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Background: Although neoadjuvant immunochemotherapy (nICT) has
revolutionized the management of locally advanced esophageal squamous cell
carcinoma (ESCC), the inability to accurately predict pathological complete
response (pCR) remains a major barrier to treatment personalization. We
aimed to develop and validate an interpretable machine learning (ML) model
using pretreatment multimodal features to predict pCR prior to nICT initiation.
Methods: In this retrospective study, 114 ESCC patients receiving nICT were
randomly allocated into training (n=81) and validation (n=33) cohorts (7:3 ratio).
Predictors of pCR were identified from pretreatment clinical variables,
endoscopic ultrasonography, and hematological biomarkers via least absolute
shrinkage and selection operator (LASSO) regression. Eight machine learning
algorithms were implemented to construct prediction models. Model
performance was assessed by area under the receiver operating characteristic
curve (AUCQ), sensitivity, specificity, positive predictive value (PPV), and negative
predictive value (NPV). Shapley Additive Explanations (SHAP) provided feature
importance and model interpretability.

Results: Following feature selection, 17 variables were incorporated into model
construction. The Random Forest (RF) model demonstrated perfect discrimination
in the training cohort (AUC = 1.000, sensitivity = 1.000, specificity = 1.000,
PPV = 1.000, NPV = 1.000), while maintaining robust predictive ability in the
independent validation cohort (AUC = 0.913, sensitivity = 0.733, specificity =
0.889, PPV = 0.846, NPV = 0.800). Decision curve analysis (DCA) confirmed
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favorable clinical utility. SHAP analysis identified alcohol consumption,
circumferential involvement >50%, elevated neutrophil-to-lymphocyte ratio (NLR),
C-reactive protein (CRP), and alanine aminotransferase (ALT) as the key contributors

to pCR prediction.

Conclusions: We established a clinically applicable, interpretable ML model that
accurately predicts pCR to nICT in ESCC by integrating multimodal pretreatment
data. This tool may optimize patient selection for nICT and advance precision

therapy paradigms.

esophageal squamous cell carcinoma, neoadjuvant immunochemotherapy,
pathological complete response, machine learning, model interpretability

Introduction

Esophageal squamous cell carcinomas (ESCC) represent
malignant tumors originating from the squamous epithelium
lining the esophagus and account for more than 90% of
esophageal malignancies in Asian populations (1). In recent years,
the combination of neoadjuvant therapy followed by radical surgery
has emerging as the gold-standard treatment paradigm for locally
advanced ESCC, with clinically significant improvements in
survival outcomes now being consistently observed. The
emergence of immune checkpoint inhibitors (ICIs), specifically
monoclonal antibodies targeting the PD-1/PD-L1 immune
regulatory axis, has revolutionized therapeutic paradigms in
advanced ESCC (2). Currently, multiple clinical studies are
actively exploring the application of immunotherapy in
neoadjuvant therapy. Neoadjuvant immunochemotherapy (nICT)
not only demonstrates the ability to enhance pathologic complete
response (pCR) rates (3, 4) but also delivers a more favorable long-
term prognosis relative to neoadjuvant chemoradiotherapy
(nCRT) (5).

The value of predicting pCR prior to neoadjuvant immunotherapy
lies not in denying surgery to potential non-responders, but in
enabling more precise risk stratification and supporting personalized
adjuvant therapy decision-making in advance. Multiple studies
confirm that pCR is associated with improved overall survival (OS)
and recurrence-free survival (RFS). Blum MM et al. reported that in
the MD Anderson cohort, patients with pCR had significantly longer
median OS (71.3 vs. 35.9 months) and RFS (70.8 vs. 26.1 months)
compared to non-pCR patients (6). Wu et al. reported a 5-year OS of
84.5% in pCR patients vs. 52.9% in non-pCR patients after
neoadjuvant chemotherapy (7). Moreover, pCR status can assist in
identifying patients who may benefit from treatment de-escalation or
intensified adjuvant therapy (7). Non-pCR patients, especially those
with poor response, may benefit from additional systemic therapy or
closer surveillance. For patients considered unsuitable for surgical
intervention, achieving pCR may represent a primary therapeutic
objective (8). In such scenarios, chemo-immunotherapy could serve as
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a potential treatment option. Therefore, it is crucial to accurately
predict the pCR to nICT and identify priority populations for nICT to
avoid unnecessary adverse events and costs.

Currently, the predictive biomarkers capable of stratifying pCR
and assessing survival outcomes for nICT in ESCC remain to be
established. Although some biomarkers seem valuable, such as CD8+
T cell infiltration, programmed cell death ligand-1 (PD-L1)
expression, and tumor mutational burden (TMB) (9), their clinical
significance remains limited. Endoscopic ultrasound (EUS) serves as
a critical imaging modality in the staging of ESCC (10). Emerging
evidence demonstrates that maximal esophageal wall thickness and
tumor volume regression rate derived from EUS, could serve as
independent prognostic indicators for ESCC following neoadjuvant
therapy (11). Machine learning (ML), a core subfield of artificial
intelligence (AI), enables algorithms to autonomously learn from
complex datasets, discern intricate biological patterns, and derive
data-driven insights (12, 13). This study aimed to develop and
validate a novel interpretable multimodal ML model integrating
EUS features and laboratory biomarkers to pre-therapeutically
predict histological response in ESCC patients receiving nICT. By
incorporating the SHapley Additive Explanation (SHAP) method, we
quantified feature importance and interpreted the model’s
predictions to elucidate the clinical implications of the model’s
ability to forecast histological outcomes following nICT and
providing valuable insights for personalized therapeutic decision-
making in ESCC.

Materials and methods
Study cohort

This retrospective study included 140 consecutive patients with
ESCC at Sun Yat-sen University Cancer Center (SYSUCC,
Guangzhou, China) between July 1, 2021, and July 1, 2024, who

received neoadjuvant immunochemotherapy. The inclusion criteria
were defined as follows: (1) histologically confirmed ESCC with
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clinical staging classified as ¢T3-4aNanyMO or cT1-2N+MO0; (2)
completion of at 1-2 cycles of neoadjuvant chemoimmunotherapy;
(3)subsequent esophagectomy following the completion of
neoadjuvant chemoimmunotherapy. Exclusion criteria comprised:
(1) Prior or synchronous malignant tumors (n=3); (2) Patients who
received neoadjuvant immunotherapy at external hospitals and
lacked baseline laboratory test data (n=23). After screening, a
total of 114 eligible ESCC patients were ultimately included,
which was randomly divided into a training set (81 patients) and
a test set (33 patients) in a 7:3 ratio. This study was approved by the
Ethics Committee at Sun-Yat sen University Cancer Center
(Guangzhou, China; Approval No: SL-B2025-111-01).The
requirement for informed consent was waived by the institutional
review board given the retrospective design and complete
anonymization of all patient data.

Procedures

The study design schematic is presented in Figure 1. We
retrospectively collected clinical variables, standardized
measurements from routine laboratory blood tests and EUS features
that were performed on the date of or within 14 days before the first
nlICT treatment. All eligible patients received 1-2 cycles of ICIs
(administered every 3 weeks), including pembrolizumab, nivolumab,
camrelizumab, sintilimab, toripalimab, or tislelizumab, combined with
chemotherapy as 1-2 cycles of platinum based doublet chemotherapy,
consisting of a platinum agent (cisplatin, carboplatin, or nedaplatin)
combined with paclitaxel or fuorouracil. Features with a missing
percentage <10% were retained. Among all of the retained variables,

10.3389/fimmu.2025.1660897

the overall rate of missing data was 4.97%, with missing values
imputed using the missForest algorithm. Our structured database
ultimately included 65 clinical variables as candidate predictors.
Pathological response was assessed and confirmed by consensus of
two blinded pathologists. This study applied the pathological
evaluation criteria for esophageal cancer after neoadjuvant therapy,
as recommended by the College of American Pathologists (CAP) and
the National Comprehensive Cancer Network (NCCN), to grade
histological responses. The criteria were defined as follows: Grade 0
(complete response): No viable cancer cells in primary lesions or
lymph nodes, Grade 1 (moderate response): Residual single or small
clusters of cancer cells, Grade 2 (partial response): Residual cancer foci
with stromal fibrosis, Grade 3 (poor response): Minimal or no tumor
cell regression. Based on this classification, Grade 0 was defined as
pathological complete response (pCR), while Grades 1-3 were
classified as pathological incomplete response (non-pCR). This
framework enabled systematic evaluation of neoadjuvant
immunotherapy efficacy differences.

Model development and validation

We performed feature selection using the least absolute
shrinkage and selection operator (LASSO) regression thereby
enhancing prediction accuracy and increasing model stability
through elimination of non-predictive features. Eight ML models,
including Random Forest (RF), Gradient Boosting Machine (GBM),
Multilayer Perceptron (MLP), Support Vector Machine (SVM),
Neural Network (NN), Gaussian Process (GP), Naive Bayes (NB),
and Extreme Gradient Boosting (XGB) were used to predict the

A Cohort collection Data acquisition Feature selection
piiiiliy o
nEw 8. oo
Training Set (70%) ‘ °
=) =Y 2o .
2.
Test Set (30%) Endoscopic Ultrasound Routine blood test Data cleaning LASSO analysis
Machine learning analysis Model performance comparison Model performance evaluation
Algorithms
RF GBM
MLP SVM ' ' Confusion matrix DCA curves
NN GP ]
NB XGB =
ROC curve Radar Chart =
Heatmap Model interpretation
FIGURE 1

Study design flowchart. (A) Feature selection workflow for the machine learning model. (B) Deep learning feature extraction, prediction model

training and validation, and quantitative analysis and evaluation.
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pathological response of nICT in ESCC patients. The final
hyperparameters for each prediction model were optimized using
the optimal feature subset, employing 5 repetitions of 5-fold cross-
validation coupled with the default hyperparameter grid search
provided by the “caret” package.

Model performance comparison

The predictive performance of the models was evaluated using
established metrics, including the area under the receiver operating
characteristic curve (AUC), sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV), and
accuracy. The optimal predictive model was selected based on the
highest AUC in both training and test sets. Calibration of the
optimal model was subsequently validated using calibration curves
and quantitatively via the Hosmer-Lemeshow test to evaluate the
agreement between predicted probabilities and observed outcomes,
whereas decision curve analysis (DCA) was employed to quantify
clinical utility by estimating net benefit across a range of
threshold probabilities.

Model explanation

Interpreting ML models remains a complex task. To address the
“black box” dilemma, the SHAP framework employs game-
theoretic principles to quantify feature significance and elucidate
predictive outputs. This approach enables both instance-specific
and overall model interpretation by quantifying individual feature
contributions to predictions, thereby enhancing transparency and
explainability of algorithmic decision-making processes.

Statistical analysis

Statistical analyses were conducted using R (version 4.3.1) and
SPSS software (version 18.0). Normally distributed continuous
variables are expressed as mean + SD and compared using
Student’s t-test. Non-normally distributed continuous data are
reported as median (IQR) with Mann-Whitney U tests.
Categorical variables are presented as frequencies (%) and
analyzed by chi-square tests. Feature selection employed LASSO
regression (R “glmnet” package). Machine learning models were
implemented via the “caret” package in R, which provides a unified
interface for algorithmic implementation using specified methods:
RF (method=%“ranger”), GBM (method=“gbm”), MLP
(method=“mlp”), SVM (method=“svmRadial”), NN
(method=“NN”), GP (method=“gausspr Radial”), NB
(method="“native_bayes”), XGB (method="“xgbTree”). Model
performance was evaluated by ROC analysis (R “pROC”
package). Comparative performance across metrics was visualized
using radar plots. The optimal model’s classification results (TP/
TN/FP/FN) were displayed in confusion matrices for training and
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test sets. Clinical utility was assessed via decision curve analysis
(DCA) quantifying net benefit across threshold probabilities.
Statistical significance was defined as two-tailed P < 0.05.

Results
Patient characteristics

The training set comprised 81 patients (median [IQR] age, 61
[58-66] years; 61 male [79.01%]), including 41 smokers (50.62%)
and 22 alcohol consumers ((27.16%). Clinical staging distribution
was: stage IT (n=7, 8.64%), stage III (n=50, 61.73%), and stage IV
(n=24, 29.63%). Following nICT, all patients underwent surgery,
with pCR achieved in 36 cases ((44.44%) based on the pathological
assessment of the surgical specimens. The test set included 33
patients (median [IQR] age, 64 [58-68] years; 30 males
[90.91%]), with 19 smokers (57.58%) and 13 alcohol consumers
(39.39%). Stage distribution was: II (n=6, 18.18%), III (n=18,
54.55%), and IV (n=9, 27.27%). The pCR was observed in 15
patients (45.5%).There were no significant differences in baseline
clinical characteristics between the training and test sets. The
demographic and clinicopathological characteristics of all patients
are shown in Table 1.

Predictor variable selection

We performed feature selection in the training cohort to
identify predictive factors associated with pathological response to
nICT in ESCC. LASSO regression analyzed 65 candidate features,
including 9 clinical indicators, 49 laboratory blood test parameters,
and 7 endoscopic ultrasonography characteristics. This identified 17
significant predictors: alcohol consumption, circumferential
involvement(CI), neutrophil-to-lymphocyte ratio (NLR), C-
reactive protein (CRP), alanine aminotransferase (ALT), uric acid
(UA), free thyroxine (FT4), cholesterol (CHE), creatine kinase(Ck),
thyroglobulin antibody (ATPO), differentiation, albumin/globulin
ratio (AGR), male, total bile acids (TBA), alkaline phosphatase
(ALP), low density lipoprotein (LDL), glutamylamino transferase
(GGT). (Figures 2A, B).

Model development and predictive
performance

Eight machine learning models were developed using ten
iterations of 10-fold cross-validation. The RF model demonstrated
optimal performance in the training cohort (AUC = 1.000,
sensitivity = 1.000, specificity = 1.000, PPV = 1.000, NPV =
1.000), followed by GBM (AUC = 0.973, sensitivity = 0.972,
specificity = 0.933, PPV = 0.921, NPV = 0.977) and MLP (AUC =
0.964, sensitivity = 0.972, specificity = 0.933, PPV = 0.921, NPV =
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TABLE 1 Patient characteristics in the training and test cohort.

Variable Total (n=114) Training cohort (n=81) Test cohort (n=33)
Age (years), median (IQR) 62(58,67) 61(58,66) 64(58,68) 0.224
BMI(kg/m?)
median (IQR) 21.95(20.13,23.69) 21.72(19.87,23.25) 22.41(20.79,24.98) 0.104
Sex 0.130
Male 94(82.46%) 64(79.01%) 30(90.91%)
Female 20(17.54%) 17(20.99%) 3(9.09%)
Smoking 0.500
Never 54(47.37%) 40(49.38%) 14(42.42%)
Prior or current 60(52.63%) 41(50.62%) 19(57.58%)
Alcohol 0.199
Never 79(69.30%) 59(72.84%) 20(60.61%)
Prior or current 35(30.70%) 22(27.16%) 13(39.39%)
ECOG 0.480
0 6(5.26%) 3(3.70%) 3(9.09%)
1 108(94.74%) 78(96.30%) 30(90.91%)
Tumour location 0.957
upper 4(3.51%) 3(3.70%) 1(3.03%)
middle 74(64.91%) 53(65.43%) 21(63.64%)
lower 36(31.58%) 25(30.86%) 11(33.33%)
EUS T staging 0.658
1 1(0.88%) 1(1.23%) 0(0.00%)
2 24(21.05%) 17(20.99%) 7(21.21%)
3 81(71.05%) 56(69.14%) 25(75.76%)
4 8(7.02%) 7(8.64%) 1(3.03%)
EUS N staging 0.311
0 7(6.14%) 5(6.17%) 2(6.06%)
1 31(27.19%) 18(22.22%) 13(39.39%)
2 50(43.86%) 38(46.91%) 12(36.36%)
3 26(22.81%) 20(24.69%) 6(18.18%)
TNM stage 0.347
11 13(11.40%) 7(8.64%) 6(18.18%)
1T 68(59.65%) 50(61.73%) 18(54.55%)
v 33(28.95%) 24(29.63%) 9(27.27%)
Differentiation 0.283
Poor 33(28.95%) 20(24.69%) 13(39.39%)
Moderate 76(66.67%) 57(70.37%) 19(57.58%)
Well 5(4.39%) 4(4.94%) 1(3.03%)
Elevated lesion 0.166
Yes 95(83.33%) 65(80.25%) 30(90.91%)
(Continued)
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Variable Total (n=114) Training cohort (n=81) Test cohort (n=33)
No 19(16.67%) 16(19.75%) 3(9.09%)
Ulcerative lesion 0.492
Yes 61(53.51%) 45(55.56%) 16(48.48%)
No 53(46.49%) 36(44.44%) 17(51.52%)
Circumferential involvement 0.601
Yes 80(70.18%) 58(71.60%) 22(66.67%)
No 34(29.82%) 23(28.40%) 11(33.33%)
Tumor length(mm)
median (IQR) 5.00(5.00,7.00) 5.00(4.00,7.00) 5.00(5.00,7.00) 0.965
(TIL(‘;‘)“ thickness(mm) median 12.35(9.63,15.90) 12.00(8.97,15.85) 13.2(10.15,16.05) 0233
pCR 0.922
Present 51(44.74%) 36(44.44%) 15(45.45%)
Absent 63(55.26%) 45(55.56%) 18(54.55%)

0.977) (Figures 3A, C). RF maintained robust discrimination in the
independent validation cohort (AUC = 0.913, sensitivity = 0.733,
specificity = 0.889, PPV = 0.846, NPV = 0.800) (Figures 3B, D).
Table 2 presents the performance parameters of the eight machine
learning models in the training and validation sets. These results
establish RF as the optimal computational framework for predicting
PCR following nICT in ESCC patients.

Confusion matrix analysis showed the RF model achieved 100%
true prediction rate in the training set (Figure 4A) and 85% in the
validation set (Figure 4B). Calibration curve analysis was employed
to evaluate the model’s predictive reliability, quantifying the
concordance between predicted probabilities and observed

49

46 44 26

Coefficients

-2

Log Lambda

FIGURE 2

outcomes. The RF model showed excellent calibration fidelity in
both training and test cohorts. (Supplementary Figure S1). For the
training set the Brier score was 0.0304, and the Hosmer-Lemeshow
test yielded a chi-square value of 13.44 (p=0.0976). For the
validation set, the Brier score was 0.1623, while the Hosmer-
Lemeshow test showed a chi-square value of 8.19 (p=0.0848).
Both datasets demonstrate good agreement between predicted
probabilities and observed outcomes. Decision curve analysis
further indicated that the RF model provided greater net clinical
benefit across the entire threshold probability range (0-80%)
compared with TNM stage, tumor length, and tumor thickness in
both training (Figure 4C) and test (Figure 4D) sets.

49 49 47 47 46 45 42 33 20 10 O

Binomial Deviance

2
Log(%)

Variable selection for constructing the pathological complete response (pCR) prediction model was performed using Least Absolute Shrinkage and
Selection Operator (LASSO) regression and stepwise regression. (A) Tuning parameter (A) selection in the LASSO regression using 10-time cross-
validation. (B) Coefficient profiles from the LASSO regression of the extracted features.
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FIGURE 3

Performance of machine learning models in predicting pathological complete response (pCR) following nICT in ESCC patients. (A) ROC curves of
eight machine learning models in the training cohort. (B) ROC curves of the eight models in the test cohort. (C) Radar plot comparing model
performance metrics in the training cohort. (D) Radar plot comparing model performance metrics in the test cohort. Abbreviations: RF, Random
Forest; GBM, Gradient Boosting Machine; MLP, Multilayer Perceptron; SVM, Support Vector Machine; NN, Neural Network; GP, Gaussian Process;

NB, Naive Bayes; XGB, Extreme Gradient Boosting.

Heatmap analysis of RF model variables

A heatmap was constructed to visually characterize the
discriminatory capacity of the RF model in predicting pCR
following nICT in ESCC patients. The multivariate visualization
matrix employed color gradients to depict the spatial distribution of
the predictive variables across the ESCC cohort, while
simultaneously mapping algorithm-derived pCR probability
scores against histologically confirmed treatment outcomes.
Differential clustering patterns emerged between pCR and non-
pCR cohorts (Figure 5), with the RF model maintaining high
predictive fidelity in both training and test cohorts. This
demonstrates robust generalizability of computationally derived

Frontiers in Immunology

prognostic signatures, suggesting clinical utility for early
identification of nICT responders.

Model explanation

To elucidate the underlying decision-making process of the RF
model, we employed the SHAP method for model interpretability.
SHAP analysis quantifies the marginal contribution of each feature
to the prediction by computing Shapley values, enabling a
comprehensive assessment of feature-specific impacts on the
model’s output. The SHAP summary dot plot (Figure 6A) visually
shows the direction and strength of the influence of each feature on
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TABLE 2 Performance parameters of the eight machine learning prediction models in the training and test set.

Accuracy Sensitivity Specificity
Training set
RF 1.000 1.000 1.000 1.000 1.000 1.000
GBM 0.973 0.951 0.972 0.933 0.921 0.977
MLP 0.964 0.951 0.972 0.933 0.921 0.977
SVM 0.938 0.877 0.972 0.800 0.795 0.973
NN 0.928 0.877 0.778 0.956 0.933 0.843
GP 0.923 0.864 0.806 0.911 0.879 0.854
NB 0.919 0.864 0.944 0.800 0.791 0.947
XGB 0.910 0.852 0.972 0.756 0.761 0.971
Test set
RE 0.913 0.818 0.733 0.889 0.846 0.800
GBM 0.785 0.697 0.667 0.722 0.667 0.722
MLP 0.804 0.818 0.667 0.944 0.909 0.773
SVM 0.870 0.788 0.800 0.778 0.750 0.824
NN 0.852 0.727 0.467 0.944 0.875 0.680
GP 0.822 0.697 0.467 0.889 0.778 0.667
NB 0.715 0.758 0.800 0.722 0.706 0.813
XGB 0.619 0.455 0.600 0.333 0.429 0.500
the global interpretability of the RF model. In addition, the SHAP  Discussion

bar plot (Figure 6B) facilitates intuitive comparison of feature
importance by displaying mean absolute SHAP values. Key
predictors included alcohol, circumferential involvement, high
NLRhigh CRP and high ALT exhibited the highest Shapley
values, underscoring their pivotal roles in the model’s predicting
PCR following nICT in ESCC patients.

Beyond global feature importance, we utilized the SHAP plot
illustrates the local contributions of individual features to the RF
model predictions. Figure 6C reveals the specific impact of each
feature on the predicted probability of pCR for individual patients.
For example, in a patient with GGT level of 14 U/L, CK level of 43
U/L, no history of alcohol consumption, A-TPO level of 28.4 U/ml,
and absence of circumferential involvement, the corresponding
Shapley values of +0.0326, +0.0425, +0.0467, +0.0506, and +0.101,
respectively, indicated positive contributions to the pCR prediction.
Meanwhile, other features, including gender, pathological
differentiation, ALT level, and uric acid (UA) level, also exerted
varying degrees of influence on the model’s decision-making
process.The waterfall plot provided a holistic view of how
different features interacted and contributed to the final
prediction, thereby offering valuable insights into the complex
relationships between clinical variables and treatment outcomes
in ESCC patients receiving nICT.

Frontiers in Immunology

This study presents a deep learning-derived model for the early
prediction of pCR in ESCC patients receiving neoadjuvant immune
checkpoint therapy. By integrating clinical indicators, laboratory
biomarkers, and endoscopic ultrasonography features, we identified
predictive biomarkers and systematically evaluated eight machine
learning models for pCR prediction. The random forest algorithm
demonstrated superior predictive accuracy across both in the
training cohort (AUC 1.000) while maintaining robust
performance in the test cohort (AUC 0.913), outperforming
traditional clinical indices. Notably, we derived a novel
probabilistic scoring system from the RF model that revealed
significant differences between pCR and non-pCR groups across
all patient strata. This clinically applicable tool provides accurate
pCR prediction prior to treatment completion, potentially
identifying candidates most likely to benefit from nICT. Such
stratification may mitigate overtreatment risks while advancing
personalized therapeutic strategies for ESCC.

In recent years, immunotherapy has emerged as a revolutionary
oncologic therapy, demonstrating particularly pronounced advantages
in neoadjuvant settings for ESCC. Neoadjuvant immunotherapy has
transformed ESCC management through immune checkpoint
inhibitors (ICIs) administered preoperatively to induce tumor
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Performance evaluation of the Random Forest (RF) model for predicting pathological complete response (pCR). (A) Confusion matrix for the RF
model in the training cohort. (B) Confusion matrix for the RF model in the tes cohort. (C) Decision curve analysis for the RF model in the training

cohort. (D) Decision curve analysis for the RF model in the test cohort.

regression, downstage clinical disease, and improve complete resection
rates (14). Clinical evidence shows that adding immunotherapy to
doublet chemotherapy or chemoradiotherapy further improves
treatment outcomes. The ESCORT-NEO/NCCESO1 trial notably
demonstrated a significant increase in pathologic complete response
(pCR) rates with immunochemotherapy, achieving 28.0% and 15.4%
PCR rates in combination groups versus 4.7% in the chemotherapy-
alone arm (15). Furthermore, Yu et al. reported that the nICT group
had a better 3-year disease-free survival rate (87.4% vs 72.8%) and 3-
year OS rate (91.7% vs 79.8%) compared with the nCRT group (5).
Critically, Patients who achieve pCR may benefit from organ-
preserving strategies, avoiding radical esophagectomy. Accurate
assessment of residual disease after neoadjuvant therapy is critical
for implementing such strategies. However, current non-invasive
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methods are unable to reliably identify pCR, creating a critical
clinical unmet need for pretreatment predictive tools.

Tumor mutational burden (TMB), microsatellite instability
(MSI), and PD-L1 expression have been investigated as potential
biomarkers for immunotherapy response, yet their clinical utility
remains controversial (16). While two independent clinical trials
reported significant associations between pretreatment TMB levels
and response to neoadjuvant immunotherapy (17, 18), another
study found no correlation between TMB and nICT efficacy (19).
Additionally, PD-L1 expression faces similar challenges as a
predictive marker. The trials such as KEYNOTE-590 (2),
CheckMate-648 (20), and JUPITER-06 (21) have demonstrated
that ESCC patients patients derive clinical benefit from
immunotherapy irrespective of PD-L1 status, yet the TD-NICE
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FIGURE 5

Heatmap visualization of variables associated with pathological complete response (pCR) prediction in ESCC patients after nICT using the Random
Forest (RF) model. Each row represents a variable; each column represents a patient sample. Continuous variables are represented by a color
gradient and categorical variables use distinct colors per category. Variables include circumferential involvement, gender, pathological differentiation
degree, alcohol consumption, neutrophil-to-lymphocyte ratio (NLR), free thyroxine (FT4, pmol/L), anti-thyroid peroxidase antibody (A-TPO, U/ml),
alanine aminotransferase (ALT, U/L), cholinesterase (CHE, U/L), alkaline phosphatase (ALP, U/L), gamma-glutamy! transferase (GGT, U/L), total bile
acid (TBA, umol/L), albumin-to-globulin ratio (A/G), uric acid (UA, umol/L), creatine kinase (CK, U/L), low-density lipoprotein cholesterol (LDL-C,
mmol/L), C-reactive protein (CRP, mg/L), RF model predicted probability (RF score), actual pathological response outcome (Outcome), and dataset

grouping (Group).

study failed to establish a significant correlation between PD-L1
expression and pCR (4). The inconsistent predictive performance of
current biomarkers arises from tumor immune microenvironment
complexity, necessitating composite biomarker integration for
accurate nICT outcome prediction in patients with ESCC.

Our study integrated pre-neoadjuvant immunochemotherapy
features from ESCC patients, including endoscopic ultrasonography
delineating local tumor characteristics, peripheral blood biomarkers
reflecting systemic immune status, and clinical parameters capturing
baseline host factors. Subsequent multimodal fusion of local-systemic-
host data overcomes the spatiotemporal limitations of conventional
response assessment methods, with the RF algorithm demonstrating
exceptional accuracy in predicting pCR for ESCC patients receiving
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nICT. SHAP analysis quantified feature contributions to pCR
prediction, identifying alcohol, circumferential involvement, high
NLR,high CRP and high ALT as the top five predictors. The
directional influence and quantitative impact of individual features
exhibited dynamic shifts upon their intrinsic values and combinatorial
interactions with co-occurring variables, highlighting the
demonstrating the model’s complexity in predicting ICI efficacy for
each patient. Then, we explored the relationship of these features and
ICI efficacy. Firstly, the development of ESCC demonstrates a strong
correlation with ethanol intake (22). Epidemiological evidence
indicates that regular consumption of alcoholic beverages elevates
ESCC risk by approximately 60% (23). Furthermore, the relationship
between chronic alcohol exposure and ESCC risk has been shown to
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FIGURE 6

Interpretation of the Random Forest (RF) model for predicting pathological complete response (pCR)

using SHapley Additive exPlanations (SHAP)

analysis. (A) SHAP summary dot plot. Features are ranked by descending mean absolute SHAP value, representing their overall importance. Each
point represents the SHAP value for a feature in an individual patient. Color indicates the relative value of the feature (orange: high, purple: low).
Vertical dispersion reflects data density. (B) SHAP summary bar plot. Features are ranked by descending mean absolute SHAP value, representing
their average magnitude of contribution to the model's predictions. (C) SHAP waterfall plot. Illustrates the cumulative contribution of individual
features to shifting the model's expected output (base value, E[f(X)]) to the final prediction (f(x)) for a representative patient (e.g., Patient 3). Feature
values and their corresponding SHAP values are annotated. Positive SHAP values indicate features pushing the prediction towards pCR.

exhibit a dose-response relationship. Sustained excessive alcohol
consumption is associated with substantially elevated risks of both
disease incidence and mortality rates (24). Mechanistically,
experimental studies suggest that ethanol metabolites may impair T
lymphocyte activation pathways, thereby compromising antitumor
immunity through immunosuppressive mechanisms (25). Moreover,
Fu et al. (26) highlight that Aldehyde dehydrogenase 2 (ALDH2) is a
key enzyme involved in alcohol metabolism, alcohol consumption
could induce ALDH2 and subsequently upregulate PD-L1 expression
in CRC to allow their escape from immune surveillance. In summary,
alcohol consumption may compromise patient responsiveness to nICT
by modulating T cell differentiation or regulating PD-L1 expression.
Secondly, circumferential involvement >(1/2) of the circumference is a
risk factor for postoperative stenosis in endoscopic submucosal
dissection of ESCC. One possible reason is that circumferential
involvement might promoting fibrosis and scar formation in the
esophageal wall, ultimately leading to esophageal stricture, and
significantly affecting patient prognosis (27); the other possible

Frontiers in Immunology

11

reason is that circumferential involvement might alter local blood
supply and lymphatic structure, resulting in insufficient drug
penetration depth to reach the tumor core; furthermore, tumors with
a small circumferential invasion range may preserve more intact
lymphatic structures and vascular networks, facilitating the
infiltration of effector T cells (such as CD8+T cells). Studies have
shown that patients with an immune-enriched TME (highly infiltrated
lymphocytes, activated IFN-y signaling) at baseline exhibit better
responses to neoadjuvant immunotherapy, with significantly
increased pCR rates; lastly, High proportion of exhausted precursor
T cells (Tpex): Tumors with minimal circumferential invasion may be
enriched with SPRY1+PDI1+CD8+T cells (exhausted precursor cells
with stem-like properties), which can be activated and expanded by
PD-1/PD-L1 inhibitors, driving potent anti-tumor immune responses.
However, its relationship with neoadjuvant therapy remains unclear.
Thirdly, we reported that high NLR, CRP and ALT were related to the
poor prognosis of nICT. In previous studies on inflammatory
responses, NLR (28), CRP (29), and ALT (30), as reliable and easily
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accessible indicators of immune-inflammatory reactions, have been
demonstrated to play significant predictive roles in various diseases,
including multiple solid tumors such as esophageal cancer, and are
commonly used to assess the severity of systemic inflammatory
responses. As is well known, the formation of esophageal strictures
requires the involvement of immune-inflammatory cells and
inflammatory mediators. Therefore, inflammatory factors may serve
as another predictive indicator for esophageal strictures (31).

Currently, individual research teams have developed models for
predicting therapeutic efficacy following neoadjuvant therapy in
ESCC patients. However, it is worth noting that all these predictive
models primarily rely on the the Response Evaluation Criteria in
Solid Tumors (RECIST 1.1). Since the response patterns of tumors
treated with immune checkpoint inhibitors (ICIs) may differ from
those of conventional therapies, pseudoprogression and mixed
responses can lead to RECIST 1.1 misclassifying such cases as
progressive disease (PD) during immunotherapy evaluation.
Ultimately, the gold standard for efficacy assessment remains
postoperative pathology. Machine learning offers a transformative
solution by decoding complex biological patterns through iterative
algorithmic learning from multimodal datasets. Unlike rule-based
methods, ML frameworks excel at capturing nonlinear relationships
and subtle feature interactions—capabilities critical for modeling
the heterogeneity of the tumor immune microenvironment. In this
study, we innovatively developed a RF model derived scoring
system provides clinicians with an objective tool to stratify
patients most likely to benefit from nICT. Furthermore, all the
predictive factors included in the RF model are routine examination
items for ESCC patients during hospitalization and are easily
accessible, providing feasibility for the clinical application.

Although the developmen of RF model demonstrated robust
predictive performance in this study, there are still some limitations.
Firstly, the retrospective design may introduce selection bias despite
strict inclusion and exclusion criteria, which may limit the
generalizability of the prediction model. Secondly, the model was
developed using data exclusively from a single Chinese medical
center. Although internal validation has confirmed the predictive
efficacy of the model, the relatively small sample size and lack of
external validation in this study may affect the robustness and broad
applicability of the prediction model. Moreover, while Random
Forest achieved the highest mean AUC, its apparent advantages
over most comparators were not statistically robust to multiple
testing correction. This suggests these differences may represent
random variations amplified by repeated comparisons. Therefore,
this work as a retrospective exploratory analysis, subsequent studies
should organize multicenter, prospective large-scale studies
involving ESCC patients from various regions and medical
institutions aimed at dynamically evaluating the predictive
performance of the model in real clinical settings. Additionally,
integrating multi-omics data, including genomic, radiomic, and
proteomic features, holds promise for improving prediction
accuracy by capturing the complex biological mechanisms
underlying tumor-immune interactions, ultimately facilitating the
development of a more refined and clinically useful immunotherapy
prediction model.
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Conclusion

Our study established an interpretable random forest model
using baseline endoscopic ultrasonography and hematological
parameters that accurately predicts histological response to
neoadjuvant immune checkpoint therapy in ESCC patients.
Validated across independent cohorts, the model offers a clinically
actionable tool for pretreatment identification of responders,
thereby optimizing personalized therapeutic strategies while
reducing unnecessary healthcare expenditures and mitigating
immune-related adverse events through early intervention.
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