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Background: Although neoadjuvant immunochemotherapy (nICT) has

revolutionized the management of locally advanced esophageal squamous cell

carcinoma (ESCC), the inability to accurately predict pathological complete

response (pCR) remains a major barrier to treatment personalization. We

aimed to develop and validate an interpretable machine learning (ML) model

using pretreatment multimodal features to predict pCR prior to nICT initiation.

Methods: In this retrospective study, 114 ESCC patients receiving nICT were

randomly allocated into training (n=81) and validation (n=33) cohorts (7:3 ratio).

Predictors of pCR were identified from pretreatment clinical variables,

endoscopic ultrasonography, and hematological biomarkers via least absolute

shrinkage and selection operator (LASSO) regression. Eight machine learning

algorithms were implemented to construct prediction models. Model

performance was assessed by area under the receiver operating characteristic

curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative

predictive value (NPV). Shapley Additive Explanations (SHAP) provided feature

importance and model interpretability.

Results: Following feature selection, 17 variables were incorporated into model

construction. The Random Forest (RF) model demonstrated perfect discrimination

in the training cohort (AUC = 1.000, sensitivity = 1.000, specificity = 1.000,

PPV = 1.000, NPV = 1.000), while maintaining robust predictive ability in the

independent validation cohort (AUC = 0.913, sensitivity = 0.733, specificity =

0.889, PPV = 0.846, NPV = 0.800). Decision curve analysis (DCA) confirmed
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favorable clinical utility. SHAP analysis identified alcohol consumption,

circumferential involvement ≥50%, elevated neutrophil-to-lymphocyte ratio (NLR),

C-reactive protein (CRP), and alanine aminotransferase (ALT) as the key contributors

to pCR prediction.

Conclusions: We established a clinically applicable, interpretable ML model that

accurately predicts pCR to nICT in ESCC by integrating multimodal pretreatment

data. This tool may optimize patient selection for nICT and advance precision

therapy paradigms.
KEYWORDS

esophageal squamous cell carcinoma, neoadjuvant immunochemotherapy,
pathological complete response, machine learning, model interpretability
Introduction

Esophageal squamous cell carcinomas (ESCC) represent

malignant tumors originating from the squamous epithelium

lining the esophagus and account for more than 90% of

esophageal malignancies in Asian populations (1). In recent years,

the combination of neoadjuvant therapy followed by radical surgery

has emerging as the gold-standard treatment paradigm for locally

advanced ESCC, with clinically significant improvements in

survival outcomes now being consistently observed. The

emergence of immune checkpoint inhibitors (ICIs), specifically

monoclonal antibodies targeting the PD-1/PD-L1 immune

regulatory axis, has revolutionized therapeutic paradigms in

advanced ESCC (2). Currently, multiple clinical studies are

actively exploring the application of immunotherapy in

neoadjuvant therapy. Neoadjuvant immunochemotherapy (nICT)

not only demonstrates the ability to enhance pathologic complete

response (pCR) rates (3, 4) but also delivers a more favorable long-

term prognosis relative to neoadjuvant chemoradiotherapy

(nCRT) (5).

The value of predicting pCR prior to neoadjuvant immunotherapy

lies not in denying surgery to potential non-responders, but in

enabling more precise risk stratification and supporting personalized

adjuvant therapy decision-making in advance. Multiple studies

confirm that pCR is associated with improved overall survival (OS)

and recurrence-free survival (RFS). Blum MM et al. reported that in

the MD Anderson cohort, patients with pCR had significantly longer

median OS (71.3 vs. 35.9 months) and RFS (70.8 vs. 26.1 months)

compared to non-pCR patients (6). Wu et al. reported a 5-year OS of

84.5% in pCR patients vs. 52.9% in non-pCR patients after

neoadjuvant chemotherapy (7). Moreover, pCR status can assist in

identifying patients who may benefit from treatment de-escalation or

intensified adjuvant therapy (7). Non-pCR patients, especially those

with poor response, may benefit from additional systemic therapy or

closer surveillance. For patients considered unsuitable for surgical

intervention, achieving pCR may represent a primary therapeutic

objective (8). In such scenarios, chemo-immunotherapy could serve as
02
a potential treatment option. Therefore, it is crucial to accurately

predict the pCR to nICT and identify priority populations for nICT to

avoid unnecessary adverse events and costs.

Currently, the predictive biomarkers capable of stratifying pCR

and assessing survival outcomes for nICT in ESCC remain to be

established. Although some biomarkers seem valuable, such as CD8+

T cell infiltration, programmed cell death ligand-1 (PD-L1)

expression, and tumor mutational burden (TMB) (9), their clinical

significance remains limited. Endoscopic ultrasound (EUS) serves as

a critical imaging modality in the staging of ESCC (10). Emerging

evidence demonstrates that maximal esophageal wall thickness and

tumor volume regression rate derived from EUS, could serve as

independent prognostic indicators for ESCC following neoadjuvant

therapy (11). Machine learning (ML), a core subfield of artificial

intelligence (AI), enables algorithms to autonomously learn from

complex datasets, discern intricate biological patterns, and derive

data-driven insights (12, 13). This study aimed to develop and

validate a novel interpretable multimodal ML model integrating

EUS features and laboratory biomarkers to pre-therapeutically

predict histological response in ESCC patients receiving nICT. By

incorporating the SHapley Additive Explanation (SHAP) method, we

quantified feature importance and interpreted the model’s

predictions to elucidate the clinical implications of the model’s

ability to forecast histological outcomes following nICT and

providing valuable insights for personalized therapeutic decision-

making in ESCC.
Materials and methods

Study cohort

This retrospective study included 140 consecutive patients with

ESCC at Sun Yat-sen University Cancer Center (SYSUCC,

Guangzhou, China) between July 1, 2021, and July 1, 2024, who

received neoadjuvant immunochemotherapy. The inclusion criteria

were defined as follows: (1) histologically confirmed ESCC with
frontiersin.org
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clinical staging classified as cT3–4aNanyM0 or cT1–2N+M0; (2)

completion of at 1–2 cycles of neoadjuvant chemoimmunotherapy;

(3)subsequent esophagectomy following the completion of

neoadjuvant chemoimmunotherapy. Exclusion criteria comprised:

(1) Prior or synchronous malignant tumors (n=3); (2) Patients who

received neoadjuvant immunotherapy at external hospitals and

lacked baseline laboratory test data (n=23). After screening, a

total of 114 eligible ESCC patients were ultimately included,

which was randomly divided into a training set (81 patients) and

a test set (33 patients) in a 7:3 ratio. This study was approved by the

Ethics Committee at Sun-Yat sen University Cancer Center

(Guangzhou, China; Approval No: SL-B2025-111-01).The

requirement for informed consent was waived by the institutional

review board given the retrospective design and complete

anonymization of all patient data.
Procedures

The study design schematic is presented in Figure 1. We

retrospectively collected clinical variables, standardized

measurements from routine laboratory blood tests and EUS features

that were performed on the date of or within 14 days before the first

nICT treatment. All eligible patients received 1–2 cycles of ICIs

(administered every 3 weeks), including pembrolizumab, nivolumab,

camrelizumab, sintilimab, toripalimab, or tislelizumab, combined with

chemotherapy as 1–2 cycles of platinum based doublet chemotherapy,

consisting of a platinum agent (cisplatin, carboplatin, or nedaplatin)

combined with paclitaxel or fuorouracil. Features with a missing

percentage <10% were retained. Among all of the retained variables,
Frontiers in Immunology 03
the overall rate of missing data was 4.97%, with missing values

imputed using the missForest algorithm. Our structured database

ultimately included 65 clinical variables as candidate predictors.

Pathological response was assessed and confirmed by consensus of

two blinded pathologists. This study applied the pathological

evaluation criteria for esophageal cancer after neoadjuvant therapy,

as recommended by the College of American Pathologists (CAP) and

the National Comprehensive Cancer Network (NCCN), to grade

histological responses. The criteria were defined as follows: Grade 0

(complete response): No viable cancer cells in primary lesions or

lymph nodes, Grade 1 (moderate response): Residual single or small

clusters of cancer cells, Grade 2 (partial response): Residual cancer foci

with stromal fibrosis, Grade 3 (poor response): Minimal or no tumor

cell regression. Based on this classification, Grade 0 was defined as

pathological complete response (pCR), while Grades 1–3 were

classified as pathological incomplete response (non-pCR). This

framework enabled systematic evaluation of neoadjuvant

immunotherapy efficacy differences.
Model development and validation

We performed feature selection using the least absolute

shrinkage and selection operator (LASSO) regression thereby

enhancing prediction accuracy and increasing model stability

through elimination of non-predictive features. Eight ML models,

including Random Forest (RF), Gradient Boosting Machine (GBM),

Multilayer Perceptron (MLP), Support Vector Machine (SVM),

Neural Network (NN), Gaussian Process (GP), Naive Bayes (NB),

and Extreme Gradient Boosting (XGB) were used to predict the
FIGURE 1

Study design flowchart. (A) Feature selection workflow for the machine learning model. (B) Deep learning feature extraction, prediction model
training and validation, and quantitative analysis and evaluation.
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pathological response of nICT in ESCC patients. The final

hyperparameters for each prediction model were optimized using

the optimal feature subset, employing 5 repetitions of 5-fold cross-

validation coupled with the default hyperparameter grid search

provided by the “caret” package.
Model performance comparison

The predictive performance of the models was evaluated using

established metrics, including the area under the receiver operating

characteristic curve (AUC), sensitivity, specificity, positive

predictive value (PPV), negative predictive value (NPV), and

accuracy. The optimal predictive model was selected based on the

highest AUC in both training and test sets. Calibration of the

optimal model was subsequently validated using calibration curves

and quantitatively via the Hosmer-Lemeshow test to evaluate the

agreement between predicted probabilities and observed outcomes,

whereas decision curve analysis (DCA) was employed to quantify

clinical utility by estimating net benefit across a range of

threshold probabilities.
Model explanation

Interpreting ML models remains a complex task. To address the

“black box” dilemma, the SHAP framework employs game-

theoretic principles to quantify feature significance and elucidate

predictive outputs. This approach enables both instance-specific

and overall model interpretation by quantifying individual feature

contributions to predictions, thereby enhancing transparency and

explainability of algorithmic decision-making processes.
Statistical analysis

Statistical analyses were conducted using R (version 4.3.1) and

SPSS software (version 18.0). Normally distributed continuous

variables are expressed as mean ± SD and compared using

Student’s t-test. Non-normally distributed continuous data are

reported as median (IQR) with Mann-Whitney U tests.

Categorical variables are presented as frequencies (%) and

analyzed by chi-square tests. Feature selection employed LASSO

regression (R “glmnet” package). Machine learning models were

implemented via the “caret” package in R, which provides a unified

interface for algorithmic implementation using specified methods:

RF (method=“ranger”) , GBM (method=“gbm”) , MLP

(method= “mlp ” ) , SVM (method= “ svmRad ia l ” ) , NN

(method=“NN”) , GP (method=“gausspr Radial”) , NB

(method=“native_bayes”), XGB (method=“xgbTree”). Model

performance was evaluated by ROC analysis (R “pROC”

package). Comparative performance across metrics was visualized

using radar plots. The optimal model’s classification results (TP/

TN/FP/FN) were displayed in confusion matrices for training and
Frontiers in Immunology 04
test sets. Clinical utility was assessed via decision curve analysis

(DCA) quantifying net benefit across threshold probabilities.

Statistical significance was defined as two-tailed P < 0.05.
Results

Patient characteristics

The training set comprised 81 patients (median [IQR] age, 61

[58–66] years; 61 male [79.01%]), including 41 smokers (50.62%)

and 22 alcohol consumers ((27.16%). Clinical staging distribution

was: stage II (n=7, 8.64%), stage III (n=50, 61.73%), and stage IV

(n=24, 29.63%). Following nICT, all patients underwent surgery,

with pCR achieved in 36 cases ((44.44%) based on the pathological

assessment of the surgical specimens. The test set included 33

patients (median [IQR] age, 64 [58–68] years; 30 males

[90.91%]), with 19 smokers (57.58%) and 13 alcohol consumers

(39.39%). Stage distribution was: II (n=6, 18.18%), III (n=18,

54.55%), and IV (n=9, 27.27%). The pCR was observed in 15

patients (45.5%).There were no significant differences in baseline

clinical characteristics between the training and test sets. The

demographic and clinicopathological characteristics of all patients

are shown in Table 1.
Predictor variable selection

We performed feature selection in the training cohort to

identify predictive factors associated with pathological response to

nICT in ESCC. LASSO regression analyzed 65 candidate features,

including 9 clinical indicators, 49 laboratory blood test parameters,

and 7 endoscopic ultrasonography characteristics. This identified 17

significant predictors: alcohol consumption, circumferential

involvement(CI), neutrophil-to-lymphocyte ratio (NLR), C-

reactive protein (CRP), alanine aminotransferase (ALT), uric acid

(UA), free thyroxine (FT4), cholesterol (CHE), creatine kinase(Ck),

thyroglobulin antibody (ATPO), differentiation, albumin/globulin

ratio (AGR), male, total bile acids (TBA), alkaline phosphatase

(ALP), low density lipoprotein (LDL), glutamylamino transferase

(GGT). (Figures 2A, B).
Model development and predictive
performance

Eight machine learning models were developed using ten

iterations of 10-fold cross-validation. The RF model demonstrated

optimal performance in the training cohort (AUC = 1.000,

sensitivity = 1.000, specificity = 1.000, PPV = 1.000, NPV =

1.000), followed by GBM (AUC = 0.973, sensitivity = 0.972,

specificity = 0.933, PPV = 0.921, NPV = 0.977) and MLP (AUC =

0.964, sensitivity = 0.972, specificity = 0.933, PPV = 0.921, NPV =
frontiersin.org
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TABLE 1 Patient characteristics in the training and test cohort.

Variable Total (n=114) Training cohort (n=81) Test cohort (n=33) P

Age (years), median (IQR) 62(58,67) 61(58,66) 64(58,68) 0.224

BMI(kg/m2)
median (IQR)

21.95(20.13,23.69) 21.72(19.87,23.25) 22.41(20.79,24.98) 0.104

Sex 0.130

Male 94(82.46%) 64(79.01%) 30(90.91%)

Female 20(17.54%) 17(20.99%) 3(9.09%)

Smoking 0.500

Never 54(47.37%) 40(49.38%) 14(42.42%)

Prior or current 60(52.63%) 41(50.62%) 19(57.58%)

Alcohol 0.199

Never 79(69.30%) 59(72.84%) 20(60.61%)

Prior or current 35(30.70%) 22(27.16%) 13(39.39%)

ECOG 0.480

0 6(5.26%) 3(3.70%) 3(9.09%)

1 108(94.74%) 78(96.30%) 30(90.91%)

Tumour location 0.957

upper 4(3.51%) 3(3.70%) 1(3.03%)

middle 74(64.91%) 53(65.43%) 21(63.64%)

lower 36(31.58%) 25(30.86%) 11(33.33%)

EUS T staging 0.658

1 1(0.88%) 1(1.23%) 0(0.00%)

2 24(21.05%) 17(20.99%) 7(21.21%)

3 81(71.05%) 56(69.14%) 25(75.76%)

4 8(7.02%) 7(8.64%) 1(3.03%)

EUS N staging 0.311

0 7(6.14%) 5(6.17%) 2(6.06%)

1 31(27.19%) 18(22.22%) 13(39.39%)

2 50(43.86%) 38(46.91%) 12(36.36%)

3 26(22.81%) 20(24.69%) 6(18.18%)

TNM stage 0.347

II 13(11.40%) 7(8.64%) 6(18.18%)

III 68(59.65%) 50(61.73%) 18(54.55%)

IV 33(28.95%) 24(29.63%) 9(27.27%)

Differentiation 0.283

Poor 33(28.95%) 20(24.69%) 13(39.39%)

Moderate 76(66.67%) 57(70.37%) 19(57.58%)

Well 5(4.39%) 4(4.94%) 1(3.03%)

Elevated lesion 0.166

Yes 95(83.33%) 65(80.25%) 30(90.91%)

(Continued)
F
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0.977) (Figures 3A, C). RF maintained robust discrimination in the

independent validation cohort (AUC = 0.913, sensitivity = 0.733,

specificity = 0.889, PPV = 0.846, NPV = 0.800) (Figures 3B, D).

Table 2 presents the performance parameters of the eight machine

learning models in the training and validation sets. These results

establish RF as the optimal computational framework for predicting

pCR following nICT in ESCC patients.

Confusion matrix analysis showed the RF model achieved 100%

true prediction rate in the training set (Figure 4A) and 85% in the

validation set (Figure 4B). Calibration curve analysis was employed

to evaluate the model’s predictive reliability, quantifying the

concordance between predicted probabilities and observed
Frontiers in Immunology 06
outcomes. The RF model showed excellent calibration fidelity in

both training and test cohorts. (Supplementary Figure S1). For the

training set the Brier score was 0.0304, and the Hosmer-Lemeshow

test yielded a chi-square value of 13.44 (p=0.0976). For the

validation set, the Brier score was 0.1623, while the Hosmer-

Lemeshow test showed a chi-square value of 8.19 (p=0.0848).

Both datasets demonstrate good agreement between predicted

probabilities and observed outcomes. Decision curve analysis

further indicated that the RF model provided greater net clinical

benefit across the entire threshold probability range (0–80%)

compared with TNM stage, tumor length, and tumor thickness in

both training (Figure 4C) and test (Figure 4D) sets.
TABLE 1 Continued

Variable Total (n=114) Training cohort (n=81) Test cohort (n=33) P

No 19(16.67%) 16(19.75%) 3(9.09%)

Ulcerative lesion 0.492

Yes 61(53.51%) 45(55.56%) 16(48.48%)

No 53(46.49%) 36(44.44%) 17(51.52%)

Circumferential involvement 0.601

Yes 80(70.18%) 58(71.60%) 22(66.67%)

No 34(29.82%) 23(28.40%) 11(33.33%)

Tumor length(mm)
median (IQR)

5.00(5.00,7.00) 5.00(4.00,7.00) 5.00(5.00,7.00) 0.965

Tumor thickness(mm) median
(IQR)

12.35(9.63,15.90) 12.00(8.97,15.85) 13.2(10.15,16.05) 0.233

pCR 0.922

Present 51(44.74%) 36(44.44%) 15(45.45%)

Absent 63(55.26%) 45(55.56%) 18(54.55%)
FIGURE 2

Variable selection for constructing the pathological complete response (pCR) prediction model was performed using Least Absolute Shrinkage and
Selection Operator (LASSO) regression and stepwise regression. (A) Tuning parameter (l) selection in the LASSO regression using 10-time cross-
validation. (B) Coefficient profiles from the LASSO regression of the extracted features.
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Heatmap analysis of RF model variables

A heatmap was constructed to visually characterize the

discriminatory capacity of the RF model in predicting pCR

following nICT in ESCC patients. The multivariate visualization

matrix employed color gradients to depict the spatial distribution of

the predictive variables across the ESCC cohort, while

simultaneously mapping algorithm-derived pCR probability

scores against histologically confirmed treatment outcomes.

Differential clustering patterns emerged between pCR and non-

pCR cohorts (Figure 5), with the RF model maintaining high

predictive fidelity in both training and test cohorts. This

demonstrates robust generalizability of computationally derived
Frontiers in Immunology 07
prognostic signatures, suggesting clinical utility for early

identification of nICT responders.
Model explanation

To elucidate the underlying decision-making process of the RF

model, we employed the SHAP method for model interpretability.

SHAP analysis quantifies the marginal contribution of each feature

to the prediction by computing Shapley values, enabling a

comprehensive assessment of feature-specific impacts on the

model’s output. The SHAP summary dot plot (Figure 6A) visually

shows the direction and strength of the influence of each feature on
FIGURE 3

Performance of machine learning models in predicting pathological complete response (pCR) following nICT in ESCC patients. (A) ROC curves of
eight machine learning models in the training cohort. (B) ROC curves of the eight models in the test cohort. (C) Radar plot comparing model
performance metrics in the training cohort. (D) Radar plot comparing model performance metrics in the test cohort. Abbreviations: RF, Random
Forest; GBM, Gradient Boosting Machine; MLP, Multilayer Perceptron; SVM, Support Vector Machine; NN, Neural Network; GP, Gaussian Process;
NB, Naive Bayes; XGB, Extreme Gradient Boosting.
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the global interpretability of the RF model. In addition, the SHAP

bar plot (Figure 6B) facilitates intuitive comparison of feature

importance by displaying mean absolute SHAP values. Key

predictors included alcohol, circumferential involvement, high

NLR,high CRP and high ALT exhibited the highest Shapley

values, underscoring their pivotal roles in the model’s predicting

pCR following nICT in ESCC patients.

Beyond global feature importance, we utilized the SHAP plot

illustrates the local contributions of individual features to the RF

model predictions. Figure 6C reveals the specific impact of each

feature on the predicted probability of pCR for individual patients.

For example, in a patient with GGT level of 14 U/L, CK level of 43

U/L, no history of alcohol consumption, A-TPO level of 28.4 U/ml,

and absence of circumferential involvement, the corresponding

Shapley values of +0.0326, +0.0425, +0.0467, +0.0506, and +0.101,

respectively, indicated positive contributions to the pCR prediction.

Meanwhile, other features, including gender, pathological

differentiation, ALT level, and uric acid (UA) level, also exerted

varying degrees of influence on the model’s decision-making

process.The waterfall plot provided a holistic view of how

different features interacted and contributed to the final

prediction, thereby offering valuable insights into the complex

relationships between clinical variables and treatment outcomes

in ESCC patients receiving nICT.
Frontiers in Immunology 08
Discussion

This study presents a deep learning-derived model for the early

prediction of pCR in ESCC patients receiving neoadjuvant immune

checkpoint therapy. By integrating clinical indicators, laboratory

biomarkers, and endoscopic ultrasonography features, we identified

predictive biomarkers and systematically evaluated eight machine

learning models for pCR prediction. The random forest algorithm

demonstrated superior predictive accuracy across both in the

training cohort (AUC 1.000) while maintaining robust

performance in the test cohort (AUC 0.913), outperforming

traditional clinical indices. Notably, we derived a novel

probabilistic scoring system from the RF model that revealed

significant differences between pCR and non-pCR groups across

all patient strata. This clinically applicable tool provides accurate

pCR prediction prior to treatment completion, potentially

identifying candidates most likely to benefit from nICT. Such

stratification may mitigate overtreatment risks while advancing

personalized therapeutic strategies for ESCC.

In recent years, immunotherapy has emerged as a revolutionary

oncologic therapy, demonstrating particularly pronounced advantages

in neoadjuvant settings for ESCC. Neoadjuvant immunotherapy has

transformed ESCC management through immune checkpoint

inhibitors (ICIs) administered preoperatively to induce tumor
TABLE 2 Performance parameters of the eight machine learning prediction models in the training and test set.

Model AUC Accuracy Sensitivity Specificity PPV NPV

Training set

RF 1.000 1.000 1.000 1.000 1.000 1.000

GBM 0.973 0.951 0.972 0.933 0.921 0.977

MLP 0.964 0.951 0.972 0.933 0.921 0.977

SVM 0.938 0.877 0.972 0.800 0.795 0.973

NN 0.928 0.877 0.778 0.956 0.933 0.843

GP 0.923 0.864 0.806 0.911 0.879 0.854

NB 0.919 0.864 0.944 0.800 0.791 0.947

XGB 0.910 0.852 0.972 0.756 0.761 0.971

Test set

RF 0.913 0.818 0.733 0.889 0.846 0.800

GBM 0.785 0.697 0.667 0.722 0.667 0.722

MLP 0.804 0.818 0.667 0.944 0.909 0.773

SVM 0.870 0.788 0.800 0.778 0.750 0.824

NN 0.852 0.727 0.467 0.944 0.875 0.680

GP 0.822 0.697 0.467 0.889 0.778 0.667

NB 0.715 0.758 0.800 0.722 0.706 0.813

XGB 0.619 0.455 0.600 0.333 0.429 0.500
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regression, downstage clinical disease, and improve complete resection

rates (14). Clinical evidence shows that adding immunotherapy to

doublet chemotherapy or chemoradiotherapy further improves

treatment outcomes. The ESCORT-NEO/NCCES01 trial notably

demonstrated a significant increase in pathologic complete response

(pCR) rates with immunochemotherapy, achieving 28.0% and 15.4%

pCR rates in combination groups versus 4.7% in the chemotherapy-

alone arm (15). Furthermore, Yu et al. reported that the nICT group

had a better 3-year disease-free survival rate (87.4% vs 72.8%) and 3-

year OS rate (91.7% vs 79.8%) compared with the nCRT group (5).

Critically, Patients who achieve pCR may benefit from organ-

preserving strategies, avoiding radical esophagectomy. Accurate

assessment of residual disease after neoadjuvant therapy is critical

for implementing such strategies. However, current non-invasive
Frontiers in Immunology 09
methods are unable to reliably identify pCR, creating a critical

clinical unmet need for pretreatment predictive tools.

Tumor mutational burden (TMB), microsatellite instability

(MSI), and PD-L1 expression have been investigated as potential

biomarkers for immunotherapy response, yet their clinical utility

remains controversial (16). While two independent clinical trials

reported significant associations between pretreatment TMB levels

and response to neoadjuvant immunotherapy (17, 18), another

study found no correlation between TMB and nICT efficacy (19).

Additionally, PD-L1 expression faces similar challenges as a

predictive marker. The trials such as KEYNOTE-590 (2),

CheckMate-648 (20), and JUPITER-06 (21) have demonstrated

that ESCC patients patients derive clinical benefit from

immunotherapy irrespective of PD-L1 status, yet the TD-NICE
FIGURE 4

Performance evaluation of the Random Forest (RF) model for predicting pathological complete response (pCR). (A) Confusion matrix for the RF
model in the training cohort. (B) Confusion matrix for the RF model in the tes cohort. (C) Decision curve analysis for the RF model in the training
cohort. (D) Decision curve analysis for the RF model in the test cohort.
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study failed to establish a significant correlation between PD-L1

expression and pCR (4). The inconsistent predictive performance of

current biomarkers arises from tumor immune microenvironment

complexity, necessitating composite biomarker integration for

accurate nICT outcome prediction in patients with ESCC.

Our study integrated pre-neoadjuvant immunochemotherapy

features from ESCC patients, including endoscopic ultrasonography

delineating local tumor characteristics, peripheral blood biomarkers

reflecting systemic immune status, and clinical parameters capturing

baseline host factors. Subsequent multimodal fusion of local-systemic-

host data overcomes the spatiotemporal limitations of conventional

response assessment methods, with the RF algorithm demonstrating

exceptional accuracy in predicting pCR for ESCC patients receiving
Frontiers in Immunology 10
nICT. SHAP analysis quantified feature contributions to pCR

prediction, identifying alcohol, circumferential involvement, high

NLR,high CRP and high ALT as the top five predictors. The

directional influence and quantitative impact of individual features

exhibited dynamic shifts upon their intrinsic values and combinatorial

interactions with co-occurring variables, highlighting the

demonstrating the model’s complexity in predicting ICI efficacy for

each patient. Then, we explored the relationship of these features and

ICI efficacy. Firstly, the development of ESCC demonstrates a strong

correlation with ethanol intake (22). Epidemiological evidence

indicates that regular consumption of alcoholic beverages elevates

ESCC risk by approximately 60% (23). Furthermore, the relationship

between chronic alcohol exposure and ESCC risk has been shown to
FIGURE 5

Heatmap visualization of variables associated with pathological complete response (pCR) prediction in ESCC patients after nICT using the Random
Forest (RF) model. Each row represents a variable; each column represents a patient sample. Continuous variables are represented by a color
gradient and categorical variables use distinct colors per category. Variables include circumferential involvement, gender, pathological differentiation
degree, alcohol consumption, neutrophil-to-lymphocyte ratio (NLR), free thyroxine (FT4, pmol/L), anti-thyroid peroxidase antibody (A-TPO, U/ml),
alanine aminotransferase (ALT, U/L), cholinesterase (CHE, U/L), alkaline phosphatase (ALP, U/L), gamma-glutamyl transferase (GGT, U/L), total bile
acid (TBA, umol/L), albumin-to-globulin ratio (A/G), uric acid (UA, umol/L), creatine kinase (CK, U/L), low-density lipoprotein cholesterol (LDL-C,
mmol/L), C-reactive protein (CRP, mg/L), RF model predicted probability (RF score), actual pathological response outcome (Outcome), and dataset
grouping (Group).
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exhibit a dose-response relationship. Sustained excessive alcohol

consumption is associated with substantially elevated risks of both

disease incidence and mortality rates (24). Mechanistically,

experimental studies suggest that ethanol metabolites may impair T

lymphocyte activation pathways, thereby compromising antitumor

immunity through immunosuppressive mechanisms (25). Moreover,

Fu et al. (26) highlight that Aldehyde dehydrogenase 2 (ALDH2) is a

key enzyme involved in alcohol metabolism, alcohol consumption

could induce ALDH2 and subsequently upregulate PD-L1 expression

in CRC to allow their escape from immune surveillance. In summary,

alcohol consumption may compromise patient responsiveness to nICT

by modulating T cell differentiation or regulating PD-L1 expression.

Secondly, circumferential involvement ≥(1/2) of the circumference is a

risk factor for postoperative stenosis in endoscopic submucosal

dissection of ESCC. One possible reason is that circumferential

involvement might promoting fibrosis and scar formation in the

esophageal wall, ultimately leading to esophageal stricture, and

significantly affecting patient prognosis (27); the other possible
Frontiers in Immunology 11
reason is that circumferential involvement might alter local blood

supply and lymphatic structure, resulting in insufficient drug

penetration depth to reach the tumor core; furthermore, tumors with

a small circumferential invasion range may preserve more intact

lymphatic structures and vascular networks, facilitating the

infiltration of effector T cells (such as CD8+T cells). Studies have

shown that patients with an immune-enriched TME (highly infiltrated

lymphocytes, activated IFN-g signaling) at baseline exhibit better

responses to neoadjuvant immunotherapy, with significantly

increased pCR rates; lastly, High proportion of exhausted precursor

T cells (Tpex): Tumors with minimal circumferential invasion may be

enriched with SPRY1+PD1+CD8+T cells (exhausted precursor cells

with stem-like properties), which can be activated and expanded by

PD-1/PD-L1 inhibitors, driving potent anti-tumor immune responses.

However, its relationship with neoadjuvant therapy remains unclear.

Thirdly, we reported that high NLR, CRP and ALT were related to the

poor prognosis of nICT. In previous studies on inflammatory

responses, NLR (28), CRP (29), and ALT (30), as reliable and easily
FIGURE 6

Interpretation of the Random Forest (RF) model for predicting pathological complete response (pCR) using SHapley Additive exPlanations (SHAP)
analysis. (A) SHAP summary dot plot. Features are ranked by descending mean absolute SHAP value, representing their overall importance. Each
point represents the SHAP value for a feature in an individual patient. Color indicates the relative value of the feature (orange: high, purple: low).
Vertical dispersion reflects data density. (B) SHAP summary bar plot. Features are ranked by descending mean absolute SHAP value, representing
their average magnitude of contribution to the model’s predictions. (C) SHAP waterfall plot. Illustrates the cumulative contribution of individual
features to shifting the model’s expected output (base value, E[f(X)]) to the final prediction (f(x)) for a representative patient (e.g., Patient 3). Feature
values and their corresponding SHAP values are annotated. Positive SHAP values indicate features pushing the prediction towards pCR.
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accessible indicators of immune-inflammatory reactions, have been

demonstrated to play significant predictive roles in various diseases,

including multiple solid tumors such as esophageal cancer, and are

commonly used to assess the severity of systemic inflammatory

responses. As is well known, the formation of esophageal strictures

requires the involvement of immune-inflammatory cells and

inflammatory mediators. Therefore, inflammatory factors may serve

as another predictive indicator for esophageal strictures (31).

Currently, individual research teams have developed models for

predicting therapeutic efficacy following neoadjuvant therapy in

ESCC patients. However, it is worth noting that all these predictive

models primarily rely on the the Response Evaluation Criteria in

Solid Tumors (RECIST 1.1). Since the response patterns of tumors

treated with immune checkpoint inhibitors (ICIs) may differ from

those of conventional therapies, pseudoprogression and mixed

responses can lead to RECIST 1.1 misclassifying such cases as

progressive disease (PD) during immunotherapy evaluation.

Ultimately, the gold standard for efficacy assessment remains

postoperative pathology. Machine learning offers a transformative

solution by decoding complex biological patterns through iterative

algorithmic learning from multimodal datasets. Unlike rule-based

methods, ML frameworks excel at capturing nonlinear relationships

and subtle feature interactions—capabilities critical for modeling

the heterogeneity of the tumor immune microenvironment. In this

study, we innovatively developed a RF model derived scoring

system provides clinicians with an objective tool to stratify

patients most likely to benefit from nICT. Furthermore, all the

predictive factors included in the RF model are routine examination

items for ESCC patients during hospitalization and are easily

accessible, providing feasibility for the clinical application.

Although the developmen of RF model demonstrated robust

predictive performance in this study, there are still some limitations.

Firstly, the retrospective design may introduce selection bias despite

strict inclusion and exclusion criteria, which may limit the

generalizability of the prediction model. Secondly, the model was

developed using data exclusively from a single Chinese medical

center. Although internal validation has confirmed the predictive

efficacy of the model, the relatively small sample size and lack of

external validation in this study may affect the robustness and broad

applicability of the prediction model. Moreover, while Random

Forest achieved the highest mean AUC, its apparent advantages

over most comparators were not statistically robust to multiple

testing correction. This suggests these differences may represent

random variations amplified by repeated comparisons. Therefore,

this work as a retrospective exploratory analysis, subsequent studies

should organize multicenter, prospective large-scale studies

involving ESCC patients from various regions and medical

institutions aimed at dynamically evaluating the predictive

performance of the model in real clinical settings. Additionally,

integrating multi-omics data, including genomic, radiomic, and

proteomic features, holds promise for improving prediction

accuracy by capturing the complex biological mechanisms

underlying tumor-immune interactions, ultimately facilitating the

development of a more refined and clinically useful immunotherapy

prediction model.
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Conclusion

Our study established an interpretable random forest model

using baseline endoscopic ultrasonography and hematological

parameters that accurately predicts histological response to

neoadjuvant immune checkpoint therapy in ESCC patients.

Validated across independent cohorts, the model offers a clinically

actionable tool for pretreatment identification of responders,

thereby optimizing personalized therapeutic strategies while

reducing unnecessary healthcare expenditures and mitigating

immune-related adverse events through early intervention.
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