

OPEN ACCESS

EDITED BY Marijn M Speeckaert, Ghent University Hospital, Belgium

REVIEWED BY
Lin Chen,
Northwest University, China

Northwest University, China
*CORRESPONDENCE
Liping Li

⊠ liliping2025@126.com Xingxing Yuan

[†]These authors have contributed equally to this work

RECEIVED 05 July 2025
ACCEPTED 27 August 2025
PUBLISHED 10 September 2025

CITATION

Liu C, Wang J, Lei L, Li L and Yuan X (2025) Gut microbiota therapy for chronic kidney disease.

Front. Immunol. 16:1660226. doi: 10.3389/fimmu.2025.1660226

COPYRIGHT

© 2025 Liu, Wang, Lei, Li and Yuan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Gut microbiota therapy for chronic kidney disease

Chunguang Liu^{1†}, Junhong Wang^{2†}, Lei Lei¹, Liping Li^{3*} and Xingxing Yuan^{3*}

¹Department of Nephrology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China, ²Department of Internal Medicine, Harbin Hospital of Traditional Chinese Medicine, Harbin, China, ³Department of Gastroenterology, Heilongjiang Academy of traditional Chinese medicine, Harbin, China

Chronic kidney disease (CKD), affecting 13% of the global population, is increasingly linked to gut microbiota dysbiosis, a condition driven by uremic toxins accumulation, metabolic alterations, and dietary factors. This mini review explores gut microbiota modulation as a therapeutic strategy to alleviate CKD symptoms, focusing on interventions that target gut microbiota composition and function. Prebiotics, such as resistant starch, have been shown to lower uremic toxins and reduce inflammation, while dietary adjustments, including lowprotein and gluten-free diets, modulate microbial diversity and improve renal biomarkers. Fecal microbiota transplantation (FMT), which stabilizes creatinine levels and shifts gut microbiota toward beneficial taxa, represents another promising approach. However, limitations persist: synbiotics, which often induce gut microbiota shifts, frequently lack clinical impact; probiotics, which enhance glucose control and oxidative stress mitigation, exhibit variable efficacy; and interventions such as propolis or cranberry extract, which have been tested, prove ineffective. The causal relationship between gut microbiota dysbiosis and CKD progression, which remains unclear, is further complicated by methodological heterogeneity across studies. Emerging strategies, including phage therapy and artificial intelligence-driven multi-omics integration, which hold significant promise, require further validation. Future research must prioritize longitudinal studies, maternal gut microbiota optimization, and personalized approaches, which are essential for advancing CKD management. While gut microbiota modulations hold therapeutic potential, translating these findings into clinical practice demands rigorous trials to address inconsistencies and establish mechanistic links, ultimately shifting CKD management from reactive treatment to precision-based prevention.

KEYWORDS

gut microbiota, chronic kidney disease, therapeutic interventions, fecal microbiota transplantation, precision-based prevention

Introduction

Chronic kidney disease (CKD), affecting approximately 13% of the global population, represents a significant public health burden characterized by progressive loss of renal function (1). A hallmark feature of CKD is profound gut microbiota dysbiosis, characterized by shifts such as increased Enterobacteriaceae and Streptococcus, and decreased beneficial taxa like Prevotella and Roseburia (2). This dysbiosis is driven by uremic toxin accumulation, metabolic acidosis, dietary restrictions, and frequent antibiotic use, disrupting intestinal barrier integrity and promoting inflammation (3, 4). Critically, this altered microbial ecology generates pathogenic metabolites, including gut-derived uremic toxins like indoxyl sulfate, p-cresyl sulfate, and trimethylamine-N-oxide (TMAO) (4, 5). Elevated TMAO levels correlate with inflammation, reduced glomerular filtration rate (GFR), and increased mortality in CKD patients (6, 7), while reduced shortchain fatty acid (SCFA) production by diminished commensal bacteria further exacerbates renal injury and systemic inflammation (8, 9). These microbial metabolites directly contribute to CKD progression and associated complications (10). Targeting this dysbiotic gut environment offers a promising therapeutic avenue. Emerging evidence highlights Traditional Chinese Medicine (TCM) as a potent modulator of the gutkidney axis. TCM formulations like Yi-Shen-Hua-Shi granules and Zicuiyin decoction mitigate proteinuria, preserve renal function (eGFR), and ameliorate CKD progression by specifically reversing gut dysbiosis, enriching beneficial genera (Faecalibacterium, Lachnoclostridium, Lactobacillaceae) and suppressing pathogenic bacteria such as Clostridium innocuum, Enterobacteriales (11, 12).

CKD is globally prevalent, with gut microbiota dysbiosis increasingly implicated in its pathogenesis. Bibliometric analysis confirms intense research focus on microbiota-CKD interactions, particularly regarding disease mechanisms, probiotic therapies, and microbial metabolites (13). Specific microbial alterations, such as

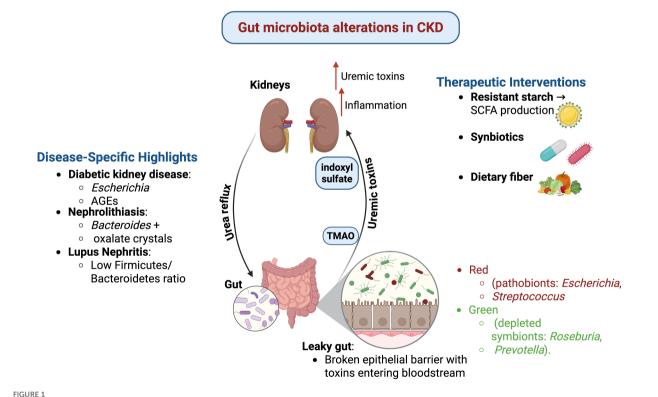
Abbreviations: ACEI, Angiotensin-Converting Enzyme Inhibitor; AhR, Aryl Hydrocarbon Receptor; AKI, Acute Kidney Injury; ARB, Angiotensin Receptor Blocker; BMI, Body Mass Index; CCL5, C-C Motif Chemokine Ligand 5; CD, Cluster of Differentiation; CKD, Chronic Kidney Disease; CXCL10, C-X-C Motif Chemokine Ligand 10; DKD, Diabetic Kidney Disease; eGFR, estimated Glomerular Filtration Rate; ESRD, End-Stage Renal Disease; FMT, Fecal Microbiota Transplantation; FOXp3, Forkhead Box P3; FOS, Fructooligosaccharide; GFR, Glomerular Filtration Rate; HDL, High-Density Lipoprotein; HO-1, Heme Oxygenase-1; IAld, Indole-3-aldehyde; IAA, Indole-3-acetic Acid; IgA, Immunoglobulin A; IFN-γ, Interferon Gamma; IL, Interleukin; IP-10, Interferon-inducible Protein 10 (CXCL10); NAFLD, Non-Alcoholic Fatty Liver Disease; NF-κB, Nuclear Factor kappa-light-chainenhancer of activated B cells; Nrf2, Nuclear factor erythroid 2-related factor 2; PDGF, Platelet-Derived Growth Factor; RANTES, Regulated upon Activation, Normal T Cell Expressed and Secreted (CCL5); RS, Resistant Starch; SCFA, Short-Chain Fatty Acid; SRNS, Steroid-Resistant Nephrotic Syndrome; TCM, Traditional Chinese Medicine; TMAO, Trimethylamine-N-Oxide; Treg, Regulatory T cell

depletion of *Lactobacillus johnsonii*, correlate strongly with CKD progression and uremic toxin accumulation. Restoring this bacterium ameliorates renal injury via indole-3-aldehyde-mediated aryl hydrocarbon receptor signaling (14). In diabetic kidney disease (DKD), gut-derived metabolites critically influence pathophysiology through molecular pathways affecting inflammation, fibrosis, and metabolic homeostasis (15). These findings highlight microbiota modulation, via probiotics, metabolites, or dietary interventions as a promising therapeutic strategy for CKD management.

This modulation reduces uremic toxin burden, strengthens intestinal barrier function, and dampens inflammation, positioning TCM as a key strategy for microbiota-targeted CKD management. The primary aim of this mini-review is to evaluate progress in gut microbiota modulation for improving CKD outcomes. While existing systematic reviews and meta-analyses are limited by narrow sampling frames focused on contemporary trials, this review adopts a distinct approach by exclusively for clinical trials and randomized controlled trials to strengthen the evidence base. By synthesizing current findings, this review provides a comprehensive perspective on the role of gut microbiota in improving CKD management and patient longevity.

Gut microbiota alterations in CKD

CKD is characterized by significant alterations in gut microbiota composition, including an increased abundance of Streptococcaceae, Enterobacteriaceae, and Streptococcus, alongside reduced levels of Prevotellaceae, Prevotella 9, Prevotella, and Roseburia (2). Similarly, patients with kidney stones also exhibit distinct microbial variations, such as shifts in the Lachnospiraceae NK4A136 group, Bacteroides, Ruminiclostridium 5 group, Enterobacter, Dorea, and Christensenellaceae (16). In DKD, the gut microbiota profile is marked by enriched Escherichia and Hungatella genera and reduced butyrate-producing bacteria (8), as well as increased Citrobacter and Klebsiella genera with decreased Roseburia, highlighting potential targets for therapeutic intervention (17). Notably, these diabetic microvascular complications are marked by reduced SCFA-producing bacteria and diminished alpha diversity, reinforcing the therapeutic potential of gut microbiota modulation across kidney diseases (9).


Patients with idiopathic membranous nephropathy exhibit elevated *Proteobacteria* and reduced *Lachnospira*, highlighting key gut microbiota alterations (18). In lupus nephritis, decreased inflammatory indicators and *Firmicutes/Bacteroidetes* ratios, coupled with intestinal barrier dysfunction, serve as pathogenic markers (19). Metabolically, reduced saccharolytic bacteria and increased nitrogen-compound fermenters are linked to circulating uremic toxins in CKD (10). IgA nephropathy is associated with *Escherichia-Shigella* expansion, suggesting novel diagnostic and therapeutic targets (20). By enhancing intestinal barrier function to prevent hepatotoxic metabolite formation and modulating immune responses, microbiota-targeted therapies may improve non-alcoholic fatty liver disease (NAFLD) (21). Dietary

modifications, alongside lifestyle changes, represent preventive strategies for NAFLD, thereby mitigating CKD risk factors (22).

Efforts to elucidate the causal and correlative effects of gut microbiota in CKD have identified distinct microbial species and families rather than overall diversity during low-protein diet interventions (23). Dietary fiber supplementation reduces creatinine and serum urea levels, underscoring the role of uremic toxins in CKD progression (24). Resistant starch, particularly type 2 resistant starch, lowers uremic toxins and inflammation, improving renal function in patients with CKD and enhancing residual renal function in maintenance hemodialysis patients (25). Anthocyanin degradation into phenolic acids and colonic metabolites regulates biological activities, including CKD amelioration, when systemically accumulated (26). Synbiotic interventions reduce oxidative stress, inflammation, and uremic toxins in hemodialysis patients, though their efficacy in CKD management remains insufficient (27).

The unique gut microbiota profile in kidney stone patients suggests that dietary adjustments and personalized therapies, such as synbiotics, may restore eubiosis and prevent stone formation/recurrence (28). Synbiotics also mitigate uremic solute production,

oxidative stress, and systemic inflammation (29). However, while synbiotics increase Bifidobacterium abundance, their clinical efficacy in CKD management remains limited (30). Longer-term supplementation may improve inflammatory and renal indices in CKD, though large-scale trials are needed to validate these findings (31). TCM interventions show potential for CKD improvement, but efficacy validation, safety concerns, and barriers to international collaboration hinder progress (32, 33). Disorders of gut-derived metabolites, including p-cresyl sulfate, indoxyl sulfate, indole-3acetic acid (IAA), and indole-3-aldehyde (IAld), drive kidney injury in AKI and CKD by activating aryl hydrocarbon receptor (AhR) pathways and promoting inflammation/fibrosis (34). Depleted Lactobacillus species (L. johnsonii) reduce protective IAld, elevating toxic IAA and indoxyl sulfate, which accelerate renal damage (35). Mendelian randomization confirms causal links: specific microbiota (Bacteroides) perturb metabolites like glycocholenate sulfate and α-ketoglutarate, directly influencing diabetic nephropathy progression (36, 37). Restoring probiotic balance (Lactobacillus) normalizes tryptophan-derived metabolites, inhibiting AhR and offering therapeutic strategies for kidney diseases (34, 35) (Figure 1).

Gut microbiota alterations in CKD. CKD is associated with gut dysbiosis, leading to increased production of uremic toxins (e.g., indoxyl sulfate, TMAO) that exacerbate kidney inflammation and dysfunction. Urea reflux from kidneys to the gut further disrupts microbial balance, resulting in a "leaky gut," where toxins cross the impaired epithelial barrier into circulation. Disease-specific microbial signatures include Escherichia and advanced glycation end products (AGEs) in diabetic kidney disease, Bacteroides and oxalate crystals in nephrolithiasis, and a low Firmicutes/Bacteroidetes ratio in lupus nephritis. Pathobionts (e.g., Escherichia, Streptococcus) increase, while beneficial symbionts (e.g., Roseburia, Prevotella) are depleted. Therapeutic interventions such as resistant starch (enhancing SCFA production), synbiotics, and dietary fiber aim to restore microbial balance and reduce uremic toxin burden.

Gut microbiota modulation for improved kidney functions

Synbiotics, probiotics, and prebiotics supplementation

Interventional studies have demonstrated the potential of gut microbiota modulation in improving kidney function through synbiotics, probiotics, and prebiotics supplementation. Synbiotic formulations containing Bifidobacterium lactis, Lactobacillus casei, and Lactobacillus acidophilus have been shown to reduce uremic toxins, lower indoxyl sulfate serum levels, and mitigate microinflammation in patients with CKD. These interventions modulate gut microbiota composition toward beneficial genera such as Subdoligranulum, Bifidobacteria, and Lactobacillus, thereby enhancing estimated glomerular filtration rate (eGFR) and reducing high-sensitivity C-reactive protein levels (38). Synbiotic meals have also been effective in lowering uremic toxins in hemodialysis patients (39) and reducing plasma p-cresol levels in kidney transplant recipients, highlighting their therapeutic relevance (40). Additionally, synbiotics improve serum brainderived neurotrophic factor levels and alleviate depression symptoms in hemodialysis patients (41). Combined treatment with synbiotics and divinylbenzene-polyvinyl pyrrolidone hemodialysis has been shown to reduce indoxyl sulfate and pcresyl sulfate across dialysis modalities, validating multiinterventional strategies (42).

Probiotic supplementation has been associated with improved glucose homeostasis, reduced oxidative stress, and decreased inflammation in patients with diabetic hemodialysis (43). Prebiotics and probiotics have been shown to increase T-reg cells (CD4+/CD25+/FOXp3+) and *Lactobacillus* abundance while reducing relapse rates in idiopathic nephrotic syndrome (44). Inulin-type fructans enhance gut microbiota-generated indole production in peritoneal dialysis patients (45), although synbiotics have been reported to elevate both parathyroid hormone and indoxyl sulfate levels (46). Probiotics also reduce uremic solutes such as 1-methylinosine, 3-guanidinopropionic acid, indole-3-acetic acid-O-glucuronide, while shifting gut microbiota composition and diversity (47).

The prebiotic β-glucan has been shown to lower gut microbiota-induced uremic toxins, irrespective of BMI, triglyceride levels, or HDL status, marked by increased *Bacteroides* and *Prevotella* (48). Prebiotic fructooligosaccharide (FOS) regulates IL-6 and preserves endothelial function in CKD patients with endothelial damage (49). Supplementation with *Bifidobacterium longum* and sorghum flakes reduces BMI, improves gastrointestinal symptoms, enhances SCFA synthesis, boosts Chao1 diversity, and lowers uremic toxins in CKD (50). Probiotic cocktails containing *Lactobacillus reuteri* and *Bifidobacterium longum* reduce microbial toxins, complementing diuretic and antihypertensive therapies. Low-protein diet further

modulates proatherogenic toxins and microbiota in CKD (51). Probiotics also elevate *Bifidobacterium* spp., *Akkermansia muciniphila*, and *Barnesiella intestinihominis*, offering clinical benefits in metastatic renal cell carcinoma (52).

Dietary supplementation

Dietary supplementation plays a critical role in gut microbiota modulation and kidney disease management. Diet quality influences uremic toxin levels, gut microbiota composition, diversity, and functionality in adult CKD patients. Optimizing the protein-to-fiber ratio to favor Oscillospirales may benefit CKD patients, while avoiding discretionary foods, artificial sweeteners, sweet desserts, and potatoes supports Prevotella species (53). CKD patients on low-protein diet exhibit enriched ketone bodies, glutathione metabolism, and D-alanine as bacterial gene markers. CKD-low-protein diet also increases glyco λ -muricholic acid, secondary bile acids, and butanoate metabolism, alongside reduced SCFA serum levels and butyrate-producing bacteria, revealing gut microbiota adaptations to dietary protein (54). Gluten-free/dairy-free diets elevate T regulatory/T helper 17 cell ratios and shift gut microbiota favorably in children with steroidresistant nephrotic syndrome (SRNS) (55).

RS supplementation reduces platelet-derived growth factor (PDGF), regulated upon activation, normal T cell expressed and secreted (RANTES) [also known as CCL5], and interferon-inducible protein 10 (IP-10) [also known as CXCL10] in CKD (56). Resistant starch modulates plasma indole-3-acetic acid and aryl hydrocarbon receptor mRNA expression in hemodialysis patients (57). Prebiotic-resistant starch increases fiber intake while lowering IL-6, thiobarbituric acid reactive substances, and indoxyl sulfate (41). High-amylose maize resistant starch elevates *Faecalibacterium* in ESRD patients (58), and type 2 resistant starch promotes SCFA-producing bacteria, positioning it as a key gut microbiota modulation strategy for CKD (59).

Dietary fiber enhances renal anemia in ESRD by increasing serum butyric acid, hemoglobin, ferritin, Fe2+, Lactobacillus, Bifidobacterium adolescentis, and Lactobacillaceae (38). Curcumin also reduces pro-inflammatory mediators (IFN-γ, CCL-2, IL-4) and lipid peroxidation while expanding Lachnoclostridium and Lactobacillaceae over Escherichia-Shigella in CKD patients (60). Curcumin also lowers p-cresyl sulfate plasma levels in hemodialysis via gut microbiota modulation (61). Fecal microbiota transplantation (FMT) stabilizes urea nitrogen and serum creatinine, slows disease progression, and shifts gut microbiota toward Roseburia spp., Proteobacteria, and Bacteroidetes with reduced Actinobacteria and Firmicutes (62, 63). ACEI/ARB therapy combined with FMT reduces urinary protein in IgA nephropathy patients, correlating with Phocaeicola_dorei, Prevotella_copri, Bacteroides_uniformis, and altered metabolites including serotonin, phosphatidylcholine, fumagillin (64).

Traditional Chinese medicine

TCM has also shown promise in gut microbiota modulation and kidney disease treatment. Yi-Shen-Hua-Shi granules mitigate proteinuria and reverse gut microbiota dysbiosis in CKD by increasing Faecalibacterium, Lachnoclostridium, Sutterella, and Lachnospiraceae while reducing Clostridium innocuum and Eggerthella (12). Zicuiyin decoction preserves kidney function in patients with gut microbiota dysbiosis and declining eGFR, promoting Lactobacillaceae and Prevotellaceae whilesuppressing Clostridiaceae, Enterobacteriales, and Micrococcaceae (11). Qushi Huayu formula alleviates NAFLD by lowering liver enzymes, fat content, and phenylalanine/tyrosine, while increasing phydroxyphenylacetic acid (65). The spleen-strengthening and liver-draining formula improves glucolipid metabolism and liver function in NAFLD via Ruminococcus, Coprococcus, and Lachnospiraceae_NK4A136 (66). Fushen granule enriches gut microbiota with Megamonas, Rothia, and Bacteroides, improving quality of life and nutritional status in peritoneal dialysis-related peritonitis (67).

TCM alleviates AKI and CKD by modulating gut microbiota and metabolites. TCM formulations enrich beneficial taxa (*Lactobacillaceae*, *Prevotellaceae*) while suppressing pathogens (*Enterobacteriaceae*), enhancing SCFA production and reducing uremic toxins like indoxyl sulfate and indole-3-acetic acid (68–70).

This rebalancing strengthens intestinal barrier integrity, inhibits oxidative stress, and downregulates aryl hydrocarbon receptor (AhR)-mediated inflammation and renal fibrosis (70, 71). For instance, mild-natured sweet-flavored TCMs elevate SCFA-producing *Ruminococcus* and *Bacteroides*, lowering p-cresyl sulfate and lipopolysaccharides (68, 69). Clinical studies confirm TCM's efficacy in reducing proteinuria and slowing CKD progression via microbiota-metabolite crosstalk (71, 72) (Figure 2).

Limitations and future prospects

Despite its microbial richness, propolis intervention did not alter plasma levels of uremic toxins such as indole-3 acetic acid, p-cresyl sulfate, and indoxyl sulfate, nor did it significantly change gut microbiota composition (73). Similarly, curcuminoid supplementation attenuated lipid peroxidation and reduced plasma p-cresyl sulfate and malondialdehyde in CKD patients undergoing peritoneal dialysis, but it showed no significant effects on plasma cytokines, Nrf2 mRNA expression, protein thiols, HO-1, or NF- κ B (74). Synbiotics, while favorably modifying gut microbiota and reducing serum p-cresyl sulfate, failed to significantly lower serum indoxyl sulfate, suggesting that gut microbiota shifts alone may lack clinical relevance (75). Furthermore, 12-week synbiotic supplementation demonstrated

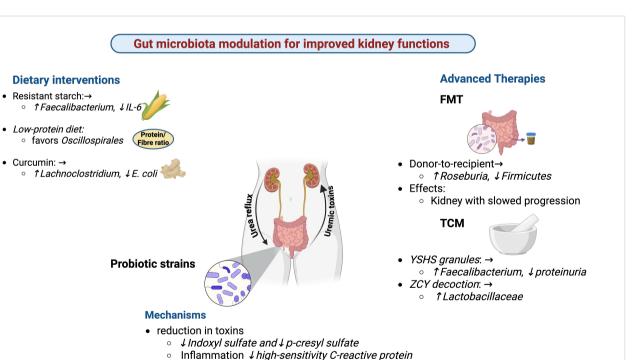


FIGURE 2

Gut microbiota modulation for improved kidney functions. Dietary interventions (resistant starch, low-protein diet, and curcumin), probiotics, and advanced therapies (fecal microbiota transplantation and traditional Chinese medicine) modulate gut microbial composition in chronic kidney disease (CKD). These approaches enhance beneficial taxa (e.g., Faecalibacterium, Roseburia, Lactobacillaceae), suppress harmful bacteria (e.g., E. coli), reduce uremic toxins (indoxyl sulfate, p-cresyl sulfate), and lower inflammation. Improved microbial balance is associated with better clinical outcomes, including increased eGFR, reduced proteinuria, and alleviation of depression symptoms.

↓ depression symptoms via brain-derived neurotrophic factor

clinical outcomes
 ↑ eGFR

no effect on nephropathy, and although synbiotics altered gut microbiota (*Bifidobacterium* and *Blautia* spp.) and reduced eGFR, further studies are needed to clarify their impact on kidney function (76, 77).

Probiotics also showed limited efficacy. They did not alter plasma TMAO levels in hemodialysis patients or SCFA levels in peritoneal dialysis patients, despite gut microbiota changes (78, 79). Trans-resveratrol supplementation did not reduce uremic toxins, despite a negative correlation with GFR (80). Similarly, CBM588 bifidogenic bacteria improved clinical activity but exerted no protective effects in metastatic renal cell carcinoma patients receiving nivolumab and cabozantinib (81). Unripe banana flour intervention did not improve serum biomarkers of kidney function, and cranberry dry extract failed to reduce uremic toxins or plasma lipopolysaccharides in non-dialysis CKD patients (82, 83). Inulintype fructans as prebiotics did not alter major components in ESRD, despite favorable arsenic levels (84). A probiotic cocktail containing Streptococcus thermophilus, Lactobacillus acidophilus, and Bifidobacterium longum showed no benefit in hemodialysis patients (85), and physical exercise did not modulate gut microbiota-derived uremic toxins in hemodialysis (86). Shortterm rifaximin treatment failed to reduce gut-derived cardiovascular toxins or inflammatory cytokines in CKD (87).

The causal relationship between gut microbiota dysbiosis and CKD remains unclear, though renal disease and its treatments likely influence microbiota (88). Colonic dialysis mitigated gut microbiota dysbiosis and protected renal function in pre-dialysis CKD (89). However, sucroferric oxyhydroxide and calcium acetate supplementation did not modify gut microbiota in CKD patients (90). Time-restricted feeding improved renal function by favorably shifting gut microbiota and regulating body weight, fat-free mass, body fat mass, and body water (91). Dietary restriction altered gut microbiota in peritoneal dialysis patients via advanced glycation end products, and oral vancomycin combined with underfeeding may offer therapeutic potential by modulating gut microbiota and nutrient absorption in CKD (92, 93).

Adults with idiopathic nephrotic syndrome exhibit gut microbiota alterations correlated with clinical parameters, informing novel therapeutic and diagnostic strategies (94). High-quality probiotics should be studied alongside gut microbiota dysbiosis, iron status, inflammatory indices, and serum iPTH stabilization in CKD patients (95). Gut microbiota-dependent TMAO correlates with long-term all-cause mortality in CKD (96). Short-term metformin therapy with prebiotic fiber showed tolerable clinical benefits in youth with type 2 diabetes via microbial shifts (97). FOS may reduce free p-cresyl sulfate and total serum levels in nondiabetic CKD, though secondary outcomes were unchanged, warranting further studies (98).

Conclusion

Interventional studies show that gut microbiota modulation via synbiotics, probiotics, and prebiotics reduces uremic toxins, inflammation, and oxidative stress in CKD, improving renal function and glycemic control. Dietary strategies like resistant starch and curcumin enhance microbial diversity, increase SCFA production, and strengthen intestinal barrier integrity. TCM reverse gut microbiota dysbiosis and alleviate proteinuria. However, limitations exist. Synbiotics often fail to lower indoxyl sulfate, probiotics show inconsistent affect TMAO and SCFA levels, and interventions like propolis or cranberry extract lack efficacy. FMT and dietary adjustments stabilize renal biomarkers and modulate microbial ecology, yet causal links between gut microbiota and CKD remain unclear. Emerging therapies, including phage therapy and artificial intelligence-driven multi-omics integration, hold promise but require validation. Future research must prioritize longitudinal studies, maternal gut microbiota optimization, and personalized approaches to translate gut microbiota modulation into clinically meaningful renal health outcomes.

Author contributions

CL: Writing – original draft, Conceptualization, Writing – review & editing. JW: Writing – original draft, Conceptualization. LeL: Writing – review & editing. LiL: Writing – review & editing. XY: Conceptualization, Writing – review & editing.

Funding

The authors declare financial support was received for the research and/or publication of this article. Supported by Heilongjiang Provincial Natural Science Foundation of China (LH2022H057).

Acknowledgments

Figures were created in https://BioRender.com.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

- 1. Francis A, Harhay MN, Ong ACM, Tummalapalli SL, Ortiz A, Fogo AB, et al. Chronic kidney disease and the global public health agenda: an international consensus. *Nat Rev Nephrol.* (2024) 20:473–85. doi: 10.1038/s41581-024-00820-6
- 2. Stanford J, Charlton K, Stefoska-Needham A, Ibrahim R, Lambert K. The gut microbiota profile of adults with kidney disease and kidney stones: a systematic review of the literature. *BMC Nephrol.* (2020) 21:215. doi: 10.1186/s12882-020-01805-w
- 3. Stavropoulou E, Kantartzi K, Tsigalou C, Konstantinidis T, Romanidou G, Voidarou C, et al. Focus on the gut-kidney axis in health and disease. *Front Med (Lausanne)*. (2020) 7:620102. doi: 10.3389/fmed.2020.620102
- 4. Li D, Lu Y, Yuan S, Cai X, He Y, Chen J, et al. Gut microbiota-derived metabolite trimethylamine-N-oxide and multiple health outcomes: an umbrella review and updated meta-analysis. *Am J Clin Nutr.* (2022) 116:230–43. doi: 10.1093/ajcn/nqac074
- 5. Zhao J, Ning X, Liu B, Dong R, Bai M, Sun S. Specific alterations in gut microbiota in patients with chronic kidney disease: an updated systematic review. Ren Fail. (2021) $43:102-12.\ doi: 10.1080/0886022X.2020.1864404$
- Hoseini-Tavassol Z, Ejtahed HS, Larijani B, Hasani-Ranjbar S. Trimethylamine N-oxide as a potential risk factor for non-communicable diseases: A systematic review. Endocr Metab Immune Disord Drug Targets. (2023) 23:617–32. doi: 10.2174/ 1871530323666221103120410
- 7. Li Y, Lu H, Guo J, Zhang M, Zheng H, Liu Y, et al. Gut microbiota-derived trimethylamine N-oxide is associated with the risk of all-cause and cardiovascular mortality in patients with chronic kidney disease: a systematic review and doseresponse meta-analysis. *Ann Med.* (2023) 55:2215542. doi: 10.1080/07853890.2023.2215542
- 8. Han S, Chen M, Cheng P, Zhang Z, Lu Y, Xu Y, et al. A systematic review and meta-analysis of gut microbiota in diabetic kidney disease: Comparisons with diabetes mellitus, non-diabetic kidney disease, and healthy individuals. *Front Endocrinol (Lausanne)*. (2022) 13:1018093. doi: 10.3389/fendo.2022.1018093
- 9. Hong J, Fu T, Liu W, Du Y, Min C, Lin D. Specific alterations of gut microbiota in diabetic microvascular complications: A systematic review and meta-analysis. *Front Endocrinol (Lausanne)*. (2022) 13:1053900. doi: 10.3389/fendo.2022.1053900
- 10. Beker BM, Colombo I, Gonzalez-Torres H, Musso CG. Decreasing microbiotaderived uremic toxins to improve CKD outcomes. *Clin Kidney J.* (2022) 15:2214–9. doi: 10.1093/ckj/sfac154
- 11. Liu J, Gao LD, Fu B, Yang HT, Zhang L, Che SQ, et al. Efficacy and safety of Zicuiyin decoction on diabetic kidney disease: A multicenter, randomized controlled trial. *Phytomedicine*. (2022) 100:154079. doi: 10.1016/j.phymed.2022.154079
- 12. Dong X, Zhang J, Li W, Li Y, Jia L, Liu Z, et al. Yi-Shen-Hua-Shi regulates intestinal microbiota dysbiosis and protects against proteinuria in patients with chronic kidney disease: a randomized controlled study. *Pharm Biol.* (2024) 62:356–66. doi: 10.1080/13880209.2024.2345080
- 13. Wang H, Wang J, Chen Y, Yang D, Xiong L. Global research progress and trends in traditional Chinese medicine for chronic kidney disease since the 21st century: a bibliometric analysis. *Front Med (Lausanne)*. (2024) 11:1480832. doi: 10.3389/fmed.2024.1480832
- 14. Miao H, Liu F, Wang YN, Yu XY, Zhuang S, Guo Y, et al. Targeting Lactobacillus johnsonii to reverse chronic kidney disease. *Signal Transduct Target Ther*. (2024) 9:195. doi: 10.1038/s41392-024-01913-1
- 15. Mao ZH, Gao ZX, Liu DW, Liu ZS, Wu P. Gut microbiota and its metabolites molecular mechanisms and management strategies in diabetic kidney disease. *Front Immunol.* (2023) 14:1124704. doi: 10.3389/fimmu.2023.1124704
- 16. Xu ZJ, Chen L, Tang QL, Li D, He CJ, Xu CL, et al. Differential oral and gut microbial structure related to systemic metabolism in kidney stone patients. *World J Urol.* (2024) 42:6. doi: 10.1007/s00345-023-04712-5
- 17. Wang Y, Zhao J, Qin Y, Yu Z, Zhang Y, Ning X, et al. The specific alteration of gut microbiota in diabetic kidney diseases-A systematic review and meta-analysis. *Front Immunol.* (2022) 13:908219. doi: 10.3389/fimmu.2022.908219
- 18. Zhang Y, Zhao J, Qin Y, Wang Y, Yu Z, Ning X, et al. Specific alterations of gut microbiota in patients with membranous nephropathy: A systematic review and meta-analysis. *Front Physiol.* (2022) 13:909491. doi: 10.3389/fphys.2022.909491
- 19. Chung S, Barnes JL, Astroth KS. Gastrointestinal microbiota in patients with chronic kidney disease: A systematic review. $Adv\ Nutr.\ (2019)\ 10:888-901.$ doi: 10.1093/advances/nmz028
- 20. Zhao J, Bai M, Ning X, Qin Y, Wang Y, Yu Z, et al. Expansion of escherichia-shigella in gut is associated with the onset and response to immunosuppressive therapy

- of igA nephropathy. J Am Soc Nephrol. (2022) 33:2276-92. doi: 10.1681/ASN.2022020189
- 21. Carpi RZ, Barbalho SM, Sloan KP, Laurindo LF, Gonzaga HF, Grippa PC, et al. The effects of probiotics, prebiotics and synbiotics in non-alcoholic fat liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH): A systematic review. *Int J Mol Sci.* (2022) 23:8805. doi: 10.3390/jims23158805
- 22. Zaman CF, Sultana J, Dey P, Dutta J, Mustarin S, Tamanna N, et al. A multidisciplinary approach and current perspective of nonalcoholic fatty liver disease: A systematic review. *Cureus*. (2022) 14:e29657. doi: 10.7759/cureus.29657
- 23. Hsu CK, Su SC, Chang LC, Shao SC, Yang KJ, Chen CY, et al. Effects of low protein diet on modulating gut microbiota in patients with chronic kidney disease: A systematic review and meta-analysis of international studies. *Int J Med Sci.* (2021) 18:3839–50. doi: 10.7150/ijms.66451
- 24. Chiavaroli L, Mirrahimi A, Sievenpiper JL, Jenkins DJ, Darling PB. Dietary fiber effects in chronic kidney disease: a systematic review and meta-analysis of controlled feeding trials. *Eur J Clin Nutr.* (2015) 69:761–8. doi: 10.1038/ejcn.2014.237
- 25. Jia L, Dong X, Li X, Jia R, Zhang HL. Benefits of resistant starch type 2 for patients with end-stage renal disease under maintenance hemodialysis: a systematic review and meta-analysis. *Int J Med Sci.* (2021) 18:811–20. doi: 10.7150/ijms.51484
- 26. Liang A, Leonard W, Beasley JT, Fang Z, Zhang P, Ranadheera CS. Anthocyanins-gut microbiota-health axis: A review. *Crit Rev Food Sci Nutr.* (2024) 64:7563–88. doi: 10.1080/10408398.2023.2187212
- 27. Nguyen TTU, Kim HW, Kim W. Effects of probiotics, prebiotics, and synbiotics on uremic toxins, inflammation, and oxidative stress in hemodialysis patients: A systematic review and meta-analysis of randomized controlled trials. *J Clin Med.* (2021) 10:4456. doi: 10.3390/jcm10194456
- 28. Yuan T, Xia Y, Li B, Yu W, Rao T, Ye Z, et al. Gut microbiota in patients with kidney stones: a systematic review and meta-analysis. *BMC Microbiol.* (2023) 23:143. doi: 10.1186/s12866-023-02891-0
- 29. Lopes R, Balbino KP, Jorge MP, Ribeiro AQ, Martino HSD, Alfenas RCG. Modulation of intestinal microbiota, control of nitrogen products and inflammation by pre/probiotics in chronic kidney disease: a systematic review. *Nutr Hosp.* (2018) 35:722–30. doi: 10.20960/nh.1642
- 30. McFarlane C, Ramos CI, Johnson DW, Campbell KL. Prebiotic, probiotic, and synbiotic supplementation in chronic kidney disease: A systematic review and meta-analysis. *J Ren Nutr.* (2019) 29:209–20. doi: 10.1053/j.jrn.2018.08.008
- 31. Liu C, Yang L, Wei W, Fu P. Efficacy of probiotics/synbiotics supplementation in patients with chronic kidney disease: a systematic review and meta-analysis of randomized controlled trials. *Front Nutr.* (2024) 11:1434613. doi: 10.3389/fnut.2024.1434613
- 32. Tao P, Huo J, Chen L. Bibliometric analysis of the relationship between gut microbiota and chronic kidney disease from 2001–2022. *Integr Med Nephrol Andrology*. (2024) 11:e00017. doi: 10.1097/IMNA-D-23-00017
- 33. Zhao H, Zhao T, Li P. Gut microbiota-derived metabolites: A new perspective of traditional chinese medicine against diabetic kidney disease. *Integr Med Nephrol Andrology.* (2024) 11:109119–231. doi: 10.1097/IMNA-D-23-00024
- 34. Miao H, Zhang SJ, Wu X, Li P, Zhao YY. Tryptophan metabolism as a target in gut microbiota, ageing and kidney disease. *Int J Biol Sci.* (2025) 21:4374–87. doi: 10.7150/ijbs.115359
- 35. Miao H, Wang YN, Yu XY, Zou L, Guo Y, Su W, et al. Lactobacillus species ameliorate membranous nephropathy through inhibiting the aryl hydrocarbon receptor pathway via tryptophan-produced indole metabolites. *Br J Pharmacol.* (2024) 181:162–79. doi: 10.1111/bph.16219
- 36. Cao BN, Zhang CY, Wang Z, Wang YX. Causal relationship between 412 gut microbiota, 1,400 blood metabolites, and diabetic nephropathy: a randomized Mendelian study. *Front Endocrinol (Lausanne)*. (2024) 15:1450428. doi: 10.3389/fendo.2024.1450428
- 37. Song S, Ning L, Yu J. Elucidating the causal relationship between gut microbiota, metabolites, and diabetic nephropathy in European patients: Revelations from genomewide bidirectional mendelian randomization analysis. *Front Endocrinol (Lausanne)*. (2024) 15:1391891. doi: 10.3389/fendo.2024.1391891
- 38. Mitrovic M, Stankovic-Popovic V, Tolinacki M, Golic N, Sokovic Bajic S, Veljovic K, et al. The impact of synbiotic treatment on the levels of gut-derived uremic toxins, inflammation, and gut microbiome of chronic kidney disease patients-A randomized trial. *J Ren Nutr.* (2023) 33:278–88. doi: 10.1053/j.jrn.2022.07.008

- 39. Lopes R, Theodoro JMV, da Silva BP, Queiroz VAV, de Castro Moreira ME, Mantovani HC, et al. Synbiotic meal decreases uremic toxins in hemodialysis individuals: A placebo-controlled trial. *Food Res Int.* (2019) 116:241–8. doi: 10.1016/j.foodres.2018.08.024
- 40. Guida B, Cataldi M, Memoli A, Trio R, di Maro M, Grumetto L, et al. Effect of a short-course treatment with synbiotics on plasma p-cresol concentration in kidney transplant recipients. *J Am Coll Nutr*. (2017) 36:586–91. doi: 10.1080/07315724.2017.1334602
- 41. Haghighat N, Rajabi S, Mohammadshahi M. Effect of synbiotic and probiotic supplementation on serum brain-derived neurotrophic factor level, depression and anxiety symptoms in hemodialysis patients: a randomized, double-blinded, clinical trial. *Nutr Neurosci.* (2021) 24:490–9. doi: 10.1080/1028415X.2019.1646975
- 42. Rocchetti MT, Cosola C, di Bari I, Magnani S, Galleggiante V, Scandiffio L, et al. Efficacy of divinylbenzenic resin in removing indoxyl sulfate and P-cresol sulfate in hemodialysis patients: results from an *in vitro* study and an *in vivo* pilot trial (xuanro4-nature 3.2). *Toxins* (Basel). (2020) 12:170. doi: 10.3390/toxins12030170
- 43. Soleimani A, Zarrati Mojarrad M, Bahmani F, Taghizadeh M, Ramezani M, Tajabadi-Ebrahimi M, et al. Probiotic supplementation in diabetic hemodialysis patients has beneficial metabolic effects. *Kidney Int.* (2017) 91:435–42. doi: 10.1016/j.kint.2016.09.040
- 44. Mohammed RA, Hussein SK, Gaber SN, Ahmed, Abonaga F, Abdelfattah W, et al. The role of prebiotics and probiotics as an adjuvant therapy in children with idiopathic relapsing nephrotic syndrome: A prospective open-label clinical trial. Saudi J Kidney Dis Transpl. (2022) 33:S169–78. doi: 10.4103/1319-2442.384189
- 45. Li L, Xiong Q, Zhao J, Lin X, He S, Wu N, et al. Inulin-type fructan intervention restricts the increase in gut microbiome-generated indole in patients with peritoneal dialysis: a randomized crossover study. *Am J Clin Nutr.* (2020) 111:1087–99. doi: 10.1093/ajcn/nqz337
- 46. Mirzaeian S, Saraf-Bank S, Entezari MH, Hekmatdoost A, Feizi A, Atapour A. Effects of synbiotic supplementation on microbiota-derived protein-bound uremic toxins, systemic inflammation, and biochemical parameters in patients on hemodialysis: A double-blind, placebo-controlled, randomized clinical trial. *Nutrition.* (2020) 73:110713. doi: 10.1016/j.nut.2019.110713
- 47. Liu S, Liu H, Chen L, Liang SS, Shi K, Meng W, et al. Effect of probiotics on the intestinal microbiota of hemodialysis patients: a randomized trial. *Eur J Nutr.* (2020) 59:3755–66. doi: 10.1007/s00394-020-02207-2
- 48. Ebrahim Z, Proost S, Tito RY, Raes J, Glorieux G, Moosa MR, et al. The effect of ss-glucan prebiotic on kidney function, uremic toxins and gut microbiome in stage 3 to 5 chronic kidney disease (CKD) predialysis participants: A randomized controlled trial. *Nutrients.* (2022) 14:805. doi: 10.3390/nu14040805
- 49. Armani RG, Carvalho AB, Ramos CI, Hong V, Bortolotto LA, Cassiolato JL, et al. Effect of fructooligosaccharide on endothelial function in CKD patients: a randomized controlled trial. *Nephrol Dial Transplant*. (2021) 37:85–91. doi: 10.1093/ndt/gfaa335
- 50. Lucio HG, Lopes R, Gomes MJC, da Silva A, Grancieri M, Della Lucia CM, et al. A symbiotic meal containing extruded sorghum and probiotic (Bifidobacterium longum) ameliorated intestinal health markers in individuals with chronic kidney disease: A secondary analysis of a subsample from a previous randomized and controlled clinical trial. *Nutrients.* (2024) 16:1852. doi: 10.3390/nu16121852
- 51. De Mauri A, Carrera D, Bagnati M, Rolla R, Vidali M, Chiarinotti D, et al. Probiotics-supplemented low-protein diet for microbiota modulation in patients with advanced chronic kidney disease (ProLowCKD): results from a placebo-controlled randomized trial. *Nutrients.* (2022) 14:1637. doi: 10.3390/nu14081637
- 52. Dizman N, Hsu J, Bergerot PG, Gillece JD, Folkerts M, Reining L, et al. Randomized trial assessing impact of probiotic supplementation on gut microbiome and clinical outcome from targeted therapy in metastatic renal cell carcinoma. *Cancer Med.* (2021) 10:79–86. doi: 10.1002/cam4.3569
- 53. McFarlane C, Krishnasamy R, Stanton T, Savill E, Snelson M, Mihala G, et al. Diet quality and protein-bound uraemic toxins: investigation of novel risk factors and the role of microbiome in chronic kidney disease. *J Ren Nutr.* (2022) 32:542–51. doi: 10.1053/j.jrn.2021.10.003
- 54. Wu IW, Lee CC, Hsu HJ, Sun CY, Chen YC, Yang KJ, et al. Compositional and functional adaptations of intestinal microbiota and related metabolites in CKD patients receiving dietary protein restriction. *Nutrients*. (2020) 12:2799. doi: 10.3390/nu12092799
- 55. Perez-Saez MJ, Uffing A, Leon J, Murakami N, Watanabe A, Borges TJ, et al. Immunological impact of a gluten-free dairy-free diet in children with kidney disease: A feasibility study. Front Immunol. (2021) 12:624821. doi: 10.3389/fimmu.2021.624821
- 56. de Paiva BR, Esgalhado M, Borges NA, Kemp JA, Alves G, Leite PEC, et al. Resistant starch supplementation attenuates inflammation in hemodialysis patients: a pilot study. *Int Urol Nephrol.* (2020) 52:549–55. doi: 10.1007/s11255-020-02392-3
- 57. Azevedo R, Esgalhado M, Kemp JA, Regis B, Cardozo LF, Nakao LS, et al. Resistant starch supplementation effects on plasma indole 3-acetic acid and aryl hydrocarbon receptor mRNA expression in hemodialysis patients: Randomized, double blind and controlled clinical trial. *J Bras Nefrol*. (2020) 42:273–9. doi: 10.1590/2175-8239-IBN-2020-0003
- 58. Laffin MR, Tayebi Khosroshahi H, Park H, Laffin LJ, Madsen K, Kafil HS, et al. Amylose resistant starch (HAM-RS2) supplementation increases the proportion of Faecalibacterium bacteria in end-stage renal disease patients: Microbial analysis from a

randomized placebo-controlled trial. *Hemodial Int.* (2019) 23:343–7. doi: 10.1111/hdi.12753

- 59. Kemp JA, Regis de Paiva B, Fragoso Dos Santos H, Emiliano de Jesus H, Craven H, U ZI, et al. The impact of enriched resistant starch type-2 cookies on the gut microbiome in hemodialysis patients: A randomized controlled trial. *Mol Nutr Food Res.* (2021) 65:e2100374. doi: 10.1002/mnfr.202100374
- 60. Pivari F, Mingione A, Piazzini G, Ceccarani C, Ottaviano E, Brasacchio C, et al. Curcumin supplementation (Meriva($^{@}$)) modulates inflammation, lipid peroxidation and gut microbiota composition in chronic kidney disease. *Nutrients.* (2022) 14:231. doi: 10.3390/nu14010231
- 61. Salarolli RT, Alvarenga L, Cardozo L, Teixeira KTR, de SGML, Lima JD, et al. Can curcumin supplementation reduce plasma levels of gut-derived uremic toxins in hemodialysis patients? A pilot randomized, double-blind, controlled study. *Int Urol Nephrol.* (2021) 53:1231–8. doi: 10.1007/s11255-020-02760-z
- 62. Arteaga-Muller GY, Flores-Trevino S, Bocanegra-Ibarias P, Robles-Espino D, Garza-Gonzalez E, Fabela-Valdez GC, et al. Changes in the progression of chronic kidney disease in patients undergoing fecal microbiota transplantation. *Nutrients*. (2024) 16:1109. doi: 10.3390/nu16081109
- 63. Cao Z, Gao T, Bajinka O, Zhang Y, Yuan X. Fecal microbiota transplantation-current perspective on human health. *Front Med (Lausanne)*. (2025) 12:1523870. doi: 10.3389/fmed.2025.1523870
- 64. Zhi W, Li A, Wang Q, Yuan X, Qing J, Zhang C, et al. Safety and efficacy assessment of fecal microbiota transplantation as an adjunctive treatment for IgA nephropathy: an exploratory clinical trial. *Sci Rep.* (2024) 14:22935. doi: 10.1038/s41598-024-74171-4
- 65. Liu Q, Li X, Pan Y, Liu Q, Li Y, He C, et al. Efficacy and safety of Qushi Huayu, a traditional Chinese medicine, in patients with nonalcoholic fatty liver disease in a randomized controlled trial. *Phytomedicine*. (2024) 130:155398. doi: 10.1016/j.phymed.2024.155398
- 66. Hui D, Liu L, Azami NLB, Song J, Huang Y, Xu W, et al. The spleenstrengthening and liver-draining herbal formula treatment of non-alcoholic fatty liver disease by regulation of intestinal flora in clinical trial. *Front Endocrinol* (*Lausame*). (2022) 13:1107071. doi: 10.3389/fendo.2022.1107071
- 67. Lin W, Jiang C, Yu H, Wang L, Li J, Liu X, et al. The effects of Fushen Granule on the composition and function of the gut microbiota during Peritoneal Dialysis-Related Peritonitis. *Phytomedicine*. (2021) 86:153561. doi: 10.1016/j.phymed.2021.153561
- 68. Zheng L, Luo M, Zhou H, Chen J. Natural products from plants and microorganisms: Novel therapeutics for chronic kidney disease via gut microbiota regulation. *Front Pharmacol.* (2022) 13:1068613. doi: 10.3389/fphar.2022.1068613
- 69. Li L, Yang Y.n., Cao Y, Zhan J, Wu Y, Wu C. Perspective on the modern interpretation of the property theory of mild-natured and sweet-flavored traditional chinese medicine via gut microbiota modulation. *Integr Med Nephrol Andrology*. (2023). 10:e00012 doi: 10.1097/IMNA-D-23-00012
- 70. Li XJ, Shan QY, Wu X, Miao H, Zhao YY. Gut microbiota regulates oxidative stress and inflammation: a double-edged sword in renal fibrosis. *Cell Mol Life Sci.* (2024) 81:480. doi: 10.1007/s00018-024-05532-5
- 71. Li J, Xu Y, Sun T, Zhang X, Liang H, Lin W, et al. Exploration of the pathogenesis of nephrotic syndrome and traditional Chinese medicine intervention based on gut microbiota. *Front Immunol.* (2024) 15:1430356. doi: 10.3389/fimmu.2024.1430356
- 72. Chen YZ, Yuan MY, Chen YL, Zhang X, Xu XT, Liu SL, et al. The gut microbiota and traditional chinese medicine: A new clinical frontier on cancer. *Curr Drug Targets*. (2021) 22:1222–31. doi: 10.2174/1389450122666210412141304
- 73. Fonseca L, Ribeiro M, Schultz J, Borges NA, Cardozo L, Leal VO, et al. Effects of propolis supplementation on gut microbiota and uremic toxin profiles of patients undergoing hemodialysis. *Toxins (Basel)*. (2024) 16:416. doi: 10.3390/toxins16100416
- 74. Reis D, Alvarenga L, Cardozo L, Baptista BG, Fanton S, Paiva BR, et al. Can curcumin supplementation break the vicious cycle of inflammation, oxidative stress, and uremia in patients undergoing peritoneal dialysis? *Clin Nutr ESPEN*. (2024) 59:96–106. doi: 10.1016/j.clnesp.2023.11.015
- 75. Rossi M, Johnson DW, Morrison M, Pascoe EM, Coombes JS, Forbes JM, et al. Synbiotics easing renal failure by improving gut microbiology (SYNERGY): A randomized trial. *Clin J Am Soc Nephrol*. (2016) 11:223–31. doi: 10.2215/CJN.05240515
- 76. McFarlane C, Krishnasamy R, Stanton T, Savill E, Snelson M, Mihala G, et al. Synbiotics easing renal failure by improving gut microbiology II (SYNERGY II): A feasibility randomized controlled trial. *Nutrients*. (2021) 13:4481. doi: 10.3390/nu13124481
- 77. Stougaard EB, Tougaard NH, Sivalingam S, Hansen CS, Storling J, Hansen TW, et al. Effects of probiotics and fibers on markers of nephropathy, inflammation, intestinal barrier dysfunction and endothelial dysfunction in individuals with type 1 diabetes and albuminuria. The ProFOS Study. *J Diabetes Complications*. (2024) 38:108892. doi: 10.1016/j.jdiacomp.2024.108892
- 78. Borges NA, Stenvinkel P, Bergman P, Qureshi AR, Lindholm B, Moraes C, et al. Effects of probiotic supplementation on trimethylamine-N-oxide plasma levels in hemodialysis patients: a pilot study. *Probiotics Antimicrob Proteins*. (2019) 11:648–54. doi: 10.1007/s12602-018-9411-1
- 79. Zhou S, Yan Y, Chu R, Chen N, Wang L, Zhang H, et al. Probiotic treatment induces changes in intestinal microbiota but does not alter SCFA levels in peritoneal

dialysis patients-a randomized, placebo-controlled trial. Sci Rep. (2024) 14:31413. doi: 10.1038/s41598-024-83056-5

- 80. Alvarenga I., Cardozo I., Leal VO, Kemp JA, Saldanha JF, Ribeiro-Alves M, et al. Can resveratrol supplementation reduce uremic toxin plasma levels from the gut microbiota in nondialyzed patients with chronic kidney disease? *J Ren Nutr.* (2022) 32:685–91. doi: 10.1053/j.jrn.2022.01.010
- 81. Ebrahimi H, Dizman N, Meza L, Malhotra J, Li X, Dorff T, et al. Cabozantinib and nivolumab with or without live bacterial supplementation in metastatic renal cell carcinoma: a randomized phase 1 trial. *Nat Med.* (2024) 30:2576–85. doi: 10.1038/s41591-024-03086-4
- 82. de Andrade LS, Sarda FAH, Pereira NBF, Teixeira RR, Rodrigues SD, de Lima JD, et al. Effect of unripe banana flour on gut-derived uremic toxins in individuals undergoing peritoneal dialysis: A randomized, double-blind, placebo-controlled, crossover trial. *Nutrients.* (2021) 13:646. doi: 10.3390/nu13020646
- 83. Teixeira KTR, Moreira LSG, Borges NA, Brum I, de Paiva BR, Alvarenga L, et al. Effect of cranberry supplementation on toxins produced by the gut microbiota in chronic kidney disease patients: A pilot randomized placebo-controlled trial. *Clin Nutr ESPEN*. (2022) 47:63–9. doi: 10.1016/j.clnesp.2021.11.012
- 84. Li L, Zhao J, Wang J, Xiong Q, Lin X, Guo X, et al. The arsenic-lowering effect of inulin-type prebiotics in end-stage renal disease: a randomized crossover trial. *Food Funct.* (2024) 15:355–71. doi: 10.1039/d3fo01843a
- 85. Borges NA, Carmo FL, Stockler-Pinto MB, de Brito JS, Dolenga CJ, Ferreira DC, et al. Probiotic supplementation in chronic kidney disease: A double-blind, randomized, placebo-controlled trial. *J Ren Nutr.* (2018) 28:28–36. doi: 10.1053/i.irn.2017.06.010
- 86. de Brito JS, Vargas D, da Silva GS, Marinho S, Borges NA, Cardozo L, et al. Uremic toxins levels from the gut microbiota seem not to be altered by physical exercise in hemodialysis patients. *Int Urol Nephrol.* (2022) 54:687–93. doi: 10.1007/s11255-021-02945-0
- 87. Kimber C, Zhang S, Johnson C, West RE, Prokopienko AJ, Mahnken JD, et al. Randomized, placebo-controlled trial of rifaximin therapy for lowering gut-derived cardiovascular toxins and inflammation in CKD. *Kidney360*. (2020) 1:1206–16. doi: 10.34067/kid.0003942020
- 88. Yacoub R, Nadkarni GN, McSkimming DI, Chaves LD, Abyad S, Bryniarski MA, et al. Fecal microbiota analysis of polycystic kidney disease patients according to renal function: A pilot study. *Exp Biol Med (Maywood)*. (2019) 244:505–13. doi: 10.1177/1535370218818175

- 89. Li Y, Dai M, Yan J, Liu F, Wang X, Lin L, et al. Colonic dialysis can influence gut flora to protect renal function in patients with pre-dialysis chronic kidney disease. *Sci Rep.* (2021) 11:12773. doi: 10.1038/s41598-021-91722-1
- 90. Merino-Ribas A, Araujo R, Bancu I, Graterol F, Vergara A, Noguera-Julian M, et al. Gut microbiome in hemodialysis patients treated with calcium acetate or treated with sucroferric oxyhydroxide: a pilot study. *Int Urol Nephrol.* (2022) 54:2015–23. doi: 10.1007/s11255-021-03091-3
- 91. Lao BN, Luo JH, Xu XY, Fu LZ, Tang F, Ouyang WW, et al. Time-restricted feeding's effect on overweight and obese patients with chronic kidney disease stages 3-4: A prospective non-randomized control pilot study. *Front Endocrinol (Lausanne)*. (2023) 14:1096093. doi: 10.3389/fendo.2023.1096093
- 92. Yacoub R, Nugent M, Cai W, Nadkarni GN, Chaves LD, Abyad S, et al. Advanced glycation end products dietary restriction effects on bacterial gut microbiota in peritoneal dialysis patients; a randomized open label controlled trial. *PloS One.* (2017) 12:e0184789. doi: 10.1371/journal.pone.0184789
- 93. Basolo A, Hohenadel M, Ang QY, Piaggi P, Heinitz S, Walter M, et al. Effects of underfeeding and oral vancomycin on gut microbiome and nutrient absorption in humans. *Nat Med.* (2020) 26:589–98. doi: 10.1038/s41591-020-0801-z
- 94. He H, Lin M, You L, Chen T, Liang Z, Li D, et al. Gut microbiota profile in adult patients with idiopathic nephrotic syndrome. *BioMed Res Int.* (2021) 2021:8854969. doi: 10.1155/2021/8854969
- 95. Simeoni M, Citraro ML, Cerantonio A, Deodato F, Provenzano M, Cianfrone P, et al. An open-label, randomized, placebo-controlled study on the effectiveness of a novel probiotics administration protocol (ProbiotiCKD) in patients with mild renal insufficiency (stage 3a of CKD). Eur J Nutr. (2019) 58:2145–56. doi: 10.1007/s00394-018-1785-z
- 96. Ottiger M, Nickler M, Steuer C, Bernasconi L, Huber A, Christ-Crain M, et al. Gut, microbiota-dependent trimethylamine-N-oxide is associated with long-term all-cause mortality in patients with exacerbated chronic obstructive pulmonary disease. *Nutrition.* (2018) 45, 135–141.e131. doi: 10.1016/j.nut.2017.07.001
- 97. Dixon SA, Mishra S, Dietsche KB, Jain S, Mabundo L, Stagliano M, et al. The effects of prebiotics on gastrointestinal side effects of metformin in youth: A pilot randomized control trial in youth-onset type 2 diabetes. Front Endocrinol (Lausanne). (2023) 14:1125187. doi: 10.3389/fendo.2023.1125187
- 98. Ramos CI, Armani RG, Canziani MEF, Dalboni MA, Dolenga CJR, Nakao LS, et al. Effect of prebiotic (fructooligosaccharide) on uremic toxins of chronic kidney disease patients: a randomized controlled trial. *Nephrol Dial Transplant.* (2019) 34:1876–84. doi: 10.1093/ndt/gfy171