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The dual nature of
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networked brain
Ludmila Müller*, Svetlana Di Benedetto and Viktor Müller

Max Planck Institute for Human Development, Center for Lifespan Psychology, Berlin, Germany
Neuroinflammation is a dynamic, context-sensitive process that plays essential

roles in brain development, maintenance, and response to injury. It reflects a

finely balanced neuroimmune state—facilitating repair and adaptation under

homeostatic conditions, while also contributing to dysfunction when

dysregulated or chronically activated. In this mini-review, we examine the

cellular and molecular mechanisms underlying neuroinflammatory responses,

focusing on the roles of microglia and astrocytes, their bidirectional

communication with neurons, and their interaction with peripheral immune

signals. We describe how various stimuli—including aging, protein aggregates,

and cellular stress—modulate glial function and shift immune activity toward

protective or deleterious outcomes. Special attention is given to endogenous

regulatory pathways, including cytokine signaling, receptor-mediated crosstalk,

and immunometabolic cues that determine the resolution or persistence of

inflammation. We further discuss shared and disease-specific features of

neuroinflammation across neurological disorders, offering a systems-level

perspective on how immune activity contributes to neural resilience or

degeneration. This integrated view aims to inform future studies on

neuroimmune dynamics in health and disease.
KEYWORDS
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1 Introduction

Neuroinflammation has emerged as a defining feature of numerous neurological and

neurodegenerative disorders, yet its role is far from uniform. Rather than a simple marker

of pathology, inflammation in the central nervous system (CNS) is a complex, context-

dependent process that influences both resilience and degeneration (1–3). In its

physiological form, neuroinflammation plays a central role in immune surveillance,

synaptic remodeling, and tissue repair. However, upon chronic or uncontrolled

activation, it can promote neuronal damage, disrupt homeostasis, and contribute to

disease progression (2, 4–6).
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The CNS possesses a unique immune environment shaped by

tissue-resident glial cells—primarily microglia and astrocytes—and

modulated by interactions with neurons, vascular elements, and

peripheral immune signals. These cells sense changes in the

microenvironment and respond to a wide array of triggers,

including infections, trauma, misfolded proteins, and cellular

stress. Their responses are guided by tightly regulated signaling

pathways that determine whether inflammation resolves, becomes

protective, or turns detrimental (3, 7, 8).

A growing body of research has uncovered diverse molecular

mechanisms and immunomodulatory cues that influence the course

of neuroinflammation (1, 8, 9). While much of the literature has

focused on disease-associated inflammation, understanding how

immune responses are initiated and regulated under both normal

and pathological conditions is critical for unraveling the logic of

neuroimmune dynamics.

In this mini-review, we examine the cellular and molecular

mechanisms that govern neuroinflammatory responses, highlight

key initiating factors, and explore endogenous modulators that

shape these responses. By focusing on fundamental processes

rather than therapeutic endpoints, we aim to clarify the principles

that underlie the dual nature of inflammation in brain health and

disease. To understand how neuroinflammation contributes to

pathology, it is first crucial to understand its physiological roles.

We begin in the next section by examining how immune activity in

the healthy brain supports homeostasis, surveillance, and repair.
2 Physiological neuroinflammation
and immune surveillance

Neuroinflammation is often associated with pathology, but low-

level immune activity is a normal and essential feature of CNS

physiology. To recognize the full spectrum of neuroinflammatory

responses, it is essential to first consider their roles under

physiological conditions (Figure 1A). Even in the absence of injury

or disease, the central nervous system relies on tightly regulated

immune activity to maintain homeostasis (1, 8). Glial cells

continuously monitor the neural environment, modulate synaptic

function, and engage in crosstalk with neurons and the vasculature.

These baseline immune functions are not only non-disruptive but are

integral to normal brain development, plasticity, and repair (9–12).

Exploring this foundational role of neuroinflammation reveals its

adaptive potential—and sets the stage for understanding how these

same processes may become maladaptive in pathology.

In the healthy brain, neuroinflammatory signaling contributes to

homeostatic surveillance, synaptic regulation, and tissue maintenance

(8). Though often described as immunologically privileged, the CNS

is in continuous biochemical communication with the periphery. The

blood–brain barrier (BBB) regulates this exchange, maintaining

immune selectivity through tightly controlled permeability. Under

physiological conditions, peripheral immune cells are largely

excluded from the parenchyma, but antigen-presenting signals and
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cytokine gradients cross the BBB, informing systemic immune tone

(13–15). Meningeal lymphatics and perivascular spaces further

contribute to immune dialogue between brain and body (16–18).

Glial cells —primarily microglia, astrocytes, and oligodendrocyte-

lineage cells—play central roles in this baseline immune state,

dynamically sensing the neural environment and communicating

with both local and peripheral immune components. In steady-state

conditions, these cell types contribute to a finely tuned immunological

environment that supports neuronal communication and structural

integrity (8).

Microglia, the resident immune cells of the CNS, continuously

survey their surroundings through highly motile processes (19, 20).

Even in the absence of injury, they engage in synaptic pruning,

phagocytosis of cellular debris, and secretion of trophic factors that

support neuronal function (19, 20). Their resting phenotype is

defined by a unique transcriptional and metabolic profile that

maintains sensitivity to subtle environmental changes (1, 21).

Astrocytes also show active participation in immune

surveillance, regulating extracellular ion balance, neurotransmitter

clearance, and synapse maturation (10). In addition, astrocytes

support BBB function, fine-tune synaptic signaling, and facilitate

the removal of extracellular waste and infectious agents. Upon

activation, astrocytes secrete a diverse array of pro- and anti-

inflammatory mediators—such as cytokines, chemokines, growth

factors, and reactive oxygen species—that modulate the function of

nearby neurons, microglia, and endothelial cells (10, 22–25).

Beyond serving as progenitors for myelinating oligodendrocytes,

oligodendrocyte precursor cells (OPCs) are increasingly recognized

as active players in CNS immune surveillance. Identified by markers

such as NG2 and PDGFRa, OPCs are widely distributed in the adult

brain and remain highly responsive to changes in their environment

(26, 27). Even under steady-state conditions, they express pattern

recognition receptors and can detect inflammatory cues, positioning

them as sensitive sensors of tissue stress. In addition to contributing

to remyelination, OPCs influence extracellular matrix composition

and synaptic activity, highlighting their broader role in maintaining

homeostatic balance within the glial network. OPCs also engage in

crosstalk with astrocytes and microglia, modulating immune tone

through cytokine signaling and extracellular vesicles (26–28).

Cytokines are small signaling proteins that regulate neuronal

function, synaptic plasticity, immune responses, and tissue repair,

playing a dual role in both brain homeostasis and neuroinflammation

(29, 30). The cytokine network, present throughout the brain and

body, is tightly regulated across the lifespan. Through complex

cascades, cytokines act synergistically or antagonistically to mediate

cell–cell communication and translate environmental signals into

cellular responses (2, 31). Homeostatic levels of cytokines such as

interleukin-10 (IL-10), transforming growth factor-beta (TGF-b),
and fractalkine (CX3CL1) help sustain a non-inflammatory,

neuroprotective milieu (32, 33).

Complement components, traditionally associated with immune

defense, also play developmental roles in synaptic tagging

and elimination, particularly during early brain maturation (34).
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FIGURE 1

This simplified scheme illustrates dynamic cellular interactions in the brain across physiological and neuroinflammatory conditions. (A) Under
homeostatic conditions, the CNS maintains balanced immune surveillance through tightly regulated BBB function and glial–neuronal crosstalk.
Microglia, astrocytes, and oligodendrocyte-lineage cells support synaptic integrity, modulate neurotransmission, and contribute to developmental
pruning and waste clearance. Anti-inflammatory cytokines, along with complement components, sustain a neuroprotective environment and
prevent excessive immune activation. (B) Diverse initiators —including endogenous damage signals, exogenous pathogens, and genetic risk factors—
can shift the brain from a homeostatic to a reactive immune state. These triggers affect glial phenotypes, BBB permeability, and neuroimmune
signaling, potentially initiating a cascade toward chronic inflammation. (C) In pathological neuroinflammation, sustained activation of glial cells,
infiltration of peripheral immune cells, and impaired neuronal feedback create a self-reinforcing loop of inflammatory signaling. Microglia can adopt
disease-associated states such as DAM (disease-associated microglia) or LDAM (lipid-droplet-accumulating microglia), which initially aid clearance
but may drive chronic inflammation and dysfunction. This dysregulation contributes to BBB disruption, synaptic impairment, and progressive
neuronal damage, promoting the development of neurological and neurodegenerative disorders.BBB, blood-brain barrier; C1q, complement
component; DAM, disease associated microglia; ROS, reactive oxygen species.
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The balance of cytokine and complement signaling ensures immune

readiness while preventing excessive activation that could disturb

neural function (34, 35).

A variety of cell-intrinsic and intercellular mechanisms

maintain the immune balance in the CNS. Neurons express

ligands such as CD200 and CX3CL1, which signal to glial cells

via their respective receptors (CD200R and CX3CR1) to suppress

pro-inflammatory responses. Microglia and astrocytes also produce

immunoregulatory molecules including TGF-b and IL-10,

reinforcing a homeostatic loop. These baseline signals enable

rapid but restrained responses to perturbations, preventing

unnecessary inflammation while preserving readiness to respond

to damage or infection (8, 10, 33, 36).

Together, these physiological mechanisms ensure that immune

surveillance in the CNS remains balanced, responsive, and non-

disruptive to neural function. However, when homeostatic control is

challenged, a wide range of endogenous and exogenous triggers can

shift neuroinflammation toward a reactive or pathological state—a

transition we explore in the following section.
3 Initiators and triggers of
neuroinflammatory responses

Neuroinflammation is a complex biological process initiated by

diverse triggers that activate resident immune cells within the CNS,

primarily microglia and astrocytes (4, 37). These triggers can be

broadly categorized into endogenous and exogenous factors, each

contributing to the initiation, amplification, and chronicity of

neuroinflammatory responses (Figure 1B).

Endogenous triggers originate internally, reflecting cellular

distress or pathological changes within CNS tissue. A central

group of molecules involved are damage-associated molecular

patterns (DAMPs), including ATP, high-mobility group box 1

(HMGB1), heat-shock proteins, and mitochondrial DNA (38, 39).

These DAMPs bind to pattern recognition receptors (PRRs) such as

Toll-like receptors (TLRs, e.g., TLR4) and nucleotide-binding

oligomerization domain-like receptors (NLRs, e.g., NLRP3

inflammasome) expressed on microglia and astrocytes. This

interaction triggers downstream signaling cascades and

inflammasome activation, resulting in secretion of pro-

inflammatory cytokines such as IL-1b and TNF-a (40–42).

Another critical source of endogenous neuroinflammatory

triggers is the accumulation of protein aggregates that are

hallmarks of neurodegenerative diseases. Misfolded amyloid-b
(Ab) peptides activate microglia via receptors including TLRs and

scavenger receptors, promoting a sustained inflammatory state (42,

43). Tau aggregates stimulate inflammasome pathways and

contribute to microglial priming (44). Similarly, a-synuclein
fibrils implicated in Parkinson’s disease bind to TLR2 and induce

pro-inflammatory cytokine release (45).

Aging itself is a major endogenous factor predisposing the

CNS to heightened inflammation (2, 46). Aging leads to a chronic

low-grade pro-inflammatory state termed inflammaging,
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characterized by increased basal cytokine levels, microglial

priming, and impaired resolution mechanisms (47). Metabolic

stress, such as mitochondrial dysfunction, elevates production of

reactive oxygen species (ROS) and promotes activation of the

NLRP3 inflammasome, exacerbating neuroinflammation (48).

Remarkably, beyond classical immune cells, a diverse array of

non-immune cell types—including mesenchymal stromal/stem

cells, fibroblasts, endothelial cells, osteoblasts, neurons, and

Schwann cells—also exhibit essential immune-regulatory

functions that may become dysregulated with aging. These

include the secretion of cytokines, chemokines, and growth

factors, as well as roles in promoting inflammation, presenting

antigens, exerting immunosuppressive effects, and mounting

antimicrobial responses, particularly under conditions of infection

or inflammation (10, 49). With aging, these immunological

functions may become impaired, leading to dysregulated cellular

activity and contributing to the pathogenesis of age-related diseases

and neurodegeneration.

Exogenous triggers arise from environmental or pathogenic

insults. Pathogen-associated molecular patterns (PAMPs) derived

from bacterial lipopolysaccharides (LPS), viral RNA, or fungal

components activate TLRs and other PRRs on microglia and

astrocytes. This activation provokes innate immune responses,

including the release of cytokines and chemokines, as well as the

recruitment of peripheral immune cells (50, 51). Environmental

toxins, such as pesticides, heavy metals, and air pollutants, induce

oxidative stress and mitochondrial damage, indirectly activating

glial inflammatory pathways (52, 53). Traumatic brain injury (TBI)

causes mechanical damage that leads to the release of DAMPs and

BBB disruption, amplifying CNS immune activation and chronic

neuroinflammation (54).

Genetic variants critically shape neuroinflammatory sensitivity

and the efficacy of immune responses within the central nervous

system. They influence how resident immune cells, such as

microglia and astrocytes, detect and respond to endogenous and

exogenous triggers, thereby modulating both protective and

pathological inflammation. By altering receptor function,

signaling pathways, and cellular metabolism, specific gene

variants can either amplify or dampen neuroinflammatory

cascades, ultimately impacting the onset, progression, and severity

of various neurological disorders. For instance, the microglial

receptor TREM2 regulates phagocytosis and inflammatory

modulation. Loss-of-function mutations reduce clearance of

apoptotic neurons and protein aggregates, leading to chronic

inflammation (55). TREM2 signaling promotes a neuroprotective

microglial phenotype through DAP12-mediated pathways,

modulating PI3K-Akt and suppressing excessive nuclear factor

kappa B (NF-kB) activation (56).

Another example is the APOE4 allele, which influences lipid

metabolism and neuroinflammation. APOE4 carriers exhibit

disrupted BBB integrity, increased microglial activation, and

impaired clearance of Ab (57, 58). APOE4 modulates TLR

signaling and inflammasome activation, contributing to a pro-

inflammatory milieu (59). These genetic predispositions not only
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amplify neuroinflammatory triggers but also interfere with

resolution and repair, shaping disease susceptibility and

progression in disorders such as Alzheimer’s disease (AD) and

Parkinson’s disease (PD).

In summary, a broad spectrum of endogenous and exogenous

stimuli—including DAMPs, PAMPs, protein aggregates, metabolic

stress, and environmental insults—can initiate and shape

neuroinflammatory responses in the central nervous system. The

magnitude and character of these responses are further shaped by

genetic risk factors such as TREM2 and APOE4, which modulate

immune sensitivity and glial reactivity. Together, these elements form

the initiating framework of neuroinflammation, determining how the

CNS perceives and reacts to various perturbations. To understand

how these initial triggers are translated into coordinated cellular

behaviors and signaling pathways, the following section explores the

cellular and molecular mechanisms governing neuroinflammation.
4 Cellular and molecular mechanisms
governing neuroinflammation

Once initiated by endogenous or exogenous stimuli,

neuroinflammatory responses (Figure 1C) are mediated by

CNS-resident cells, primarily microglia and astrocytes, which

detect danger signals and activate context-specific molecular

programs. These involve tightly regulated signaling pathways—

such as NF-kB, Janus kinase/signal transducer and activator of

transcription (JAK/STAT), mitogen-activated protein kinase

(MAPKs), and inflammasomes—that govern cytokine and

chemokine production, oxidative stress responses, and

intercellular communication (60, 61). Through dynamic

interactions with neurons, endothelial cells, and, when relevant,

infiltrating immune cells, glial responses shape the local

inflammatory milieu (37). The following subsections detail the

cellular roles of microglia and astrocytes and the intracellular

mechanisms driving their activation.
4.1 Microglial and astrocytic phenotypic
changes

Microglia and astrocytes exhibit remarkable phenotypic

plasticity in response to neuroinflammatory triggers (Figure 1C),

adapting their functional states along dynamic spectrums rather

than fixed binary polarizations (1, 62–64). Historically, microglial

activation has been described by the M1/M2 classification, where

M1 microglia adopt a pro-inflammatory profile characterized by

production of cytokines such as TNF-a, IL-1b, and reactive oxygen

species, while M2 microglia promote tissue repair and anti-

inflammatory responses.

However, this binary framework oversimplifies the complexity of

microglial responses. Recent single-cell and spatial transcriptomic

studies have uncovered a spectrum of microglial phenotypes shaped

by stimulus type, age, spatial niche, and disease progression. For
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instance, disease-associated microglia (DAM) and lipid-droplet-

accumulating microglia (LDAM) are distinct microglial states linked

to neurodegeneration and aging, marked by altered metabolism,

impaired phagocytosis, and heightened inflammatory activity (19,

64–70). These dynamic microglial states have pivotal implications

for therapy: interventions should aim to selectively modulate specific

phenotypes or signaling pathways—depending on disease stage,

spatial context, and the balance between protective and deleterious

functions (71, 72).

Similarly, astrocytes undergo reactive changes that range from

neuroprotective (A2) to neurotoxic (A1) phenotypes (1, 73–75).

Neurotoxic astrocytes, induced by microglia-derived factors such as

IL-1a, TNF-a, and C1q, lose normal supportive functions and

release neurotoxic mediators contributing to neuronal injury and

degeneration (Figure 1C). In contrast, A2 astrocytes are associated

with neuroprotection and repair, producing growth factors and

anti-inflammatory molecules (Figure 1A). Like microglia, astrocyte

activation is highly context-dependent and involves complex

transcriptional and epigenetic regulation (76, 77). However,

similar to the M1/M2 paradigm in microglia, these classifications

oversimplify the diverse and dynamic range of astrocytic responses

in the inflamed nervous system (1, 78, 79).

Importantly, microglial and astrocytic phenotypes are not

isolated states but reflect continuous adaptations within an

interconnected cellular network. Their activation profiles shape

the local cytokine milieu, influence blood-brain barrier integrity,

and regulate recruitment of peripheral immune cells, ultimately

determining the progression or resolution of neuroinflammation.
4.2 Signaling pathways

The activation and functional responses of microglia and

astrocytes during neuroinflammation are governed by multiple

intracellular signaling cascades that integrate external stimuli into

specific transcriptional programs. Among these, the NF-kB
pathway is a central regulator of pro-inflammatory gene

expression, controlling the release of cytokines, chemokines, and

adhesion molecules (80). Activation of NF-kB typically occurs

downstream of pattern recognition receptors such as TLRs and

leads to rapid induction of inflammatory mediators.

Additionally, several intracellular signaling pathways play

pivotal roles in sensing cellular stress, regulating immune

responses, and mediating communication between neurons, glia,

and immune cells. Among the most prominent are the NLRP3

inflammasome, the JAK/STAT pathway, the MAPK cascades, and

the cGAS–STING pathway—each contributing to the detection of

danger signals and the orchestration of downstream inflammatory

processes within the central nervous system.

The NLRP3 inflammasome is a critical cytosolic multiprotein

complex that senses cellular stress and danger signals, triggering

caspase-1 activation and subsequent maturation of IL-1b and IL-18.

This pathway contributes to the amplification of neuroinflammation

and is implicated in numerous neurodegenerative diseases (43).
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The JAK/STAT pathway mediates responses to a variety of

cytokines and growth factors. In particular, STAT3 activation in

astrocytes is associated with both protective and detrimental effects

depending on the inflammatory context, influencing astrogliosis

and scar formation (60, 81, 82). This pathway plays a key role in

modulating neuroinflammatory processes by shaping glial

reactivity, regulating immune cell recruitment, and sustaining

chronic inflammation when dysregulated.

The MAPK cascades, including extracellular signal-regulated

kinase (ERK), c-Jun N-terminal kinase (JNK), and p38, regulate

diverse aspects of glial activation, from cytokine production to cell

survival and apoptosis. These pathways often cross-talk with NF-

kB and JAK/STAT signaling to fine-tune inflammatory responses

(83). Their sustained activation has been linked to chronic

neuroinflammation and progressive neuronal damage in various

CNS disorders.

Finally, the cyclic GMP-AMP synthase–stimulator of interferon

genes (cGAS–STING) pathway detects cytosolic DNA from

pathogens or damaged cells, leading to type I interferon

production and an antiviral state. Emerging evidence implicates

cGAS–STING signaling in sterile neuroinflammation and

neurodegeneration, highlighting its importance in CNS immune

surveillance (84, 85).

Together, these signaling pathways coordinate glial responses to

injury and infection, balancing host defense with tissue

preservation. Dysregulation at any level can contribute to chronic

inflammation and neuronal damage.
4.3 Crosstalk and feedback regulation

Microglia and astrocytes engage in extensive bidirectional

communication that shapes the magnitude, duration, and

outcome of neuroinflammatory responses (8, 37). Microglia-

derived cytokines such as IL-1a, TNF-a, and complement

component (C1q) can induce reactive astrocyte phenotypes,

notably the neurotoxic A1 state (86, 87). Conversely, astrocytes

modulate microglial activation by releasing anti-inflammatory

factors like TGF-b, IL-10, and ATP-degrading enzymes that

dampen purinergic signaling. These reciprocal influences are

dynamically regulated and context-dependent, enabling either

amplification or resolution of inflammation (88).

Feedback mechanisms also arise through autocrine and paracrine

signaling. For instance, sustained activation of NF-kB or STAT3 can

reinforce inflammatory gene expression in both glial types, while

negative regulators such as suppressor of cytokine signaling (SOCS)

proteins, A20, and microRNAs act to constrain excessive responses

(89). Additionally, metabolic cues—such as shifts in glycolysis or

oxidative phosphorylation—affect glial activation states and modulate

the inflammatory tone via immunometabolic pathways (90).

The integrity of these crosstalk mechanisms is essential for

maintaining CNS homeostasis. Disruption of feedback regulation—
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due to aging, chronic stress, or genetic susceptibility—can lead to

persistent glial activation, increased cytokine load, and secondary

damage to neurons and oligodendrocytes. Understanding these

interactions provides key insights into how glial networks adapt to

inflammatory challenges and why these processes may fail in disease.
4.4 Immune–neural communication loops

Neuroinflammatory responses are tightly shaped by the

bidirectional interactions between neurons and glial cells.

Neurons are not passive bystanders in neuroinflammation but

actively participate in shaping glial responses through finely tuned

immune–neural communication loops. Under homeostatic

conditions, neurons express “off” signals—such as CD200,

fractalkine, and TGF-b—that engage receptors on microglia and

astrocytes to maintain them in a surveillant, non-inflammatory

state (91). During stress or injury, neuronal signaling patterns

change significantly, with altered expression of danger signals,

DAMPs, and altered neurotransmitter release that can drive glial

activation (8, 37, 91, 92).

Conversely, reactive glia profoundly influence neuronal

function (Figure 1C). Microglia and astrocytes release cytokines

(e.g., IL-1b, TNF-a), reactive oxygen species, and glutamate, which

can impair synaptic transmission, disrupt neuronal excitability, and

induce cell death. Astrocytic loss of homeostatic functions—such as

glutamate uptake and ion buffering—further exacerbates neuronal

stress. Importantly, chronic or unresolved neuroinflammation can

alter synaptic pruning, plasticity, and long-term neuronal viability,

contributing to cognitive and behavioral dysfunction (8, 37, 93, 94).

These bidirectional loops are tightly regulated under physiological

conditions but become dysregulated in neurodegenerative and

neuropsychiatric disorders. The failure of neurons to restrain glial

activation, or the persistence of glia-derived neurotoxic signals,

establishes a self-reinforcing inflammatory circuit that promotes

disease progression. Deciphering the molecular mediators and timing

of these immune–neural interactions is crucial for identifying

therapeutic strategies that restore balance and protect neural function

in the inflamed CNS (8, 37).

Thus, neuroinflammation emerges from a complex and

dynamic interplay between glial cells, signaling pathways, and

neuron-glia communication. Microglia and astrocytes adopt

diverse phenotypes in response to environmental cues, executing

both protective and detrimental functions. These responses are

orchestrated through interconnected intracellular pathways and

tightly regulated by reciprocal glial crosstalk and neuronal input.

Disruption of these regulatory networks—through chronic

stimulation, aging, or genetic vulnerability—can shift glial

responses toward sustained inflammation and neurotoxicity.

Understanding the mechanisms that govern this cellular network

is key to identifying points of intervention for modulating

neuroinflammation in neurological diseases.
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5 Neuroinflammation in disease
contexts: mechanistic insights

While the cel lu lar and molecular mechanisms of

neuroinflammation share common elements across conditions,

their specific manifestation varies significantly depending on the

disease context. In each disorder, distinct triggers, temporal

dynamics, and cellular environments shape the nature and

outcome of the inflammatory response. Whether inflammation

serves a reparative, neutral, or detrimental role is determined by

the interplay of acute versus chronic activation, the affected brain

region, and underlying genetic and systemic influences.

Neuroinflammation is increasingly recognized as a key

contributor to the pathophysiology of various neuropsychiatric

disorders, including major depressive disorder, schizophrenia, and

bipolar disorder (95–97). In these conditions, altered glial

activation, elevated levels of pro-inflammatory cytokines (e.g., IL-

6, TNF-a), and disrupted BBB integrity have been observed, even in

the absence of overt neurodegeneration (98). Microglia and

astrocytes exhibit region-specific changes in reactivity, particularly

within the prefrontal cortex, hippocampus, and amygdala—areas

critical for mood and cognition. Dysregulated immune-to-brain

signaling, often involving peripheral immune activation or stress-

induced HPA axis dysfunction, may prime glial cells toward a pro-

inflammatory state, contributing to synaptic alterations and

behavioral symptoms. Moreover, emerging evidence links

inflammatory profiles with treatment resistance in depression,

and clinical trials are underway to evaluate anti-inflammatory

agents as adjunctive therapies (99, 100). These findings

underscore the importance of considering glial–immune

dynamics not only in neurodegeneration but also in the broader

landscape of brain disorders affecting cognition, emotion,

and behavior.

The following section highlights shared and divergent

neuroinflammatory mechanisms in selected neurological diseases,

such as AD, PD, and multiple sclerosis (MS), with a focus on how

context influences glial reactivity, immune signaling, and the transition

from protective responses to chronic neurotoxicity (Figure 2).
5.1 Alzheimer’s disease

In AD (Figure 2, central section, left) neuroinflammation is a

prominent and early feature that contributes to disease onset and

progression. Activated microglia cluster around amyloid-b (Ab)
plaques and release pro-inflammatory mediators such as IL-1b,
TNF-a, and reactive oxygen species, contributing to synaptic

dysfunction and neuronal loss. While initially recruited to clear Ab
aggregates, microglia in the AD brain often become chronically

activated and adopt a dysfunctional phenotype that is inefficient in

phagocytosis but sustained in cytokine release (101, 102). This shift

contributes to a toxic feedback loop, wherein persistent inflammation

exacerbates Ab pathology and tau hyperphosphorylation.

Astrocytes also exhibit reactive changes in AD, displaying both

hypertrophy and altered expression of inflammatory genes. Reactive
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astrocytes can propagate inflammation through complement

activation (e.g., C3), impaired glutamate clearance, and altered

metabolic support to neurons. The interplay between microglia

and astrocytes, particularly the induction of neurotoxic A1

astrocytes by microglia-derived signals (e.g., IL-1a, TNF-a), is
increasingly recognized as a key contributor to neuronal

vulnerability in AD (103).

Genetic risk factors (Figure 2, top panel, left) further sensitize

the neuroinflammatory response. APOE4, the strongest genetic risk

factor for late-onset AD, is associated with impaired Ab clearance

and increased pro-inflammatory glial activity (104). Similarly,

TREM2 variants, which affect microglial survival and lipid

sensing, modulate microglial responses to Ab and influence

plaque compaction and surrounding inflammation (105, 106).

These findings highlight that inflammation in AD is not merely a

secondary consequence but an active driver of neurodegeneration,

shaped by both intrinsic genetic programs and ongoing

pathological stimuli.
5.2 Parkinson’s disease

Neuroinflammation is increasingly recognized as a critical

component of PD pathogenesis (Figure 2, central section,

middle), contributing to the progressive loss of dopaminergic

neurons in the substantia nigra (107, 108). Microglia in PD

brains display a persistently activated phenotype, characterized by

upregulation of MHC class II, elevated pro-inflammatory cytokine

release (e.g., TNF-a, IL-6, IL-1b), and increased production of

reactive oxygen and nitrogen species. This sustained pro-

inflammatory state not only damages neurons directly but also

promotes a-synuclein aggregation and impairs its clearance,

perpetuating a harmful feed-forward loop (107, 109, 110).

Misfolded and aggregated a-synuclein acts as a potent DAMP,

triggering innate immune receptors such as TLRs and the NLRP3

inflammasome. These pathways initiate and amplify microglial

activation, leading to caspase-1–mediated IL-1b release and

pyroptotic responses. Astrocytes also respond to a-synuclein and

contribute to neuroinflammation by producing pro-inflammatory

mediators, exhibiting impaired neurotrophic support, and engaging

in dysfunctional glutamate homeostasis (109, 111).

Genetic mutations associated with familial PD (Figure 2, top

panel, middle), such as those in leucine-rich repeat kinase 2

(LRRK2) and Parkinsonism associated deglycase (PARK7, also

known as DJ-1), as well as SNCA (a-synuclein), influence

inflammatory susceptibility by altering mitochondrial function,

oxidative stress responses, and autophagy. Notably, LRRK2 is

highly expressed in immune cells and regulates inflammatory

signaling, linking genetic vulnerability to dysregulated immune

responses in PD (112–114).

Together, these mechanisms underscore the central role of

innate immune dysfunction in PD. Unlike in AD, where

inflammation may precede overt neurodegeneration, in PD it

appears to act in concert with proteinopathy and mitochondrial

dysfunction, forming a triad of pathological drivers.
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FIGURE 2

Mechanistic overview of neuroinflammation across major neurodegenerative diseases. This schematic illustrates the initiation and regulation of
neuroinflammatory responses in AD, PD, and MS. The top panel highlights key genetic risk factors associated with each condition. The central
section outlines shared and disease-specific inflammatory mechanisms, including innate immune responses to protein aggregates (AD, PD),
autoimmune infiltration (MS), and chronic activation of microglia and astrocytes. These immune processes converge on a maladaptive inflammatory
state that disrupts CNS homeostasis and promotes neuronal dysfunction. Despite their distinct etiologies, all three disorders involve persistent glial
dysregulation, impaired resolution, and sustained neuroinflammation. The bottom panel depicts characteristic pathological outcomes associated
with each disease. MG, microglia; AC, astrocyte; BBB, blood-brane-barrier; IL, interleukin; TNF, tumor necrosis factor; ROS, reactive oxygen species;
pIC, peripheral immune cells; pC, peripheral cytokines; Mo, monocytes; aTC, autoreactive T cells; aBC, autoreactive B cells; aAb, auto-antibodies;
Ab, amyloid-b; dN, degenerating neuron; C3, complement component; LB, Lewis body; a-Sy, a-synuclein; dDN, degenerating dopaminergic
neuron; pM, proinflammatory mediators; NLRP, inflammasome; dM, dysfunctional mitochondria; dmN, degenerating demyelinated neuron; Chemo,
chemokines.
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5.3 Multiple sclerosis

Multiple sclerosis is a chronic autoimmune disorder of the

central nervous system in which neuroinflammation is a central

pathogenic mechanism driving demyelination, axonal injury, and

neurodegeneration (115). Unlike neurodegenerative diseases where

inflammation arises primarily from intrinsic CNS signals, MS is

characterized by the infiltration of peripheral immune cells—

including autoreactive T cells, B cells, and monocytes—across a

compromised BBB (Figure 2, central section, right). These cells

interact with resident microglia and astrocytes, amplifying local

inflammation and tissue damage (116).

Microglia in MS lesions are highly reactive and contribute to

both early demyelination and chronic lesion expansion. They

express pro-inflammatory cytokines (e.g., IL-1b, TNF-a), present
antigens, and produce reactive oxygen species and nitric oxide, all of

which exacerbate oligodendrocyte injury. In chronic active lesions,

microglia form a rim around slowly expanding plaques,

maintaining a smoldering inflammatory state associated with

disease progression (115, 117).

Astrocytes contribute to both the propagation and modulation of

neuroinflammation in MS. They upregulate chemokines (e.g., CCL2,

CCL5, CXCL10) and adhesion molecules (e.g., VCAM-1, ICAM-1)

promoting immune cell infiltration across the blood–brain barrier.

Astrocyte-derived cytokines, including IL-1b, IL-6, TNF-a, and TGF-

b, influence T-cell polarization and interactions with microglia, further

shaping the inflammatory milieu. However, astrocytes also play

protective roles by promoting BBB repair, producing anti-

inflammatory mediators, and supporting remyelination, illustrating

their dual role in MS pathophysiology (115, 118).

In multiple sclerosis, peripheral immune dysregulation—

characterized by the activation of autoreactive T and B cells—is

recognized as a primary driver of CNS pathology. These cells

infiltrate a compromised BBB and initiate CNS inflammation,

where subsequent interactions with resident microglia and

astrocytes amplify local neuroimmune responses, forming a

pathogenic feedback loop that sustains demyelination and

neurodegeneration (119).

Building on this, peripheral immune activity remains

functionally interconnected with immune responses within the

CNS. Pro-inflammatory Th1 and Th17 cells contribute to tissue

damage, while dysfunction of regulatory T cells impairs immune

resolution and promotes disease persistence (120, 121). B cells also

play an increasingly important role in MS through antibody

production and cytokine secretion, with therapies targeting B cells

(e.g., anti-CD20 monoclonals) showing clinical efficacy (122, 123).

The strongest genetic risk factor for MS is the HLA-

DRB1*15:01 allele, located in the MHC class II region, which

increases disease risk by facilitating autoreactive CD4+ T cell

activation against CNS antigens (124). Among non-HLA genes,

IL2RA, encoding the interleukin-2 receptor alpha chain (CD25),

has been linked to impaired regulatory T cell function, contributing

to immune dysregulation and loss of tolerance (125, 126). These
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variants underscore the central role of adaptive immunity in MS

pathogenesis (Figure 2, top panel, right).

Thus, MS exemplifies a context in which neuroinflammation

arises from both peripheral and central immune mechanisms. The

spatial and temporal dynamics of glial activation, immune cell

infiltration, and lesion evolution define the clinical heterogeneity of

MS and provide therapeutic entry points for immunomodulation.

Together, AD, PD, and MS illustrate how neuroinflammation

contributes to CNS pathology (Figure 2, bottom panel) through

distinct yet overlapping mechanisms. From innate immune

responses to protein aggregates, to autoimmune infiltration and

chronic glial activation, these disorders underscore the central role of

context-specific inflammatory networks in shaping disease trajectories.

Despite differences in etiology, all involve dysregulated microglial and

astrocytic activity, persistent signaling imbalances, and compromised

resolution, which ultimately fuel neurodegeneration. These insights

highlight not only the complexity of neuroinflammatory processes

but also the pressing need for refined tools and conceptual frameworks

to study them.
6 Conclusions and future directions

Neuroinflammation emerges as a central and dynamic process

across a range of neurological disorders, shaped by disease-specific

triggers, glial phenotypic plasticity, and complicate signaling networks.

This mini-review highlights that while the cellular and molecular

mechanisms vary across conditions such as AD, PD, and MS, they

converge on common principles: chronic glial activation, impaired

resolution, and maladaptive immune-neural interactions that

perpetuate neurodegeneration. A nuanced understanding of these

processes is essential to advance the field beyond oversimplified

models and toward context-aware, mechanistic insight.

Looking ahead, a shift toward system-level frameworks is

essential to capture the full complexity of neuroimmune

interactions. Rather than focusing solely on individual cell types

or signaling pathways, future research must model inflammation as

an emergent property of networked communication—shaped by

feedback, crosstalk, and spatial context within the CNS. This

perspective is particularly valuable for understanding how

inflammation evolves over time and how its resolution or

persistence impacts disease progression.

A deeper understanding of neuroimmune interactions requires

moving beyond linear cause-effect models toward systems that

reflect the true complexity of brain function. Multilayer network

models offer a powerful framework to capture the dynamic

interplay among diverse cellular populations, signaling pathways,

and environmental influences. These models allow for the

integration of molecular, cellular, and circuit-level data across

spatial and temporal scales, revealing emergent properties that are

not apparent in isolated datasets. By mapping how immune signals

propagate through neural circuits and how glial responses influence

synaptic and systemic functions, multilayer approaches can uncover
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key nodes of vulnerability or resilience. This systems perspective is

crucial for identifying intervention points and for designing

strategies that modulate neuroinflammation with greater precision

and fewer unintended consequences.

Equally vital is the pressing need to refine our understanding of

glial diversity through high-resolution phenotyping. Traditional

classifications, such as the M1/M2 and A1/A2 dichotomies, offer

only a limited view of the dynamic and context-dependent states

glial cells assume in vivo. Advances in single-cell transcriptomics,

spatial profiling, and high-resolution imaging now open the door to

a more nuanced and integrative characterization of glial function

across health, aging, and disease.

Advancing our understanding of neuroinflammation demands

integrative, high-resolution, and systems-oriented approaches that can

capture its complexity across molecular, cellular, and circuit levels. By

implementation multilayered network models, we will be more able to

unravel the dichotomous function of neuroinflammation, clarify the

delicate balance between protective and pathological immune

responses in the brain, and identify meaningful points of

intervention for future translational research.

Neuroinflammation represents a dynamic and multifaceted

process within the highly interconnected cellular landscape of the

brain. Rather than acting as a singular harmful force, inflammatory

responses serve both protective and pathogenic roles, depending on

their intensity, duration, and cellular context. Acute, well-regulated

neuroinflammation is essential for host defense, tissue repair, and the

restoration of homeostasis. In contrast, chronic or dysregulated

inflammatory signaling—shaped by genetic predispositions, aging,

and environmental insults—can lead to glial dysfunction, synaptic

alterations, and progressive neurodegeneration. Understanding this

dualistic nature is crucial for decoding the complex interplay between

immune signaling and neural function in health and disease.
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