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IgG4-related disease: an
unresolved pathogenic link
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Jiawen Li1, Jie Zhao1, Wenhui Gao3 and Qiaoyan Guo 1*

1Department of Nephrology and Rheumatology, The Second Hospital of Jilin University, Changchun,
Jilin, China, 2Department of General Practice, The First Hospital of Jilin University, Changchun,
Jilin, China, 3Department of Neonatology, The Second Hospital of Jilin University, Changchun,
Jilin, China
Immunoglobulin G4-related disease (IgG4-RD) is a rare, multisystemic fibro-

inflammatory condition affecting various organs, including kidneys, lungs, nasal

cavity, pancreas, salivary glands, and orbit. Anti-neutrophil cytoplasmic antibody

(ANCA)-associated vasculitis (AAVs) is a multi-systemic inflammatory vascular

disease encompassing eosinophilic granulomatosis with polyangiitis (EGPA),

microscopic polyangiitis (MPA), and granulomatosis with polyangiitis (GPA). It

often overlaps with the organs or tissues affected by IgG4-RD. Clinically, some

individuals with IgG4-RD are ANCA-positive, while some with AAV exhibit

elevated IgG4 levels or IgG4-positive plasma cell infiltration, making these

conditions difficult to distinguish. Reports have documented cases of overlap

syndromes involving IgG4-RD and AAV, highlighting shared pathogenic

mechanisms that may include macrophages, B cells, CD4+T cells, and

inflammatory cytokines. However, the pathophysiological mechanism

underlying these overlap syndromes remains unclear. This review examines

potential pathophysiological links between IgG4-RD and AAVs (GPA/MPA)

overlap syndromes.
KEYWORDS
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1 Introduction

IgG4-RD is a rare fibroinflammatory condition characterized by the infiltration of

IgG4-positive plasma cells, tumor-like mass formation, and elevated serum IgG4 levels (1).

It affects a diverse range of organs, including the salivary glands, periorbital tissues, kidneys,

lungs, pancreas, nasal cavity, pericardium, and skin (2). Approximately 15% of individuals

with IgG4-RD exhibit renal involvement, predominantly tubulointerstitial nephritis (TIN),

while a smaller proportion may develop secondary membranous nephropathy (3, 4). The

characteristic histological features of IgG4-RD include dense lymphocytic inflammation
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(IgG4-positive plasma cells > 10 per high-power field or IgG4/IgG

ratio > 40%), storiform fibrosis, and obliterative phlebitis (5).

ANCA positivity is observed in some IgG4-RD cases (6), raising

questions about the potential overlap between IgG4-RD and

AAVs (7).

AAVs are autoimmune conditions characterized by vascular

inflammation, endothelial damage, and tissue injury, often involving

kidneys, lungs, sinuses, periorbital tissues, and salivary glands (8), sites

that frequently overlap with those affected in IgG4-RD (9) (Figure 1).

AAVs are clinically classified into three subtypes: GPA, MPA, and

EGPA (10). Over 75% of individuals with AAVs experience renal

involvement, often manifesting as rapidly progressive

glomerulonephritis, including hematuria, proteinuria, and reduced

glomerular filtration rate (11). ANCAs are common biomarkers for

AAVs, typically IgG, with IgG4-ANCA being the predominant subtype

when MPA overlaps with IgG4-RD (12). Proteinase 3 (PR3) and

myeloperoxidase (MPO) are the main target antigens of ANCAs (13).

Approximately 60% of individuals with MPA are MPO-ANCA

positive, exhibiting features such as necrotizing glomerulonephritis

and pulmonary vasculitis (14), typically without granulomatous

inflammation (15). Some individuals with MPA present with atypical

symptoms, including pachymeningitis, orbital swelling, or chronic

periaortic inflammation (9, 16), which may indicate overlap with

IgG4-RD. GPA is predominantly PR3-ANCA positive in

approximately 75% of cases and is commonly characterized by upper

respiratory tract inflammation, pulmonary hemorrhage,

granulomatous inflammation, and glomerulonephritis (17). Notably,
Frontiers in Immunology 02
some GPA cases exhibit IgG4-positive plasma cell infiltration,

infiltration on biopsies of the head and neck, such as sinuses and

periorbital region, mimicking IgG4-RD (18). EGPA, while less

prevalent than GPA and MPA, is frequently MPO-ANCA positive

and primarily manifests as asthma, eosinophilia, and vasculitis (19). It

demonstrates unique genetic, pathogenetic, and clinical features,

distinguishing it as a separate entity (20, 21). Thus, this discussion

focuses primarily on the pathogenesis of MPA/GPA.

Both IgG4-RD and AAVs are autoimmune diseases with notable

similarities in organ involvement, clinical presentation, serology,

imaging, and histopathology (18, 22, 23). Reports of IgG4-RD

overlapping with MPA/GPA are increasing (13, 16, 24–27) (See

Supplementary Table 1), suggesting the emergence of a novel overlap

syndrome (9). This overlap implies potential pathophysiological

connections between these conditions. Despite shared features such as

B-cell maturation, CD4+T-cell differentiation, macrophage activation,

and cytokine secretion, the pathophysiological mechanisms linking

IgG4-RD and AAV overlap syndrome remain unclear. This review

explores these potential connections to provide a foundation for

improved diagnosis and early intervention in these diseases.
2 Immuno-pathophysiological
mechanisms in IgG4-RD

In IgG4-RD, antigens activate the innate (e.g., macrophages)

and adaptive (e.g., T-lymphocytes and B-lymphocytes) immune
FIGURE 1

IgG4-RD overlaps with affected organs in MPA/GPA.
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systems (28, 29). Extensive infiltration of these immune cells leads

to organ swelling, storiform fibrosis, and obliterative phlebitis, as

observed in tissue biopsies (30) (Figure 2).

B-lymphocytes play a central role in IgG4-RD pathogenesis,

primarily differentiating into IgG4-positive plasma cells and

infiltrating affected tissues (31). The clinical symptoms of patients

with IgG4-RD significantly improve after depletion of the B cell

lineage with rituximab (anti-CD20 monoclonal therapy),

demonstrating the important pathogenic role of B cells in IgG4-

RD (32, 33). T-cells contribute to B cell proliferation and

differentiation in IgG4-RD (34). For example, T helper type 2

(Th2) and T follicular helper (Tfh) cells produce cytokines such

as interleukin (IL)-4, IL-21, and IL-13, promoting B-cell maturation

into plasma cells or plasmablasts and facilitating IgG4 isotype

switching (35), highlighting the T cell-dependent nature of B-cell

activation. In contrast, T helper type 1 (Th1) cells secrete

interferon-gamma (IFN-g), which induces tissue fibrosis (36).

Activated B cells present antigens to T cells via major

histocompatibility complex class II, stimulating CD4+ T cells to

differentiate into cytotoxic T lymphocytes (CD4+CTLs) and secrete
Frontiers in Immunology 03
chemokines such as C-C motif chemokine ligand (CCL)-5, which

attract CD4+CTLs to affected tissues in IgG4-RD (37). CD4+CTLs

aggregate around fibroblasts and release cytokines, including IL-1b,
transforming growth factor-beta (TGF-b), and IFN-g, which

promote tissue fibrosis (30, 38). They also induce apoptosis by

releasing granzymes and perforin (39). Additionally, activated B

cells produce platelet-derived growth factors (PDGF) and Lysyl

oxidase-like 2 (LOXL2), activating fibroblasts or collagen fibers and

exacerbating fibrosis in affected tissues (40).

Macrophages, particularly M2 macrophages, also contribute to

the pathogenesis of IgG4-RD (41, 42). IL-4 and IL-13, produced by

Th2 cells, drive macrophage polarization toward the M2 phenotype

(43). In turn, M2 macrophages promote Th2 cell activation through

the secretion of cytokines like IL-33 (44). M2 macrophages also

produce IL-33, CCL-18, and TGF-b, which cause collagen

deposition and extracellular matrix protein accumulation, thereby

contributing to tissue fibrosis (42, 45, 46). Furthermore,

macrophages express a plasma cell survival factor known as a

proliferation-inducing ligand (APRIL), which supports plasma

cell infiltration and enhances IgG4 production in IgG4-RD (47).
FIGURE 2

Pathogenic mechanisms of IgG4-related disease (IgG4-RD). Antigen-presenting cells (APCs) activate T cells, promoting differentiation into distinct
subsets. Th2 and Tfh cells secrete IL-4, IL-13, and IL-21, driving B-cell maturation into plasma cells or plasmablasts and IgG4 class-switching. Th1
cells secrete IFN-g; Treg cells secrete TGF-b; and CD4+ cytotoxic T lymphocytes (CTLs) secrete IFN-g, IL-1b, and TGF-b. These T-cell subsets
collectively promote fibrosis in affected tissues. CD4+ CTLs additionally induce apoptosis via granzyme/perforin release. Activated B cells produce
PDGF and LOXL2, activating fibroblasts and exacerbating fibrosis. IL-4/IL-13 from Th2 cells polarizes macrophages to an M2 phenotype. M2
macrophages enhance Th2 activation via IL-33 (positive feedback) and, alongside Th1 cells, Tregs, and CD4+ CTLs, contribute to fibrosis through
profibrotic mediators (e.g., TGF-b, CCL-18).
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3 Immuno-pathophysiological
mechanisms in AAV

MPA and GPA are characterized by loss of immune tolerance to

PR3 and MPO antigens on neutrophils, leading to necrotizing small

vessel vasculitis, endothelial damage, and tissue fibrosis (48). B-

lymphocytes are important in AAV pathogenesis, maturing and

differentiating into plasma cells that produce ANCAs under the

influence of cytokines such as IL-4, IL-10, IL-13, and IL-21

(49) (Figure 3).

Additionally, B cells present antigens and provide co-

stimulatory signals to activate T cells. Activated T cells exacerbate

vascular inflammation responses by recognizing neutrophil surface

antigens (50). Different subtypes of T cells have distinct roles in

MPA/GPA pathogenesis. Th1 cells produce cytokines such as IFN-g
and IL-2, promoting localized inflammatory responses and

granuloma formation in GPA (51). Th2 cells secrete IL-4 and IL-

13, facilitating plasma cell differentiation and ANCAs production

(52). Under inflammatory conditions involving cytokines like IL-6,

IL-23, and TGF-b, Th cells can differentiate into T helper type 17

(Th17) cells, which recruit neutrophils to affected tissues through
Frontiers in Immunology 04
IL-17 production (53). Neutrophils activated by ANCAs, IL-1b, and
tumor necrosis factor-alpha (TNF-a) play a central role in MPA/

GPA pathogenesis. These neutrophils translocate MPO and PR3

antigens to their surface (54, 55). Neutrophil extracellular traps

(NETs) further amplify inflammation by activating complement

component C5a, which binds to the C5a receptors on the

neutrophil’s surface (56), perpetuating a cycle of activation (57).

Activated neutrophils release reactive oxygen species (ROS),

proteases, and inflammatory cytokines, damaging vascular

endothelial cells and promoting tissue injury (58). ANCAs also

stimulate neutrophils to secrete B-cell activating factor (BAFF),

enhancing B-cell differentiation and contributing to AAV

relapse (59).

In MPA and GPA, biopsies of kidney and lung tissues reveal a

significant increase in M2 macrophage infiltration (60, 61),

suggesting their involvement in disease progression. MPO-ANCA

induces the activation of M2 macrophages and the secretion of

TGF-b, thereby exacerbating fibrosis (62). While M2 macrophages

can exhibit anti-inflammatory effects through phagocytose

apoptotic cells, a process called efferocytosis, PR3 inhibits this

process (63), leading to incomplete neutrophil clearance and pro-
FIGURE 3

Pathogenic mechanisms of ANCA-associated vasculitis. Loss of B- and T-cell tolerance to ANCA antigens-triggered by inflammation, infections,
drugs, or genetic factors-enables B-cell differentiation into antibody-producing plasma cells generating PR3-ANCA or MPO-ANCA antibodies.
Antibodies bind to PR3/MPO antigens on neutrophils and synergize with complement (C5a) and cytokines (IL-17) to activate neutrophils. IL-17
further recruits neutrophils to inflammatory sites, where they release ROS, NETs, and proteolytic enzymes, inducing endothelial apoptosis, vascular
destruction, and tissue injury. Activated neutrophils secrete BAFF, and Th2/Tfh cells produce IL-4/IL-21, collectively perpetuating pathogenic B-cell
responses and autoantibody production. Concurrently, macrophage polarization (M2) and immune cell infiltration drive granuloma formation.
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inflammatory M1 macrophage involvement (64), which participate

in GPA granuloma formation together with M2 macrophages (65).

In summary, the pathogenesis of IgG4-RD and MPA/GPA are

complex and multifaceted, involving B cells, T cells, macrophages,

and numerous cytokines (e.g., IL-4, IL-13, IL-21, IL-17, TGF-b)
(Table 1). These shared mechanisms suggest that IgG4-RD and

MPA/GPA in overlap syndromes may be pathophysiological linked,

potentially creating a feedback loop that worsens both

conditions (Figure 4).
4 The role of B cells in IgG4-RD and
MPA/GPA overlap syndrome

B cells play a pivotal role in the pathogenesis of IgG4-RD and

MPA/GPA (37, 91), primarily by differentiating into plasma cells and

secreting antibodies such as IgG4 or ANCAs. ANCA positivity has also

been observed in some individuals with IgG4-RD (92), possibly due to

non-pathogenic autoreactive B- cell secretion. Consequently, ANCA

positivity does not exclude IgG4-RD. It has been shown that serum

inflammatory markers, including IgG, IgG1, erythrocyte sedimentation

rate, and C-reactive protein, are significantly elevated in ANCA-

positive individuals with IgG4-RD. ANCA-positive individuals are

more likely to exhibit kidney and lymph node involvement
Frontiers in Immunology 05
compared to ANCA-negative individuals (6). Thus, ANCAs

exacerbate the inflammatory response in IgG4-RD, and the presence

of MPA/GPA may further worsen IgG4-RD. ANCAs are pathogenic

(19), and ANCA positivity often precedes clinical manifestations of

AAV (93). Abbas et al. reported a case of PR3-ANCA-positive IgG4-

RD confined to the lungs, which progressed to GPA after 16 months of

follow-up (94), suggesting that ANCA-positive IgG4-RD may induce

or exacerbate MPA/GPA. ANCAs are predominately of the IgG

subtype (21). Holland et al. demonstrated that IgG4 subtypes isolated

from ANCA antibodies in patients can activate neutrophils (95). Della-

Torre et al. suggested that elevated IgG4 production in IgG4-RD

promotes ANCA formation (96). High levels of IgG4 in IgG4-RD

may activate neutrophils, increasing the risk of overlap withMPA/GPA

and exacerbating the progression of MPA/GPA (96). There are

significant increases in IgG4 ANCAs that have been observed in

MPA/GPA with IgG4-RD overlap syndrome (97), activating

neutrophils and stimulating the release of ROS (98, 99), further

aggravating renal damage in MPA/GPA. In IgG4-RD, B cells also

produce PDGF, which directly activates fibroblasts, promoting tissue

fibrosis (100). This mechanism can exacerbate fibrosis in MPA/GPA-

affected tissues in overlap syndromes.

While MPA does not feature granulomatous lesions (15), some

individuals with MPA exhibit clinical features resembling IgG4-RD,

including lymphadenopathy, elevated serum IgG4 levels, and TIN
TABLE 1 The role of various cytokines in IgG4-RD and MPA/GPA.

Cytokines Secreting cells IgG4-RD MPA/GPA References

APRIL/BAFF
Macrophage,
Neutrophil

Activate IgG4-positive plasma cells;
Active autoreactive B cell and promote ANCAs
production

(47, 66)

IFN-g
Th1,
CD4+CTLs

Involve in IgG4-RD chronic inflammation and
fibrosis

Involve in GPA granuloma formation, promote
MPA renal crescent formation and promote M1
macrophage differentiation

(51, 67, 68)

IL-4, IL-13 Th2

Promote B-cell differentiation, plasma cell
maturation,
and IgG4 antibody class switching;
promote M2 macrophage differentiation

Promote B cell differentiation and ANCA
production

(69–71)

IL-17 Th17 Participate in chronic inflammation and fibrosis
Induce neutrophil aggregation and promote
macrophage activation

(72–75)

IL-10 Macrophage, Treg
Assist IL-4 to reduce IgE and promote IgG4
production

Promote the formation of ANCAs (76)

IL-21 Tfh

Promote B-cell activation and the generation of
germinal centers;
promote the proliferation of plasmoblast
infiltration

Promote the formation of germinal centers, the
maturation of plasma cells and the production of
ANCA

(77–79)

TGF-b
Treg, Macrophage,
CD4+CTLs

Promote massive infiltration in IgG4-TIN and
interstitial fibrosis

Promote fibrosis;
Assist with IL-6, IL-23 promotes Th17 cell
differentiation tendency

(80, 81)

IL-6
B cell, Monocytes,
Macrophage

Pro-inflammatory cytokines, positively correlated
with IgG4-RD activity;
Aggravating IgG4-RD fibrosis;
Promoting Tfh differentiation factor and B cell
activation factor production

Pro-inflammatory cytokine involved in inducing
differentiation tendencies in Th17 cells;
Correlate with glomerular crescent formation in
MPA mouse models Involve in GPA granuloma
formation.

(82–86)

IL-33, CCL-18 Macrophage Activate Th2 cells; promote fibrosis; Engage in GPA granuloma (87–89)

IL-1b Th1, CD4+CTLs Activate collagen cells to promote fibrosis
Activate neutrophils to express anti-
inflammatory; promotes fibrosis

(38, 90)
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(9). For example, a patient with high serum IgG4, MPO-ANCA

positivity, chest nodules, and elevated creatinine was diagnosed

with IgG4 related kidney disease (IgG4-RKD) and MPA overlap

syndrome based on renal biopsy findings (101).In some GPA cases,

elevated serum IgG4 levels, fibrosis, vascular occlusion, and IgG4-

positive plasma cell infiltration mimic IgG4-RD’s clinical

histopathological features (102–104). Serum IgG4 concentrations

correlate positively with organ involvement and predict disease

recurrence (105, 106), so elevated IgG4 levels in MPA/GPA are

associated with increased disease activity (107). The pathogenic role

of IgG4 in IgG4-RD has not yet been clarified. Some studies suggest

anti-inflammatory properties due to Fab arm exchange, poor C1q

binding, and limited Fc receptor activation (108). However, elevated

serum IgG4 may represent a failure of counter-regulation (1).

Shiokawa et al. proved the pathogenic potential of IgG1/IgG4

antibodies from IgG4-RD causing pancreatic and salivary gland

damage in a mouse model (109). Whether elevated IgG4 levels in

MPA/GPA induce IgG4-RD progression requires further

investigation. Notably, the number of plasmablasts is positively

related to the levels of serum IgG4, inflammatory indicators, and the

number of organs involved in IgG4-RD (110). Sometimes, IgG4-
Frontiers in Immunology 06
positive plasma cells were significantly increased in GPA biopsies of

the sinuses, orbital/periorbital regions, kidneys, and dura mater

(111). This suggests that IgG4-positive plasma cell infiltration in

GPA may aggravate tumor-like proliferation and worsening

IgG4-RD.
4.1 BAFF/APRIL

BAFF of the TNF family and APRIL, produced by innate

immune cells , including neutrophils , monocytes, and

macrophages, promote the survival and activation of B-cells

(112). Increased production of BAFF and APRIL have been

identified in several autoimmune diseases, such as systemic lupus

erythematosus (SLE), AAV, rheumatoid arthritis (RA), and IgG4-

RD (112, 113). They bind to B cell or memory B cell receptors,

promoting activation, antibody production, and IgG class switching

(114). In IgG4-RD, APRIL facilitates IgG4-positive plasma cell

infiltration in affected tissues (47). Telitacicept, a BAFF/APRIL

inhibitor, induces remission in refractory IgG4-RD, highlighting

its critical role in disease pathogenesis (115). In AAV, BAFF/APRIL
FIGURE 4

Immunopathogenic overlap in IgG4-RD and ANCA-associated vasculitis. In disease overlap syndromes, Th2-derived IL-4/IL-13 drive B-cell
maturation and production of IgG4-class ANCA autoantibodies that bind neutrophil surface receptors, exacerbating vascular inflammation.
Concurrently, Th1 cells promote tissue fibrosis and acute crescent formation via IFN-g. Treg cells differentiate into Th17 cells under IL-23/IL-6/TGF-b
stimulation; Th17-secreted IL-17 activates neutrophils, amplifying inflammation. IL-4 from Th2 cells polarizes macrophages toward an M2
phenotype. While M2 macrophages clear apoptotic neutrophils via efferocytosis, membrane PR3 on neutrophils inhibits this process, leading to
neutrophil accumulation and sustained M2 activation that intensifies tissue damage. Fibrosis is aggravated by profibrotic mediators: IFN-g (Th1), TGF-
b (Treg), IL-17 (Th17), and IL-10/IL-13/CCL-18 (activated M2 macrophages) acting on fibroblasts.
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consistently elevated over normal patient’s matter at the active or

remission stage (112). ANCAs stimulate neutrophils to produce

BAFF, promoting autoreactive B cell activation and ANCA

production (66). BAFF/APRIL levels correlate with MPA/GPA

activity, and BAFF-driven autoreactive B-cell activation after B-

cell depletion contributes to AAV relapse (116). Overall, BAFF and

APRIL promote IgG4-positive plasma cell infiltration and IgG4/

ANCA production, exacerbating IgG4-RD and MPA/GPA

overlap syndromes.
5 The role of T cells in IgG4-RD and
MPA/GPA overlap syndrome

T cells, key components of the adaptive immune system,

contribute significantly to the pathogenesis of IgG4-RD and

MPA/GPA by releasing pro-inflammatory cytokines and

stimulating B cells to produce IgG4/ANCA antibodies (30, 117).

Activated CD4+ T cells differentiate into various subsets, including

Th1, Th2, Th17, regulatory T (Treg) cells, and follicular helper T

(Tfh) cells, each playing distinct roles in these diseases.
5.1 Th1/Th2 cells

Th1 and Th2 cells are closely associated with the immune

responses in IgG4-RD and AAV. Th1 cells, driven by IL-12,

mediate cellular immunity, while Th2 cells, stimulated by IL-4,

regulate humoral immunity (118, 119).Th1 cells are elevated

individuals within IgG4-RD compared to controls, contributing to

chronic inflammation and fibrosis through IFN-g secretion (67).

Increased Th1 cells correlate with IgG4-RD activity and IgG4

antibody levels (120), while IFN-g induced Tfh proliferation

further enhances IgG4 production (121). In GPA granulomas,

Th1 cells are abundant, and IFN-g secretion promotes granuloma

formation (51), exacerbating GPA when IgG4-RD is present. IFN-g
levels also correlate with renal crescent formation and hyperplasia

in MPA (68, 118), suggesting that IFN-g-driven Th1 cells aggravate

renal injury in IgG4-TIN and MPA/GPA overlap syndrome (122).

A previous peripheral CD4+ T cells in IgG4-associated

dacryoadenitis and salivary gland inflammation revealed that the

lacrimal and salivary glands are predominantly infiltrated by Th2

cells (123). Similarly, Th2-mediated immune-inflammatory

response is predominant in IgG4-associated autoimmune

pancreatitis and cholangitis (124), underscoring the significant

role of Th2 cells in IgG4-RD pathogenesis (69).Th2 cells are also

dominant in the nasal mucosa in Wegener’s granulomatosis

(125) .During the progression of GPA from local ized

granulomatosis to generalized vasculitis, a polarization shift from

Th1 to Th2 responses occurs (126). This Th1 to Th2 conversion is a

hallmark of GPA disease progression (126, 127). In case reports of

IgG4-RD overlapping with MPA/GPA, the condition frequently

manifests with systemic involvement (96), and ANCA-positive

individuals with IgG4-RD are more likely to present with

systemic symptoms (97). Therefore, Th2 cell polarization may
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dominate in overlap syndromes. Th2 cells secrete cytokines such

as IL-4 and IL-13, which promote B-cell differentiation and IgG4-

ANCA production (70). In vitro studies demonstrate that IL-4

stimulation alone induces the conversion of IgG to IgG4,

significantly increasing plasma IgG4 concentrations (69), and

IgG4 ANCA subtypes in individuals with overlap syndrome (97).

Therapeutically, the anti-IL-4 receptor monoclonal antibody

dupilumab has been shown to reduce tissue swelling in IgG4-RD

and lower glucocorticoids requirements in affected individuals (71).

These findings suggest that targeting IL-4 may serve as a common

therapeutic strategy for both IgG4-RD and MPA/GPA

overlap syndromes.
5.2 Th17/Treg cells

Th17 and Treg cells, which differentiate from CD4+ T cells, are

central to autoimmune diseases, including IgG4-RD andMPA/GPA

(128). Pro-inflammatory cytokines, such as IL-6, IL-23, and TGF-b,
drive Th17 differentiations, while TGF-b alone favors Treg

development (129). Both can be converted into each other.

Th17 cells, which produce IL-17, aggregate in IgG4-RD and

MPA/GPA, promoting inflammation and fibrosis in affected tissues

(72–74). They are also involved in a variety of autoimmune diseases,

such as inflammatory bowel disease, AAV, SLE, and RA (128, 130,

131). IL-17 produced by Th17 cells contributes to fibrosis in IgG4-

RD-affected tissues (132). Similarly, high levels of IL-17 in MPA/

GPA may exacerbate IgG4-RD fibrosis. In MPA/GPA, Th17 cells

play a central role by activating neutrophils and macrophages

through IL-17 production (133). IL-17 enhances neutrophil

expression of PR3 and MPO antigens, induces CXC chemokine

release, and promotes adhesion molecule expression, facilitating

neutrophil recruitment to inflammatory sites (75). Furthermore, IL-

17 induces macrophages to secrete pro-inflammatory cytokines

such as IL-1b and TNF-a, amplifying the inflammatory response

(134). MPO-ANCA has been shown to stimulate IL-17 production,

driving autoimmune anti-myeloperoxidase glomerulonephritis

(74). Therefore, an increased Th17 and IL-17 in individuals with

IgG4-RD may exacerbate ANCA-associated glomerulonephritis by

activating neutrophils.

Treg cells are essential immunosuppressive cells that regulate

inflammation by secreting TGF-b and IL-10 to inhibit pro-

inflammatory cytokines production by macrophages and T cells

(135).In IgG4-RKD, Tregs are significantly elevated, promoting

IgG4 production by reducing IL-4 to IgE conversion, primarily

via IL-10 secretion (76). Miyoshi et al. demonstrated that Treg levels

positively correlate with serum IgG4 concentrations in IgG4-

associated autoimmune pancreatitis (136). In IgG4-RKD, Tregs

infiltrate renal tissue, promoting interstitial fibrosis by producing

TGF-b (80). In MPA/GPA, Treg numbers increase during

remission periods, suggesting a potential role in disease

modulation (137). One study proposed that Tregs in MPA/GPA

may differentiate from Th17 cells (138). However, in the presence of

pro-inflammatory cytokines like IL-6, IL-23, and TGF-b, Tregs can
convert into Th17 cells (81), perpetuating chronic autoimmune
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inflammation in MPA/GPA (139). This conversion may exacerbate

the vascular inflammatory response in overlap syndromes involving

IgG4-RD and MPA/GPA.
5.3 Tfh cells

Tfh cells are specialized CD4+ T cells involved in antibody class

switching, plasma cell differentiation, and germinal center formation

(140). These cells play pivotal roles in autoimmune diseases such as

SLE, RA, IgG4-RD, AAV, and Sjögren’s disease (141). In IgG4-RD,

Tfh cells proliferated, with a predominance of Tfh2 cells. Elevated

Tfh2 levels correlate with IgG4-RD activity and serum IgG4

concentrations (142, 143), secreting IL-4 and IL-21 to promote

IgG4 antibody production and B-cell proliferation (77, 144, 144).

Tfh1 cells were also increased and positively correlated with IgG4-RD

activity, independent of IgG4 levels (144).In MPA/GPA, Tfh2 cells

increased significantly, promoting B cell proliferation, differentiation,

and germinal center formation by secreting IL-4 and IL-21 (78, 79).

Therefore, Tfh aggravates B cell proliferation and promotes the

production of more IgG4-ANCA in IgG4-RD and AAV overlap

syndromes. IL-21 produced by Tfh2 correlates with AAV activity and

is identified as a risk factor for AAV activity (145), so high levels of

IL-21 in IgG4-RD worsen AAV. Additionally, IL-21 assists IL-23 and

TGF-b in Th17 differentiation (81), suggesting that elevated IL-21 in

IgG4-RD contributes to Th17 polarization and overlap

syndrome progression.
6 The role of macrophages in IgG4-
RD and MPA/GPA overlap syndrome

Monocytes, as part of innate immunity, play critical roles in

defending against pathogens, phagocytosing apoptotic cells,

producing ROS, and presenting antigens (146).In IgG4-RD,

monocytes secrete TGF-b and IL-1b, promoting fibrosis in

affected tissues (147). In AAV, ANCAs activate monocytes to

produce pro-inflammatory cytokines such as IL-1b, TNF-a, and
IL-6, which, in turn, activate neutrophils (148) and contribute to

tubulointerstitial injury (149). In IgG4-RD, IL-1b also produced by

CD4+ CTLs, high IL-1b may exacerbate MPA/GPA by activating

neutrophils. When peripheral blood mononuclear cells are

stimulated with PR3 or MPO, it results in an elevated production

of IL-6 (150), This heightened IL-6 level subsequently promotes

fibroblast proliferation as well as the synthesis of collagen and

fibronectin, thereby worsening fibrosis in the tissues affected by

IgG4-RD (82). Additionally, IL-6 can stimulate the production of

Tfh differentiation factors and B cell activating factors in IgG4-RD,

thereby promoting Tfh cell differentiation and B cell antibody

production (82). In overlap syndromes involving IgG4-RD and

MPA/GPA, monocyte proliferation releases various inflammatory

cytokines, promoting vasculitis and fibrosis in affected tissues.

Monocytes differentiate into macrophages in inflamed tissues,

which can be polarized into two subtypes: M1 macrophages

(classically activated) and M2 macrophages (alternatively
Frontiers in Immunology 08
activated) (151). M1/M2 polarization mirrors Th1/Th2

differentiation (152). Th1 cytokines, such as IFN-g, drive M1

polarization, and M1 macrophages secrete IL-6, IL-12, and IL-23,

which promote Th1 and Th17 cell differentiation. In contrast, Th2

cytokines, such as IL-4 and IL-13, induce M2 polarization, and

macrophages secrete IL-33 to enhance Th2 differentiation (44, 152).

In IgG4-RD, M2 macrophages promote fibrosis by producing

IL-33, TGF-b, and CCL-18, which upregulate collagen production

by fibroblasts (35, 153). Serum levels of these cytokines correlate

with fibrosis severity in IgG4-RD (154). IL-33 interacts with ST2 on

Treg cells, inducing TGF-b production and promoting fibrosis in

IgG4-RD tissues (155, 156), which promotes fibrosis of the tissues

involved in IgG4-RD (87). In MPA/GPA, elevated IL-33 enhances

Th2 cell activity, stimulating plasma cell differentiation and ANCA

production (88, 157). In conclusion, IL-33 promotes plasma cell

differentiation and IgG4 subtype ANCAs production in IgG4-RD

with MPA/GPA overlap syndromes. MPO-ANCA contributes to

M2 polarization, secreting more TGF-b and exacerbating fibrosis

(62, 158). So, MPO-ANCA may worsen the fibrosis of the affected

tissues in patients with IgG4-RD.

Both M1 and M2 macrophages are present in GPA granuloma,

and their differentiation depends on specific cytokine settings (65).

However, a study of nasal mucosal biopsies in GPA indicated

predominant M2 polarization (60). In MPA/GPA, M2

macrophages infiltrate renal tissues, activating endothelial cells and

myofibroblasts to secrete pro-fibrotic factors such as IL-33, CCL-18,

and TGF-b (64). Notably, excessive infiltration of M2 macrophages

correlates positively with elevated serum creatinine levels and an

increased risk of end-stage renal disease in patients with AAV (159).

Therefore, M2 macrophage accumulation worsens fibrosis in MPA/

GPA-affected tissues when it overlaps with IgG4-RD. While M2

macrophages play an anti-inflammatory role by destroying apoptotic

cells called efferocytosis (160). PR3 antigen expressed on activated

neutrophils interacts directly with the “eat-me” signaling calpain on

neutrophils, thereby impairing efferocytosis (161), resulting in

incomplete clearance of neutrophils, T cells, and B cells, driving

continued ANCA production and promoting granuloma formation.

Thus, PR3 exacerbates tissue damage in IgG4-RD by impairing M2

macrophage efferocytosis (18).
7 Conclusion

IgG4-RD is a fibroinflammatory disease of unknown etiology

with multi-system involvement that frequently overlaps with

ANCA-associated vasculitis, posing significant diagnostic

challenges. The pathogenesis of IgG4-RD and MPA/GPA involves

complex interactions between B cells, T cells, and monocyte-derived

macrophages, which proliferate, differentiate, and secrete cytokines

that drive inflammation and fibrosis. These immune mechanisms

not only contribute to disease progression but also highlight

potential targets for therapeutic intervention. Understanding the

interplay between these cells and cytokines provides valuable

insights into the management of IgG4-RD and MPA/GPA

overlap syndromes.
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70. Koneczny I, Tzartos J, Mané-Damas M, Yilmaz V, Huijbers MG, Lazaridis K,
et al. IgG4 autoantibodies in organ-specific autoimmunopathies: reviewing class
switching, antibody-producing cells, and specific immunotherapies. Front Immunol.
(2022) 13:834342. doi: 10.3389/fimmu.2022.834342

71. Kanda M, Kamekura R, Sugawara M, Nagahata K, Suzuki C, Takano K, et al.
IgG4-related disease administered dupilumab: case series and review of the literature.
RMD Open. (2023) 9:e003026. doi: 10.1136/rmdopen-2023-003026

72. Miossec P, Kolls JK. Targeting IL-17 and TH17 cells in chronic inflammation.
Nat Rev Drug Discov. (2012) 11:763–76. doi: 10.1038/nrd3794

73. Grados A, Ebbo M, Piperoglou C, Groh M, Regent A, Samson M, et al. T cell
polarization toward TH2/TFH2 and TH17/TFH17 in patients with igG4-related disease.
Front In Immunol. (2017) 8:235. doi: 10.3389/fimmu.2017.00235

74. Gan PY, Steinmetz OM, Tan DS, O’Sullivan KM, Ooi JD, Iwakura Y, et al. Th17
cells promote autoimmune anti-myeloperoxidase glomerulonephritis. J Am Soc
Nephrol. (2010) 21:925–31. doi: 10.1681/asn.2009070763

75. Fan X, Shu P, Wang Y, Ji N, Zhang D. Interactions between neutrophils and T-
helper 17 cells. Front Immunol. (2023) 14:1279837. doi: 10.3389/fimmu.2023.1279837

76. Moriyama M, Nakamura S. Th1/th2 immune balance and other T helper subsets
in igG4-related disease. Curr Top Microbiol Immunol. (2017) 401:75–83. doi: 10.1007/
82_2016_40

77. Zotos D, Coquet JM, Zhang Y, Light A, D’Costa K, Kallies A, et al. IL-21
regulates germinal center B cell differentiation and proliferation through a B cell-
intrinsic mechanism. J Exp Med. (2010) 207:365–78. doi: 10.1084/jem.20091777

78. Long Y, Feng J, Ma Y, Sun Y, Xu L, Song Y, et al. Altered follicular regulatory T
(Tfr)- and helper T (Tfh)-cell subsets are associated with autoantibody levels in
microscopic polyangiitis patients. Eur J Immunol. (2021) 51:1809–23. doi: 10.1002/
eji.202049093

79. Yoon T, Ahn SS, Song JJ, Park YB, Lee SW. Serum interleukin-21 positivity could
indicate the current activity of antineutrophil cytoplasmic antibody-associated
vasculitis: a monocentric prospective study. Clin Rheumatol. (2019) 38:1685–90.
doi: 10.1007/s10067-019-04506-4

80. Uchida K, Okazaki K. Roles of regulatory T and B cells in igG4-related disease.
IgG4-related disease. Curr Topics Microbiol Immunol. (2016) 401:93–114. doi: 10.1007/
82_2016_41

81. Yang L, Anderson DE, Baecher-Allan C, Hastings WD, Bettelli E, OukkaM, et al.
IL-21 and TGF-b are required for differentiation of human TH17 cells. Nature. (2008)
454:350–52. doi: 10.1038/nature07021

82. Zongfei J, Rongyi C, Xiaomeng C, Lili M, Lingying M, Xiufang K, et al. In vitro
IL-6/IL-6R trans-signaling in fibroblasts releases cytokines that may be linked to the
pathogenesis of igG4-related disease. Front Immunol. (2020) 11:1272. doi: 10.3389/
fimmu.2020.01272

83. Chiorini JA, Tsukuda S, Ikeura T, Ito T, Nakamaru K, Masuda M, et al. Clinical
implications of elevated serum interleukin-6 in IgG4-related disease. PloS One. (2020)
15:e0027479. doi: 10.1371/journal.pone.0227479

84. Berti A, Warner R, Johnson K, Cornec D, Schroeder DR, Kabat BF, et al. The
association of serum interleukin-6 levels with clinical outcomes in antineutrophil
cytoplasmic antibody-associated vasculitis. J Autoimmun. (2019) 105:102302.
doi: 10.1016/j.jaut.2019.07.001

85. Henderson SR, Horsley H, Frankel P, Khosravi M, Goble T, Carter S, et al.
Proteinase 3 promotes formation of multinucleated giant cells and granuloma-like
structures in patients with granulomatosis with polyangiitis. Ann Rheum Dis. (2023)
82:848–56. doi: 10.1136/ard-2021-221800

86. Yoon T, Ahn SS, Ko E, Song JJ, Park YB, Lee SW. IL-6 receptor expression on the
surface of T cells and serum soluble IL-6 receptor levels in patients with microscopic
polyangiitis and granulomatosis with polyangiitis. J Clin Med. (2023) 12:7059.
doi: 10.3390/jcm12227059

87. Kurimoto M, Watanabe T, Kamata K, Minaga K, Kudo M. IL-33 as a critical
cytokine for inflammation and fibrosis in inflammatory bowel diseases and
pancreatitis. Front Physiol. (2021) 12:781012. doi: 10.3389/fphys.2021.781012

88. Hladinova Z, Hruskova Z, Svobodova B, Malickova K, Lanska V, Konopásek P, et al.
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