A, Du Y, Lu W, Wang J, Minze LJ, et al. TRIM18 is a critical
regulator of viral myocarditis and organ inflammation. J BioMed Sci. (2022) 29:55.
doi: 10.1186/s12929-022-00840-z
Frontiers in Immunology 12
63. Jiang J, Zhang D, Liu W, Yang J, Yang F, Liu J, et al. Overexpression of NLRP12
enhances macrophage immune response and alleviates herpes simplex keratitis. Front
Cell Infect Microbiol. (2024) 14:1416105. doi: 10.3389/fcimb.2024.1416105
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