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Introduction: Breast cancer stands is a leading prevalent and potential fatal

infection affecting women worldwide, posing the requirement of a reliable and

interpretable diagnostic system. The Deep Learning (DL) methods highly

contribute towards medical imagery analysis but due to the black-box nature,

its clinical adoption is limited due to lack of interpretability.

Methods: This proposed work introduces a hybrid Deep Learning (DL) framework

for that integrates three distinct convolutional neural network (CNN) pre-trained

architectures: DENSENET121, Xception and VGG16. The proposed fusion

strategy enhances feature representation and classification performance

through model integration. To address the DL's black-box nature and promote

clinical acceptance, the proposed framework incorporates an explainable

artificial intelligence (XAI) component utilizing GradCAM++.

Results: Experimental evaluation on benchmark breast cancer datasets

demonstrates improved classification accuracy by approximately 13\%

compared to individual models, demonstrating high performance of the fusion

method with an accuracy of 97\%.

Discussion: The use of fused DL model enhances the performance of the

classification system offering higher accuracy and robust feature extraction.

With the introduction of XAI, the cancer classification system presents

interpretable results making it applicable in clinical contexts. GRADCAM++

method highlights the multiple lesions with finer edges from the ultrasound

images that leads towards the model’s predictions, offering transparency and

aiding medical professionals in diagnostic validation.
KEYWORDS

breast cancer, ultrasound analysis, XAI, deep learning fusion, interpretable medical
imaging, VGG16, DenseNet121, Xception
1 Introduction

Breast Cancer (BC) continuous to be most common and fatal malignancy impacting

numerous female citizens worldwide. According to a study in (1), 31% cancer cases across the

world are of Breast Cancer. Early detection of BC is essential to increase the survival rates of

patients and offer improved quality of life (2). The conventional diagnostic techniques of BC, like
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mammography, ultrasound examination, and histopathological

analysis, face difficulties like time-consuming process, human errors,

and inter-observer variability that lead to high false-positive rates of BC

detection (3). Early detection of BC is still critical, despite tremendous

improvements in the diagnostic methods, primarily due to variable

tumormorphology and different imaging artifacts (4). BC has evolved as

an emerging area of research among the research community due to its

significant social and economic impacts. More reliable, precise, accurate,

and non-invasive techniques are needed for early identification of

BC (5).

Medical Imaging and healthcare diagnostic methods have witnessed

a huge transformation in recent years, mainly due to Artificial

Intelligence (AI), especially the DL and ML architectures (6). These

techniques have shown tremendous improvements in BC detection

through various modalities like Ultrasound analysis, histopathology

images, and mammogram analysis. These data-driven techniques

facilitate the study of the massive volume of imaging and non-

imaging data and capture deep, complex patterns that help to identify

the tumor detection, which is often missed by human observers (7) (8).

The recurrent networks and the CNN models have demonstrated

higher accuracy in extracting features from large datasets and

detecting malignancies (9). The scalability and reliability of such

models make them ideal for analyzing medical imagery and help

medical professionals to reach an informed decision about malignancy.

Single DL model faces difficulties in capturing complex and

hidden patterns from medical imagery data, resulting in poor

classification accuracy (7). The integration of multiple DL to

overcome the limitations of individual models is an up-

andcoming solution (10). Fusing different DL models at

intermediate layers and then enabling combined training to

predict the outcome facilitates recognizing complex patterns,

enhanced feature extraction and representation, and improved

accuracy (11).Integration of different models allows us to leverage

their strengths and facilitate enhanced feature extraction resulting

in improved accuracy. The fused models present a more generalized

and reliable BC detection. Fusing different DL models is advantages

compared to other ensemble techniques like voting and stacking.

The voting and stacking methods aggregate the models output and

present final prediction. These techniques do not indulge in

retrieving complex patterns from the data which can be facilitated

by Model Fusion. Both the voting learning and stacking perform at

the output level whereas model fusion performs at intermediate

layers and finds rich set of features by different models. All these

features are combined and the final outcome is based on all these

features. Thus model fusion results in improved performance

compared to other techniques like voting and stacking.

Model Fusion refers to combining different models by take the

advantage of strengths of various models to improve performance (12).

Integration of different DL models is facilitated in three ways: Early

Fusion, Intermediate Fusion and Late Fusion (13). Early Fusion focuses

on integrating multiple data sources and then training a single model

for analyzing the combined data (14). The Intermediate fusion refers to

the extraction of features from data by different DL models. These

extracted features by different models are then concatenated and a

combined training takes place, resulting into final outcome (15). The
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Late fusion combines the decisions of individual models when

implemented on the data. The majority outcome value presented by

models is selected as the final prediction in Late Fusion (16). The

proposed methodology implements the Intermediate Layer Fusion

technique to integrate the strengths of VGG16, DenseNet121 and

Xception models. These models extract the partial features from data

which are then fused and after combined training and passing through

fully connected layer, the final prediction (outcome) is obtained.

The major drawback that hinders using DL models for Breast

Cancer Detection is their black-box nature (17). The DL models

present the resultant outcome to the user and do not present specific

explanations regarding how the outcome is derived. The medical

professionals need not be satisfied with only the model’s outcome;

they also need to know the insights behind the model’s predictions

(18). The domain of Explainable AI (XAI) is gaining popularity as it

overcomes the explainability limitation of DL models. These

explanations help develop trust among the medical professionals and

clinicians regarding the model’s prediction for Breast Cancer (19). The

novelty of this study is to employ model fusion that integrates the

strengths of three different DLmodels and the results are interpreted by

GRADCAM++ to ensure the feeling of trust among the clinicians. The

GRADCAM++ technique generates the pixel heatmaps that result in

higher explainability for visual data. Whereas the models like SHAP

and LIME are model-agonistic and show lower performances for high

dimensional data. GRADCAM++ results in better localization by

denoting the importance of each pixel through use of gradient

computation at second level. Majority approaches for Breast Cancer

Detection employ single modality approach or focus on ensemble

techniques and lack explainability. Our proposed methodology fulfills

this gap by implementing model fusion approach with interpretability

using XAI technique.

The primary motivation of our work is to develop an AI-

assisted, explainable Breast Cancer Detection system that enables

early-stage detection of BC and helps to increase survival rates. The

main motivation of this work is to assist the clinicians and

radiologist in early and reliable breast cancer detection. Many AI

systems for BC are insufficient to capture complex patterns and

struggle to provide interpretations, which hinders clinicians from

adapting them to their regular practice. Moreover, the varying size

of cancer cells, texture, and shading effects in the breast’s ultrasound

images impose challenges for most of the existing AI-assisted cancer

detection systems. This study proposes the fusion of three CNN-

based architectures, namely VGG16, DenseNet121, and Xception,

leveraging their strengths to fetch deep features from the ultrasound

images and enhance accuracy. The decisions presented by the

model are interpreted by Gradient-weighted Class Activation

Mapping ++ (GRADCAM++) (20). GRADCAM++ is the

advanced version of GRADCAM that presents robust

visualizations by highlighting the specific regions within the

image that helps the model to reach the decision. GRADCAM++

with the DL fusion model offers enhanced accuracy, interpretable

outcomes, and well-informed decision-making. This AI-assisted

Interpretable BC detection system gives clinicians a well-suited

data-driven prediction and helps them validate the predictions

through visual representations. Our research attempts to develop
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a robust, interpretable, and reliable AI-driven diagnostic framework

for BC detection, as depicted in Figure 1. Our proposed approach

facilitates two important tasks: (i) Integration of three DL

architectures (VGG16, DenseNet121, and Xception) for

classifying images into benign or malignant with enhanced

accuracy and (ii) Using GRADCAM++ to present insights about

the predictions through image visualizations that show the specific

sections inside the images which dominate the model’s precision.

This work aims to bridge the gap AI-based diagnostic frameworks

and traditional clinical practice by integrating a fused DL model

with explainability through GRADCAM++, opening the door to a

more dependable breast cancer detection system.

The major contributions of our research are listed below:
Fron
• Implementation of deep fusion learning framework

integrating VGG16, DenseNet121, and Xception to

classify BC from the ultrasound images.

• Facilitating explanations of the fused model’s outcome

through the XAI technique-GRADCAM++ that presents

the highlighted section among the image driving the

model’s decision.

• Experimental evaluation on the Breast Ultrasound Image

Dataset to demonstrate the performance of the fused model

and assess its performance with different state-of-the-

art techniques.
The structure of this research paper is as follows: The state-of-the-

art methods employed for BC detection are reviewed in Section 2. Our

proposed methodology, with the algorithm stating minute relevant

details, is demonstrated in Section 3. Dataset’s Description and the

experimental parameters used for the study are explained in Section 4.

Experimental results and their comparison with the state-of-the-art
tiers in Immunology 03
methods are shown in Section 5. Finally, the paper presents the

Conclusion along with the Future Scope in last Section 6.
2 Related work

Over the years, researchers have put forth numerous

approaches to identify Breast Cancer (21, 22). A systematic study

of existing literature is carried out to gain a thorough grasp of the

recent developments in the relevant domain. Keyword-based search

was first performed utilizing phrases like AI for early BC detection,

DL in cancer diagnosis, ultrasound image analysis, breast cancer

detection, and mammography image processing. IEEE Xplore,

Elsevier, SpringerLink, Scopus, Google Scholar, and other well-

known databases were searched using these keywords. Priority was

given to studies focusing on minimally invasive or non-invasive

diagnostic methods. Research using machine learning or deep

learning models, particularly those with explainable results, was

considered in the literature. In addition to highlighting the key

developments in breast cancer detection research, this systematic

review technique identifies essential gaps and obstacles that prevent

the broad use of AI-driven diagnostic systems in clinical practice.

The clinical knowledge and patient assessment by radiologists and

pathologists have historically been crucial in diagnosing breast

cancer (23). Nowadays, advancements in Artificial Intelligence

(AI) have revolutionized medical imagery, providing robust image

analysis. In recent years, there has been much promise for AI-based

systems to help interpret ultrasound images and mammograms

(24). The use of Machine Learning is trending for extracting

handcrafted features. The machine learning models face

difficulties in capturing the complex intrinsic features, which may

restrict their generalizability (25). However, the development of
FIGURE 1

AI-driven interpretable breast cancer detection system.
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deep learning methods, which are driven by increasing computing

power and due to availability of massive datasets, has significantly

enhanced performance in the automatic detection of breast cancer

(26). The CNN model and its various variants are effective for

medical image analysis. The deep neural networks face the issue of

interpretability due to their black-box nature, which hinders their

acceptance in clinical settings (27).

The researchers in (28) presented the use of five fine-tuned pre-

trained models (Xception, InceptionV3, VGG16, MobileNet,

RESNET50) on a GAN-augmented Image dataset with multiple

magnifications. These models classify the Breast Magnetic

Resonance Image (MRI) images into eight different categories

(four benign and four malignant). The researchers in (29)

demonstrate using the CNN pretrained model Xception on the

MRI and the computed tomography (CT) images. This model is

implemented on the public dataset from Kaggle and achieves high

merit results in bifurcating between malignant and benign classes.

In (30), the CNN architecture is implemented for analyzing thermal

images to predict BC. This model is lightweight and faster than pre-

trained models like RESNET50 and Inception. This model analyzes

the augmented thermal photos to make a bigger dataset and records

higher accuracy than non-augmented data. Similarly, the use of the

CNN architecture for identifying BC is shown in (31). The RGB

images are analyzed through 3 convolutional layers and three

pooling layers, following a fully connected layer. The study in

(32) presents an upgraded Deep CNN model that identifies four

distinct abnormalities, moving beyond the standard benign/

malignant binary classification. The proposed model achieves

88% classification accuracy by combining transfer learning with

RESNET50 and proposing a novel adaptive learning rate technique

that adapts dynamically based on error curves. This approach has

tremendous potential to reduce radiologists’ diagnostic errors,

particularly in detecting tiny characteristics, contributing to high

false-positive rates in conventional screening. Jahangeer et al. in

(33) implemented the VGG16 model for analyzing the

mammography images. The images are preprocessed by a median

filter that removes the noise and are then fed to the VGG16 model,

and the deep abnormalities are extracted. The authors in (34)

propose an efficient diagnostic pipeline that combines VGG16

feature extraction with machine learning classifiers to address

computational constraints in histopathology image interpretation.

This technique outperforms standard CNNs in binary (malignant/

benign) classification while dramatically decreasing computational

overhead. The strategic use of pre-trained VGG16 for high-level

feature extraction avoids costly full-model training. The researchers

in (35) present the use of the CNN model with the attention based

mechanism that results in enhanced segmentation of ultrasound

images. This model covers the local and global features leading to

improved image segmentation. The authors in (36) introduce the

use of the two tiered q-rung ortho-pair fuzzy sets for personalized

breast cancer detection. This model results in expert consensus,

improving reliability in clinical settings. The researchers in (37)

presented the use of the tissue impedance management and

analyzing them with LSTM model to predict early stage cancer.

This model record higher accuracy and are suitable for real time
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applications. The study in (38) presents a novel architecture derived

from systematic optimization of VGG16 via hyperparameter tuning

and layer restructuring. The mammography images are augmented

and preprocessed, where unwanted regions are removed, and then

analyzed by the VGG16 architecture.

The study in (39) presents a hybrid DLmethod for BC diagnosis

that combines bio-inspired Multi-Layer Perceptron (MLP) models

and deep CNNs (GoogleNet and AlexNet) with different

preprocessing methods. GoogleNet outperformed other

techniques and records superior accuracy. The work demonstrates

the complementary utility of optimization-based MLPmodels using

statistical features and highlights the efficacy of pretrained CNNs

for feature extraction. This dual strategy covers high-level feature

learning and conventional feature-based categorization in

mammography analysis. The researchers in (40) present a

ensemble meta-learning technique that combines meta-

optimization, data augmentation, and transfer learning

(Inception, ResNet50, DenseNet121) to classify BC using. The

hybrid approach overcomes the shortcomings of traditional deep

learning in managing intricate lesion patterns through feature

concatenation. The ensemble model’s preliminary results show

better accuracy than standalone models. In (41), the authors

present the use of transfer learning with models AlexNet,

RESNET101, and InceptionV3 on an ultrasound image dataset.

This approach uses the soft voting technique to present the final

forecast based on the outcome probabilities of particular individual

models. The voting learning model achieved higher accuracy

compared to the individual models. Although the study focuses

on improving model generalization, dataset size remains a

constraint. The researchers in (42) introduce a transfer-learning

approach for BC detection using breast cytology images, addressing

critical diagnostic challenges in resource-constrained regions. This

framework combines feature extraction from three pre-trained

CNNs (GoogleNet, VGGNet, ResNet) with an average pooling

classifier, demonstrating superior performance over isolated deep

learning models. Experimental results on benchmark datasets reveal

the system’s exceptional accuracy in classifying malignant vs.

benign cells, outperforming conventional architectures through its

knowledge-transfer mechanism. The work highlights how transfer

learning can overcome data scarcity issues common in developing

nations while improving diagnostic reliability. In (43), the authors

address the significant difficulty of breast cancer classification in

ultrasound imaging by creating an optimal VGG16-based transfer

learning method. The proposed system has three components:

median filtering for effective speckle noise reduction, VGG16

convolutional layers for feature extraction, and a unique two-layer

Deep Neural Network (DNN) classifier with dropout regularization.

The addition of Grad-CAM imaging allows for clinically

interpretable localization of malignant characteristics, confirming

the model’s concentration on diagnostically significant regions.

The researchers in (44) demonstrate the use of the multi-modal

strategy that combines U-Net transfer learning model for image

analysis and ensemble Random Forest (RF), CNN and Support

Vector Machine (SVM) model for numerical feature processing and

explainable AI (XAI) for clinical interpretation. The study gives
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vital insights into feature importance using SHAP, indicating that

hybrid feature spaces increase the malignancy diagnosis of small

lesions. The survey in (45) shows a breast cancer AI system by

creating an interpretable prediction framework that combines

different boosting algorithms (LightGBM, CatBoost, and

XGBoost) and uses LIME-based model explanations. After

hyperparameter adjustment, LightGBM outperformed the other

models and recorded the highest accuracy compared to the

others. The use of LIME presents locallevel interpretations that

help clinicians validate predictions. The researchers in (46) propose

an ensemble learning model combining the forecasts of

DenseNet201, VGG19, and EfficientNetB7. This approach uses

the attention-based mechanism of the pre-trained CNN models,

which helps to concentrate on the vital regions of the image for

prediction. The GRADCAM technique is used for explainability,

which generates class activation maps and presents the important

sections in the image that define the model’s outcome. The authors

in (47) propose a lightweight attention model named

DALARESNET50. This model integrates lightweight attention

techniques with RESNET50’s fourth layer, integrating the Fully

Connected layers to boost feature discrimination. Dynamic

Threshold Grad-CAM produces more precise visual explanations

than traditional Grad-CAM, with adjustable heatmap thresholds

matching pathologists’ diagnostic focus areas.

The existing literature demonstrates recent developments in

Explainable AI (XAI), ensemble modeling, and deep learning for

detection of breast cancer. In order to improve the feature

representation and enhance accuracy in medical imaging, a

variety of convolutional neural network (CNN) models have been

proposed. The implementation of a single model for detecting BC

faces some troubles in identifying tiny or subtle lesions, poses a high

risk of false positives, and has limited generalizability across datasets

with different imaging conditions. Techniques that involved

multiple models like Ensemble Learning are less appropriate for

real-time clinical application because they frequently require high

processing resources and result in higher latency, even if they have

shown promise in addressing some of these issues. Although XAI

approaches like Grad-CAM and LIME are investigated to lessen the

black-box nature of DL models, many of these approaches still

provide a limited degree of interpretability, concentrating mostly on

visual overlays without providing complete support for clinical

reasoning. The current study fills these gaps by presenting a

fusion-based model that combines VGG16, Xception, and

DenseNet121 to incorporate their complementing abilities to

extract both fine-grained and high-level characteristics from

breast ultrasound images. The evaluation is based on the Breast

Ultrasound Image (BUSI) dataset (48), that offers a varied and

clinically relevant testbed. Grad-CAM++ produces high-resolution,

class-discriminative visual explanations for model interpretability,

improving transparency and building clinician trust. The proposed

method aims to compromise performance, interpretability, and

clinical applicability in the context of breast cancer diagnosis by

emphasizing effective multi-architecture fusion and incorporating

cutting-edge XAI.
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3 Proposed methodology

Our proposed methodology primarily accomplishes two goals:

(i) Fusion of three DL architectures and (ii) Implementation of the

XAI technique for explaining the results. Our proposed approach

fuses three DL architectures, namely VGG16, DenseNet121, and

Xception. Fusing these three modalities combines the strengths of

the individual modality and facilitates extracting deep features from

the Image data. The outcomes of the proposed fused model are then

interpreted by GRADCAM++, which presents visualizations

explaining the model’s decision. The detailed architecture of the

fusion model is depicted in Figure 2.

The input images are pre-processed and are then applied to the

hybrid model. In pre-processing, the input images are resized to

128*128 pixels to match the standard dimensions of all the three

models. The pixel values of these images are then normalized and each

pixel value is represented in the range of 0 to 1. The input images are

augmented by applying slight rotation and flipping in order to avoid

over-fitting and introduce generalizability. These resized, normalized

and augmented images are then fed to the hybrid deep learning model.

The hybrid model merges 3 pre-trained models: VGG16,

DenseNet121, and Xception. Since each of these models contributes

exceptional capabilities to the group, it facilitates extraction of various

complementary patterns from breast ultrasound images. The VGG16

model is renowned for using tiny 3x3 convolutional filters and having

a consistent design (49). Its three completely linked layers after 13

convolutional layers provide detailed spatial feature extraction,

making it especially suitable for fetching complex patterns in

medical imaging (50). Through dense connected layers, where each

receiving inputs from previous layers, DenseNet121 architecture

improves feature propagation (51). This design promotes feature

reuse and lessens the vanishing gradient issue, both advantageous

for medical picture classification applications. Xception’s simplified

design, which is based on depthwise separable convolutions, effectively

collects channel-wise and spatial information (52). It is appropriate for

high-resolution medical images segmentation and analysis as it is

excellent at learning discriminative features while lowering computing

costs. Our fusion model extracts the output from the penultimate layer

of each separate model and applies feature-level integration. A single,

high-dimensional feature vector that captures multi-scale and multi-

perspective data is created by concatenating these high-level features.

The combined feature vector is subsequently run through a series of

dense layers that are fully coupled to learn joint representations. Final

classification is performed by an output layer using a sigmoid function

as activation unit that is appropriate for the classifying binary

outcomes like identifying benign versus malignant instances.

We use Grad-CAM++, a visualization method that offers fine-

grained and class-discriminative saliency maps, to improve the

interpretability of our model (53). Grad-CAM++ produces heatmaps

that highlight the most critical areas in the input by computing

gradients of the targets flowing into the last convolutional layer.

Grad-CAM++ has superior localization accuracy, which is crucial in

medical diagnostics, and is more adept at handling many instances of

the same class in an image than conventional Grad-CAM. Grad-CAM
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++ creates a heatmap overlaying the original ultrasound image for

every prediction, emphasizing the areas that most affected the model’s

categorization. These visual representations shows the alignment of the

model within the relevant areas of the images and help the clinicians to

find the reasoning behind a particular prediction. Interpretable results

can help validate decisions and boost confidence in AI-assisted

technologies, which is why this type of interpretability is essential in

delicate fields like breast cancer diagnoses. Combining a hybrid fused

model with Grad-CAM++ explainability guarantees high predictive
Frontiers in Immunology 06
accuracy and clinical transparency, which makes the system ideal for

use in actual diagnostic processes.
3.1 Proposed algorithm

This research demonstrates fusion-based DL framework that

combines an explainable AI technique with multiple pretrained

CNNs to improve the precision and interpretability of BC diagnosis.
FIGURE 2

Hybrid Interpretable Fusion Model Architecture.
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The proposed approach fuses the VGG16, DenseNet121, and

Xception models at the intermediate layers, and then the combined

training through multiple dense layers is performed. This training,

through the fully connected layers, then facilitates cancer prediction at

the output layer. The fused model maintains computational efficiency

with frozen backbone networks while capturing a variety of spatial and

contextual patterns by utilizing feature concatenation and joint

training. Post prediction, the GRADCAM++ method presents

interpretations by providing the highlighted sections in the Image

that dominate the prediction by model. The steps and details of

proposed work are explained in Algorithm 1.

The working of Algorithm 1 begins with the pre-processing task

where the input images are resized to a size of 128 * 128 pixels,

scaled to a consistent height and width, and the Image pixels are

normalized in the range of [0,1]. This enhances training stability

and guarantees uniformity in input dimensions. Post-preprocessing

of Images, the base models (VGG16, DenseNet121, and Xception)

are loaded and initialized. The three models that are fused together

are pre-trained CNNmodels. These models are pre-trained on large

dataset namely ImageNet. The weights of these pre-trained models

are frozen to preserve the rich set of features retrieved from the large

dataset. The pre-trained model weights are frozen to reduce over-

fitting during the training phase on smaller datasets. With help of

frozen weights, we extract stable feature representations that are

then combined, encouraging consistent model fusion. The input

images are then processed independently by each pretrained model,

which extracts the relevant features. The features extracted by each

model are then passed through Global Average Pooling (GAP) that

reduces the spatial dimensions without sacrificing discriminative

information. The GAP method averages the spatial locations and

thus reduces over-fitting and results in less computational overhead

during model training. GAP also helps to handle the variations that

exists in the ultrasound images. The feature vectors extracted by

different models are then concatenated to have enhanced feature

maps that consist of various spatial and contextual patterns

extracted by other architectures. The combined strengths of the

three models—the depthwise separable convolutions of Xception,

the dense connectivity of DenseNet121, and the hierarchical feature

learning of VGG16—are combined into a single fusion vector. To

enable non-linear feature transformation, the concatenated feature

vector is processed through a classification head comprising two

completely linked layers consisting of 256 and 128 neurons

respectively, with ReLU activation functions. Dropout at each

layer is used to prevent overfitting. The output layer uses a

sigmoid function for activation to generate a binary prediction

that indicates whether cancer is present. Grad-CAM++ creates

heatmaps that highlight the specific regions in input images that

impact the model’s outcomes in order to achieve interpretability.

GRADCAM++ generates a visual explanation by calculating

gradients of the anticipated class score concerning the activations

of the final convolutional layer (54). The heatmaps generated by

GRADCAM++ are mapped with the original image, and the final

overlay representation is generated. This stage promotes trust and

facilitates diagnosis by helping medical professionals validate the

model’s outcomes.
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1 : I n p u t : D a t a s e t D⊔ = xinputi ,outcomeið Þf gni=1,
where xinputi   ∈  Rimg height�img width�3,  outcomei ∈ 0, 1f g
2: Output: Trained fusion model F(x;q) and Grad-CAM++

visualizations G xið Þ
3: Step 1: Preprocessing

4: Resize all images xi to (image_height,image_width)

5: Image Normalization:

xinputi ←
xinputi

255

6: Step 2: Defining and initializing the pretrained

base models

7: Load pretrained convolutional bases (weights

frozen):

fVGG16(xi ; qvgg),  fDenseNet(xi ; qdensenet),  fXception(xi ; qxception)

8: Step 3: Feature Extraction

9: Extract features and apply Global Average Pooling:

zvgg = GAP(fVGG16(xi))

zdensenet = GAP(fDenseNet(xi))

zxception = GAP(fXception(xi))

10: Step 4: Feature Fusion

11: Concatenate feature vectors:

zfusion = ½zvgg ,zdensenet,zxception�

12: Step 5: Classification Head

13: Fully connected layers with ReLU activation:

hidden _ layer1 = ReLU(zfusion · weights1 + bias1)

hidden _ layer2 = ReLU(hidden _ layer1 · weights2 + bias2)

14: Apply dropout for regularization: d = Dropout(0.5)

(hidden layer2)

d = Dropout(0:5)(hidden _ layer2)

15: Final output prediction with sigmoid activation:

outcomei = s (d · weights3 + bias3)

16: Step 6: Model Training

17: Train the model to minimize binary cross-entropy

loss:

L ≀
ðð

= −
1
, o

,

i=1

½outcomei log (outcomei)

+(1 − outcomei)log (1 − outcomei)�

18: Step 7: Explainability with Grad-CAM++

19: For each image xi, compute Grad-CAM++ heatmap G xið Þ
using gradients of predicted class w.r.t. last

convolutional layer activations:

G(xi) = GradCAM + +(F,xi)
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Fron
20: Overlay G xið Þ on x ifor visualization of

important regions
Algorithm 1. Fusion of VGG16, DenseNet121, and Xception with
Combined Training and Grad-CAM++ for Breast Cancer Detection.
3.2 Experimental setup

The performance of the proposed model is assessed through a

set of varied experiments on the Breast Ultrasound Image dataset.

All the experiments are performed on an Intel Core i7 laptop with a

2.8 GHz processing speed, 32GB DDR4 RAM, along with NVIDIA

GeForce RTX 3090 GPU comprising of 24GB VRAM. The

programming environment used for the experimentation is

Anaconda Software with Python 3.as the programming language.

Numerous libraries are required for performing experiments:

Numpy, Pandas, Keras, TensorFlow, Matplotlib, OpenCV, and

Sci-kit Learn. The Numpy library handles the mathematical

computations. The Pandas library provides data handling

functionalities, Keras and TensorFlow for implementing Deep

Learning Models. The Matplotlib library is used for presenting

visualizations and graphs. The OpenCV library is used for Image

processing tasks like resizing images, normalizing and augmenting

images. The Sci-kit learn library is used of evaluating the model with

different evaluation metrics. The grad-cam library is used for

implementing the GRADCAM++ technique for explaining the

model’s decision.

The images are first resized to 128*128 pixels. To handle the

class imbalance in the dataset, some photos are rotated to some

extent and augmented to some scale. The resultant dataset is then

normalized, where each pixel value is on the scale of [0,1]. The

balanced normalized dataset is now divided into parts with ratio of

75:25. The first part comprising of 75% data is used for model

training, and the left over 25% data is used for model testing. From

the total training data, 10% data is used for model validation.

Proposed Fusion model, consisting of three pre-trained CNN

models (DENSENET121, Xception and VGG16), is fed with

images with three channels. The fusion model is trained with for

50 epochs with the batch size of 32. We tested the experiments with

batch sizes of 8, 16, 32, 64, and 128. The lower batch sizes of 8 and

16 resulted into slower gradient movements and higher batch sizes

of 64 and 128 required higher computational resources like memory

and resulted into higher gradient convergence. The batch size of 32

resulted into stable training of the model and balanced the trade-off

between model convergence and computational requirements.

Implementation of dropout regularization is used for avoiding

model overfitting.

3.2.1 Dataset description
The Ultrasound Breast Images for Breast Cancer dataset (48) is

used for the experiments in our research. A large number of

ultrasound images of breasts, divided into classes of benign and

malignant tumors, make up the dataset. This dataset includes an

extensive collection of ultrasound pictures of breast tissue that were
tiers in Immunology 08
gathered to help in breast cancer diagnosis. As a radiationfree, and

non-invasive diagnostic technique, ultrasound imaging is frequently

used to characterize breast lesions, especially when separating

benign from malignant classes. A total of 8,116 ultrasound images

in all, divided into two classes—malignant (4,042 images) and

benign (4,074 images) are included in the dataset. Professional

radiologists obtained and annotated the original pictures,

guaranteeing clinical dependability and precise diagnosis

representation. These annotations represent the expert-level

knowledge needed for real-world diagnosis and act as the ground

truth for supervised ML models. The images have a resolution of

224*224 pixels in JPEG format. Image Augmentation techniques

like sharpening and rotation are applied to improve the dataset and

handle possible issues with model generalization. By simulating

genuine diagnostic settings and adding variability, these changes

improve robustness and lower the chance of model overfitting. The

summarized information about the dataset is presented in

the Table 1.

3.2.2 Evaluation metrics
Four standard classification metrics, namely Accuracy, Recall,

Precision, and F1 Score, are used to evaluate the model’s efficiency

(55). These metrics assess the capacity of model to accurately detect

between malignant and benign BC cases. Out of all the predictions

performed, the accuracy measure shows the percentage of correctly

identified observations (25). When the distribution of classes is

pretty balanced, it is beneficial as a general indicator of overall

performance. Accuracy is helpful when the dataset is balanced, but

when there is a class imbalance, as is typical in medical diagnostics,

accuracy might not accurately reflect the model’s efficacy (56).

Thus, we also consider the F1 score, recall, and precision,. The

ratio of correctly predicted positive (Malignant) instances to all

expected positives is precision. It highlights how the model may

avoid false positives, essential for medical diagnosis to prevent

needless worry or medication (56). The capacity of the model to

detect all real positive (malignant) cases is measured by Recall,

sometimes referred to as sensitivity (57). It is particularly crucial in
TABLE 1 Summary of ultrasound breast images dataset.

Parameter Value

Dataset Used Ultrasound Breast Images for Breast Cancer

Imaging Modality Ultrasound

Image Format JPEG

Image Resolution 224*224 pixels

Count of Output classes 2 (Benign, Malignant)

Total Count of Images 8,116

Count of Benign Images 4,074

Count of Malignant Images 4,042

Data Augmentation Methods Rotation, Sharpening

Annotation Source Clinical Radiologists
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medical settings because a false negative result could have

significant repercussions if a malignant case is not detected (58).

F1 Score is the recall’s and precision’s harmonic mean (57). It offers

a single performance indicator that strikes a compromise between

the two, making it especially useful in datasets with class imbalance.
4 Result analysis

The performance of the proposed DL fusion model in detecting BC

from breast ultrasound pictures is assessed through various

experiments. Using the publicly accessible ultrasound breast cancer

image dataset, which includes both malignant and benign

classifications, the model’s performance was carefully evaluated.

Three popular CNNs—Xception, DenseNet121, and VGG16—are

integrated in the proposed fusion model. By utilizing each

architecture’s complementary characteristics, this fusion strategy

tends to enhance the performance and resilience of breast cancer

categorization. The experiments in this study were conducted in two

phases. The first phase demonstrates the implementation of multiple

deep learning architectures on the dataset, and the second phase reflects

the fusion of the top three performing models in the first experiment.

Later, GRADCAM++ is employed for Image Interpretation.

In the first phase, various standalone CNN-based architectures

are implemented and the results of each model are noted. VGG16,

AlexNet, RESNET50, GoogleNet, Inception, MobileNetV2,

Xception, DenseNet121, and EfficientNetB0 are among the

models considered, due to their wide use in medical Imagery

Analysis. To accurately classify ultrasound data into malignant

and benign classes, each model is adjusted and fine-tuned to learn

pertinent features. Among the total data, 75% data constitutes the

training data and left over 25% constitutes the testing data. This

division provided enough data for training while guaranteeing a

trustworthy assessment on unseen data. A batch size of 32 was used

to train all models for 50 epochs, allowing for learning intricate

patterns within a manageable computational cost.

The experimental findings showed that VGG16, DenseNet121,

and Xception models with accuracies of 84%, 83% and 82%

respectively, performed better than the other models. Their

continuously high performance proves the robustness and

dependability of these three models in identifying breast cancer. In

the second phase, these three models are fused with the goal of

improving classification performance even more. The Image dataset

is partitioned according to the same 75:25 ratio, where 75% is training

data and the remaining 25% is the testing data. The model is trained

with Adam optimizer over a range of iterations (epochs), ranging

from 10, 20, 35, 50, 70, to 100. The model observed a rise in validation

losses after 50 epochs, and hence, the model training is performed for

50 epochs. By utilizing enhanced feature extraction capacities of all

the three models, the fusion model shows higher classification

accuracy. The accuracy achieved by fusion model is 97.14%. The

performance results of various models are shown in Table 2 below.

The fusion model shows superior performance compared to the

individual models and records 97% accuracy, which is around 13%

higher than VGG16, the best-performing individual model.
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The comparison of performance of different models is presented

in Figure 3.

This enhancement in performance is achieved by the robust

feature extraction capacities of the individual models that assist one

another throughout the fusion process. The confusion matrix of the

individual models and the fused model is shown in Figure 4. By

displaying the number of properly and incorrectly predicted data, the

confusion matrices demonstrate how well each model performs in

categorization. The fusion model demonstrates improved prediction

performance and produces more accurate classifications by

integrating the benefits of three distinct architectures.

The proposed methodology proposes using Grad-CAM++ to

highlight the crucial regions in ultrasound images that affect

classification choices to improve the interpretability of the fused

model. Grad-CAM++ creates class-specific localization maps,

allowing a more thorough comprehension of the model’s decisions.

The regions the fused model considers most important for

categorization are highlighted in the generated visuals. According to

our study, the model primarily concentrates on biologically significant

cellular structures linked to breast cancer, which supports the accuracy

of its predictions and their congruence with domain knowledge.

The results of GRADCAM++ for interpreting the model’s

predictions are demonstrated in Figure 5. Every individual result

comprises three different image sections. The first section comprises

of the original breast Ultrasound Image, which is selected from the

testing dataset. The second part of the image results is the

GRADCAM++ heatmap. The spatial activation patterns displayed

in this heatmap influence the classification output. High model

attention is indicated by red and yellow, which show locations that

significantly impact the prediction. On the other hand, areas that are

in blue or black color indicate a minimal or insignificant impact. This

stand-alone heatmap isolates the feature map regions given priority

during inference, offering an abstract “model-centric” approach. The

image’s third part is the original image’s overlay and the heatmap

presented in the first and second parts. The GRADCAM++ heatmap

is superimposed on the original image. The overlay uses a color scale,
TABLE 2 Performance results of various architectures on breast
ultrasound image dataset.

Architecture Accuracy Precision Recall F1 score

AlexNet 62.32% 62.32% 62.32% 62.32%

GoogleNet 76.43% 70.23% 78.34% 74.28%

RESNET50 70.8% 69.4% 71.5% 70.4%

MobileNetV2 71.1% 71.1% 71.1% 71.1%

EfficientNetB0 69.33% 69.55% 70.65% 70.1%

Inception 78.8% 77.41% 79.52% 78.45%

VGG16 84.43% 80.65% 90.40% 85.25%

DenseNet121 83.54% 84.36% 83.54% 83.45%

Xception 82.45% 83.15% 82.24% 82.37%

FUSION MODEL 97.14% 95.96% 98.42% 97.18%
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FIGURE 4

Confusion matrices of VGG16, DenseNet121, Xception, and Fusion models. (a) Confusion matrix of VGG16 model, (b) Confusion matrix of
DenseNet121 model, (c) Confusion matrix of Xception model, (d) Confusion matrix of Fusion model.
FIGURE 3

Comparative performance of different models for breast cancer detection.
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with blue/black areas denoting little attention and red/yellow areas

denoting high attention. For example, Overlay (Pred: 0.00) suggests a

confident benign diagnosis, whereas Overlay (Pred: 1.00) indicates a

confident malignancy. The title includes an annotation on the

prediction probability. With this visualization, clinicians can better

relate model attention to clinical and anatomical aspects, including

shadowing, irregular edges, and masses. As shown in Figures 5a–e,
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the GRADCAM++ heatmaps rarely consist of red color boxes

denoting high chances of malignancies. The resultant overlay image

demonstrates the Prediction of a 0.0 value, and the critical region is

highlighted in blue. This helps the clinician recognize cases of benign

tumors easily. Similarly, the Figures 5f–j demonstrate the cases of

malignancies. These images show that the GRADCAM++ heatmaps

consist of red color boxes defining the high-level attention of the
FIGURE 5

GRADCAM++ interpretations for Model Predictions. (a) Benign tumor example 1, (b) Benign tumor example 2, (c) Benign tumor example 3, (d)
Benign tumor example 4, (e) Benign tumor example 5, (f) Malignat tumor example 1, (g) Malignat tumor example 2, (h) Malignat tumor example 3, (i)
Malignat tumor example 4, (j) Malignat tumor example 5.
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model, demonstrating cases of malignancies. These heatmaps are

then superimposed on the original images, generating the resultant

overlay image. The prediction in this case is equal to 1.00,

demonstrating malignant cases. The critical regions in this case are

highlighted in red. These interpretations of GRADCAM++ help

clinicians validate the model’s outcome and ensure trust in the

deploying AI-assisted system for classifying tumors into Malignant

and Benign categories.
4.1 Comparative analysis

The proposed model’s performance is contrasted with various

existing recent techniques designed for Breast Cancer Detection. To

improve the robustness and reliability of BC detection systems,

researchers have developed various deep learning, machine

learning, and multi-modal imaging strategies. This study’s main

focus is the analysis of the histopathological images encompassed in

the Breast Ultrasound Image Dataset (48), to offer a fair and

meaningful comparison as demonstrated in Table 3.

The use of the VGG19 architecture for classifying BC using

ultrasound images is investigated in the article (59). The researchers

use transfer learning to make use of the representational power of

VGG19. This well-known convolutional neural network has been

pre-trained on extensive datasets, later trained on an ultrasound

image dataset. A five-fold cross-validation strategy is used during

training to reduce overfitting, with an overall classification accuracy

of 87.8%. However, the study’s clinical interpretability is limited

because explainability processes are not included. An explainable

DL framework for BC diagnosis is presented by Alom et al. in (60).

This approach uses DenseNet as the central feature extractor along

with other convolutional layers and transfer learning. This hybrid

architecture aims to extract hierarchical features from ultrasound

pictures of the breast. To improve model transparency and

trustworthiness—a crucial component of medical AI systems—the

researchers employ the Grad-CAM technique. With a classification
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accuracy of 89.87%, this model exhibits a fair trade-off between

interpretability and predictive performance. The authors in (61)

present a multi-layer CNN model for binary classification of breast

ultrasound pictures into malignant and benign classes. The study

maintains high diagnostic performance while emphasizing

computational efficiency and architectural simplicity. This CNN

model achieves an accuracy of 96.10%. However, this model lacks

explainability, which could prevent it from being used in actual

clinical operations where interpretability is crucial. The researchers

in (62) demonstrate using the deep CNN network with a multi-scale

kernel on the breast ultrasound images. This deep network presents

a collaborative way of recognizing malignant tumors and detecting

the solid nodules among them.

The authors in (63) demonstrate the application of the UNET

architecture to segment the breast ultrasound images, and

EfficientNetB7 performs the classification. XAI technique LIME is

used for explaining the results by outlining the visual

representations. This model shows an accuracy of 91%, and the

LIME results help the clinicians validate the decisions. The study in

(64) proposes an automated DL-based CAD system for diagnosing

BC using ultrasound images. This hybrid model combines

MobileNetV2, RESNET101, VGG16, and RESNET50. The Grad-

CAM technique is used to improve interpretability.

The proposed approach resulted an accuracy of 93.5%. In (65),

the authors utilized image-based data to investigate the impact of

different ML techniques for BC classification. Among the models

studied, the XGBoost approach achieved the most significant

classification accuracy of 85%. The study used Shapley Additive

Explanations (SHAP), a popular Explainable AI (XAI) technique, to

address the interpretability issues frequently associated with ML

models. SHAP presents the contribution of various features towards

the model’s predictions, revealing significant information about the

most influential variables linked with breast cancer diagnosis. The

study in (40) presents the meta learning ensemble framework that

combines multiple CNN architectures (RESNET50, DenseNet121

and InceptionV3) with data augmentation and transfer learning
TABLE 3 Comparison of proposed methodology with other relevant approaches.

Reference Model Accuracy Precision Recall F1_score XAI technique employed

(59) VGG19 87.8% 80.8% 83.8% 83.8% Not Used

(60) DenseNet 89.87% 91.11% 89.87% 90.00% GRADCAM

(61) CNN 96.10% 97.24% 94.12% 95.8% Not Used

(62) Deep CNN 90.13% 83.18% 93.54% 88.38% Not Used

(63) EfficientNet-B7 91.67% 89.89% 91.95% 90.91% LIME

(64) Hybrid Ensemble Model 93.5% 98.4% 98.0% 98.1% GRADCAM

(65) XGBoost 85% 85.1% 84.5% 84.7% SHAP

(40) Ensemble Learning Model 90% 90% 90% 90% Not Used

(41) Voting Learning Model 94.20% 90.63% 96.67% 93.55% Not Used

(43) Transfer learning with VGG16 91% 88.75% 94% 91% GRADCAM

Proposed Approach Fusion (VGG16+DenseNet121+Xception) 97.14% 95.96% 98.42% 97.18% GRADCAM++
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techniques. This work’s main contribution is optimizing the

ensemble output of CNN architectures that have already been

trained using a meta-learning approach. This approach recorded

the accuracy of 90% when implemented on the Breast Ultrasound

Image dataset. This approach uses the explainability technique to

interpret the results. In (41), the models AlexNet, ResNet101, and

InceptionV3 are used for transfer learning on the ultrasound Image

dataset. This approach applies the soft voting technique to present

the final prediction based on individual models’ prediction

probabilities. The voting learning model recorded the accuracy of

94.20% through a soft-voting ensemble of these networks, with

AlexNet (81.16%), RESNET101 (85.51%), while InceptionV3

(91.3%) contributing in that order. Although the study focuses on

better model generalization, the dataset size is still a constraint, and

explainable AI techniques are not used to evaluate predictions. In

(43), the authors used transfer learning with the VGG16

architecture for breast cancer categorization. The model’s

performance measures were remarkable, with an accuracy of 91%.

To improve model interpretability, the researchers used Grad-CAM

to create visual explanations highlighting the key regions in the

input photos that influenced categorization results.

The proposed DL fusion model: integrating VGG16, Xception,

and DenseNet121 outperforms several cutting edge solutions

employed for BC detection using Ultrasound Images with an

accuracy of 97.14%. The XAI strategy, which guarantees

confidence in the model’s judgments, is not used in a number of

the approaches reported in the comparative analysis. In contrast to

our approach, several approaches have used XAI techniques, but

their accuracy is relatively low. Combining multiple DL

architectures enables reliable feature extraction with improved

accuracy. Our proposed fusion model extracts the global and local

features that result in enhanced performance. The application of

GRADCAM++ adds value for physicians and clinicians as they can

validate the model’s predictions by seeing the highlighted essential

portions of the images dominating the decisions.
5 Conclusion

This research proposes a fusion-based DL approach for

identifying BC from Ultrasound Images by combining the

VGG16, DenseNet121, and Xception models. With a remarkable

accuracy of 97.14%, the fused model outperforms the individual

models and several current state-of-the-art techniques. Our model

successfully extracts low-level structural and high-level semantic

characteristics from histopathology pictures by utilizing the

complementary capabilities of the various architectures. This

work includes using the GRADCAM++ technique to achieve

interpretability, which made it possible to present the important

sections in the images that lead towards predictions. The model

fusion approach results in enhanced accuracy resulting in low false

positives and false negatives for Breast Cancer Detection along with

explainable results to promote clinical trust which is highly needed

in medical setting. In addition to increasing clinical trust, this

transparency satisfies the pragmatic requirements of healthcare
Frontiers in Immunology 13
applications, where it is essential to comprehend the reasoning

behind automated predictions.

Apart from the encouraging results, the proposed model faces

some difficulties in attaining strong generalization across datasets

with different imaging setups and acquisition techniques.

Incorporating sophisticated feature selection techniques, improving

computational efficiency, and improving generalizability through

domain adaptation strategies will be the key goals of future

research. We also intend to examine self-supervised and

unsupervised learning techniques to further enhance diagnostic

accuracy and model resilience in actual clinical situations and

employ privacy-preserving techniques to ensure patient data privacy.
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