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Immune system plays a central role in the pathogenesis of cancer and autoimmune

diseases. An entire field has emerged to identify separate minor cell subpopulations

carrying potential molecular targets or activation markers to study their prognostic

role in disease progression and severity or predictive potential to use

immunotherapy. However, the biomarker potential of minor populations is

limited, as it does not take into account systemic interactions between

populations of the immune system. A number of studies in the COVID era have

shown that the certain balance between immune cell populations in donor’s blood,

called ‘immunotype’, can predict the outcome of treatment and the onset of a

cytokine storm. This observation was extended to other diseases, including cancer

and autoimmunity. It was shown that the immunotype can be used to diagnose

both the presence of the disease itself, as well as its form or progression, to stratify

patients in the risk groups and to predict the effectiveness of therapy. The most

important advantages of immunotype-based diagnostics are its low invasiveness,

the possibility of multiple biomaterial sampling, and the complexity of the analysis
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by the simultaneous assessment of blood cell composition and their functional

activity. In this review, we summarize currently available studies of immunotypes

and defined key subpopulations, their possible impact in diagnostics and

personalization of the therapy in clinical routine practice in various diseases.
KEYWORDS
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1 Introduction

At present, there is a consensus on the central role of the

immune system in the pathogenesis of cancer and autoimmune

diseases (1, 2). This idea has served as a basis for more profound

study of the structure of immunity and the identification of

individual populations or markers of immunocompetent cells that

directly influence the development of the disease. The most obvious

example is the checkpoint molecules - markers capable of activating

or inhibiting the immune response when stimulated by a specific

ligand. For instance, presence of PD-1 expression on the surface of

lymphocytes is a target for anti-PD-1 therapy with nivolumab or

pembrolizumab in different forms of cancer (3, 4). CTLA-4, CD40,

ICOS, Lag-3, GITR, OX40, CD28, and many other cell surface

markers are also сheckpoint molecules, for which stimulation effects

have already been described and drugs based on monoclonal

antibodies that block or, on the contrary, activate their

downstream signals have been created (5, 6).

It should be noted that, despite autoimmune diseases and

cancer being opposite from an immunological point of view (in

the first case there is an overactivation of the immune system, in the

second case - it’s systemic or local suppression), the concept of

immune checkpoints has enabled us to develop tools to influence

immunomodulation using the same molecular targets (7). Thus,

drugs to the same checkpoints that have opposite methods of action

have been described (e.g., nivolumab, which blocks the suppressor

effect of the PD-1 molecule developed for cancer therapy (8), and

CC-90006, a PD-1 agonist that induces suppression of the immune

response for psoriasis therapy (9). The same is true for other

molecules in the checkpoint category (8, 10).

The quantitative assessment of the expression of a specific

molecule on tumor cells or on the surface of an immunocompetent

cell, assessed by immunohistochemistry or flow cytometry, is a

predictor for the use of immunotherapy (11, 12). In this regard, an

entire field has emerged to identify cell subpopulations carrying

potential molecular targeting or activation markers to study their

prognostic role in assessing disease progression and severity. A huge

number of minor subpopulations with statistically significant

correlation both with disease progression, its dynamics, and

prediction of therapy efficacy (especially immunotherapy) have

been identified (13–15).
02
While it seems logical to assess the expression of a specific

marker when administering a targeted drug, the relationship of one

specific population to the course of disease is highly contentious.

The immune system is a highly heterogeneous and dynamically

changing system where multiple populations have plasticity and can

change their functional activity depending on a combination of

factors presented at the systemic and local levels (16). The

interconversion of M1/M2 populations of macrophages (17) and

MDSCs (18), the repurposing of the Treg population into IL-17

producers in T2D (19), and the possibility of activation of effector

populations with an exhausted phenotype (20) may serve as vivid

examples. Thus, it is rather difficult to assess the role of a specific

population without understanding the context of the immune

response in a given case. For example, patients with high immune

infiltration in tumor tissue are known to have better survival in

cancer (21). However, if most of them have an exhausted

phenotype, successful therapy requires not only triggering the

immune response by blockade of a single suppressor mechanism,

but also providing an influx of naive T lymphocytes capable of

developing a cytotoxic response (22, 23). In this case, peripheral

blood acts as a source of immune system reserves, and therefore it

would be reasonable to assess the potential and consistency of

systemic immunity - to evaluate the pool of naive and effector cells,

to assess the ratio of effector and suppressor components (24). The

same approach is applicable to autoimmune diseases - in T1D a

decrease in Treg penetration into pancreatic tissues has been

described. If there is a defect in the development of this

population itself or its functional failure (e.g., decreased

expression of CD39/CD73 system, CTLA4, FoxP3), targeted

immunotherapy aimed at attracting Treg cells or activating its

suppressor capacity will fail (25).

In order to assess the full context of the processes occurring in the

immune system at a given time point, the concept of immunotypes -

clustering of patients (suffering from the same disease) depending on

the ratio of key subpopulations of the immune system - is becoming

more widely used. Flow cytometry, bulk RNAseq, and scRNAseq of

peripheral blood cells, lymph nodes, tissues, tumors, and foci with

autoimmune lesions are widely used for a comprehensive assessment of

the immune system (26, 27).

The huge advantages of immunotyping of peripheral blood are

the high availability of biomaterial, the possibility of regular
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monitoring and the completeness of the study. These properties make

immunotyping a promising tool in healthcare, as they make it

possible, based on a blood test, to divide donors by the risk of

developing the disease, indicate the possibility of its presence or its

specific form, and predict the effectiveness of therapy. Due to the

simplicity of its use (since it is possible to donate blood for such an

analysis at any time during a routine checkup), immunotyping can

become one of the starting points for differential diagnosis in routine

clinical practice (Figure 1). In another hand, immunotyping allows

the assessment of the contribution of a particular state of the immune

system as a whole to the development of a disease or immune

responses to a particular pathological process, and to identify new

predictive and prognostic biomarkers.

Here, we provide examples of donor stratification based on

immune status and how determining this status on peripheral blood

may impact therapeutic decisions or predicting disease outcome.
2 Immunotypes of healthy individuals

At the start, the purpose of identifying immunotypes of healthy

donors was to assess the influence of age, gender, infection, and

vaccination status on the subpopulation structure of the immune

system. Studying the immunotypes of healthy donors helps

establish the ‘reaction norm’ for the ratios of different immune

populations, enabling future comparisons with data obtained from

patients suffering from disease.

In 2017, Kaczorowski et al. (28) analyzed 1546 samples from

healthy donors and presented a possible approach to clustering

samples and identifying immunotypes. This study was the first

attempt to apply a donor clustering approach to define any
Frontiers in Immunology 03
dependencies between immune status and different variables such

as age, gender, and genetic factors. One of the primary findings is

that the Euclidean distance between points representing twins was

smaller than that between unrelated donors, indicating a partial

association of the subpopulational structure of the immune system

with genetic factors. The authors defined key combinations of

immune populations to predict response to immune system

stimulation. The differences between these feature combinations

were highly associated with, but not predetermined by, age, gender,

and CMV seropositivity. Moreover, logical assumptions about the

role of CD4/CD8 ratios or the centrality of lineage populations in

immunotype formation (monocytes, T lymphocytes, NK cells) did

not hold; samples with marked imbalances in such populations

were not clustered separately. Thus, it has been hypothesized that

individual immune cell measurements alone do not identify

individuals with unusual phenotypes, and only by analyzing their

overall balance of immune cell subsets can such donors be

identified. Researchers have shown that the diversity of possible

immunotypes increases in the aging subset compared with younger

donors if clustering was performed separately, and this suggests the

immune system is more homogeneous in healthy donors at a young

age. The same observation was noted in monozygotic twins (29).

Unfortunately, the authors did not specify which parameters in

the balance of immune populations were stratifying the

immunotypes, limiting themselves to listing all the analyzed

populations. Nevertheless, this study showed a possible effect of

using clustering of donors by immunotypes and identifying

associations with various parameters or directions of immune

response development. This led to the further development of this

area and the extrapolation of the approach to various diseases and a

deeper study of the immune landscape of healthy donors.
FIGURE 1

Possible application of immunotype concept. (A) Research step. Defining of immunotypes and their optimal number present in the cohort with the
same condition, identification of critical parameters for immunotype stratification, assessment on survival or prognostic impact. (B) Clinical use of
defined immunotypes by patient/donor stratification.
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Cevirgel et al. (30) found 9 immunotypes in 318 healthy donors.

The difference between immunotypes was largely determined by T

lymphocyte subpopulations, including the prevalence of naive or

memory subpopulations. Only one immunotype (#8) was

unambiguously associated with an increased presence of B

lymphocytes, two more (2 and 3) were partially associated with

an increased content of classical monocytes (Table 1).

This study was able to establish an association between a

specific immunotype and age. Immunotypes 1 and 3, which

pertain to younger individuals, showed the the highest percentage

of CD4+ true naive and CD8+ true naive T cells.

The authors hypothesized that immunotype 6, with a similar

percentage of true naive CD4+ T cells, but comprised of older

individuals, represented a cluster of immunologically healthy

donors. Meanwhile, immunotypes 7, 8, and 9 (mean age > 70 years)

may be the result of a high degree of immune system remodeling.

Interestingly, immunotype 2, despite being the second youngest

immunotype in terms of mean age, showed higher levels of HLA-

DR+CD4+ cells than immunotypes 1, 3, 5, and 6, and fewer true

naive CD4+ cells, which may indicate early signs of a phenotype

associated with immune system aging. In addition, the authors

examined the effect of immunotype on immune system stability

during vaccination. Immunotypes 1, 5 and 6 were the most stable

one year after vaccination, while immunotypes 2, 7, 8 and 9 had the

lowest stability.

The authors attributed these differences to the number of HLA-

DR+CD4+ and HLA-DR+ CD8+ T cells, which differed between

these clusters. When analyzing the response to influenza

vaccination, immunotypes 1, 5, and 6, which were characterized

by high stability, showed a strong increase in CD4+CD38+ Tfh cells

on day 7 after vaccination, in contrast to immunotypes with low

stability. These observations suggest that the stability of the immune
Frontiers in Immunology 04
system over time may be a feature that is related to the composition

of immune cell subsets and immune activation of cell subsets

associated with vaccination.

Subsequently, as a continuation of the previous study, Cevirgel

et al. developed the idea by comparing immunotype identity to the

responses to Quadrivalent Inactivated Influenza Vaccine (QIV),

Prevenar 13 (PCV13) and SARS-CoV-2 vaccines (mRNA-1273 or

BNT162b2) vaccines (31). Immunotype 1 was associated with

increased odds of belonging to a higher quartile of triple vaccine

response. In addition, individuals with immunotype 6 also had

significantly increased odds of having a higher quartile of triple

vaccine sensitivity. Conversely, individuals assigned to immunotype

8 had significantly lower sensitivity to the triple vaccine. In a

separate ordinal logistic regression model, CMV seropositivity per

se was not associated with response to the triple vaccine.

The role of CMV in immunotype formation is a matter of

contention, as well. Some researchers have emphasized age as the

primary factor during which the number of CMV-seropositive

donors increases, and have linked the formation of a particular

immunotype to aging. Kaczorowski et al. divided the cohort into

several age groups and compared CMV-seropositive and

seronegative donors within them. CMV-seropositive donors were

found to have a profile closer to the “aging” immunotype even in

groups with younger participants (28).

In the study by Cevirgel et al. two immunotypes (5 and 8)

contained 91 and 88% CMV-seropositive donors. These

immunotypes are characterized by increased CD4+ Tscm and

CD95+ B lymphocytes, respectively, with decreased naive T cell

subpopulations. These ratios reflect the activation of the immune

system and logically explain the results of such clustering. In

contrast, clusters with low CMV content (3, 4 and 6) were

characterized by prevalence of naive T lymphocytes (31).
TABLE 1 - Immunotypes described in Cevirgel et al. study.

Immunotype CMV+ (%) Immune subsets (high) Immune subsets (low) Association

1 49% CD8+ True naive
CD4+ Treg, CD4+ CD95+, CD8+ CD95+,
CD4+ Tcm, CD8+ Tcm

Younger age

2 77%
Classical monocytes, CD4+ HLA-DR+, CD4+
Tcm, CD8+ Tem

CD8+ True naive
Early signs of immune
system aging, CMV positivity

3 10%
CD8+ True naive, classical monocytes, CD4
+ Tscm

CD4+ CD95+ Younger age

4 19%
CD8+ True naive, CD4+ HLA-DR+, CD4
+ Tcm

CD4+ Treg No clear associations

5 90% CD4+ Tscm
CD8+ True naive, classical monocytes, CD4+
HLA-DR+, CD4+ Tcm, CD8+ Tcm

aging‐associated phenotype,
CMV positivity

6 16% CD8+ True naive, CD4+ Tscm, CD8+ Tscm CD4+ HLA-DR+, CD4+ Tcm aging‐associated phenotype

7 61%
CD4+ Treg, CD4+ CD95+, CD8+ CD95+, CD4
+ HLA-DR+, CD4+ Tcm, CD8+ Tem

CD8+ True naive Remodeling

8 88% CD19+ CD95+ CD8+ True naive, CD4+ Tscm, CD8+ Tscm Remodeling, CMV positivity

9 19%
CD8+ CD95+, CD8+ Tscm, CD4+ Tcm, CD19
+ CD95+

CD8+ True naive Remodeling
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3 Immunotypes of autoimmune
diseases

3.1 Type 1 diabetes mellitus

Type 1 diabetes is an autoimmune disease, when insulin-

producing beta cells are destroyed by the immune system.

Analyses of pancreas sections harvested from individuals with

T1D have shown fulminant immune infiltration within individual

islets, corroborating a key role for CD4+ and CD8+ T cells (32), as

well as NK (33) in beta cell destruction.

Shapiro et al. (34) applied clustering of patients by immune

system indicators of peripheral blood in type 1 diabetes mellitus.

Initially, the authors demonstrated that the trends in immune

profiles in T1D patients were generally similar to healthy donors

(HD) and divided into 4 clusters. However, direct comparison

revealed an average upward shift in cluster 1 and a downward

shift in cluster 3 for T1D trajectories, and this fact allows to suggest

that T1D patients demonstrate accelerated aging changes. The

trajectories tended to shift further apart over time, which

collectively suggests that there are distinguishable, somewhat

distinct age-related changes in immune trajectories in people with

T1D. The authors found that T1D patients showed some

acceleration of immune system aging, unrelated to CMV

seropositivity, glycated hemoglobin levels, and genetic risk of

developing T1D (as measured by the GRS1 scale). Although the

researchers did not identify individual clusters of immune

composition in T1D patients, they did develop a model for

predicting T1D while correcting for the age-related changes

identified. This enabled a clear separation of the cluster of T1D

patients from HD and relatives of T1D patients based on the

analysis of 48 parameters, with a prediction accuracy of 82.3%.

The greatest mean difference between T1D and healthy donors

(without significant age dependence) was a significant increase in

the frequency of CXCR3 expression among naive CD8+ T cells/

altered expression of the co-inhibitory PD-1 receptor in subgroups

of T cells. Despite a significantly increased frequency of PD-1+ cells

in naive CD4+, naive CD8+, and CD8+ Temra subgroups in T1D

participants, PD-1 expression intensity (MFI) was reduced in T1D

participants in most subgroups analyzed: CD4+ Tem, CD4+ Temra,

CD4+ Tcm and CD8+ Tcm. Interestingly, MFI PD-1 was also

significantly reduced in the CD4+ and CD8+ memory T cell subsets

of negative autoantibodies (AAb-) relatives compared to HD,

suggesting a potential genetic predisposition to altered PD-1

expression. HLA-DR MFI was elevated in participants

heterozygous for HLA-DR4 compared to those carrying other

HLA class II genotypes (DRX/X), and further increased in

participants homozygous for HLA-DR4. Notably, the association

between HLA-DR4 genotype and HLA-DR MFI on monocytes was

present in all groups, suggesting that this genetic factor of immune

phenotype may act independently of AAb positivity or

disease status.

Larsson et al. also applied clustering to identify differences

between the immunotypes of healthy donors and T1D patients.

When comparing clustering between T1D patients and healthy
Frontiers in Immunology 05
donors, differences in the size and intensity of CD4+ and CD8+ T

cell, B cell, NK cell, monocyte, and eosinophil clusters were

observed (35). Researchers have found that an increase of

activated Tregs, activated CD4+ T cells, activated CD8+ T cells,

CD4+CD8+ T cells, Th1 T cells, Th17 T cells and central memory

CD8+ T cells was associated with the presence of T1D. In addition,

there were several clusters associated with healthy subjects, namely

Th2 T cells and naive CD4+ T cells. Cluster analysis revealed lower

levels of galectin-10+ eosinophils and higher levels of immature

eosinophils in patients with type 1 diabetes mellitus.

A 2024 study by Honardoost et al. (35) found that patients with

type 1 diabetes had a number of immunophenotype differences

from healthy controls, namely increased Mo/cDC cells, naive and

effector T cells, CD8+ naive T cells, and C-monocytes and pDC;

decreased lymphoid cells, CD4+ effector memory (EM) cells, Treg

cells. Additionally, the ratio of CD4+ and CD8+ cells to Treg cells

was increased in T1D patients. Notably, this study, which was

conducted on 46 stage 3 T1D patients, and 31 matched controls

found that presence of HLA risk types had absolutely no effect on

clusterization in both patients and controls.

This study focused on assigning risk factors (TMZ score) to cell

types through their differentially expressed genes (DEGs), allowing

patients to be clustered into groups based on the severity of the DEG

of their PBMCs. TMZ score was T1DM metagene z-score, which

was assigned in such a way as to allow for the differentiation

between patient subtypes, as well as between patients and

controls. 29/31 controls were in the low-response group (low

activity of immune response), as were 14/46 T1D patients,

suggesting they may have a milder systemic immune response.

The intermediate and high response groups were 33/35 T1D cases,

with the high response group including a single control patient, who

was diagnosed with T1D 4 years after blood was collected for

the research.

Verapamil, abatacept, and rituximab, three of the drugs used on

patients within this cohort after initial blood sampling, were found

to reduce TMZ score, while Teplizumab did not. Additionally,

DEGs in adaptive immune cells were found to be significantly

enriched in patients with T1D genetic risks. B cell DEGs showed the

highest correlation with heritability, largely driven by HLA locus

risks, which is notable, as HLA locus risks in themselves did not

affect clusterization.

A different 2024 study by Starskaia et al. (36) explored the

effects of first-appearing autoantibodies in children with T1D on

their overall immunotype. They found that children that had 2 or

more autoantibodies initially appear had increased NK cells and gd+
T cells, and decreased CD4+ and CD8+ T cells, the latter of which

was associated with disease progression. In patients where GADA

autoantibodies were first present, the populations of NK and CD8+

T cells were increased and the B cell subset was decreased. There

were also significant differences in NKT, MAIT cells, and mDCs

observed, however the low abundance of these cells in children

means further research is required for any true conclusion to be

reached about their populations. Children that initially presented

with IAA autoantibodies had elevated CD39 levels on CD4+ cells

than in the controls. Such an increase was observed on the CD25
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+CD127– subpopulation with the memory Treg phenotype and in

HLA-DR+ICOS+ T cells.

The other important finding of this study is identifying CD161

elevated levels on NK cells in 2 and more AAb groups compared to

control. The difference was prominent at the very early stage of

disease development, before seroconversion. At the same time, the

expression levels of CD27, a marker associated with immature

phenotype of NK cells, were lower cases of ≥2 AAb first group

than in controls. Another important feature of the group with

multiple AAbs was a decrease of inhibitory molecule TIGIT

expression on the subsets of CD4+ cells. Based on these findings,

we can conclude that the appearance of the multiple Aab phenotype

is associated with active proinflammatory processes which are

revealed as increase of effector populations and decrease of

regulatory subsets.

This study is important because it shows the applicability of the

division into immunotypes for predicting the phenotype of diabetes

mellitus and the time of its manifestation. Potentially, the concept of

immunotypes would be useful for determining changes in the

immune status of T cells before seroconversion and can improve

early diagnostics of T1D during monitoring study of genetically

predisposed individuals.
3.2 Kawasaki disease

Kawasaki disease (KD) is considered a kind of systemic

vasculitis syndrome, and it primarily invades the medium-sized

muscular arteries. Histologically, coronary arteritis begins 6–8 days

after the onset of KD, and leads immediately to inflammation of all

layers of the artery. The inflammation spreads completely around

the artery; as a result, structural components of the artery undergo

intense damage; the artery then begins to dilate. KD arteritis is

characterized by granulomatous inflammation that consists of

severe accumulation of monocytes/macrophages. Aberrant

activation of monocytes/macrophages is thought to be involved in

the formation of vascular lesions (37).

A 2023 study by Cao et al. (38) analyzed the PBMC of 82

Kawasaki Disease (KD) patients through flow cytometry and bulk

RNAseq, with 6 patients further having their PBMC analyzed with

scRNAseq. Comprehensive weighted gene co-expression network

analysis was used to analyze bulk sequencing results for gene

upregulation in monocytes that were strongly correlated to KD.

GO analysis of these DEG found that Kawasaki patients have genes

correlated with the proliferation of PBMC significantly upregulated.

As KD causes severe inflammation to the point of causing vascular

damage before typically self-resolving, it is logical for the monocyte

population to rapidly expand in this condition.

Upon flow cytometry, a significant increase in the population of

B cells was discovered, with the populations of CD4+ and CD8+ T

cells, as well as NK cells, being significantly decreased. Notably, the

ratio of CD4+/CD8+ T cells was higher in the KD group than in the

control group.

scRNAseq revealed that 30% of the total cell population of KD

PBMC was composed of CD4 T cells and B cells. As immune
Frontiers in Immunology 06
landscape changes suggested a link between CD4+ T cells and KD,

the T cells were extracted from the dataset, and reanalyzed,

demonstrating that 83% of T cells were naive, 13% were Treg

cells, and 4% were T helper 2 cells; the majority of cells

differentiating into Treg and Th2 suggests they play a major role

in the vascular damage the inflammation of this disease causes.

These three types of cells were also found to be enriched in the

COVID signaling pathway, with Treg and T helper 2 cells primarily

associated with viral or bacterial infection and cardiomyopathy

pathways. Unfortunately, the small size of the cohort analyzed by

scRNAseq didn’t allow authors to make some strong conclusions

and also a comparison offlow cytometry data with scRNAseq can be

helpful to draw the most optimal way of clusterization of KD

patients. Obviously, the sample needs to be expanded to identify

any patterns within patients and to find links with prognosis

and therapy.
3.3 Systemic lupus erythematosus

Systemic lupus erythematosus (SLE) is a quintessential

autoimmune disease, marked by recurring episodes and periods

of remission, with the potential to cause extensive damage to

multiple organ systems and tissues. A defining characteristic of

SLE is the production of autoantibodies that target self-antigens,

leading to the creation of immune complexes. These complexes

accumulate within blood vessels, triggering intense inflammatory

reactions that can lead to the dysfunction of various organ systems.

Recent medical advances have shed light on the etiology of SLE,

with increasing recognition of dysregulated immune mechanisms

involving both the adaptive and innate immune compartments

(39). Perez et al. (40) analyzed the PBMC of 162 patients with

systemic lupus erythematosus using bulk sequencing and single cell

transcriptomics. They found that lupus patients had CD4 T cell

lymphopenia, a decrease in naïve CD4+ T cells, clonal expansion of

cytotoxic GZMH+ T cells, and a limited presence of CD8+ T cells,

yet not CD4+ T cells. Notably, patients receiving oral steroids had

an increase in CD8+ T cells, and those receiving immunosupressor

azathioprine had a decrease in NK cells, despite this population not

being different from healthy controls.
3.4 Rheumatoid arthritis

Rheumatoid arthritis (RA) is a chronic destructive

inflammatory synovitis, accompanied by wider clinical sequelae

including comorbidities particularly affecting systemic bone,

vasculature and metabolic function, and cognition (41).

Lewis et al. (42) analyzed 90 patients with early RA that were

naive to therapy through scRNA of synovial fluid, with the sample

size comprising 87 after quality control (QC); analysis of the whole

peripheral blood of 67 of these patients was also analyzed. They

found that synovial fluid analysis could be reliably used to

differentiate between RA pathotypes, namely lympho-myeloid,

pauci-immune fibroid, and diffuse-myeloid based on their
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immunophenotype profiles; they were also found to strongly

correlate with results obtained from more invasive methods, such

as biopsy of synovial membrane. Unfortunately, in this study,

analysis of peripheral blood was found to be less robust, with

only 8 differentially expressed transcripts between pathotypes, as

compared to 3,000 in synovial fluid, allowing observation of just two

RA pathotypes: diffuse-myeloid and pauci-immune fibroid.

Additionally, synovial fluid could be reliably used to track

response to disease-modifying antirheumatic drug (DMARD)

therapy, whereas PBMC analysis was not found to have robust

enough differences to be used for tracking progression. Despite this,

PBMC analysis was found to be potentially beneficial as a non-

invasive diagnostic tool, albeit one that is less specific than that of

synovial fluid.

Hedman et al. (43) analyzed the PBMC of 90 RA patients using

flow cytometry and glucocorticoid signature analysis. In both early

and established RA patient immunophenotypes, classical and non-

classical monocytes, as well as T helper 1 and 2 cells were elevated,

while NK and B cells were significantly decreased in early and

established RA, respectively. Notably, an elevation in the level of B

cells was noted in patients with early RA, especially B memory cells.

Glucocorticoid but not MTX treatment was found to strongly

correlate with restoration of monocyte population proportions.

Treatment with MTX was found to reduce memory and plasma B

cells and CD4+ T cells (Th1 and Th17). TNF inhibitor (TNFi)

treatment in patients with established RA significantly increased

mature B cell levels, with minimal effect on other cell types. Authors

noticed that a decrease in mature B cells were significantly

associated with RA compared to healthy controls, suggesting that

changes in these populations in patients during treatment may be

associated with the treatment outcome.

Decreases in mature B cells and increases in monocyte

populations were significantly associated with RA across the

board, so it was concluded that restoration of these populations

to levels more comparable with healthy controls was indicative of

treatment outcome. Based on this hypothesis, the team created a

prediction algorithm to determine treatment outcomes prior to

therapy. They found good success in predicting outcomes for MTX

response, with less precision with patient response to TNFi. This is

likely due to the significantly smaller sample size of patients treated

with TNFi (37 as compared to 53).

While further research is needed in this area, with significantly

larger populations, this is an area where immunophenotype analysis

has the potential to have extremely significant influence in the

sphere of treatment outcomes.

Kubo et al. (44) performed peripheral blood immunophenotyping

of two large cohorts of RA patients. The first cohort, the discovery

cohort, was initially composed of 533 immunophenotyped patients,

then, after 24 weeks of DMARD treatments, 290 of the original cohort

were once again phenotyped. The second cohort, the validation

cohort, initially comprised 206 patients. After phenotyping, 21

patients with low disease activity were excluded; the remaining 185

patients were then treated with DMARDs and periodically checked in

on in a 26 week period.
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Analysis found considerable heterogeneity between RA

patients, with clusters not fully corresponding to typical criteria

based on best practice clinical syndromes or serum markers.

Notably, certain groups of RA patients were found to have

immunophenotypic patterns comparable to those of healthy

controls. Patients were clustered into 5 distinct groups –

peripheral blood cell abundance phenotypes- little difference

(PCAP-LD), peripheral blood cell abundance phenotypes- slightly

difference (PCAP-SD), peripheral blood cell abundance

phenotypes- T cell and B cell activation (PCAP-TB), peripheral

blood cell abundance phenotypes- TEMRA CD4 activation (PCAP-

T4), and peripheral blood cell abundance phenotypes- TEMRA

CD4 and Th1 activation (PCAP-T4T1).

Immunophenotyping results were affected by many factors,

including age (PCAP-LD patients were younger, though a similar

pattern of differences were observed in controls based on age),

glucocorticoid, and MTX use.

This study found that immunophenotype at treatment may

dictate prognosis results. JAK inhibitors, though their use was

relatively limited across the patient cohort, were found to be

linked to increased efficacy of therapy. IL-6 inhibitors were found

to be most effective in PCAP-LD patients, while TNF inhibition was

best in PCAP-T4, and CTLA4-Ig in PCAP-T4T1. Groups treated

with “expected” DMARDs outperformed those that were not by

15.3% (39.9% vs 24.6% achieved remission), with patients in the low

activity group outperforming by 20.6% (80.8% vs 60.2% remission).
4 Immunotypes of cancer

In cancer, researchers have also begun to step towards the

concept of individual populations and towards the development of

immune signatures in peripheral blood that have prognostic or

predictive value. One of the first attempts was the work of Bhutani

et al. on patients with multiple myeloma (45). Immunotyping

results showed significant changes in the peripheral compartment

of mature NK cells in minimal residual disease (MRD) neg and

MRDpos patients. MRDpos patients had a reduced proportion of

circulating NK cells compared with the MRDneg counterpart. In

the MRDpos group, NK cells more frequently expressed the

activating receptor KIR2DS4 and less frequently expressed the

inhibitory receptor NKG2A. This suggests that NK cells induced

in the periphery in patients with MRDpos retain the activating

receptor KIR2DS4 activation capacity. In addition, patients with

MRDpos showed a deficiency of peripheral NKG2A+ NK-T-like

cells and KIR3DL1+ T cells compared to the MRDneg group. These

results indicate that MRD status differs in the immunotype of

mature NK, NK-T-like, and T lymphocytes in peripheral blood,

which was hypothesized to be used as a prognostic test system.

Shen et al. (46) analyzed the peripheral blood immune status of

188 melanoma patients receiving immune checkpoint blockade

(ICB) therapy (either antibodies to PD-1 (n=76, 40%), antibodies

to CTLA-4 (n=13, 7%), or both in combination (n=99, 53%)). The

authors applied cluster analysis (survClust) to stratify patients based
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on a multivariate model of 78 flow cytometry parameters. Careful

cross validation analysis identified 3 groups of patients with

different expression patterns of immune markers. The first

immunotype was unequivocally characterized by high expression

of LAG-3 (lymphocyte-activation gene 3) in multiple T cell

populations, the most representative of which were LAG-3+CD8+

T cells, as a consequence of which the authors named the

immunotype LAG+. The LAG+ immunotype was represented by

17.0% (23 of 136) of patients and was partially defined by the

presence of Ki67-LAG-3+CD8+ T cells. The second immunotype

(LAG-) reflected 65.4% (89/136) of the population and was defined

by low numbers of LAG-3+ T cells and low levels of other associated

markers in T cells. The third immunotype had a high proportion of

LAG-3+ T cells with concurrent high numbers of proliferating Ki67

+ CD8+ T cells and T cells expressing TIM-3 and ICOS. The

authors named this type the proliferative (PRO) immunotype, and

it accounted for 17.6% (24 of 136) of patients.

Melanoma patients with LAG+ immunotype had worse

outcomes after ICB with a median survival of 22.2 months

compared to 75.8 months for patients with LAG- immunotype.

An independent cohort of 94 urothelial carcinoma patients

receiving ICB (included also in this study) in whom the LAG+

immunotype was significantly associated with response, survival,

and progression-free survival was used for validation. Multivariate

Cox regression analysis and stratified analysis also show that LAG+

immunotype is an independent indicator of outcome compared to

known clinical prognostic markers and previously described

biomarkers. Thus, the authors concluded that the LAG+

immunotype identifies patients who are significantly less likely to

benefit from ICB. In the context of this study, it is interesting that

Lag-3 is a checkpoint inhibitor molecule, including determining the

exhausted phenotype of immune cells (47). Thus, we can assume

that the LAG+ cluster is a group enriched with lymphocytes with

suppressed effector function. This, among other things, may explain

the negative effect on survival - the presence of an additional

suppressor mechanism besides PD1 enhances suppression of

immune system activity and creates conditions for bypassing

immune activation due to the use of PD-1 inhibitors. This study

provide an example of potentially useful determination of

immunotypes during treatment in order to timely correct therapy,

i.e. it has been shown that combination therapy aimed at blocking

both PD-1 and Lag-3 can be used for this group (48).

In an analysis of a patient cohort of 804 patients with metastatic

castration-resistant prostate cancer (mCRPC) treated with dendritic

cell vaccines and chemotherapy, Hensler et al. (49) identified two

major clusters of patients. Cluster 1, a high inflammation cluster,

was significantly enriched with 68 immune-related genes compared

to cluster 2, a low inflammation cluster (CD3E, CD8A, IL2, STAT4,

GATA3, CD28, ICOS, Lag-3, CTLA4, FOXP3 and others). This

observation was confirmed by analyzing the functional activity of

selected genes, which revealed a significant association between

DEGs, in particular the positive regulation of adaptive immune

response as well as cytotoxic T and NK cell immunity. In both study

groups, the high inflammation cluster was associated with longer

OS (p<0.001) compared to the low inflammation cluster.
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Non small-cell lung cancers (NSCLCs), similar to mCRPCs, had

longer OS in the high inflammatory cluster, with 44 genes associated

with T cell activation were significantly represented in two arms of

the study. Autologous DC-based vaccine (DCVAC) treatment

conferred a significant OS advantage to patients with high

expression of genes associated with B cells, CD8A+ T cells, and DCs.

In contrast, epithelial ovarian cancer (EOC) had better OS in

the low inflammatory cluster, though only when treated with

DCVAC. A negative prognosis was found to be associated with 5

genes in DCVAC patients, namely CD3E, CD4, forkhead box P3

(FOXP3), granzyme A (GZMA), granzyme B (GZMB), HLA-DOB,

and interleukin 4 (IL4). A high frequency of regulatory T cells in

peripheral blood of EOC patients was associated with poor response

to DCVAC.

Chauchan et al. (50) examined the PBMC of 104 patients with

HER2 negative breast cancer using flow cytometry, with a further 63

of these patients also having biopsies analyzed by the same method.

Breast cancer patients were found to have significantly higher

percentages of monocytes, and lower percentages of pDCs and

CD4+ T cells in PBMC. Patients were then separated by breast

cancer type – hormone receptor positive (HR+) and triple negative

(HR-) - and it was found that HR positive patients had significantly

higher levels of NK cells. Furthermore, triple negative patients had

higher neutrophil and lymphocyte counts, as derived from whole

blood analysis.

Upon analysis of treated and untreated breast cancer patients to

determine whether it was treatment affecting the patients’

immunophenotypes, it was found that there were no significant

differences between the phenotypes of untreated patients and

healthy donors, while patients who previously received

chemotherapy or CDKi had a lower percentage of pDC and CD4

+ T cells, and a higher percentage of monocytes. When comparing

treated and untreated patients, patients who underwent treatment

also had lowered lymphocyte counts.

Notably, there were no differences found between the

phenotypes of patients who underwent treatment previously, and

those currently undergoing treatment, suggesting that these changes

may be permanent.

Patients were found to have significantly higher EMCD4+ T cells

and lower CD4+ T cells than healthy donors, with this effect being

more pronounced in patients who had gone through treatment.

Additionally, treated patients had significantly higher levels of naive

B cells, and lowered levels of memory B cells, with this trend further

influenced by therapy – these patients had more naive but fewer non

switched memory B cells. M2 monocyte levels were lowered in

patients. Despite having comparable levels of myeloid-derived

suppressor cells (MDSc) to healthy control across all groups,

treated patients were found to have a significantly higher MDSC to

T cells ratio, with therapy reducing this ratio. MDSC to T cell ratio

was significantly higher in BC patients compared to HD. Patients had

reduced CD16− mDC levels, and slightly higher levels of the highly

cytotoxic CD57+NK cells.

T cell phenotypic markers suggested that patients had higher

levels of T helper 2 and 17 cells. Further analysis found that the CD4

+ T cells and T regulatory cells from patients expressed high levels
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of immune checkpoint receptors, with Tregs further expressing

higher levels of CD39.

Further analysis was done to compare the relevance of PBMC

immunophenotypes to those within the tumor itself on the 63

patients who had biopsies taken in a similar timeframe to the

PBMC. It was found that CD4+ T cell, NK cell, and Mo-MDSCs

proportions in PBMCs correlated to their proportions within

the tumor.

None of the major subsets of immune cells were found to be

significantly associated with therapeutic outcome, other than pDCs,

which were correlated to poor outcome in the placebo-chemo arm

of the experiment. CD4+ TEMRA T cells were positively associated

with outcome in the placebo-chemo arm, while CD56bright NK

and CD8+ naive T cells were associated with treatment resistance.

When it came to the atezo-chemo arm, patients with higher levels of

Granzyme-B+ CD8+ T cells and switched memory B cells

correlated with positive outcomes, while increased numbers of

PD1+ CD4+ T cells and increased proportions of a naive

phenotype in B cells were associated with inferior outcome.

The most comprehensive study of peripheral blood

immunotypes in cancer is the work by Dykanov et al. (51),

summarizing data from 408 healthy donors and 442 cancer

patients, ages 16 to 98 years (total n = 850). This cohort

contained samples from patients with 84 different solid tumors

and 7 types of therapy. Frequencies of up to 650 cell types and

activation states were measured for each sample, and uniform

multiple approximation and projection (UMAP) was used to

display these characteristics in two dimensions. The authors

noted that patients with similar diagnoses did not form

distinguishable groups, nor did patients with similar lines of

therapy. Conversely, healthy donors and cancer patients formed

separate groups. Patients in different age groups also tended to

cluster together, which is consistent with both studies targeting

healthy donors and the fact that healthy donors tend to be younger

than patients with solid tumors. Thus, differences in immune

profiles between individuals in this pansolid cohort may be

explained by the presence or absence of cancer, regardless of

tumor type or treatment.

Five immunotypes (G1-G5) were identified using this approach.

In group G1, a high frequency of naive CD4+ T cells, naive CD8+ T

cells and naive B cells was detected. Group G2 revealed a higher

percentage of differentiated CD4+ central and transient memory T

cells, as well as CD39+ Treg. G3 showed an increased frequency of

mature NK cells as well as CD8+ transient memory and PD-1+

TIGIT+ CD8+ T cells. G4 was enriched with NKT cells as well as

terminally differentiated effector memory CD45RA+ (TEMRA) and

CD45RA- (TEM) both CD4+ and CD8+ T cells. Finally, G5 was

enriched with classical monocytes, HLA-DRlow monocytes and

neutrophils and contained fewer lymphocytes. The presence or

absence of a cancer diagnosis (healthy or cancer) and the age of the

patients were not evenly distributed between immunotypes.

Importantly, immunotypes G4 and G5, enriched with terminally

differentiated CD8+ T cells and classical monocytes, respectively,

contained very few healthy donors. Conversely, the G1

immunotype, with the highest percentage of naive T and B
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lymphocytes, contained the highest proportion of healthy donors.

The most frequently presented diagnoses in our internal cohort

contained similar ranges of immunotypes, suggesting that cancer

type was not a major factor in the distribution of immunotypes.

In addition, the authors evaluated the predictive role of

immunotypes in different tumors. Interestingly, breast cancer

patients with partial complete response to neoadjuvant

chemotherapy were more likely to belong to the G5 immunotype

than patients with residual disease (RD). Patients with partial

response to neoadjuvant chemotherapy had a significantly higher

G5 signature and a significantly lower G1 signature than RD

patients. The binary response stratification ROC-AUCs for G5

and G1 response were 0.79 and 0.25, respectively, suggesting that

immunotypic characteristics are sensitive to systemic changes

associated with response. G3 and G4 immunotypes tended to

develop a response in the same direction as G5, while G2 is close

to G1, indicating a broader shift in immune system composition

predicting effective responses to chemotherapy.

To assess the predictive role of identified immunotypes on

immunotherapy treatment, the authors analyzed two cohorts: 32

HNSCC treated PD-L1 inhibitors with anti-PDL1 durvalumab and

35 HNSCC patients (HNSCC-Nivo cohort) receiving first-line anti-

PD-1 nivolumab alone or nivolumab in combination with the

indolamine-2,3-dioxygenase-1 inhibitor BMS-986205 (IDOi). In

the first cohort analysis, no statistically significant association of a

specific immunotype with treatment response could be identified,

but responders tended to fall into the G4 cluster. When comparing

the predictive power of the G4 signature with the measurement of

PD-L1 expression in tumors by RNA-seq in patients from this

cohort, the G4 signature was shown to be significantly superior to

the assessment of PD-L1 expression in tissues when stratifying pre-

treatment response.

In the second case, responders were most often of the G2

immunotype, which allowed prognostically distinguishing

responders from non-responders with an accuracy of 76%. All

patients with a G2 profile responded to nivolumab. In this

context, the G2 signature demonstrated potential utility as a

prognostic biomarker for treatment of advanced HNSCC

with nivolumab.
5 Immunotypes of other diseases

The concept of immunotypes was actively developed during the

COVID-19 pandemic. A team of authors from the University of

Pennsylvania (52) encountered a number of problems when

examining the effect of individual subpopulations on disease

severity when analyzing the immune response to COVID-19.

First, there was significant heterogeneity between patients for

each immune parameter associated with the assessment of disease

severity. Second, these binary comparisons (e.g., one immune

subpopulation versus one clinical feature) did not allow for full

utilization of multivariate information in this dataset. This forced

the use of feature-weighted kernel density with UMAP visualization,

which allowed the discovery of similar patterns of immune system
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activation, converging on the order of 200 parameters. Using this

approach, the researchers identified three immunotypes: (i)

Immunotype 1 was associated with disease severity and

manifested by high CD4- T cell activation, lack of circulating

follicular helper cells, activated CD8-”EMRA”, hyperactivated or

depleted CD8- T cells. (ii) Immunotype 2 was characterized by

reduced activation of CD4+ T cells, Tbet+ effector CD4- and CD8+

T cells, proliferating memory B cells, and was not associated with

disease severity. (iii) A third immunotype was also identified, which

was negatively correlated with disease severity and had no obvious

activated T and B cell responses. Immunotype 3 was defined as the

intersection of the bottom 50% of five different flow parameters: PB

as percentage of B cells, KI67+ as percentage of non-naïve CD4+ T

cells, KI67+ as percentage of non-naïve CD8+ T cells, HLA-DR

+CD38+ as percentage of non-naïve CD4+ T cells, and HLA-DR

+CD38+ as percentage of non-naïve CD8+ T cells.

As for the general differences from healthy donors, the patients

had increase in the CD8+ CD45RA−CD27−CCR7+ EM and

CD45RA+CD27−CCR7− EMRA populations, and a decrease in

CD45RA−CD27+CCR7− EM cells. A significant increase in KI67+

and HLA-DR+CD38+ non-naïve CD8+ T cells in COVID-19

patients relative to HDs or RDs which indicates standard

response to the viral infection was also observed (53).

Thus, this study allows us to separate the group at increased risk

of complications in covid-19 based on the determination of the

immunotype, which can significantly facilitate the prediction of the

effectiveness of therapy and personalize the approach to

disease management.

In a study by Bodinier et al. (54), two immunotypes in critically

ill patients (septic patients undergoing major surgery or severe

trauma) with prognostic significance were identified. Immunotype

1, which had a negative prognosis, was characterized by elevated

levels of IL6 and IL10 in plasma, a significant increase in the

number of immature neutrophils (up to 80% during the first

week after trauma), and consistently low levels of mHLA-DR.

These patterns suggest a more pronounced dysregulation of the

immune system in patients with immunotype 1 immediately after

injury. Interestingly, T lymphocyte counts in both immunotypes

were comparable and within the range observed in healthy

volunteers. Although Immunotype 2 was also statistically

significantly different from healthy donors in terms of IL6, IL10,

and neutrophil counts, but had milder changes with a slower

immune response, its profile was closer to those of Immunotype

1, as well as in response to LPS and Staphylococcal Enterotoxin B

(SEB) stimulation. This fact indicates a significant dysregulation of

the immune system in Immunotype 1, which appears to lead to a

worsening of the course of the disease.

In another s tudy , researchers per formed a deep

immunoprofiling assay of patients with chronic kidney disease

(CDK) and healthy donors. It was found that three cell clusters

associated with CD56dim NK cells and B cells, respectively, and one

cluster corresponded to a combination of CD56bright NK cells; a

subset of monocytes were decreased in CKD. To test the potential of

immunotypes as diagnostic markers, authors constructed a random

regression model based on the 19 cellular and soluble parameters
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identified in this study to distinguish patients with CKD from non-

CKD controls. Using 19 immune variables, an overall area under

the ROC curve (AUC) of 0.917 was obtained to identify a patient

with CKD, with the most important parameter being the proportion

of CD38+ monocytes. In addition, slightly worse but still

satisfactory results were obtained in identifying a mild degree of

CKD compared with the control group, with an AUC of 0.889.

These results reveal promising possibilities for early diagnosis of

CKD using specific immunotypes. (55).
6 Discussion

Different pathologies may have different key populations

selected, and their number and the number of directly detected

immunotypes may vary. In addition, the immunotype identified is

not always clearly associated with the prognosis of the disease or the

effect of therapy. Many of the studies presented above simply

compare healthy donors and patients with a specific disease,

finding differences in immunotypes. However, it has been shown

that the inflammatory process has similar mechanics in various

diseases (56), suggesting a possible similarity in immunotypes

between diseases.

As we described above, authors apply different methods such as

flow cytometry (and different multicolor panels), scRNAseq and

bulk RNA seq, as well as different deconvolution models of RNAseq

data, different clustering methods and visualizations (such as PCA

analysis, t-SNE, UMAP). Previously, it was shown that RNAseq and

flow cytometry demonstrate partial correlation and differ between

immune subsets (57). Despite this fact, in the study of Dyikanov

et al, immunotypes defined by RNAseq and flow cytometry were

very close in their content and biological meaning. It seems logical

that standardization of using methods, panels and equipment

probably may allow to define more consistent immunotypes

between diseases of the same nature.

It is important to note, that despite such heterogeneity in

methods and diseases, in all subsets of the studied individuals,

clusters enriched in naive lymphocytes, effector immune cells, and

clusters with a pronounced predominance of immunosuppressed

populations are distinguished. Therefore, the assessment of

immunotype is reduced to the evaluation of the ratio of naive and

activated, suppressor and effector links. The main cell types that

allow for the stratification of immunotypes and the predictive role

of the immunotypes identified in various conditions are shown in

Table 2. The purpose of this review was primarily to summarize the

available data on subpopulations enriched in various diseases and

causing favorable and unfavorable prognosis. This attempt to

summarize immunotype studies and identify key populations is

shown in Figure 2. As we can see based on this figure, for both

cancer and autoimmune diseases, the populations defining a

particular prognosis are close to each other in biological terms

and essentially represent one or another immunotype with

activation or exhaustion. Based on this fact, we can tailor therapy

to the specific characteristics of an immunotype. For example, for

an immunotype with a pronounced pro-tumor profile in cancer, we
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TABLE 2 - Table summarizing the immunotypes identified in different conditions and diseases.

Disease
Number of
patients
and controls

Methods Number of immunotypes Discoveries Source

Healthy population

398 individuals

Flow or mass
cytometry,
functional
response
measurements

3

Immune variance correlated with age,
gender, and CMV seropositivity
CMV seropositive patients had profiles
close to the aging phenotype
Samples with marked imbalances in
monocytes, T lymphocytes, or NK cells
did not cluster separately
No detailed description of specific
immunotypes of healthy donors
Euclidean distance between points
representing twins smaller than between
unrelated donors, pointing to
genetic influence

(26)

210 twins
(105 pairs)

Flow and mass
cytometry,
immune cell
signaling, serum
protein
quantification,
hemagglutination
inhibition assays,
CMV serology

none

Immune system variation is largely non-
heritable
Immune system variance increases with
patient age

(29)

326 individuals

Hematology
analysis, flow
cytometry, CMV
and EBV
seropositivity
analysis

9
1
Increased: CD8 True Naive T cells
Decreased: CD4+ Treg, CD4+ CD95+,
CD8+ CD95+, CD4+ Tcm, CD8+ Tcm
2
Increased: Classical monocytes, CD4+
HLA-DR+, CD4+ Tcm,
CD8+ Tem
Decreased: CD8+ True naive
3
Increased: CD8+ True naive, classical
monocytes, CD4+ Tscm
Decreased: CD4+ CD95+
4
Increased CD8+ True naive, CD4+
HLA-DR+, CD4+ Tcm
Decreased: CD4+ Treg
5
Increased: CD4+ Tscm
Decreased: CD8+ True naive, classical
monocytes, CD4+ HLA-DR+, CD4+
Tcm, CD8+ Tcm
6
Increased: CD8+ True naive, CD4+
Tscm, CD8+ Tscm
Decreased: CD4+ HLA-DR+, CD4+
Tcm
7
Increased: CD4+ Treg, CD4+ CD95+,
CD8+ CD95+, CD4+ HLA-DR+, CD4+
Tcm, CD8+ Tem
Decreased: CD8+ True naive
8
Increased: CD19+ CD95+ v CD8+ True
naive, CD4+ Tscm, CD8+ Tscm
9
Increased: CD8+ CD95+, CD8+ Tscm,
CD4+ Tcm, CD19+ CD95+
Decreased: CD8+ True naive

Immunotype is defined by age; younger
individuals have higher levels of CD4
and CD8 true naive T cells
Older individuals show signs of immune
system remodeling
Immunotype 5 and 8 were largely
defined by CMV seropositivity

(30)

(Continued)
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TABLE 2 Continued

Disease
Number of
patients
and controls

Methods Number of immunotypes Discoveries Source

305 individuals
from the
above study

Serum antibodies
and vaccine
response profiles,
CMV seropositivity

see above

CMV seropositivity had no effect on
vaccine response
Immunotype 1 and 6 had increased
odds of belonging to a higher quartile of
triple vaccine response
Immunotype 8 had significantly lower
vaccine sensitivity

(31)

Diabetes

826 patients

AAB
measurements,
flow cytometry,
CBC, HbA1c, and
blood glucose
measurement,
CMV status,
genotyping of T1D
risk loci

? No direct immunotypes, phenotype
trajectories of disease in terms of
correlation to aging.
T1D
Increased: CD4+ T cells
Decreased: B cells and CD8+ T cells;
naive -> memory cells in adaptive
immune system

A model for predicting DM1 while
correcting for the age-related changes
was developed Initially similar to
healthy donors, then deviate over the
first 30 years of life
Direct comparison demonstrated time/
age-linked trajectories of the
phenotypes, pointing to distinct, age-
related changes in DM1 patients
Patients showed accelerated immune
aging, unrelated to CMV status,
glycated hemoglobin levels, and genetic
risk of developing DM1

(34)

12 patients Mass cytometry

2
T1D
Increased: activated Tregs, activated
CD4+ T cells activated CD8+ T cells,
CD4+CD8+ T cells, Th1 T cells, Th17 T
cells, transitional B cells, memory
resting B cells, memory B cells,
immature eosinophils
Healthy
Increased: Th2 T cells, IgD, galectin-10
+ eosinophils

spanning tree of major cell populations
present in the blood of twelve patients
with T1D and twelve healthy subjects
showed differences in immune system
balance Absence of galectin-10hi
eosinophilic subgroup in individuals
with T1D compared with
healthy controls.

(58)

46 patients
scRNAseq, SNP-
array
genotyping, FACS

2
T1D
Increased: Mo/cDC cells, naive and
effector T cells, CD8+ naive T cells, C-
monocytes, pDC, CD4+ and CD8+/Treg
cell ratio
Healthy
Increased: lymphoid cells, CD4+ EM
cells, Treg cells

TMZ score HLA risk types for T1d had
no effect on clusterization, though B cell
DEGs showed the highest correlation
with heritability, largely driven by HLA
locus risks.
TMZ score was T1DM metagene z-
score, which was assigned in such a way
as to allow for the differentiation
between patient subtypes, as well as
between patients and controls. 29/31
controls were in the low-response
group, as were 14/46 T1D patients,
suggesting they may have a milder
systemic immune response. The
intermediate and high response groups
were 33/35 T1D cases, with the high
response group including a single
control patient, who was diagnosed with
T1D 4 years after blood was collected
for the research.
Verapamil, abatacept, and rituximab
decreased TMZ score, teplizumab
did not.

(35)

29 patients Mass cytometry

3
≥2 autoantibodies
Increased: NK cells and gd T cells
Decreased: CD4+ and CD8+ T cells
GADA
Increased: NK and CD8+ T cells
Decreased: B cells

Different T1D phenotypes can be
predicted by immunotyping of
peripheral blood

(36)

(Continued)
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TABLE 2 Continued

Disease
Number of
patients
and controls

Methods Number of immunotypes Discoveries Source

IAA
Increased: CD39 levels on CD4+ T cells

Kawasaki disease 82 patients
Flow
cytometry,
bulkRNAseq

2
Kawasaki
Increased: B cells, ratio of CD4+/CD8+
T cells
Healthy
Increased: CD4+ and CD8+ T cells,
NK cells

30% of the total cell population of KD
PBMC was composed of CD4 T cells
and B cells
3% of T cells were naive, 13% were Treg
cells, and 4% were T helper 2 cells

(38)

Systemic
lupus
erythematosus

162 patients
Bulk sequencing,
single
cell transcriptomics

2
Lupus
Increased: CD4+ T cells, GZMH+ T
cells
Healthy
Increased: CD4+ T cells, CD8+ T cells

Oral steroids increased CD8 T cells
Azathioprine decreased NK cells

(40)

Rheumatoid
Arthritis

90 patients scRNAseq

2
Rheumatoid Arthritis
Increased: IFI27, LY6E, ISG15, USP18,
OASL, RSAD2, IFI44L, C4BPA

Separation and prediction of 4 RA
pathotypes by DEGs in the whole blood
and tissue.

(42)

90 patients
Flow cytometry,
glucocorticoid
signature analysis

2
Early RA
Increased: classical and non-classical
monocytes, T helper 1 and 2 cells, B
cells, B memory cells
Decreased: NK cells, mature B cells
Established RA
Increased: classical and non-classical
monocytes, T helper 1 and 2 cells
Decreased: B cells

Glucocorticoid treatment restored
monocyte population proportions
MTX treatment reduced B cell (memory
and plasma) and CD4 T cells (Th1 and
Th17), with limited effects on monocyte
populations
Both treatments reversed B cell levels to
control-comparable levels

(43)

739 patients total Flow cytometry

5
PCAP-LD
little difference from healthy controls
PCAP-SD
Decreased: TC1 cells
PCAP-TB
Increased: CD4+Tcells, CD8+T cells,
plasmablasts
PCAP-T4
Increased: CD4+TEMRA, effector
memory T cells
PCAP-T4T1 Increased: CD4+TEMRA,
Th1 cells

Immunophenotype was affected by age,
glucocorticoid and MTX use
Immunophenotype at treatment may
dictate prognosis results
IL-6 inhibitors were found to be most
effective in PCAP-LD patients, while
TNF inhibition was best in PCAP-T4,
and CTLA4-Ig in PCAP-T4T1. Groups
treated with “expected” DMARDs
outperformed those that were not by
15.3% (39.9% vs 24.6% achieved
remission), with patients in the low
activity group outperforming by 20.6%
(80.8% vs 60.2% remission).

(44)

Multiple Myeloma 46 patients Flow cytometry

2
MRDneg
Increased: NK cells, NKG2A+ NK-T-
like cells, KIR3DL1+ T cells
MRDpos

Proportion of NK-T-like cells increased
with IMiD treatment, over time
Mature NK cells went through loss of
effector function with IMiD treatment
T cells acquired an early PD1-
independent anergic state with IMiD
treatment
MRDpos patients gained increased NK
cells, NKG2A+ NK-T-like cells,
KIR3DL1+ T cells, and NKG2A+ T cell
during lenalidomide maintenance
therapy
MRDpos has increased KIR2DS4+NK
cells during lenalidomide
maintenance therapy

(45)

(Continued)
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TABLE 2 Continued

Disease
Number of
patients
and controls

Methods Number of immunotypes Discoveries Source

Melanoma and
Urothelial cancer

188 ICB-treated
melanoma patients
94 ICB-treated
urothelial
carcinoma patients

Flow cytometry

3
LAG+
Increased: LAG3+ T cells
LAG-
Decreased: LAG3, TIM3+ T cells, ICOS
+ T cells, Ki67+ T cells
PRO
Increased: LAG3+ T cells, TIM3+ T
cells, ICOS+ T cells

Melanoma
LAG- had best survival
LAG+ had worst outcomes on anti-PD-
1 monotherapy
Immunotype did not have significant
effect on combination therapy of
ipilimumab and nivolumab
LAG- higher PFS
LAG+ is independent of known clinical
prognostic factors
Urothelial cancer
LDH was significantly associated with
immunotype
LAG+ phenotype significant
PRO worse survival
LAG+ associated with worst survival, no
treatment response
LAG- Best OS and PFS
LAG+ and PRO poor prognosis not
associated with previously-
defined markers

(46)

mCRPC,
NSCLC, EOC

804 Flow cytometry

2
High Inflammatory Cluster Increased:
68 inflammatory genes in McRPC, 61 in
NSCLC, 68 in EOC
Low Inflammatory Cluster

mCRPC
High Inflammatory Cluster associated
with longer OS
43 genes associated with adaptive
immunity and T cell activation were
significantly represented in two arms of
the study
No advantage DCVAC in either cluster
DCVAC treatment conferred a
significant OS advantage to patients
with high expression of CD8A
NSCLC
High Inflammatory Cluster associated
with longer OS
44 genes associated with T cell
activation were significantly represented
in two arms of the study
No advantage DCVAC in either cluster
DCVAC treatment conferred a
significant OS advantage to patients
with high expression of genes associated
with B cells, CD8A T cells, and DCs
EOC
DCVAC patients in the low
inflammatory cluster had better OS,
though not SOC patients
A negative prognosis was found to be
associated with 5 genes in DCVAC
patients, namely CD3E, CD4, forkhead
box P3 (FOXP3), granzyme A (GZMA),
granzyme B (GZMB), HLA-DOB, and
interleukin 4 (IL4)
DCVAC patients in the low
inflammatory cluster had significantly
better PFS, compared to SOC
In high inflammatory patients, no
difference
High frequency of regulatory T cells in
peripheral blood of EOC patients was
associated with poor response
to DCVAC

(47)

(Continued)
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TABLE 2 Continued

Disease
Number of
patients
and controls

Methods Number of immunotypes Discoveries Source

metastatic HER2
− BC

102
Mass cytometry,
flow cytometry,
cytokine analysis

2
Breast Cancer
Increased: monocytes, effector memory
CD4+ T cells, CD57+ NK cells
Healthy Donor
Increased: CD4+ T, pDCs, naive CD4
+ T cells, M2 monocytes, D16− mDCs,

No significant differences in immune
cell proportions between HD and
untreated patients
Previously treated patients had
^monocytes v CD4+ T cell and pDC
No significant differences between
currently treated and previously treated
patients, other than current patients
having lower lymphocyte counts
CDK inhibitors v neutrophils
BC patients receiving treatments had
higher MDSC to T cells ratio
T cells from BC patients exhibit
activated/exhausted phenotype

(50)

different cancers 442
RNA-seq,
flow cytometry

2
Cancer Patients
Increased: CX3CR1neg CD8+ TEMRA,
monocytes
Healthy Donors
Increased: naive CD4+ and CD8+ T
cells, memory B cells
5
G1
Increased: naive CD4+ T cells, naive
CD8+ T cells, and naive B cells
G2
Increased: differentiated CD4+ central
and transitional memory T cells, CD39+
Tregs
G3
Increased: mature NK cells, CD8+
transitional memory, and PD-1+ TIGIT
+ CD8+ T cells
G4
Increased: NKT cells, effector memory
CD45RA+ (TEMRA) and CD45RA−
(TEM) of both CD4+ and CD8+ T cells
G5
Increased: classical monocytes, HLA-
DRlow monocytes,
neutrophils, lymphocytes

Patients with similar diagnoses or
treatments did not form distinguishable
clusters
Patients in different age groups tended
to cluster as well, consistent with older
people being patients
Disease state differentiated patients
more than age
G5 most frequent pCR on NAC
G3-progressive immunotype had
significantly longer OS in PDAC phase
II trial
G1 HPV- responded best to nivolumab
G2 HPV- responded best to durvalumab

(51)

COVID-19 149 Flow cytometry

3
COVID-19
Increased: Non B/T Cells
Decreased: B cell and CD3+ T cell
Recovered Donors
Healthy Donors
3
1
Increased: CD4- T cell, CD8-”EMRA”
circulating follicular helper cells
Decreased: CD8- T cells and PBs
2
Increased: CD4+ T cells, Tbet+ effector
CD4- and CD8+ T cells, proliferating
memory B cells
3 - close to HD

CD8 T cells are lost in larger proportion
than CD4 T cells in patients
Immunotype 1 associated with severe
disease
Immunotype 3 inversely correlated with
disease severity

(52)

Severe
injury, sepsis

339 Flow cytometry

2
1
Increased: IL6 and IL10, immature
neutrophils v mHLA-DR

Immunotype 1 associated with
poor prognosis

(54)

(Continued)
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can use immunotherapy, taking into account its unique features

(such as the expression levels of specific molecules like CTLA-4,

PD-1, Lag-3, etc. or need in monocytes reprogramming). At the

same time, it seems interesting to conduct a meta-analysis of the
Frontiers in Immunology 16
effectiveness of existing therapies for each immunotype in order to

personalize existing options, as verification of the selection of

therapy based on the molecular characteristics of the immunotype

requires clinical trials.
FIGURE 2

Key cell populations based on reviewed studies stratified by favorable and unfavorable impact in context of autoimmunity and cancer.
TABLE 2 Continued

Disease
Number of
patients
and controls

Methods Number of immunotypes Discoveries Source

2 Increased: IL6 and IL10, immature
neutrophils (less than 1)

CKD 69 Flow cytometry

2
CKD
Healthy Donor
Increased: CD56dim NK cells, B cells,
CD56bright NK cells, monocytes

CKD Increased: SCF
CKD disease severity Increased:
RANTES, PIGF1, monocytes, NK cells,
B cells; Decreased: PDGF-BB and BDGF

Wu
et al., 2022
For studies with multiple cohorts, discoveries for the certain diseases highlighted in bold.
FIGURE 3

The number of publications in Pubmed system containing the term “immunotype”: (A) total number, (B) peripheral blood.
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Another important observation is that the proximity of the

immunotype to healthy donors generally meant a milder course of

the disease and a better prognosis. This observation was noted, in

particular, in studies of Mathew et al. (COVID), Bodinier et al.

(injuries), Dyikanov et al. (solid cancers), Yong et al. (mCRPC,

NSCLC, EOC). Despite the fact that it seems intuitive that an

effective immune response means a noticeable activation of defense

mechanisms in response to tumor growth or infection, it seems that

the adequacy and proportionality of such reactions also play an

important role. It can be assumed that with excessive activation, the

severity of the disease is also aggravated by the body’s reaction to

the massive production of cytokines and tissue damage due to active

immune processes.

Interestingly, the rapid development of the concept of

immunotypes started explosively in 2019 and reached a local peak

in 2021, although the number of articles has remained low and has

even declined over the last two years (Figure 3). Notably, the

majority of articles are related to the definition of immunotype in

tumor tissue as a factor determining tumor pathogenesis and

development, with the description of peripheral blood

immunotypes accounting for a rather small proportion of studies

(a maximum 10 studies in 2021). It should be noted that the

previous peak of publication activity (1987: 30) with the using of

the term “immunotype” was associated with the study of

microorganisms such as Pseudomonas aeruginosa and Neisseria

meningitidis, and are not related to the definition of donor clusters

based on their ratio between immune populations.

Thus, it should be noted that the use of the term “immunotype”

is not widespread, which significantly complicates the search for

works related to the clustering of study cohorts by the type of their

immune system balance. Despite the intuitive logic and

comprehensibility of the term, many researchers either estimate

the impact of individual populations under the term “immunotype”

or use such constructs as “immunophenotypic heterogeneity”, or

“diversity of immune landscape”, which, in our opinion, can be

interpreted somewhat broader than the described approaches to

clustering (59–61).

Currently, immunotyping of the healthy population is primarily

used to predict the effect of vaccination, as well as to study age-

related changes in the immune system (28, 30). The latter task is of

particular importance, since the age-specific context of the

proposed sample must be taken into account when studying the

pathogenesis of various diseases and the role of immunity in it, and

building predictive models. The foregoing studies show that,

although CMV seropositivity plays a role in the formation of

immunotype, age still plays a decisive role. If age is not taken into

account, various false positives are possible, significantly reducing

the accuracy of the models (34).

The concept of immunotypes in cancer has also been widely used.

In this case, immune composition serves to predict the outcome of the

disease and to predict the efficacy of immunotherapy (51). Of course,
Frontiers in Immunology 17
researchers are most interested in the immunotype of the tumor itself,

but since peripheral blood is a source of immunocompetent cell

recruitment, evaluation of its structure also plays an important role.

In the context of autoimmune diseases, researchers are

currently limited to examining the differences between cohorts of

healthy donors and patients, as well as assessing the genetic

predisposition to certain forms of immune imbalance in

autoimmunity. This approach undoubtedly plays a great role in

studying possible mechanisms of pathogenesis, but for now it does

not allow the personalization of approaches to the therapy of these

diseases. A large number of polymorphisms have been described,

the presence of which affects the expression of certain genes

associated with the functioning of the immune system, leading to

changes in the activity of different parts of immunity. They may

occur in various combinations, which would influence the overall

structure and functionality of the compromised immune system

(62). Thus, it is of interest whether there are common patterns of

immunophenotype based on a particular genetic landscape and, if

so, whether it is possible to identify for each pattern a causative link

that could act as a pathogenetic therapeutic target.

Thus, despite the fact that the value of the peripheral blood

immunotype as a biomarker is lower than that of a tissue sample,

assessing the general state of the immune system has a number of

undeniable advantages. The obvious advantage is the less invasive

nature of this approach and possibility to use multiple samples of

the peripheral blood for monitoring studies. Also, there are a

number of diseases in which taking a biopsy is unnecessary or

impossible (type 1 diabetes, juvenile rheumatoid arthritis, multiple

sclerosis), where immunotyping of peripheral blood may be an

irreplaceable tool for diagnostics. Another advantage is the ability to

view the general potential of the immune system to respond to the

disease or to the proposed treatment methods, as opposed to the

pinpoint picture a biopsy provides. Attempts to establish a

relationship between local and systemic immune responses have

so far yielded mixed results (63–65). Nevertheless, the articles

presented in this review indicate that an individual belonging to a

particular immunotype can serve as a reliable biomarker and tool

for assessing the potential of the immune system.
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