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Chronic kidney disease (CKD), affecting 13% of the global population, is

increasingly linked to gut microbiota dysbiosis, a condition driven by uremic

toxins accumulation, metabolic alterations, and dietary factors. This mini review

explores gut microbiota modulation as a therapeutic strategy to alleviate CKD

symptoms, focusing on interventions that target gut microbiota composition and

function. Prebiotics, such as resistant starch, have been shown to lower uremic

toxins and reduce inflammation, while dietary adjustments, including low-

protein and gluten-free diets, modulate microbial diversity and improve renal

biomarkers. Fecal microbiota transplantation (FMT), which stabilizes creatinine

levels and shifts gut microbiota toward beneficial taxa, represents another

promising approach. However, limitations persist: synbiotics, which often

induce gut microbiota shifts, frequently lack clinical impact; probiotics, which

enhance glucose control and oxidative stress mitigation, exhibit variable efficacy;

and interventions such as propolis or cranberry extract, which have been tested,

prove ineffective. The causal relationship between gut microbiota dysbiosis and

CKD progression, which remains unclear, is further complicated by

methodological heterogeneity across studies. Emerging strategies, including

phage therapy and artificial intelligence-driven multi-omics integration, which

hold significant promise, require further validation. Future research must

prioritize longitudinal studies, maternal gut microbiota optimization, and

personalized approaches, which are essential for advancing CKD management.

While gut microbiota modulations hold therapeutic potential, translating these

findings into clinical practice demands rigorous trials to address inconsistencies

and establish mechanistic links, ultimately shifting CKD management from

reactive treatment to precision-based prevention.
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Introduction

Chronic kidney disease (CKD), affecting approximately 13% of

the global population, represents a significant public health burden

characterized by progressive loss of renal function (1). A hallmark

feature of CKD is profound gut microbiota dysbiosis, characterized

by shifts such as increased Enterobacteriaceae and Streptococcus,

and decreased beneficial taxa like Prevotella and Roseburia (2). This

dysbiosis is driven by uremic toxin accumulation, metabolic

acidosis, dietary restrictions, and frequent antibiotic use,

disrupting intest inal barrier integrity and promoting

inflammation (3, 4). Critically, this altered microbial ecology

generates pathogenic metabolites, including gut-derived uremic

toxins like indoxyl sulfate, p-cresyl sulfate, and trimethylamine-

N-oxide (TMAO) (4, 5). Elevated TMAO levels correlate with

inflammation, reduced glomerular filtration rate (GFR), and

increased mortality in CKD patients (6, 7), while reduced short-

chain fatty acid (SCFA) production by diminished commensal

bacteria further exacerbates renal injury and systemic

inflammation (8, 9). These microbial metabolites directly

contribute to CKD progression and associated complications (10).

Targeting this dysbiotic gut environment offers a promising

therapeutic avenue. Emerging evidence highlights Traditional

Chinese Medicine (TCM) as a potent modulator of the gut-

kidney axis. TCM formulations like Yi-Shen-Hua-Shi granules

and Zicuiyin decoction mitigate proteinuria, preserve renal

function (eGFR), and ameliorate CKD progression by specifically

revers ing gut dysb ios i s , enr ich ing benefic ia l genera

(Faecalibacterium, Lachnoclostridium, Lactobacillaceae) and

suppressing pathogenic bacteria such as Clostridium innocuum,

Enterobacteriales (11, 12).

CKD is globally prevalent, with gut microbiota dysbiosis

increasingly implicated in its pathogenesis. Bibliometric analysis

confirms intense research focus on microbiota-CKD interactions,

particularly regarding disease mechanisms, probiotic therapies, and

microbial metabolites (13). Specific microbial alterations, such as
Abbreviations: ACEI, Angiotensin-Converting Enzyme Inhibitor; AhR, Aryl

Hydrocarbon Receptor; AKI, Acute Kidney Injury; ARB, Angiotensin Receptor

Blocker; BMI, Body Mass Index; CCL5, C-C Motif Chemokine Ligand 5; CD,

Cluster of Differentiation; CKD, Chronic Kidney Disease; CXCL10, C-X-C Motif

Chemokine Ligand 10; DKD, Diabetic Kidney Disease; eGFR, estimated

Glomerular Filtration Rate; ESRD, End-Stage Renal Disease; FMT, Fecal

Mic rob io ta Transp l an ta t ion ; FOXp3, Forkhead Box P3 ; FOS ,

Fructooligosaccharide; GFR, Glomerular Filtration Rate; HDL, High-Density

Lipoprotein; HO-1, Heme Oxygenase-1; IAld, Indole-3-aldehyde; IAA, Indole-

3-acetic Acid; IgA, Immunoglobulin A; IFN-g, Interferon Gamma; IL,

Interleukin; IP-10, Interferon-inducible Protein 10 (CXCL10); NAFLD, Non-

Alcoholic Fatty Liver Disease; NF-kB, Nuclear Factor kappa-light-chain-

enhancer of activated B cells; Nrf2, Nuclear factor erythroid 2-related factor 2;

PDGF, Platelet-Derived Growth Factor; RANTES, Regulated upon Activation,

Normal T Cell Expressed and Secreted (CCL5); RS, Resistant Starch; SCFA,

Short-Chain Fatty Acid; SRNS, Steroid-Resistant Nephrotic Syndrome; TCM,

Traditional Chinese Medicine; TMAO, Trimethylamine-N-Oxide; Treg,

Regulatory T cell
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depletion of Lactobacillus johnsonii, correlate strongly with CKD

progression and uremic toxin accumulation. Restoring this

bacterium ameliorates renal injury via indole-3-aldehyde-

mediated aryl hydrocarbon receptor signaling (14). In diabetic

kidney disease (DKD), gut-derived metabolites critically influence

pathophysiology through molecular pathways affecting

inflammation, fibrosis, and metabolic homeostasis (15). These

findings highlight microbiota modulation, via probiotics,

metabolites, or dietary interventions as a promising therapeutic

strategy for CKD management.

This modulation reduces uremic toxin burden, strengthens

intestinal barrier function, and dampens inflammation,

positioning TCM as a key strategy for microbiota-targeted CKD

management. The primary aim of this mini-review is to evaluate

progress in gut microbiota modulation for improving CKD

outcomes. While existing systematic reviews and meta-analyses

are limited by narrow sampling frames focused on contemporary

trials, this review adopts a distinct approach by exclusively for

clinical trials and randomized controlled trials to strengthen the

evidence base. By synthesizing current findings, this review provides

a comprehensive perspective on the role of gut microbiota in

improving CKD management and patient longevity.
Gut microbiota alterations in CKD

CKD is characterized by significant alterations in gut

microbiota composition, including an increased abundance of

Streptococcaceae, Enterobacteriaceae, and Streptococcus, alongside

reduced levels of Prevotellaceae, Prevotella 9, Prevotella, and

Roseburia (2). Similarly, patients with kidney stones also exhibit

distinct microbial variations, such as shifts in the Lachnospiraceae

NK4A136 group, Bacteroides, Ruminiclostridium 5 group,

Enterobacter, Dorea, and Christensenellaceae (16). In DKD, the

gut microbiota profile is marked by enriched Escherichia and

Hungatella genera and reduced butyrate-producing bacteria (8),

as well as increased Citrobacter and Klebsiella genera with decreased

Roseburia , highlighting potential targets for therapeutic

intervention (17). Notably, these diabetic microvascular

complications are marked by reduced SCFA-producing bacteria

and diminished alpha diversity, reinforcing the therapeutic

potential of gut microbiota modulation across kidney diseases (9).

Patients with idiopathic membranous nephropathy exhibit

elevated Proteobacteria and reduced Lachnospira, highlighting key

gut microbiota alterations (18). In lupus nephritis, decreased

inflammatory indicators and Firmicutes/Bacteroidetes ratios,

coupled with intestinal barrier dysfunction, serve as pathogenic

markers (19). Metabolically, reduced saccharolytic bacteria and

increased nitrogen-compound fermenters are linked to circulating

uremic toxins in CKD (10). IgA nephropathy is associated with

Escherichia-Shigella expansion, suggesting novel diagnostic and

therapeutic targets (20). By enhancing intestinal barrier function

to prevent hepatotoxic metabolite formation and modulating

immune responses, microbiota-targeted therapies may improve

non-alcoholic fatty liver disease (NAFLD) (21). Dietary
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modifications, alongside lifestyle changes, represent preventive

strategies for NAFLD, thereby mitigating CKD risk factors (22).

Efforts to elucidate the causal and correlative effects of gut

microbiota in CKD have identified distinct microbial species and

families rather than overall diversity during low-protein diet

interventions (23). Dietary fiber supplementation reduces

creatinine and serum urea levels, underscoring the role of uremic

toxins in CKD progression (24). Resistant starch, particularly type 2

resistant starch, lowers uremic toxins and inflammation, improving

renal function in patients with CKD and enhancing residual renal

function in maintenance hemodialysis patients (25). Anthocyanin

degradation into phenolic acids and colonic metabolites regulates

biological activities, including CKD amelioration, when

systemically accumulated (26). Synbiotic interventions reduce

oxidative stress, inflammation, and uremic toxins in hemodialysis

patients, though their efficacy in CKD management remains

insufficient (27).

The unique gut microbiota profile in kidney stone patients

suggests that dietary adjustments and personalized therapies, such

as synbiotics, may restore eubiosis and prevent stone formation/

recurrence (28). Synbiotics also mitigate uremic solute production,
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oxidative stress, and systemic inflammation (29). However, while

synbiotics increase Bifidobacterium abundance, their clinical

efficacy in CKD management remains limited (30). Longer-term

supplementation may improve inflammatory and renal indices in

CKD, though large-scale trials are needed to validate these findings

(31). TCM interventions show potential for CKD improvement, but

efficacy validation, safety concerns, and barriers to international

collaboration hinder progress (32, 33). Disorders of gut-derived

metabolites, including p-cresyl sulfate, indoxyl sulfate, indole-3-

acetic acid (IAA), and indole-3-aldehyde (IAld), drive kidney injury

in AKI and CKD by activating aryl hydrocarbon receptor (AhR)

pathways and promoting inflammation/fibrosis (34). Depleted

Lactobacillus species (L. johnsonii) reduce protective IAld,

elevating toxic IAA and indoxyl sulfate, which accelerate renal

damage (35). Mendelian randomization confirms causal links:

specific microbiota (Bacteroides) perturb metabolites like

glycocholenate sulfate and a-ketoglutarate, directly influencing

diabetic nephropathy progression (36, 37). Restoring probiotic

balance (Lactobacil lus) normalizes tryptophan-derived

metabolites, inhibiting AhR and offering therapeutic strategies for

kidney diseases (34, 35) (Figure 1).
FIGURE 1

Gut microbiota alterations in CKD. CKD is associated with gut dysbiosis, leading to increased production of uremic toxins (e.g., indoxyl sulfate,
TMAO) that exacerbate kidney inflammation and dysfunction. Urea reflux from kidneys to the gut further disrupts microbial balance, resulting in a
“leaky gut,” where toxins cross the impaired epithelial barrier into circulation. Disease-specific microbial signatures include Escherichia and advanced
glycation end products (AGEs) in diabetic kidney disease, Bacteroides and oxalate crystals in nephrolithiasis, and a low Firmicutes/Bacteroidetes ratio
in lupus nephritis. Pathobionts (e.g., Escherichia, Streptococcus) increase, while beneficial symbionts (e.g., Roseburia, Prevotella) are depleted.
Therapeutic interventions such as resistant starch (enhancing SCFA production), synbiotics, and dietary fiber aim to restore microbial balance and
reduce uremic toxin burden.
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Gut microbiota modulation for
improved kidney functions

Synbiotics, probiotics, and prebiotics
supplementation

Interventional studies have demonstrated the potential of gut

microbiota modulation in improving kidney function through

synbiotics, probiotics, and prebiotics supplementation. Synbiotic

formulations containing Bifidobacterium lactis, Lactobacillus casei,

and Lactobacillus acidophilus have been shown to reduce uremic

toxins, lower indoxyl sulfate serum levels, and mitigate

microinflammation in patients with CKD. These interventions

modulate gut microbiota composition toward beneficial genera

such as Subdoligranulum, Bifidobacteria, and Lactobacillus,

thereby enhancing estimated glomerular filtration rate (eGFR)

and reducing high-sensitivity C-reactive protein levels (38).

Synbiotic meals have also been effective in lowering uremic toxins

in hemodialysis patients (39) and reducing plasma p-cresol levels in

kidney transplant recipients, highlighting their therapeutic

relevance (40). Additionally, synbiotics improve serum brain-

derived neurotrophic factor levels and alleviate depression

symptoms in hemodialysis patients (41). Combined treatment

with synbiotics and divinylbenzene-polyvinyl pyrrolidone

hemodialysis has been shown to reduce indoxyl sulfate and p-

cresyl sulfate across dialysis modalities, validating multi-

interventional strategies (42).

Probiotic supplementation has been associated with improved

glucose homeostasis, reduced oxidative stress, and decreased

inflammation in patients with diabetic hemodialysis (43).

Prebiotics and probiotics have been shown to increase T-reg cells

(CD4+/CD25+/FOXp3+) and Lactobacillus abundance while

reducing relapse rates in idiopathic nephrotic syndrome (44).

Inulin-type fructans enhance gut microbiota-generated indole

production in peritoneal dialysis patients (45), although

synbiotics have been reported to elevate both parathyroid

hormone and indoxyl sulfate levels (46). Probiotics also reduce

uremic solutes such as 1-methylinosine, 3-guanidinopropionic acid,

indole-3-acetic acid-O-glucuronide, while shifting gut microbiota

composition and diversity (47).

The prebiotic b-glucan has been shown to lower gut

microbiota-induced uremic toxins, irrespective of BMI,

triglyceride levels, or HDL status, marked by increased

Bacteroides and Prevotella (48). Prebiotic fructooligosaccharide

(FOS) regulates IL-6 and preserves endothelial function in CKD

patients with endothelial damage (49). Supplementation with

Bifidobacterium longum and sorghum flakes reduces BMI,

improves gastrointestinal symptoms, enhances SCFA synthesis,

boosts Chao1 diversity, and lowers uremic toxins in CKD (50).

Probiotic cocktails containing Lactobacillus reuteri and

Bifidobacterium longum reduce microbial toxins, complementing

diuretic and antihypertensive therapies. Low-protein diet further
Frontiers in Immunology 04
modulates proatherogenic toxins and microbiota in CKD (51).

Probiotics also elevate Bifidobacterium spp., Akkermansia

muciniphila, and Barnesiella intestinihominis, offering clinical

benefits in metastatic renal cell carcinoma (52).
Dietary supplementation

Dietary supplementation plays a critical role in gut microbiota

modulation and kidney disease management. Diet quality

influences uremic toxin levels, gut microbiota composition,

diversity, and functionality in adult CKD patients. Optimizing the

protein-to-fiber ratio to favor Oscillospirales may benefit CKD

patients, while avoiding discretionary foods, artificial sweeteners,

sweet desserts, and potatoes supports Prevotella species (53). CKD

patients on low-protein diet exhibit enriched ketone bodies,

glutathione metabolism, and D-alanine as bacterial gene markers.

CKD-low-protein diet also increases glyco l-muricholic acid,

secondary bile acids, and butanoate metabolism, alongside

reduced SCFA serum levels and butyrate-producing bacteria,

revealing gut microbiota adaptations to dietary protein (54).

Gluten-free/dairy-free diets elevate T regulatory/T helper 17 cell

ratios and shift gut microbiota favorably in children with steroid-

resistant nephrotic syndrome (SRNS) (55).

RS supplementation reduces platelet-derived growth factor

(PDGF), regulated upon activation, normal T cell expressed and

secreted (RANTES) [also known as CCL5], and interferon-

inducible protein 10 (IP-10) [also known as CXCL10] in CKD

(56). Resistant starch modulates plasma indole-3-acetic acid and

aryl hydrocarbon receptor mRNA expression in hemodialysis

patients (57). Prebiotic-resistant starch increases fiber intake

while lowering IL-6, thiobarbituric acid reactive substances, and

indoxyl sulfate (41). High-amylose maize resistant starch elevates

Faecalibacterium in ESRD patients (58), and type 2 resistant starch

promotes SCFA-producing bacteria, positioning it as a key gut

microbiota modulation strategy for CKD (59).

Dietary fiber enhances renal anemia in ESRD by increasing

serum butyric acid, hemoglobin, ferritin, Fe2+, Lactobacillus,

Bifidobacterium adolescentis, and Lactobacillaceae (38). Curcumin

also reduces pro-inflammatory mediators (IFN-g, CCL-2, IL-4) and
lipid peroxidation while expanding Lachnoclostridium and

Lactobacillaceae over Escherichia-Shigella in CKD patients (60).

Curcumin also lowers p-cresyl sulfate plasma levels in hemodialysis

via gut microbiota modulation (61). Fecal microbiota

transplantation (FMT) stabilizes urea nitrogen and serum

creatinine, slows disease progression, and shifts gut microbiota

toward Roseburia spp., Proteobacteria, and Bacteroidetes with

reduced Actinobacteria and Firmicutes (62, 63). ACEI/ARB

therapy combined with FMT reduces urinary protein in IgA

nephropathy patients, correlating with Phocaeicola_dorei,

Prevotella_copri, Bacteroides_uniformis, and altered metabolites

including serotonin, phosphatidylcholine, fumagillin (64).
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Traditional Chinese medicine

TCM has also shown promise in gut microbiota modulation

and kidney disease treatment. Yi-Shen-Hua-Shi granules mitigate

proteinuria and reverse gut microbiota dysbiosis in CKD by

increasing Faecalibacterium, Lachnoclostridium, Sutterella, and

Lachnospiraceae while reducing Clostridium innocuum and

Eggerthella (12). Zicuiyin decoction preserves kidney function in

patients with gut microbiota dysbiosis and declining eGFR,

promoting Lactobacillaceae and Prevotellaceae whilesuppressing

Clostridiaceae, Enterobacteriales, and Micrococcaceae (11). Qushi

Huayu formula alleviates NAFLD by lowering liver enzymes, fat

content, and phenylalanine/tyrosine, while increasing p-

hydroxyphenylacetic acid (65). The spleen-strengthening and

liver-draining formula improves glucolipid metabolism and liver

function in NAFLD via Ruminococcus, Coprococcus, and

Lachnospiraceae_NK4A136 (66). Fushen granule enriches gut

microbiota with Megamonas, Rothia, and Bacteroides, improving

quality of life and nutritional status in peritoneal dialysis-related

peritonitis (67).

TCM alleviates AKI and CKD bymodulating gut microbiota and

metabolites. TCM formulations enrich beneficial taxa

(Lactobacillaceae, Prevotellaceae) while suppressing pathogens

(Enterobacteriaceae), enhancing SCFA production and reducing

uremic toxins like indoxyl sulfate and indole-3-acetic acid (68–70).
Frontiers in Immunology 05
This rebalancing strengthens intestinal barrier integrity, inhibits

oxidative stress, and downregulates aryl hydrocarbon receptor

(AhR)-mediated inflammation and renal fibrosis (70, 71). For

instance, mild-natured sweet-flavored TCMs elevate SCFA-

producing Ruminococcus and Bacteroides, lowering p-cresyl sulfate

and lipopolysaccharides (68, 69). Clinical studies confirm TCM’s

efficacy in reducing proteinuria and slowing CKD progression via

microbiota-metabolite crosstalk (71, 72) (Figure 2).
Limitations and future prospects

Despite its microbial richness, propolis intervention did not

alter plasma levels of uremic toxins such as indole-3 acetic acid, p-

cresyl sulfate, and indoxyl sulfate, nor did it significantly change gut

microbiota composit ion (73) . Similarly , curcuminoid

supplementation attenuated lipid peroxidation and reduced

plasma p-cresyl sulfate and malondialdehyde in CKD patients

undergoing peritoneal dialysis, but it showed no significant effects

on plasma cytokines, Nrf2 mRNA expression, protein thiols, HO-1,

or NF-kB (74). Synbiotics, while favorably modifying gut

microbiota and reducing serum p-cresyl sulfate, failed to

significantly lower serum indoxyl sulfate, suggesting that gut

microbiota shifts alone may lack clinical relevance (75).

Furthermore, 12-week synbiotic supplementation demonstrated
FIGURE 2

Gut microbiota modulation for improved kidney functions. Dietary interventions (resistant starch, low-protein diet, and curcumin), probiotics, and
advanced therapies (fecal microbiota transplantation and traditional Chinese medicine) modulate gut microbial composition in chronic kidney
disease (CKD). These approaches enhance beneficial taxa (e.g., Faecalibacterium, Roseburia, Lactobacillaceae), suppress harmful bacteria (e.g., E.
coli), reduce uremic toxins (indoxyl sulfate, p-cresyl sulfate), and lower inflammation. Improved microbial balance is associated with better clinical
outcomes, including increased eGFR, reduced proteinuria, and alleviation of depression symptoms.
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no effect on nephropathy, and although synbiotics altered gut

microbiota (Bifidobacterium and Blautia spp.) and reduced eGFR,

further studies are needed to clarify their impact on kidney function

(76, 77).

Probiotics also showed limited efficacy. They did not alter

plasma TMAO levels in hemodialysis patients or SCFA levels in

peritoneal dialysis patients, despite gut microbiota changes (78, 79).

Trans-resveratrol supplementation did not reduce uremic toxins,

despite a negative correlation with GFR (80). Similarly, CBM588

bifidogenic bacteria improved clinical activity but exerted no

protective effects in metastatic renal cell carcinoma patients

receiving nivolumab and cabozantinib (81). Unripe banana flour

intervention did not improve serum biomarkers of kidney function,

and cranberry dry extract failed to reduce uremic toxins or plasma

lipopolysaccharides in non-dialysis CKD patients (82, 83). Inulin-

type fructans as prebiotics did not alter major components in ESRD,

despite favorable arsenic levels (84). A probiotic cocktail containing

Streptococcus thermophilus, Lactobacillus acidophilus, and

Bifidobacterium longum showed no benefit in hemodialysis

patients (85), and physical exercise did not modulate gut

microbiota-derived uremic toxins in hemodialysis (86). Short-

term rifaximin treatment failed to reduce gut-derived

cardiovascular toxins or inflammatory cytokines in CKD (87).

The causal relationship between gut microbiota dysbiosis and

CKD remains unclear, though renal disease and its treatments likely

influence microbiota (88). Colonic dialysis mitigated gut microbiota

dysbiosis and protected renal function in pre-dialysis CKD (89).

However, sucroferric oxyhydroxide and calcium acetate

supplementation did not modify gut microbiota in CKD patients

(90). Time-restricted feeding improved renal function by favorably

shifting gut microbiota and regulating body weight, fat-free mass,

body fat mass, and body water (91). Dietary restriction altered gut

microbiota in peritoneal dialysis patients via advanced glycation

end products, and oral vancomycin combined with underfeeding

may offer therapeutic potential by modulating gut microbiota and

nutrient absorption in CKD (92, 93).

Adults with idiopathic nephrotic syndrome exhibit gut microbiota

alterations correlated with clinical parameters, informing novel

therapeutic and diagnostic strategies (94). High-quality probiotics

should be studied alongside gut microbiota dysbiosis, iron status,

inflammatory indices, and serum iPTH stabilization in CKD patients

(95). Gut microbiota-dependent TMAO correlates with long-term all-

cause mortality in CKD (96). Short-term metformin therapy with

prebiotic fiber showed tolerable clinical benefits in youth with type 2

diabetes via microbial shifts (97). FOS may reduce free p-cresyl sulfate

and total serum levels in nondiabetic CKD, though secondary

outcomes were unchanged, warranting further studies (98).
Conclusion

Interventional studies show that gut microbiota modulation via

synbiotics, probiotics, and prebiotics reduces uremic toxins,

inflammation, and oxidative stress in CKD, improving renal
Frontiers in Immunology 06
function and glycemic control. Dietary strategies like resistant

starch and curcumin enhance microbial diversity, increase SCFA

production, and strengthen intestinal barrier integrity. TCM reverse

gut microbiota dysbiosis and alleviate proteinuria. However,

limitations exist. Synbiotics often fail to lower indoxyl sulfate,

probiotics show inconsistent affect TMAO and SCFA levels, and

interventions like propolis or cranberry extract lack efficacy. FMT

and dietary adjustments stabilize renal biomarkers and modulate

microbial ecology, yet causal links between gut microbiota and

CKD remain unclear. Emerging therapies, including phage therapy

and artificial intelligence-driven multi-omics integration, hold

promise but require validation. Future research must prioritize

longitudinal studies, maternal gut microbiota optimization, and

personalized approaches to translate gut microbiota modulation

into clinically meaningful renal health outcomes.
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