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Non-small cell lung cancer (NSCLC) exhibits profound immune dysregulation,
driven in part by the opposing roles of regulatory T cells (Tregs) and T helper 17
(Th17) cells. Tregs facilitate tumor progression through immune suppression,
angiogenesis, and checkpoint engagement, while Thl7 cells display dual effects
depending on the tumor microenvironment, either promoting anti-tumor
responses or enhancing malignancy. Importantly, plasticity between these
subsets, orchestrated by cytokines such as TGF-B, IL-6, and IL-1pB, allows
dynamic interconversion that shapes immune outcomes. This review
comprehensively summarizes the differentiation, molecular mechanisms, and
functions of Tregs and Th17 cells in NSCLC. We highlight recent advances in
targeting the Th17/Treg axis via immune checkpoint inhibitors, Treg depletion,
and metabolic reprogramming. Understanding this immunological balance offers
promising avenues for restoring anti-tumor immunity and improving therapeutic
efficacy in NSCLC patients.
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1 Introduction

Globally, NSCLC continues to be the predominant contributor to cancer-associated
deaths, imposing a significant strain on healthcare infrastructures worldwide (1, 2). Recent
research has focused on the immunological milieu within tumors, where compromised
immune surveillance mechanisms play a pivotal role in oncogenesis and disease
advancement (3, 4). Of the diverse immune cell populations, Tregs have been identified
as central mediators of immune escape by tumors and are involved in NSCLC (5).
Immunosuppression mediated by Tregs occurs via cytokine release, interference with
metabolic pathways, and direct cytotoxic actions against effector immune cells (6).
Conversely, Th17 cells display functional ambivalence, either enhancing or restraining
tumor growth contingent upon the inflammatory context (7, 8). This duality is further
obscured by the interconversion potential of these subsets, regulated by pivotal cytokines
including TGF-B, IL-6, and IL-1f (9).
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Beyond their involvement in tumorigenesis, proliferation,
dissemination, and metastatic spread, Tregs also collaborate with
Th17 cells in the progression of infections, autoimmune conditions,
and neoplastic diseases (10). Within NSCLC, accumulating data
reveal a complex interaction between Tregs and Th17 cells, both of
which significantly influence the immunological profile of tumors
(11). Deciphering the equilibrium between Th17 and Treg
populations, along with their flexibility, is essential for devising
successful immunotherapeutic strategies that reestablish immune
homeostasis in NSCLC (12). This review systematically summarizes
the differentiation processes, underlying molecular mechanisms,
and functional contributions of Th17 and Treg cells in NSCLC.
Moreover, it outlines recent breakthroughs in immunomodulatory
therapies directed at the Th17/Treg axis, encompassing Treg
elimination, inhibition of immune checkpoints, and alterations in
cellular metabolism (13), offering novel insights into strategies for
overcoming immune suppression and improving clinical outcomes
in NSCLC patients.

2 Overview of regulatory T cells
(Tregs)

2.1 Historical identification of Treg lineages

The seminal discovery of regulatory T cells dates to 1995, when
Sakaguchi and colleagues demonstrated that selective removal of
CD4"CD25" T cell populations in murine models triggered systemic
autoimmunity, while adoptive transfer of these cells conferred
protection, establishing their immunoregulatory function (14).
While CD25 serves as an operational surface marker, its expression
is not exclusive to this subset (15). The transcription factor FOXP3
has since been identified as both a definitive molecular signature and
a master regulator of Treg identity (16). Evidence from genetic
analyses underscores FOXP3's non-redundant role in maintaining
immunological tolerance, given that loss-of-function mutations
precipitate multiorgan inflammatory syndromes across species. The
molecular circuitry governing FOXP3 expression involves multiple
regulatory layers: The COX-2/PGE2 signaling axis modulates its
transcriptional activity, whereas TCR stimulation coupled with
CD28-mediated co-signaling induces chromatin reorganization at
the Foxp3 gene locus, predominantly through the NF-xB
transcription factor c-Rel (17-20). Notably, STAT5-mediated
signaling represents an indispensable pathway for the terminal
differentiation of FOXP3-expressing Tregs from progenitor
populations (21, 22). These molecular mechanisms collectively
define the developmental paradigm of Treg specification and
continue to inform contemporary models of immune homeostasis.

2.2 Functional heterogeneity of Treg
populations

Tregs play a pivotal role in sustaining immune tolerance and
preventing aberrant inflammatory responses, including those
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associated with tumorigenesis (23, 24). Unlike antigen-specific
immune effectors, Tregs mediate broad immunosuppression, and
their functional impairment is linked to autoimmune pathogenesis
(25). The transcription factor FOXP3 serves as a critical
determinant of their lineage commitment and functional
maturation (26). Phenotypically, Tregs are characterized by co-
expression of CD25 alongside inhibitory receptors such as CTLA-4,
GITR, and LAG-3, as well as membrane-associated TGF-f (27, 28).
Further subclassification is possible based on CD45RA expression,
distinguishing naive (CD45RA™) from antigen-experienced
(CD45RA") subsets (29). Although Neuropilin-1 has been
proposed as a potential surface marker, no single definitive
identifier currently exists for this population (30). The induced
Tregs (iTregs) arise extrathymically from conventional CD4" T cells
under specific cytokine milieus, particularly within tumor
microenvironments where they paradoxically facilitate immune
evasion and malignant progression (31). Among these, Type 1
regulatory T (Trl) cells—enriched in intestinal mucosa—do not
express FOXP3 but instead mediate suppression via copious
secretion of IL-10 and TGF-B (32, 33). Beyond classical CD4"
Tregs, regulatory function extends to multiple lymphocyte lineages.
Certain CD4" T cells acquire suppressive properties upon
stimulation with autologous dendritic cells, upregulating FOXP3,
CTLA-4, and immunomodulatory cytokines (IL-10, TGF-B) (34).
Additionally, regulatory activity is observed in innate-like
lymphocytes, including IL-10-producing NKT and y8 T cells, as
well as CD8"CD28  and CD8'FOXP3" T cells. Double-negative
(CD3"CD4°CD8) T cells further contribute to immune regulation
through analogous mechanisms (35).

2.3 Immunosuppressive functions of Treg
cells

Tregs mediate immune suppression through diverse
mechanisms. Central pathways include the secretion of
immunosuppressive cytokines such as TGF-B and IL-10, and the
expression of high-affinity IL-2 receptors that deplete IL-2, thereby
restricting effector T cell proliferation (36, 37). Soluble factors like IL-
10 and TGF-B act in a contact-independent manner. Activated
human Tregs also express granzyme A (GZ-A) and utilize the
perforin pathway to induce apoptosis in antigen-presenting cells
(APCs), while granzyme B contributes to effector T cell suppression
(38). The cell-surface repertoire of Tregs features several co-
inhibitory molecules essential for their function. Notably, CTLA-4
and GITR engage cognate receptors on target cells to transmit
inhibitory signals, with CTLA-4 additionally facilitating the induction
of regulatory phenotypes in CD4" T cell precursors (39, 40).
Besides, other critical regulators include PD-1, LAG-3, and CD39.
LAG-3 modulates APC activity through MHC class II interaction, PD-
1/PD-L1/PD-L2 signaling promotes Foxp3" Treg development (41),
while CD39 generates immunoregulatory adenosine via nucleotide
catabolism (42). The suppressive arsenal of Tregs extends to metabolic
interference through IDO-dependent tryptophan degradation,
cytotoxic effector mechanisms involving perforin/granzyme systems

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1658848
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Zhu et al.

(43, 44), and suppression of NK cell-mediated cytotoxicity by
interfering with NKG2D signaling pathways (45). Their multifaceted
regulation operates across immunological contexts through spatial
competition with naive T cells for APC engagement via chemokine
gradients, and functional impairment of dendritic cell maturation;
dynamic secretion of IL-10, IL-35, and cytotoxic mediators tailored to
microenvironmental cues.

3 Properties of Thl7 and Treg cells

Th17 cells constitute a unique CD4" T helper subset, distinct
from classical Thl and Th2 lineages. Harrington identified IL-17-
producing CD4" T cells in mice, which were subsequently termed
Th17 cells (46). Lineage-defining transcriptional regulators RORyt
and STAT3 govern both their developmental program and
functional stability (47, 48). Th17 lineage commitment is highly
dependent on the cytokine environment. IL-6 and TGF-f act
cooperatively to promote Th1l7 polarization (49). The
concentration of TGF-B is crucial in determining CD4" T cell
fate, lower levels favor RORYt expression and Th17 differentiation,
while higher levels suppress RORYt and induce Foxp3, promoting
Treg development (50, 51). Notably, IL-21 can substitute for IL-6 in
the presence of TGF-f to induce RORYt and inhibit Foxp3, further
facilitating Th17 differentiation (51). Functionally, Th17 cells are
pro-inflammatory, primarily through the secretion of IL-17, their
hallmark cytokine (52, 53). The Th17/IL-17 axis has been
implicated in autoimmune diseases such as asthma, systemic
lupus erythematosus, and rheumatoid arthritis, although its role
in tumor biology remains controversial and under active
investigation (53-55).

Tregs are essential mediators of immune tolerance and immune
suppression in both physiological and pathological contexts,
including tumor immunity (56). Although Tregs constitute a minor
fraction of CD4" T lymphocytes, their capacity to suppress effector T
cell responses enables tumors to evade immune surveillance in
NSCLC (57, 58). The transcription factor FOXP3 remains a key
determinant of Treg identity and function, exerting transcriptional
repression of pro-inflammatory genes to encode inflammatory
mediators such as IFN-y, IL-13, and GM-CSF (59-61). In
addition, Tregs modulate dendritic cell activity by secreting
immunosuppressive cytokines such as IL-10, which promotes DC
apoptosis and impairs their antigen-presenting capacity by
downregulating co-stimulatory molecules like CD80 and CD86 (62,
63). These effects reduce effective T cell priming and promote
an immunosuppressive microenvironment (64). Importantly, in
NSCLC, Tregs express high levels of PD-1, CTLA-4, and CD39,
which contribute to immune checkpoint-mediated suppression and
adenosine production that further dampens effector cell functions
(65-67). By shaping the tumor immune landscape through direct
suppression and immune modulation, Tregs play a pivotal role in
promoting tumor progression and resistance to immunotherapy.
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4 Roles of Thl7 and Treg cells in
NSCLC

The immunosuppressive TME in NSCLC is particularly
pronounced, characterized by high infiltration of Tregs, chronic
inflammation, and resistance to immune checkpoint blockade
therapies (68). Notably, NSCLC has been extensively studied in
Th17 and Treg cell dynamics, offering a well-established framework
to investigate their functional plasticity and therapeutic
implications (69). Given these features, NSCLC represents a
clinically relevant and immunologically tractable model for
dissecting the Th17/Treg axis.

4.1 Roles of Thl7 cells in NSCLC

The functional dichotomy of Th17 cells in NSCLC continues to be
a subject of controversy, as these lymphocytes exhibit both pro-
tumorigenic and anti-tumor activities (70). Elevated concentrations
of IL-17, a key Thl7-derived cytokine, correlate with augmented
neovascularization in multiple malignancies, suggesting a role in
facilitating tumor growth (71). Huang et al. (72) reported that IL-17
increased microvessel density and VEGF via STAT signaling,
upregulating IL-6 and IL-8. IL-17 administration accelerated tumor
growth in mice (73). In contrast, increased Th17 infiltration within the
tumor microenvironment has been shown to coincide with elevated
neutrophil recruitment alongside heightened IFN-y secretion,
implying a capacity to bolster anti-tumor immune responses
(74, 75). Ye et al. (76) revealed a marked enrichment of Th17 cells
in NSCLC-associated malignant pleural effusions compared to
peripheral blood, with higher Th17 frequencies predicting improved
patient outcomes. The lineage-defining transcription factor RORyt
orchestrates Th17 differentiation and may facilitate their
transdifferentiation into cytotoxic CD8" T lymphocytes.
Additionally, RORyt-driven IL-17 production has been implicated in
the suppression of immune checkpoint molecules, potentially
mitigating tumor-induced immunosuppression (77). In NSCLC, IL-
17E facilitates cell proliferation and epithelial-mesenchymal transition
in A549 cells by regulating the NF-kB pathway (78). Th17 cells
activate dendritic cells, enhance effector and cytotoxic T cell
responses, and promote NK cell infiltration, collectively
strengthening anti-tumor immunity (79, 80). The dual behavior of
Th17 cells is largely shaped by the upstream cytokine milieu and the
tumor microenvironmental context. IL-23 and IL-1B are critical
determinants of Th17 pathogenicity (81, 82). IL-23 stabilizes the
Th17 phenotype and promotes expression of pro-tumor mediators
such as IL-17A, IL-22, and GM-CSF, while inhibiting anti-tumor
features such as [FN-y production (83-87). IL-1, in cooperation with
IL-6 and low-dose TGF-P, biases Th17 cells toward a pathogenic
profile that favors inflammation, angiogenesis, and tumor progression
(13, 88). In contrast, IL-12 or IL-27 exposure can redirect Th17 cells
toward an IFN-y-producing, tumoricidal phenotype (89) (Figure 1).
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4.2 Roles of Tregs in NSCLC

4.2.1 Tregs in NSCLC initiation and progression

In early stage, the immune system maintains equilibrium by
eliminating spontaneously arising tumor cells through coordinated
innate and adaptive immune responses (90). However, when
malignant cells proliferate beyond the capacity of immunological
control mechanisms, this homeostatic balance is disrupted, leading
to impaired immune surveillance and functional deficits (91). Such
disruption enables immune escape and promotes malignant
phenotypes, including unchecked proliferation, genomic
instability, and metastasis. Among these, CD4"CD25" Tregs have
been increasingly recognized as critical mediators of immune
suppression in NSCLC (14). Clinically, increased Treg frequencies
are consistently observed in both tumor sites and peripheral blood
of lung cancer patients (92). This expansion is orchestrated by the
tumor microenvironment, where immunosuppressive cytokines
such as TGF-B and IL-10 induce naive T cell conversion into
Tregs, and chemokines like CCL22 mediate recruitment via
CCR4 signaling (93).
immunosuppression, forming a feedback loop that accelerates

Infiltrating Tregs then reinforce

immune escape (94). Moreover, TGF-B-induced Treg infiltration
suppresses cytotoxic T cell activity in NSCLC. These include
chemokine-mediated recruitment via CCL20/CCR6, CCL22/
CCR4, CCRS8, and CXCR3 (95, 96), antigen-driven clonal
expansion facilitated by dendritic cell presentation and TGF-B-
dependent polarization (96), metabolic reprogramming favoring

& ®
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glycolytic and lipid oxidation pathways to support Treg survival
(97, 98), and the contribution of tumor-derived extracellular
vesicles that enhance Treg proliferation and confer resistance to
apoptosis (99, 100).

4.2.2 Tregs in invasion and metastasis of NSCLC
Elevated Treg levels are strongly associated with advanced
clinical stage, poor differentiation, and enhanced metastatic
potential in lung cancer (68). Prognostic analyses consistently
identify tumor-infiltrating Treg abundance as an independent
These
immunosuppressive cells promote metastatic progression through

predictor of unfavorable clinical outcomes.
diverse biological pathways (101, 102). Tregs disrupt anti-
angiogenic signaling by inhibiting Thl-cell derived mediators
including TNF-o, IFN-y, and CXCL9-11 (103, 104). Hypoxia
further induce the VEGF production, fostering tumor
vascularization (105, 106). The stromal compartment contributes
to therapy resistance through elevated COX-2/PGE2 pathway
activity, which simultaneously enhances Treg differentiation and
metastatic potential (107, 108). Functionally, Treg-mediated
immune suppression manifests through impaired CD8" T cell
cytotoxic activity, with experimental depletion studies
demonstrating restored expression of effector molecules (perforin,
granzyme) and Th1 cytokines (109, 110). Clinically, elevated TGF-3
and IL-10 in circulation and tumor tissues reflect Treg-mediated
immunosuppression (111). Foxp3™ Tregs are increased in patient
blood and decline postoperatively, implicating them in tumor
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The role of regulatory T cells in non-small cell lung cancer progression.
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development (112). Notably, Tregs engage in functional crosstalk
with immune checkpoint pathways, particularly through their high
PD-1 expression, which appears to amplify immunosuppressive
activity and promote immune evasion (113). This mechanistic
insight has spurred the development of several Treg-targeted
therapeutic strategies. These include novel anti-CD25 antibodies
like RG6292, which is engineered to deplete immunosuppressive
Tregs while sparing IL-2 signaling in effector T cells, as well as
combination approaches that integrate immune checkpoint
inhibitors with Treg-targeting agents, currently under evaluation
(114). These next-generation approaches demonstrate improved
specificity and reduced toxicity profiles compared to earlier agents
such as diftitox (115). Additionally, metabolic reprogramming
remains a promising adjunctive strategy, with S-
adenosylmethionine (SAM) showing potential to modulate Treg
plasticity by downregulating Foxp3 and IL-10 while simultaneously
enhancing IFN-y production (116).

4.3 Dynamic interplay between Thl7 and
Treg cells in NSCLC pathogenesis

The functional plasticity between Th17 and Treg populations
represents a critical immunoregulatory mechanism in NSCLC, with
these cell subsets demonstrating capacity for bidirectional conversion
that dynamically shapes tumor immunity (13, 69). Cytokines such as
IL-1B and IL-6, secreted predominantly by tumor-associated
macrophages and stromal cells, in concert with suboptimal
concentrations of TME-derived TGF-f, drives Treg-to-Th17
reprogramming through Foxp3 suppression and impairment of
regulatory function (117, 118). This phenotypic switching involves
Treg acquisition of c-like properties, characterized by ROR-yt
upregulation, Foxp3 loss, and development of IL-17 secretory
capacity (119, 120). Post-transcriptional regulation further
modulates this plasticity, as demonstrated by miR-34a-mediated
enhancement of Th17 differentiation coupled with Treg functional
inhibition (121). Clinically, NSCLC patients exhibit concurrent
elevation of both subsets in circulation, with the Th17/Treg ratio
serving as a more informative immunological parameter than
absolute cell counts (13, 122). For example, Li et al. demonstrated
that NSCLC patients displayed a significant increase in the Th17/Treg
ratio post-treatment, suggesting its potential utility as a predictive
marker of therapeutic efficacy (13). This ratio demonstrates stage-
dependent progression, showing positive correlation with advancing
tumor burden (123). Notably, this balance shifts throughout tumor
progression: early-stage NSCLC, characterized by low TGF- and
high IL-6, favors Thl7 polarization, whereas advanced stages,
enriched in TGF-B, promote Foxp3 expression and Treg
dominance (124-126). Crucially, the immunological impact of
Th17 cells is not defined by their absolute numbers alone but by
their dynamic balance with Treg cells. This Th17/Treg interplay
determines the net immune response toward either tumor
suppression or promotion in NSCLC (Supplementary Table S1).
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5 Conclusion

The intricate interplay between Tregs and Th17 cells represents
a central axis of immune regulation in non-small cell lung cancer
(NSCLC). Tregs suppress anti-tumor immunity through cytokine
secretion, checkpoint engagement, metabolic modulation, and
inhibition of cytotoxic effector cells, thereby promoting tumor
immune evasion, angiogenesis, and metastasis. In contrast, Th17
cells display context-dependent functions—exerting either tumor-
promoting or tumor-inhibiting effects depending on the cytokine
milieu, tumor stage, and metabolic cues within the tumor
microenvironment. The dynamic balance and plasticity between
these two subsets, particularly their bidirectional interconversion
mediated by TGF-B, IL-6, and IL-1, critically shape the immune
landscape of NSCLC.

Targeting the Th17/Treg axis offers a promising strategy to
restore immune surveillance and improve therapeutic responses in
NSCLC. Advances in Treg-selective depletion, immune checkpoint
inhibition, and modulation of T cell differentiation through
metabolic or epigenetic interventions provide novel avenues for
immunotherapy. Future research should prioritize refining these
approaches, optimizing combination regimens, and identifying
predictive biomarkers such as the Th17/Treg ratio to guide
individualized treatment. A better understanding of the functional
plasticity between Tregs and Th17 cells will be essential to
overcoming immunosuppression and enhancing durable
responses in NSCLC patients.
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