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Metabolic-immune axis in the
tumor microenvironment: a new
strategy for prognostic
assessment and precision
therapy in DLBCL and FL
Chengqian Chen, Wei Guo, Haotian Wang, Luming Cao
and Ou Bai*

Department of Hematology,The First Hospital of Jilin University, Changchun, China
Diffuse large B-cell lymphoma and follicular lymphoma exhibit complex

metabolic and immune microenvironments that influence disease progression

and treatment response. Metabolic reprogramming, including glycolysis, amino

acid, and lipid metabolism, supports tumor growth while suppressing anti-tumor

immunity. Immune components such as tumor-infiltrating lymphocytes and

checkpoint molecules (PD-L1, LAG-3, TIM-3) further modulate prognosis.

Elevated tumor metabolic volume and glycolytic activity correlate with

aggressive disease and poor outcomes. Conversely, high TIL density often

predicts better responses. Integrating metabolic and immune biomarkers

enhances risk stratification and therapeutic strategies, highlighting the potential

for combined metabolic inhibitors and immunotherapies to improve precision

medicine in lymphoma.
KEYWORDS

tumor metabolism, immune microenvironment, metabolic-immune axis, lymphoma,
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1 Introduction

Diffuse Large B-Cell Lymphoma (DLBCL) and Follicular Lymphoma (FL) are the two

most common subtypes of non-Hodgkin lymphoma (NHL) (1–3). Despite significant

differences in their biological behavior, clinical features, and treatment strategies, both

exhibit high heterogeneity and complex tumor microenvironments (TME) (1–3). From a

cellular origin perspective, DLBCL primarily arises from germinal center B cells or

activated B cells, with tumor cells typically extensively involving lymph nodes and

extranodal organs (e.g., gastrointestinal tract, central nervous system) (4, 5). FL

originates from germinal center B cells, with tumor cells proliferating mainly in lymph

nodes and the spleen to form follicular structures (6, 7).
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Currently, the standard first-line treatment for DLBCL is the R-

CHOP regimen (combination chemotherapy with rituximab,

cyclophosphamide, doxorubicin, vincristine, and prednisone) (8,

9). Treatment strategies for FL are more diverse, determined by

disease grading and staging, and include watchful waiting,

rituximab monotherapy or in combination with chemotherapy, as

well as emerging immunomodulators and targeted therapies (10,

11). Although R-CHOP achieves cure in some DLBCL patients, 30–

40% still face recurrence or refractory disease (12, 13). FL poses

long-term management challenges due to its high recurrence rate

and risk of transforming into more aggressive DLBCL (14, 15). The

heterogeneity of these diseases and the diversity of treatment

responses suggest that, beyond traditional clinical and

pathological features, metabolic and immune factors within the

TME may play a critical role in disease progression and prognosis.

Recent studies on tumor metabolic reprogramming and the

immune microenvironment have provided new insights into the

biological behavior of DLBCL and FL (16). Through metabolic

reprogramming, tumor cells not only meet their rapid proliferation

energy demands but may also reshape the immune microenvironment

via metabolic byproducts, thereby suppressing antitumor immune

responses (17, 18). For instance, Tumor Metabolic Volume (TMV)

and glycolytic activity have been demonstrated to correlate with disease

aggressiveness and prognosis in both DLBCL and FL (19–21).

Concurrently, tumor-infiltrating lymphocytes (TILs), programmed

death-ligand 1 (PD-L1) expression levels, and the distribution of

immune checkpoint molecules within the immune microenvironment

also play crucial roles in regulating antitumor immune responses (22,

23). High TIL density is typically associated with favorable treatment

response and prognosis (24), whereas infiltration of immunosuppressive

cells (e.g., regulatory T cells (Tregs), M2 macrophages) may promote

immune escape and disease progression (25, 26). Given the critical

importance of tumor-microenvironment interactions, therapeutic
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strategies targeting these crosstalk pathways—such as using immune

checkpoint inhibitors to reverse T cell exhaustion or employing BTK

inhibitors to modulate BCR signaling and the microenvironment—have

emerged as novel research focuses.

Therefore, exploring the roles of metabolic parameters (e.g.,

tumor microenvironment volume, glycolytic activity) and immune

parameters (e.g., TIL density, PD-L1 expression) in DLBCL and FL

not only helps elucidate the biological mechanisms of the disease but

may also provide novel biomarkers and therapeutic targets for risk

stratification, prognostic prediction, and personalized treatment.

This review aims to systematically summarize research

advances on the metabolic and immune microenvironments in

DLBCL and FL, explore their relationship with disease risk and

prognosis, and discuss their potential applications in clinical

translation. By integrating metabolic and immune parameters, we

hope to provide novel insights for improving treatment strategies in

DLBCL and FL, thereby advancing precision medicine in this field.
2 Interplay between metabolism and
immunity

In DLBCL and FL, the metabolic reprogramming of the TME

forms a dynamic and reciprocal regulatory network with immune

cell function, playing a pivotal role in lymphoma progression(as

shown in Figure 1). Tumor cells enhance glycolysis and amino acid

metabolism not only to fuel rapid proliferation and biosynthesis but

also to reshape the local microenvironment through the release of

metabolic byproducts such as lactate, glutamine, and adenosine.

These metabolites can directly suppress the cytotoxic functions of

effector immune cells such as CD8+ T cells and natural killer (NK)

cells, while promoting the expansion of immunosuppressive

populations like Tregs and M2-polarized macrophages.
FIGURE 1

Metabolic immune interaction network in lymphoma microenvironment.
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Importantly, immune cells are not merely passive responders.

Activated T cells can secrete interferon-gamma (IFN-g) to disrupt

tumor metabolic pathways, and the polarization state of

macrophages (M1 versus M2) can in turn modulate tumor

glycolysis and mitochondrial metabolism. This bidirectional

metabolic–immune crosstalk profoundly influences lymphoma

heterogeneity, therapeutic resistance, and patient prognosis,

providing a strong rationale for the development of combined

metabolic and immune-targeted treatment strategies.
2.1 Effects of metabolic reprogramming on
immune cells

Metabolic reprogramming in tumor cells has emerged as a

central hallmark in cancer biology, playing a pivotal role in tumor

initiation and progression. Recent advances in TME research have

highlighted that metabolic alterations—particularly enhanced

glycolysis and amino acid metabolism—not only fulfill the

energetic and biosynthetic demands of rapidly proliferating tumor

cells but also profoundly reshape the immune milieu, suppressing

anti-tumor immune responses and facilitating immune evasion and

disease progression.

2.1.1 Immunomodulatory effects of glycolysis and
lactate metabolism

Glycolysis and lactate accumulation play central roles in tumor-

associated immune suppression. Tumor cells exhibit a distinctive

metabolic phenotype known as the Warburg effect, in which they

preferentially utilize glycolysis for energy production even under

normoxic conditions. This leads to substantial lactate accumulation

and acidification of the TME (27). Lactate is extruded from tumor

cells through monocarboxylate transporters (MCTs, primarily

MCT4) (28–30) . Subsequent ly , i t en ter s the tumor

microenvironment via MCT1, which is mainly expressed on

immune cells, thus decreasing the extracellular pH value (28–30).

Notably, lactate dehydrogenase (LDH), a key enzyme in lactate

metabolism, is markedly overexpressed in DLBCL and other

tumors. The lactate produced by LDH impairs the cytotoxic

functions of CD8+ T cells and NK cells, thereby weakening the

host’s anti-tumor immunity (31–33). In addition, lactate promotes

the expansion of Tregs and the polarization of macrophages toward

an M2 immunosuppressive phenotype (34–37). Moreover, lactate

inhibits the differentiation and antigen-presenting capacity of

dendritic cells, further disrupting T cell activation and facilitating

immune escape (31, 37, 38). According to the Warburg effect, lactic

acidosis can occur when lactate homeostasis is disrupted due to

overproduction and/or reduced utilization. Lactic acidosis is

classified into two types: type A, caused by tissue hypoxia, and

type B, which occurs under normoxic conditions due to non-

hypoxic factors such as drugs or toxins. Type B lactic acidosis is

associated with altered glycolysis and redox imbalance (39). It is

frequently observed in human malignancies—particularly

lymphomas—and is associated with poor prognosis if not treated

promptly (40–42). Another significant cause of lactic acidosis is
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thiamine deficiency, which is a distinct feature associated with type

B lactic acidosis (43, 44). This mechanism has important clinical

significance, as thiamine is a key coenzyme in the pyruvate

dehydrogenase complex, responsible for converting the glycolytic

end product pyruvate into acetyl CoA, which enters the

tricarboxylic acid cycle (43). When thiamine is deficient, pyruvate

cannot be oxidized normally, resulting in a large amount of

conversion to lactate under the action of LDH, leading to severe

type B lactic acidosis (43). In lymphoma patients, thiamine

deficiency may be caused by high tumor consumption, loss of

appetite, or treatment side effects (45). Identifying and correcting

this condition is crucial for managing such tumor emergencies and

improving patient prognosis (45). Clinically, elevated serum LDH

levels are significantly associated with poor prognosis in DLBCL

and have been incorporated into the International Prognostic Index

(IPI). Similarly, LDH has prognostic value in FL and is a component

of the Follicular Lymphoma International Prognostic Index (FLIPI).

As a direct marker of tumor metabolic activity, elevated LDH

reflects increased tumor burden and the formation of a lactate-

mediated immunosuppressive microenvironment.

2.1.2 Immunoregulatory effects of amino acid
metabolism

Abnormal amino acid metabolism is another crucial

mechanism underlying tumor immune evasion. In tryptophan

metabolism, CD11c+ myeloid dendritic cells (mDCs) within the

FL microenvironment exhibit high expression of indoleamine 2,3-

dioxygenase 1 (IDO1), which depletes tryptophan and leads to the

accumulation of kynurenine (Kyn) (46). This process promotes

immune tolerance through two mechanisms: first, Kyn activates the

aryl hydrocarbon receptor (AhR) pathway, inducing Treg

differentiation and suppressing effector T cell function (47, 48);

second, Kyn-AhR signaling enhances PD-1 expression on CD8+T

cells via intercellular signaling within the TME, resulting in a PD-1+

exhausted T cell phenotype (49). Quantification of Kyn and

tryptophan levels has shown promise as a prognostic biomarker

in both DLBCL and FL (46, 50, 51). Furthermore, inhibitors

targeting key enzymes in tryptophan metabolism (e.g.,IDO1/

TDO) have demonstrated therapeutic potential in preclinical

models, providing a new avenue for precision therapy in

lymphoma (52–54). Serine metabolism also supports tumor

growth, survival, and adaptation to hostile microenvironments

through multiple pathways and has emerged as a promising

therapeutic target (55). The rate-limiting enzyme in the serine

synthesis pathway (SSP), phosphoglycerate dehydrogenase

(PHGDH), is frequently overexpressed or amplified in various

cancers, making it a critical vulnerability for therapeutic

intervention (56). In DLBCL, PHGDH overexpression is strongly

associated with MYC activation, particularly in the germinal center

B-cell-like (GCB) subtype. This may drive chemotherapy resistance

through enhanced serine flux, reducing the efficacy of R-CHOP and

shortening overall survival (57). In addition, serine metabolic

enzymes interact with immunosuppressive cells in the TME—

such as M2 macrophages—potentially modulating responses to

immunotherapies like PD-1 inhibitors (58, 59). Future studies
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should investigate the therapeutic potential of PHGDH inhibitors in

lymphoma, with the aim of overcoming resistance and improving

efficacy through combination strategies. It is also essential to

identify predictive biomarkers to select patient subgroups most

likely to benefit from such approaches.

2.1.3 Immunomodulatory role of glutamine
metabolism

As a central node in tumor energy metabolism, glutamine

metabolism plays a critical role in both DLBCL and FL. This

pathway begins with the active uptake of glutamine via

transporters such as ASCT2/SLC1A5, followed by its conversion

into glutamate by glutaminase (GLS), and subsequently into a-
ketoglutarate (a-KG), which enters the tricarboxylic acid (TCA)

cycle to provide energy and biosynthetic precursors for tumor cells

(60, 61). Notably, glutamine metabolism also modulates the tumor

immune microenvironment through multiple mechanisms: it

competes with effector T cells for nutrients, thereby limiting their

metabolic fitness (62), supports the survival and function of

immunosuppressive cells such as Tregs and myeloid-derived

suppressor cells (MDSCs) (63), and is involved in the regulation

of immune checkpoint molecules such as PD-L1 (64). Metabolomic

profiling reveals elevated levels of glutamine catabolites in the

plasma of lymphoma patients (65), and all tested DLBCL cell

lines express GLS1 regardless of subtype classification (66). GLS1

inhibition using CB-839, in combination with the BCL2 inhibitor

ABT-199, not only induces significant reactive oxygen species

(ROS) production but also exerts synergistic cytotoxicity—

suggesting that co-targeting GLS1 and BCL2 could be a

promising therapeutic strategy in DLBCL (66). Furthermore,

recent studies have uncovered a key mechanism of glutamine

metabolic reprogramming in DLBCL involving the mitochondrial

pyruvate carrier (MPC) and glutamate-pyruvate transaminase 2

(GPT2) pathway (67). Studies have found that DLBCL can be

further classified according to cell origin and molecular

characteristics. OXPHOS DLBCL (oxidative phosphorylation

subtype) is mainly manifested in the activation of oxidative

phosphorylation metabolic pathway and the enhancement of

mitochondrial function, while BCR-DLBCL (B cell receptor

subtype) is highly dependent on B cell receptor signaling pathway

and its downstream glycolysis process (68, 69). Because of this

difference in metabolic dependence, the sensitivity of the two

subtypes to targeted treatment strategies is also different:

OXPHOS DLBCL may be more sensitive to inhibitors targeting

oxidative phosphorylation related pathways such as glutamine

metabolism, while BCR-DLBCL may be more responsive to drugs

targeting BCR signaling pathways such as Btk inhibitors. It is worth

noting that although these two subtypes exhibit distinct metabolic

characteristics, they are highly dependent on glutamine metabolism

to maintain the activity of the TCA cycle (66, 70). GPT2-mediated

a-KG production requires mitochondrial pyruvate input, which is

dependent on MPC activity. Under extracellular matrix (ECM)-

mimicking conditions that better simulate solid tumor

environments, MPC inhibition significantly reduces a-KG
production and suppresses DLBCL proliferation—an effect not
Frontiers in Immunology 04
observed in conventional suspension culture, highlighting the

critical influence of the microenvironment on metabolic behavior

(67). Moreover, MPC inhibition increases DLBCL sensitivity to

ammonia, due to impaired ammonia detoxification via glutamate

dehydrogenase (GDH) under ECM conditions (67). These findings

challenge traditional views of DLBCL metabolism and suggest

therapeutic potential for targeting the MPC–GPT2 axis. Future

studies should investigate the feasibility of GPT2-specific inhibitors

and explore how microenvironment-driven metabolic changes

influence treatment resistance.

2.1.4 Immunomodulatory role of lipid metabolism
Lipid metabolism plays a dual role in the development of

DLBCL and FL: on one hand, it directly supports tumor cell

proliferation and survival, and on the other, it shapes the tumor

immune microenvironment to facilitate immune escape. In B-cell

malignancies, constitutive activation of the BCR-PI3K-AKT

signaling pathway leads to mTORC1 hyperactivation, which

upregulates anabolic processes including lipid and cholesterol

biosynthesis (71). Cholesterol synthesis driven by this pathway

may form a positive feedback loop that sustains BCR signaling,

further promoting lymphoma progression. Cholesterol, a key

component of membrane homeostasis, is essential for tumor cell

proliferation. Lymphoma cells utilize cholesterol via BCR signaling

to maintain proliferative and pro-survival pathways. Excess free

cholesterol is rapidly esterified by Acetyl coenzyme A

acetyltransferase (ACAT) or exported via transporters such as

scavenger receptor class B type I (SR-BI) and ATP-binding

cassette protein A1—processes particularly evident in pathological

conditions like macrophage foam cell formation (72). Targeting

cholesterol metabolism has emerged as a novel therapeutic strategy

in lymphoma. SR-BI inhibitors have shown anti-lymphoma activity

by disrupting cholesterol homeostasis (72), and metformin has been

reported to improve prognosis in DLBCL patients with type 2

diabetes, potentially by modulating cholesterol metabolism (73).

Additionally, lipid metabolism-related gene signatures have been

validated as independent prognostic factors in DLBCL, enhancing

predictive accuracy when combined with the IPI (74, 75). Clinical

observations suggest that statins, when used alongside standard

chemoimmunotherapy in the rituximab era, do not compromise

treatment efficacy in DLBCL/FL, although their potential benefit in

FL remains to be further confirmed (76). Within the TME, lipids

represent a double-edged sword—they can both support and

suppress anti-tumor immunity. For instance, enhanced fatty acid

oxidation (FAO) promotes the expansion of tumor-reactive CD8+

T cells and improves response to PD-1 blockade (77, 78);

Conversely, lipid uptake by CD8+ T cells via CD36 leads to lipid

peroxidation and ferroptosis, impairing their effector function and

weakening anti-tumor immunity (79, 80). Therefore, metabolic

interventions must carefully balance the dynamic demands of

both tumor and immune cells. Future strategies should integrate

metabolomics with immune profiling to develop precise approaches

that overcome the “double-edged sword” nature of metabolic

reprogramming, ult imately faci l i tat ing more effect ive

clinical translation.
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2.1.5 Immunomodulatory role of adenosine
metabolism

Adenosine metabolism plays a key immunosuppressive role in

the tumor immune microenvironment. The main pathway of

extracellular ATP production is the enzymatic cascade reaction of

CD39 and CD73 (ATP→ADP→AMP→adenosine), while

intracellular AMP can also catalyze the production of adenosine

under energy stress (81–84). In DLBCL and FL, high expression of

CD39—particularly in the non-GCB subtype of DLBCL—is

strongly associated with poor prognosis. This effect is mediated

by adenosine binding to A2A receptors (A2AR), triggering a broad

spectrum of immunosuppressive responses, including inhibition of

CD8+ T and NK cell activity, expansion of Tregs, polarization of

macrophages toward the M2 phenotype, and impairment of

dendritic cell antigen presentation (85–87). Hypoxic conditions in

the TME further induce CD39/CD73 expression via HIF-1a,
leading to increased adenosine accumulation. This process

synergizes with other immunosuppressive pathways such as

lactate metabolism and IDO1-mediated tryptophan catabolism,

forming a tightly integrated immunosuppressive network (88–91).

Current therapeutic approaches focus on inhibitors targeting

CD39/CD73 and A2AR antagonists. Preclinical studies suggest

that combining these agents with PD-1 inhibitors can reverse

immune suppression and restore anti-tumor responses (92, 93).

Future directions include the development of precision stratification

methods based on CD39/CD73 expression and investigation of

combination strategies targeting the hypoxia–CD39/CD73–A2AR

axis to overcome immune evasion in lymphoma.
2.2 Immune cell-mediated regulation of
tumor metabolism

Within the TME, immune cells and tumor cells engage in a

complex and dynamic bidirectional interaction that profoundly

influences tumor initiation, progression, and response to therapy.

Immune cells are not merely passive victims of tumor metabolic

reprogramming; they actively modulate the metabolic status of

tumor cells through cytokine secretion and direct cell–cell

contact. This reciprocal regulation is of significant theoretical and

clinical importance, particularly in the context of lymphomas.

2.2.1 Tumor-infiltrating regulatory T cells and
tumor metabolism

Tumor-infiltrating Tregs exert potent immunosuppressive

effects in the TME through metabolic mechanisms, thereby

promoting immune evasion (94–96). The key Treg transcription

factor FOXP3 suppresses glycolysis while enhancing OXPHOS and

NAD+ oxidation, enabling Tregs to survive and function under

hypoglycemic and hypoxic conditions commonly found in the TME

(97, 98). This adaptation relies on activation of the LKB1/AMPK

pathway, where LKB1 phosphorylates AMPK to enhance

mitochondrial metabolic efficiency while inhibiting mTORC1

signaling—collectively preserving Treg stability under metabolic

stress (99, 100). Tregs contribute to immunosuppression not only
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through secretion of cytokines such as TGF-b, IL-10, and IL-35 but

also by competitively depleting key nutrients such as glucose,

glutamine, and tryptophan—thereby impairing effector T cell

function. Specifically, TGF-b suppresses the cytotoxic activity of

NK cells and cytotoxic T lymphocytes (CTLs) and promotes the

transdifferentiation of Th17 cells into Tregs, exacerbating immune

suppression (101, 102). IL-10 directly inhibits effector T cell

cytotoxicity, while IL-35 promotes T cell exhaustion (103, 104).

Notably, under nutrient-deprived conditions, Tregs can utilize

abundant metabolic byproducts in the TME—such as lactate and

fatty acids—to maintain their function (105, 106). Additionally,

through the CD39/CD73–adenosine axis and IDO–kynurenine

pathway, Tregs secrete immunosuppressive metabolites (e.g.,

adenosine and kynurenine), which further inhibit effector T cells

and reinforce tumor glycolytic reprogramming—forming a self-

reinforcing immunosuppressive loop (48, 107, 108). This metabolic

advantage correlates with adverse clinical outcomes. High Treg

infiltration in DLBCL and FL is associated with poor treatment

response, increased risk of disease progression, and shorter

progression-free survival (PFS) (109–111). Moreover, LKB1 has

been shown to promote DLBCL immune evasion by enhancing

Treg metabolic stability and suppressive activity (112). Therefore,

targeting Treg-specific metabolic pathways—such as CD39/CD73,

IDO, or fatty acid oxidation—represents a promising approach to

reversing the immunosuppressive microenvironment and boosting

anti-tumor immunity.

2.2.2 Interplay between CD8+ T cells and tumor
metabolism

CD8+ T cells are the principal effectors of adaptive anti-tumor

immunity (113, 114). Studies have shown that CD8+ TILs secrete

IFN-g, which acts on tumor cells through the JAK–STAT pathway

to suppress glycolysis (i.e., reversal of Warburg effect) and

mitochondrial oxidative phosphorylation—thereby limiting tumor

energy metabolism and biosynthetic capacity (114–117). However,

lymphoma cells can evade immune surveillance through multiple

mechanisms. IFN-g induces tumor cells to upregulate PD-L1, which

binds to PD-1 on CD8+ T cells, leading to their inactivation,

exhaustion, and reduced proliferation—ultimately establishing an

immunosuppressive feedback loop (118–120). Additionally,

lymphoma cells reprogram metabolism (e.g., increasing lactate

production, competitively consuming glucose and amino acids in

the TME) to further suppress CD8+ T cell function and facilitate

immune evasion (121).

In DLBCL, both the density and functional status of CD8+ TILs

are significantly associated with treatment response to R-CHOP

(122). High CD8+ T cell infiltration predicts better complete

response rates and prolonged PFS, suggesting that CD8+T cell-

mediated immunometabolic regulat ion may influence

chemosensitivity (123, 124). A similar relationship has been

observed in FL, where CD8+ TILs correlate with lower

progression risk and improved immunochemotherapy outcomes

(125, 126).

In recent years, immunotherapy for CD8+T cell metabolism has

made progress in relapsed/refractory DLBCL and FL, but the
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1659011
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2025.1659011
problem of drug resistance needs to be solved urgently (127–130).

Recent studies have found that the abnormally activated fibroblast

activation protein (FAP) - positive fibroblast reticular cells (FRCS)

in DLBCL can inhibit the function of CD8+T cells, and the

combination of FAP targeted drugs and glofitamab can

significantly enhance the anti-tumor activity of TIL (131). This

suggests that simultaneously targeting T cell metabolism and tumor

microenvironment may be a new direction to overcome drug

resistance. FAP is a type II transmembrane serine protease, which

is characterized by high expression on the surface of cancer

associated fibroblasts (CAF), but is highly restricted in most

normal adult tissues. This unique expression pattern makes it a

potential therapeutic target in the tumor microenvironment

(132–134).

2.2.3 Impact of macrophage polarization on
tumor metabolism

Macrophages, as abundant and functionally diverse immune

cells within the TME, exert significant influence on tumor

metabolism depending on their polarization status (135, 136).

Owing to their plasticity, macrophages can differentiate into

distinct functional phenotypes in response to environmental cues,

primarily the classically activated M1 phenotype and the

alternatively activated M2 phenotype (135, 136). These

polarization states exhibit opposing roles in tumor metabolic

regulation and thus critically shape tumor progression and

therapeutic responses (135, 136).

M1 macrophages, considered anti-tumor “guardians,” are

typically induced by proinflammatory stimuli such as IFN-g and

lipopolysaccharide (LPS) (137–139). They exert cytotoxic effects

through secretion of tumor necrosis factor-a (TNF-a), nitric oxide
(NO), and ROS, which not only directly kill tumor cells but also

suppress their metabolic activity (140). Functionally, M1

macrophages undergo metabolic reprogramming characterized by

a shift from oxidative phosphorylation (OXPHOS) to aerobic

glycolysis (Warburg effect), enabling rapid ATP generation and

provision of metabolic intermediates to sustain proinflammatory

responses (141, 142). High expression of inducible nitric oxide

synthase (iNOS) in M1 macrophages promotes arginine catabolism

to NO, which damages mitochondrial function and induces

apoptosis in tumor cells (143). Conversely, M2 macrophages are

induced by anti-inflammatory cytokines such as IL-4, IL-10, and IL-

13, and generally exhibit tumor-promoting properties (140). M2

macrophages rely primarily on OXPHOS for energy production,

which allows them to adapt to the hypoxic and nutrient-depleted

TME (142). This may seem contradictory, but it actually stems from

its metabolic flexibility. M2 macrophages maintain energy

homeostasis and perform tumor promoting functions under

hypoxic conditions by enhancing mitochondrial efficiency, using

alternative substrates (such as fatty acids) for oxidative

phosphorylation, and coordinating HIF-1 a and AMPK signaling

pathways (142, 144). In FL—an indolent B-cell malignancy that

may transform into aggressive DLBCL—macrophage polarization is

closely linked to tumor metabolism and disease progression (145).

A high infiltration of M2macrophages in FL patients correlates with
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increased risk of relapse and poorer prognosis (146).

Mechanistically, M2 macrophages promote FL progression via

multiple pathways. First, cytokines such as IL-10 and TGF-b
activate tumor-intrinsic PI3K-AKT-mTOR and STAT3 signaling

pathways, enhancing glycolysis and lipid biosynthesis in lymphoma

cells (147, 148); Second, M2 macrophages suppress anti-tumor

immune responses, fostering an immune-privileged niche for

tumor survival (149). Collectively, these effects enhance tumor

proliferation, drug resistance, and transformation risk in FL.

In conclusion, the polarization state of macrophages plays a key

role in the regulation of tumor metabolism. Intervention strategies

for macrophage polarization (such as promoting M1 polarization or

inhibiting M2 polarization) may become a new direction to improve

tumor microenvironment and enhance anti-tumor efficacy (150–

153). Especially in lymphoma such as DLBCL and FL, the treatment

method targeting macrophage polarization is expected to provide a

new breakthrough for inhibiting disease progression (154–156).

2.2.4 Cytokine-mediated regulation of tumor
metabolism

Cytokines serve as pivotal mediators of immune cell

communication and play key roles in shaping tumor metabolic

phenotypes (157). In both DLBCL and FL, cytokines modulate

metabolic reprogramming to promote tumor progression (158). IL-

6 and IL-10, for example, activate the STAT3 pathway to enhance

glycolysis and glutathione metabolism, supplying energy and

biosynthetic precursors for rapid tumor cell proliferation (159,

160). Although IL-16 was previously linked to cutaneous T-cell

lymphoma (161), recent studies have revealed its role in DLBCL

(162). IL-16 recruits CD4+ monocytes into the TME, promoting

macrophage infiltration, angiogenesis, and upregulation of tumor-

promoting cytokines such as IL-6 and IL-10 (162). Notably, IL-16

also suppresses T cell infiltration, collectively facilitating tumor

progression (162).

Cytokines and their metabolic effects are not only mechanistic

drivers but also valuable prognostic markers. Elevated serum levels

of IL-6 and IL-10 are consistently associated with poor prognosis,

higher tumor aggressiveness, and shorter survival in patients with

DLBCL and FL (163–166). LDH, a key enzyme reflecting cytokine-

driven glycolysis, remains a classic independent prognostic factor in

both the DLBCL IPI and FL risk models. Moreover, the abundance

of immunosuppressive cells such as M2 tumor-associated

macrophages, induced by cytokines like IL-10, has been linked to

adverse outcomes and higher risk of histologic transformation—

particularly in FL (167, 168).

Understanding how specific cytokines drive metabolic programs

provides a biological rationale for risk stratification and therapy

development. Although agents such as the IL-6R monoclonal

antibody tocilizumab have demonstrated potential in reversing

cytokine-induced metabolic dependency, challenges remain due to

cytokine network redundancy and microenvironmental heterogeneity

(169). Future research should focus on identifying dominant cytokine-

metabolism axes in different lymphoma subtypes and investigating

their downstream metabolites as dynamic biomarkers to inform

personalized treatment strategies.
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2.2.5 Immune checkpoint molecules and tumor
metabolism

The PD-1/PD-L1 axis, a central immune checkpoint pathway, not

only suppresses T cell anti-tumor activity but also directly reshapes the

metabolic landscape of the TME through metabolic reprogramming

(170–172). n B-cell lymphomas, PD-1 activation downregulates the

PI3K/Akt/mTOR pathway and its downstream effector MYC, resulting

in suppressed glycolysis and enhanced fatty acid b-oxidation (172,

173). This metabolic shift contributes to T cell exhaustion and

reinforces PD-1 expression—forming a feedforward loop—while also

remodeling the TME to favor immune evasion and tumor progression

(174). Interestingly, PD-1/PD-L1 interactions may also activate

oncogenic signaling in tumor cells. Dong et al. demonstrated that

PD-1 binding to PD-L1 directly activates the AKT/mTOR pathway in

DLBCL cells (175),echoing findings from Lastwika et al. in NSCLC,

where AKT/mTOR activation upregulates PD-L1 expression to

facilitate immune escape (176), These results suggest a positive

feedback loop between PD-1/PD-L1 and PI3K/AKT/mTOR signaling

that may enhance DLBCL aggressiveness. Hence, combined blockade

of PD-1/PD-L1 and AKT/mTOR signaling may represent a promising

therapeutic strategy for specific DLBCL subsets.

Emerging checkpoints such as LAG-3 and TIM-3 have attracted

attention for their immunomodulatory roles inDLBCL and FL, although

their involvement in metabolic regulation remains to be fully elucidated.

LAG-3 co-expresses with PD-1 and suppresses T cell function, possibly

through similar metabolic mechanisms (177, 178). LAG-3 is also a

surface marker of Tregs and may facilitate their suppressive function

(179). Notably, Tregs suppress effector T cells through metabolic

competition—such as glucose depletion—suggesting that LAG-3 may

participate in shaping T cell metabolic reprogramming (180). TIM-3

may impair mitochondrial function and oxidative phosphorylation via

the HMGB1/galectin-9 axis, thereby promoting immune suppression

and altering TME metabolism (181–183). Co-expression of LAG-3 and

TIM-3 with PD-1 may amplify these metabolic effects (184). Preclinical

studies indicate that dual blockade of LAG-3 and PD-1 reduces tumor

progression and improves anti-tumor T cell responses, underscoring the

potential role of metabolic reprogramming as a convergent downstream

effect of multi-checkpoint inhibition (185).

However, direct evidence of LAG-3 and TIM-3 regulating

metabolism in B-cell lymphomas remains limited. Integrative

single-cell metabolomics and immune checkpoint profiling are

needed to elucidate whether these molecules contribute to

immune escape through metabolic reshaping, and to inform the

design of rational combination therapies targeting both immune

checkpoints and tumor metabolism.
3 Clinical relevance of metabolic
parameters

3.1 Definition and measurement of tumor
metabolic volume and glycolytic activity

TMV and glycolytic activity are critical parameters reflecting

the metabolic state of tumors, commonly assessed by positron
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emission tomography/computed tomography (PET/CT)

combined with radiolabeled glucose analogs such as 18F-

fluorodeoxyglucose (18F-FDG) (186, 187). TMV represents the

volumetric extent of FDG uptake within tumor tissue, thereby

illustrating the spatial distribution of metabolically active tumor

cells (188). Glycolytic activity is quantified by standardized uptake

values (SUV), indicating the intensity of glucose uptake and

metabolism by tumor cells (189). These parameters not only

provide a direct visualization of tumor metabolic activity but also

enable dynamic assessment of intratumoral heterogeneity. With

advancements in imaging technologies, PET/CT-derived metabolic

parameters have become indispensable tools for diagnosis, staging,

and therapeutic response evaluation in DLBCL and FL (190).
3.2 Correlation of metabolic parameters
with disease risk and prognosis

The prognostic value of metabolic parameters such as TMV and

glycolytic activity in DLBCL and FL has been extensively investigated

and closely associates with disease risk and clinical outcomes. In

DLBCL, elevated TMV and increased glycolytic activity typically

denote a more aggressive disease phenotype and correlate

significantly with adverse prognostic factors, including higher IPI

scores and advanced disease stages, as well as inferior treatment

responses (191). Moreover, enhanced metabolic activity may

promote tumor immune evasion by lactate-mediated suppression

of T cell function, further accelerating disease progression. Similarly,

in the indolent yet potentially transformative FL, elevated metabolic

activity, as evidenced by increased FDG uptake, associates with higher

histologic grades, greater risk of disease progression and

transformation, and shortened PFS (192–195). Metabolic

parameters have emerged as robust prognostic indicators. Baseline

TMV and total lesion glycolysis (TLG) serve as independent

predictors of poor PFS and overall survival (OS) in DLBCL (196,

197), whereas metabolic remission status assessed by interim PET/CT

effectively predicts therapeutic response and relapse risk in FL,

correlating with long-term survival outcomes (198). These findings

underscore the utility of metabolic parameters in risk stratification

and individualized treatment decision-making. For instance, DLBCL

patients exhibiting high metabolic activity might benefit from

intensified therapeutic regimens or agents targeting metabolic

pathways, while FL patients with low metabolic activity may be

candidates for watchful waiting strategies.

Although metabolic parameters show great prognostic

potential, their clinical application still faces challenges. The most

critical point is that there are differences in pet/ct scanners, imaging

protocols and image analysis software used by different medical

institutions, which may lead to the lack of direct comparability of

the measured values of SUVmax, TMV, TLG and other parameters

(199). This standardization problem limits the wide applicability of

these indicators in cross center research and clinical practice to a

certain extent. In the future, it is necessary to solve this problem by

establishing unified imaging guidelines, calibration standards and

automated analysis processes.
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4 Clinical relevance of immune
parameters

4.1 Definition and measurement of TIL
density and immune checkpoint molecule
expression

TILs density and expression of immune checkpoint molecules

such as LAG-3 and TIM-3 are key metrics for evaluating the tumor

immune microenvironment. TIL density refers to the quantity and

spatial distribution of lymphocytes infiltrating tumor tissue—

pr imar i l y CD8+ and CD4+ T ce l l s—quan t ifi ed by

immunohistochemistry (IHC) or multiplex immunofluorescence

techniques. The expression levels of immune checkpoints PD-L1,

LAG-3, and TIM-3 are typically assessed by IHC or flow cytometry.

PD-L1 expression on tumor cell surfaces binds to PD-1 on T cells,

suppressing their activation and function to facilitate immune

evasion. Similarly, LAG-3 (lymphocyte activation gene-3) and

TIM-3 (T cell immunoglobulin and mucin domain-containing

protein-3) are inhibitory receptors on T cells; their overexpression

also dampens anti-tumor T cell activity, exacerbating immune

escape. The synergistic action of these molecules creates a

multifaceted immunosuppressive milieu, impacting the efficacy

of immunotherapies.
4.2 Association of immune parameters
with disease risk and prognosis

As discussed in the previous section (2.2.5), immune checkpoint

molecules such as PD-1/PD-L1 can mediate immunosuppression

through metabolic reprogramming, and their expression levels also

have important prognostic value in clinic. In both DLBCL and FL,

TIL density and the expression levels of PD-1/PD-L1 and emerging

immune checkpoints LAG-3 and TIM-3 correlate strongly with

disease risk and prognosis. In DLBCL, higher TIL density—

particularly CD8+ T cell infiltration—is generally associated with

favorable outcomes, including prolonged PFS and OS (200–202).

However, the presence of immunosuppressive cells such as Tregs

and M2 macrophages may attenuate CD8+ T cell anti-tumor

efficacy and affect therapeutic responses (112, 202). PD-L1

expression in DLBCL has a dual role: high expression may reflect

tumor immune evasion via checkpoint pathways (203), but also

predicts enhanced sensitivity to PD-1/PD-L1 blockade therapies

(204). Emerging immune checkpoints LAG-3 and TIM-3 are

increasingly recognized for their immunoregulatory functions in

DLBCL. LAG-3 is highly expressed on exhausted T cells,

contributing to T cell dysfunction and immune escape (205), with

its expression linked to shorter disease-free survival (DFS) (206).

Similarly, TIM-3 expression correlates with T cell exhaustion and

portends poorer prognosis (207). Notably, co-expression of PD-1,

TIM-3, and LAG-3 is associated with inferior PFS and OS,

suggesting that combinatorial blockade of these checkpoints could

be a promising therapeutic avenue (208).
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The immune microenvironment of FL is typically characterized

by profound immunosuppression, where diverse immune cell

populations collectively influence disease progression and

transformation risk. Elevated CD68+ macrophage counts, diffuse

infiltration of FOXP3+ Tregs, and high PD-L1 expression are all

linked to shorter time to transformation (209). Remarkably, pre-

treatment PD-1 expression in tumor tissue predicts subsequent FL

transformation into DLBCL (210). In addition to PD-1, other

potential predictive markers have also attracted much attention,

such as high-frequency gene mutations (such as EZH2, TP53), the

gene map of circulating tumor DNA (ctDNA), and the distribution

characteristics of M2 macrophages or specific T cell subsets in the

microenvironment (211–214). Integrating multi omics markers

may build a more accurate transformation prediction

model.LAG-3 and TIM-3 also play critical roles in FL immune

escape. The FL microenvironment often features exhausted T cells,

with high LAG-3 and TIM-3 expression further amplifying

immunosuppression. Increased LAG-3+ TILs associate with

disease progression and poor prognosis (215), whereas elevated

TIM-3 expression may reduce immunotherapy responsiveness

(216). These findings highlight the potential of targeting LAG-3

and TIM-3, particularly in combination with PD-1/PD-L1

inhibitors, to develop novel treatments for FL.
5 Conclusion and perspectives

The interaction between metabolism and immune

microenvironment opens up a new way for the treatment of

DLBCL and FL. Studies have shown that metabol ic

reprogramming and immunosuppressive microenvironment

characteristics are closely related to disease progression, treatment

response and prognosis, which provides a theoretical basis for the

development of innovative therapies (217, 218). In terms of clinical

transformation, targeting key metabolic pathways such as IDHA

inhibitors to regulate glycolysis, IDO1 inhibitors to interfere with

tryptophan metabolism, and CD73 inhibitors to block adenosine

signaling can effectively reverse the immunosuppressive state and

enhance the antitumor activity of T cells and NK cells (219–221). In

the field of immunotherapy optimization, for the limited efficacy of

PD-1/PD-L1 inhibitors, the combination of metabolic regulators

such as metformin or novel immune checkpoint inhibitors such as

LAG-3/Tim-3 blockers is expected to improve the treatment

response (222, 223). At the same time, the strategies of regulating

macrophage polarization to promote M1 transformation and

inhibiting Treg function by targeting CD39/adenosine axis also

showed good application prospects (26, 224). In terms of prognosis

evaluation, the integration of metabolic parameters such as TMV

and glycolytic activity, as well as immune characteristics such as

TILs density and PD-L1/LAG-3 expression can significantly

improve the prediction accuracy of existing prognosis models

such as IPI and FLIPI (225, 226), while dynamic monitoring

technologies such as PET/CT combined with liquid biopsy

provide new ideas for early efficacy evaluation and recurrence

warning (227, 228).
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Looking forward to the future, multi omics integration research

including single-cell sequencing, spatial transcriptome and

metabonomics will deeply reveal the cell-specific mechanism of

metabolism immune interaction, especially focusing on the key

drivers of FL to DLBCL transformation (145, 229). In terms of

treatment strategy development, it is very important to design a joint

scheme targeting the dual pathways of metabolism and immunity, such

as PHGDH inhibitor combined with PD-1 inhibitor, and verify its

efficacy through clinical trials. The combination of strategies targeting

the metabolism immune axis and emerging immunotherapies (such as

CAR-T cells and bispecific antibodies) has great potential (92, 230). For

example, the use of IDHA inhibitors or A2AR antagonists to improve

the immunosuppressive status of TME may reverse the depletion of

CAR-T cells in vivo and enhance their persistence and anti-tumor

efficacy (230, 231). Similarly, during bispecific antibody therapy,

simultaneous intervention of adenosine or tryptophan metabolic

pathways is expected to relieve the inhibition of endogenous T cells

and produce synergistic anti-tumor effects (92). These joint strategies

will become an important direction of clinical transformation research

in the next step. At the same time, microenvironment remodeling

strategies such as regulating cytokines such as IL-6/IL-10 or intervening

in nutritional competition may significantly enhance treatment

sensitivity (166, 232, 233). In terms of technological innovation, the

development of non-invasive monitoring technologies such as

imageomics virtual biopsy, and the establishment of PDX model and

organ like platform will greatly promote the process of drug research

and development and clinical transformation. Finally, an

individualized treatment system based on patient specific metabolic

and immune characteristics such as TME typing, such as the design of

IDHA inhibitors combined with immunotherapy for patients with

high lactic acid microenvironment, will promote lymphoma treatment

into a new era of precision medicine.
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