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Succinate is an essential metabolite in the tricarboxylic acid (TCA) cycle. In

mitochondria, succinate holds a unique position connecting the TCA cycle and

the electron transport chain (ETC), thereby providing a shortcut path for

adenosine triphosphate (ATP) production. Beyond this fundamental role in

cellular metabolism, succinate is increasingly acknowledged as a key

modulator of immune cell function. Production of reactive oxygen species

(ROS), hypoxia-inducible factor-1a (HIF-1a) stabilization, protein succinylation

and cell-cell communication mediated by succinate receptor 1 (SUCNR1) are

traits induced by succinate. During inflammation, succinate plays key dual roles,

culminating in either pro- or anti-inflammatory effects that are tissue- and

context-dependent. In this review, we provide a succinct overview focusing on

the regulatory role of succinate in innate immune cells, highlighting involved

mechanisms and research gaps that represent promising targets for future study.
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GRAPHICAL ABSTRACT

Key sources of elevated succinate, innate immune cell types and potentially associated diseases. Elevated succinate can arise from gut microbiota,
metabolic rewiring, tissue damage and hypoxia. Depicted innate immune cell subsets potentially capable of sensing and responding to succinate in-
clude macrophages, dendritic cells, neutrophils, eosinophils, basophils, mast cells as well as natural killer and other innate lymphoid cells. Associated
pathologies including gastrointestinal inflammation, allergic inflammation, ocular diseases, arthritis, cancer, obesity and obesity-induced diabetes,
neuroinflammation, infection and sepsis are represented by disease icons, reflecting multifactorial processes involving multiple cell types. Arrows in-
dicate the flow from succinate to innate immune cells and from these cells to the associated diseases. HIF-1a, Hypoxia-inducible factor-1a; O2, Mo-
lecular oxygen.
1 Introduction

In addition to physical and chemical barriers defending the host

against foreign pathogens, the immune system encompasses two

complementary lines of defense, i.e. innate and adaptive immunity

(1). Unlike adaptive immunity, which is antigen-specific, slower to

respond and provides immunologic memory, the innate immune

system is non-specific in nature, fast and does not provide

immunologic memory (2, 3). These two systems function in
Frontiers in Immunology 02
synchrony to ensure effective clearance of pathogens and

minimize possible damage to host tissues (4). The adaptive

immune system relies mainly on B and T cells (5), whereas

phagocytes (macrophages and neutrophils), dendritic cells (DCs),

eosinophils, basophils, mast cells (MCs), natural killer (NK) and

other innate lymphoid cells (ILCs) orchestrate innate immunity

(2, 6).

Recent advances in the field of immunometabolism unraveled a

central role of immune cell metabolism in shaping the immune
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response (7). Indeed, innate immune cells undergo extensive

metabolic reprogramming, upon exposure to external stimuli,

which drives their activation state and phenotype (8). For

instance, upregulation of glycolysis and the pentose phosphate

pathway occurs concomitant to a reduction in oxidative

phosphorylation in stimulated macrophages and DCs (9, 10).

This metabolic switch facilitates rapid adenosine triphosphate

(ATP) generation ensuring cell survival and provides biosynthetic

precursors required for cytokine production (11–13). In line with

global metabolic changes, individual metabolites such as succinate

possess signaling ability and are able to modulate immune cell

function (14).

In the tricarboxylic acid (TCA) cycle, succinate is produced

from succinyl-coenzyme A (CoA) through the enzyme succinyl-

CoA synthetase. Subsequently, succinate acts as a substrate for the

enzyme succinate dehydrogenase (SDH, also known as complex II),

producing fumarate and contributing to ATP production (15).

Intracellular succinate accumulation has been reported in

immune cells such as bone marrow-derived macrophages

(BMDMs) stimulated with the bacterial membrane component

lipopolysaccharide (LPS). This increase was attributed to

increased glutamine-dependent anaplerosis and g-aminobutyric

acid (GABA) shunt (9). In addition, reduced or reverse SDH

activity could result in succinate accumulation (14, 16). Another

source of succinate could be the glyoxylate shunt, in which isocitrate

is converted to succinate via the enzyme isocitrate lyase. Activity of

this enzyme is increased under hypoxic conditions (17, 18), and is

supposed to produce succinate to sustain the mitochondrial

membrane potential and cell viability (19). Uptake of extracellular

succinate serves as another source of succinate elevation in the cells

and has been reported to suppress degranulation and production of

interferon (IFN)-g in T cells (20). Taken together, there are

numerous sources that might contribute to succinate elevation in

the cells under certain conditions, including immune cell activation.

Via distinct mechanisms, increased intracellular succinate could

alter cell function and phenotype. By inhibiting prolyl hydroxylase

domain (PHD) enzymes, succinate stabilizes the transcription

factor hypoxia-inducible factor-1 alpha (HIF-1a) increasing the

production of interleukin (IL)-1b and driving a pro-inflammatory

phenotype in macrophages (9). In addition, reactive oxygen species

(ROS) production driven by succinate oxidation contributes to this

phenotype (21). Succinate can also modify proteins by succinylation

of lysine residues altering their structure and function (22). An

example of which is histone succinylation, which regulates gene

transcription by weakening the affinity between deoxyribonucleic

acid (DNA) and histones facilitating the binding of transcription

factors to DNA (23). Conversely, extracellular succinate acts as a

signaling molecule by engaging succinate receptor 1 (SUCNR1) and

guiding immune cell responses, which might be pro- or anti-

inflammatory depending on the cell type and context (24, 25).

These divergent mechanisms underscore the central regulatory role

of succinate. Importantly, these pathways are not independent and

might act in synchrony to modulate cellular responses. For instance,

activation of SUCNR1 can engage a phosphoinositide 3-kinase

(PI3K)-HIF-1a axis that promotes tumor-associated macrophage
Frontiers in Immunology 03
polarization and cancer metastasis (26). Similarly, activation of

SUCNR1 in human umbilical vein endothelial cells results in HIF-

1a activation and increased IL-1b production (27). Herein, we

provide a concise review of succinate involvement in innate

immune cell function, discussing contributing downstream

mechanisms and highlighting potential targets for future research

and therapeutic opportunities.
2 Succinate as a regulatory metabolite

Succinate is a circulating metabolite and is detected in the

circulation in the low µM range under steady-state conditions (28,

29). These concentrations may rise drastically under stress

conditions like exercise (30), and in pathological conditions

including hypertension (31), ischemic heart disease (32), obesity

(33) and cancer (26, 34). The origin of circulating succinate is not

completely clear. However, release by damaged or injured tissues

and production by specific gut microbiota are highly plausible

sources (35).

At the cellular level, the permeability of membranes for

succinate is limited by its charged nature necessitating cellular

transporters for its transfer. Indeed, the dicarboxylate carrier, a

member of the solute carrier transporter family 25 (SLC25), and the

voltage-dependent anion channel facilitate succinate transfer from

mitochondria to the cytosol (36, 37). Succinate can also be effluxed

to the extracellular space via organic anion/dicarboxylate

transporters and monocarboxylate transporter 1 (MCT1) (38, 39).

In conditions of increased energy demand and excessive anaerobic

energy metabolism, excessive lactate production results in cell

acidification leading to succinate protonation and allowing it to

cross cell membranes with MCT1 (30). Influx of succinate in the

cells could be mediated via members of the SLC13 family as was

described in neural stem cells (40). Additionally, a role of MCT1 in

the uptake of succinate into CD4+ T cells was previously described

(20). Likewise, MCT1 facilitates succinate import in murine brown

adipocytes, an uptake that was pH-dependent (41). Based on its

localization in the cell, succinate can modulate different cellular

pathways altering cell phenotype and function, as will be discussed

in this section. Figure 1 summarizes these mechanisms.
2.1 Succinate metabolism and ROS
production

In the mitochondria, succinate is metabolized to fumarate via

SDH, a multi-subunit enzyme, which requires numerous proteins

for its assembly (42). In eukaryotes, SDH is composed of four

subunits, SDHA to SDHD, from which A and B represent the

catalytic domain, while C and D are anchor proteins (42). During

succinate oxidation by SDH, electrons are transferred to ubiquinone

in the electron transport chain (ETC) and participate in ATP

production (43). Over recent years, the roles of succinate and

SDH in pathological conditions, particularly those involving

immune cells functioning in hypoxic environments such as
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chronic inflammation, ischemia-reperfusion injury and cancer,

have gained increasing attention, as comprehensively reviewed by

Zhang and Lang (44).

Although complex I and complex III are considered the main

sites for mitochondrial ROS production, increasing evidence

indicates that SDH could be involved (45, 46). Indeed, mutations

in subunit C of SDH are linked to oxidative stress, genomic

instability and tumorigenesis in hamster fibroblasts and SDHC

E69 mouse cell line (47, 48). These findings have been further

validated in yeast studies, where gene deletion or mutation in SDH

subunits results in increased ROS production (49–51). In addition,

inhibition of SDH has been shown to reduce glucose-induced ROS

production and insulin secretion in Langerhans islet cells from

mice, confirming the regulatory role of SDH in ROS production and

glycemic control (52). In a murine model of ischemia, succinate

levels are elevated and are attributed to reversal of SDH, caused by

fumarate overflow from purine nucleotide breakdown and the

malate/aspartate shuttle. Upon reperfusion, metabolism of

succinate via SDH is responsible for mitochondrial ROS

production through reverse electron transport at complex I (53).

In line with that, inhibition of SDH by intracoronary malonate

during early reperfusion reduces reperfusion injury and infarct size

in a pig model of transient coronary occlusion (54).

Notably, in human studies there is discrepancy in the results of

studies investigating the role of SDH as a source of ROS and it is not
Frontiers in Immunology 04
clear whether this is due to biological or technical reasons. For

instance, Guzy et al. have shown that pharmacological inhibition or

ribonucleic acid (RNA) interference of SDHB, but not SDHA, in

human Hep3B cells results in increased ROS production and HIF-a
stabilization, a response that is ROS-dependent (46). Conversely, in

SDHD-deficient human embryonic kidney (HEK) 293 cells, there is

no indication of increased ROS production as compared to controls

and HIF-1a stabilization in these cells is mostly mediated by

succinate and is not ROS-dependent (55). Similar findings have

been reported in SDHA-mutant fibroblasts (56). Taken together,

ROS production represents an important signaling mechanism that

could be driven by elevated succinate under certain conditions.
2.2 Stabilization of HIF-1a

Another mode by which succinate acts as a signaling molecule

in the cytosol is via the inhibition of a-ketoglutarate-dependent
dioxygenases (57). These enzymes include HIF-a-PHDs, which

play a crucial role in regulating HIF stability (58). PHD enzymes

use oxygen and a-ketoglutarate as substrate, and iron as well as

ascorbate as co-factors to hydroxylate proline residues on HIF-a
making it recognizable by von Hippel-Lindau (VHL) protein. Once

bound by VHL protein, HIF-a is polyubiquitylated and degraded

(58). PHDs produce succinate as a product and are, therefore,
FIGURE 1

Signaling mechanisms driven by succinate. (A) Succinate is metabolized to fumarate as part of the TCA cycle in the mitochondria. Excessive
succinate contributes to increased mitochondrial ROS production. (B) Succinate inhibits PHD enzymes, stabilizing HIF-1a by preventing its
hydroxylation and degradation. (C) Succinylation of lysine residues of proteins, including histones, impacts their structure and function. (D) Succinate
binding to SUCNR1 enables cells to sense and respond to extracellular succinate. TCA, Tricarboxylic acid; CoA, Coenzyme A; ADP, Adenosine
diphosphate; ATP, Adenosine triphosphate; FAD, Flavin adenine dinucleotide; FADH2, Reduced flavin adenine dinucleotide; ROS, Reactive oxygen
species; PHD, Prolyl hydroxylase domain; HIF-1a, Hypoxia-inducible factor-1a; H3, Histone H3; SUCNR1, Succinate receptor 1; Suc, Succinate.
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inhibited by the accumulated succinate (product inhibition) (59). In

such cases, HIF-a is not hydroxylated and subsequently is not

degraded, which can occur also under normoxia and is referred to

as pseudohypoxia (29). HIF-a forms a heterodimer with HIF-b and

the active complex in the nucleus drives the expression of genes

involved in several processes such as angiogenesis, metabolism and

cell survival (60). Another indirect mechanism by which succinate

accumulation could stabilize HIF is via ROS production (46).

Among a-ketoglutarate-dependent dioxygenases are the ten

eleven translocation (commonly known as TET) DNA

demethylases, a group of enzymes that promotes DNA

demethylation through oxidizing methylcytosines (61), and the

Jumonji C domain-containing proteins, which have histone

demethylase catalytic activity and thus are very important

epigenetic modulators (62). Therefore, increased succinate levels

could possibly influence the cellular epigenetic landscape, resulting

in long-term consequences for gene expression (63).
2.3 Protein succinylation

Succinylation is another crucial signaling mechanism potentially

driven by succinate (64). It denotes the incorporation of a succinyl

group to lysine residues of proteins, thereby altering protein function

(65, 66). In comparison to other post-translational modifications

(PTMs) like methylation and acetylation, succinylation probably has

a bigger impact on protein properties, given the larger size of

succinate and the significant change in the charge of lysine by

succinate from +1 to –1 (67). This process could occur both non-

enzymatically and enzymatically (67), and takes place inside and

outside the mitochondria (68). In non-enzymatic succinylation,

succinyl-CoA acts as the succinyl donor (69), and succinate could

serve as a source for this metabolite as has been shown in

Escherichia-coli (70). Supporting this finding, a recent study has

illustrated that succinate derived from microbiota increases

succinylation of PurR, a transcription factor that negatively

regulates purine biosynthesis genes, to enhance Citrobacter

rodentium virulence in a mouse model of enterohaemorrhagic

Escherichia coli (71). In enzymatic succinylation, lysine succinyl

transferases regulate protein succinylation in the cells (72), as has

been shown for carnitine palmitoyl transferase 1A (CPT1A), an

important enzyme in fatty acid oxidation (73). The succinylase

activity of CPT1A promotes cell proliferation under glutamine

depletion (73). Likewise, the enzyme lysine acetyltransferase 2A

might function as a succinyl transferase to succinylate histone H3,

enhancing tumor cell proliferation and tumor growth (74). In line

with this, a recent study revealed that high succinylation scores in

colorectal cancer correlate with mitochondrial oxidative

phosphorylation and ETC, while low succinylation scores associate

closely with immune cell differentiation. Spatial transcriptomic

analysis further demonstrated a negative correlation between

succinylation scores and immune cell activity in tumor-adjacent

regions, highlighting the potential role of succinylation in shaping

the tumor-immune microenvironment and influencing immune

surveillance and tumor progression (75).
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In contrast, desuccinylation is a process that regulates the level

of protein succinylation within cells. This process is primarily

catalyzed by enzymes, among which members of the sirtuin

(SIRT) family have been studied extensively (67). The SIRT

family is a group of nicotinamide adenine dinucleotide (NAD+)-

dependent lysine deacetylases that regulate important biological

processes including metabolism (76). Mammals have seven sirtuins

numbered from 1 to 7, with SIRT5 and SIRT7 having desuccinylase

activity (77, 78). Numerous studies have addressed the impact of

SIRT5 and SIRT7-mediated protein desuccinylation in

physiological and pathological contexts and can be reviewed

elsewhere (67, 79). As an example, SIRT5 suppresses SDH activity

resulting in diminished cellular respiration and knockdown of

SIRT5 increases SDH activity and cellular respiration in the

presence of succinate (80). The interaction of SIRT5 with SDHA

has been confirmed in another study to result in its desuccinylation,

while knockdown of SIRT5 causes hypersuccinylation and

reactivation of SDHA (81). SIRT7, on the other hand, is a histone

desuccinylase that links chromatin condensation and genome

stability, while SIRT7-mediated desuccinylation of histones

enhances chromatin condensation and DNA repair (78).

Collectively, there is a fine balance between succinylation and

desuccinylation in cells and its maintenance is crucial for the

regulation of cellular responses.
2.4 Signaling of SUCNR1

The identification of SUCNR1, previously known as G protein-

coupled receptor (GPCR) 91 or GPR91, as a specific receptor for

succinate in a landmark study by He et al. opened the door for

extensive research on the role of this receptor in different cells and

tissues in physiological and pathological contexts (82). It is

postulated that SUCNR1 acts as a sensor to metabolic alterations

caused by tissue stress and subsequently drives the tissue to

respond. Therefore, dysregulated or excessive activation of this

receptor might underlie pathological conditions. SUCNR1 is

expressed in many organs including the kidneys, the spleen, the

liver, the heart and the small intestine (82, 83). At the cellular level,

SUCNR1 expression was evident in structural cells like endothelial

cells (84), fibroblasts (85), cardiomyocytes (86) and adipocytes (87)

as well as immune cells including macrophages (24, 25, 88) and DCs

(89, 90). The activation of this receptor induces varying responses

and is implicated in ischemia-reperfusion injury (91), hypertension

(82, 92), immune response and inflammation (93–95), platelet

aggregation (96), angiogenesis (29, 84, 97) and glucose

homeostasis (98). As a GPCR, activation of SUCNR1 by succinate

triggers downstream signaling pathways which are also cell type

specific. For example, in HEK293 cells, succinate-mediated

activation of SUCNR1 induces intracellular calcium release,

accumulation of inositol triphosphate, activation of extracellular-

signal-regulated kinases 1/2 (ERK1/2) and a decrease of cyclic

adenosine monophosphate (cAMP) concentration, which

indicates that SUCNR1 couples to both a pertussis-toxin-sensitive

Gi/Go pathway and a pertussis-toxin-insensitive Gq pathway (82).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1661948
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Atallah et al. 10.3389/fimmu.2025.1661948
In contrast, succinate increases, rather than decreases cAMP, in

cardiomyocytes resulting in protein kinase A activation, suggesting

SUCNR1 coupling to Gs (32). These distinct signaling pathways

triggered by SUCNR1 activation emphasize that succinate actions

are diverse and complex and require in-depth investigation.
3 Succinate in innate immune cells

The innate immune system is comprised of four defense barriers

including anatomic barriers (skin and mucous membranes),

physiologic barriers (temperature, pH and chemical mediators),

endocytic and phagocytic barriers, and inflammatory barriers (1).

Innate immunity relies on a group of specialized immune cells such

as phagocytes (macrophages and neutrophils), DCs, eosinophils,

basophils, MCs, as well as NK and other ILCs (2). Unlike B and T

cells, innate immune cells lack antigen-recognition receptors (1).

Nonetheless, they recognize and bind specific microbial molecular

structures known as pathogen-associated molecular patterns

(PAMPs), in addition to tissue-derived damage-associated

molecular patterns (DAMPs) through the germline-encoded

pattern recognition receptors (PRRs) (99). Examples of PAMPs

are the bacterial product LPS and viral double-stranded RNA (100,

101), while DAMPs include biglycan, histones and heat-shock

proteins, among others (102). PRRs are expressed on the cell

surface as well as intracellularly and include toll-like receptors

(TLRs), C-type lectin-like receptors (CLRs) and Nod-like

receptors (NLRs) (103).

At the site of infection or injury, innate immune cells produce

cytokines and chemokines, which initiate both local and systemic

responses (1). Indeed, the innate immune system drives a local

inflammatory response, while simultaneously activating the

adaptive immune system for subsequent response (2).

Dysregulated innate immune response has been implicated in the

development of autoimmune and inflammatory diseases such as

lupus erythematosus and Sjögren syndrome (104). With the rise of

the field of immunometabolism, it has become clear that

metabolism of innate immune cells is central to driving their

activation, differentiation and fate (7). In the following section, we

will discuss the role of succinate in modulating the function of

innate immune cells and underlying mechanisms will be addressed.

A schematic overview is provided in Figure 2.
3.1 Macrophages

Macrophages represent a vital cellular component of the innate

immune system. They serve three main functions, namely

phagocytosis, antigen presentation and immune modulation

(105). In addition, macrophages play an important role in iron

homeostasis, tissue injury repair and other metabolic functions

(106–108). Bone marrow-derived monocytes are the precursors of

macrophages. They circulate in the blood for 1 to 2 days, then they

are either recruited to tissues for differentiation or they die (109).

Nonetheless, many tissue-resident macrophages like Kupffer cells in
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the liver and microglia in the brain develop from cells of embryonic

origin and are seeded in different tissues before birth (110, 111). It is

reported that some tissue-resident macrophages are capable of self-

renewal in the tissue (112).

The functional destiny of macrophages is linked to their

polarization state and is determined by environmental cues (109).

Classically, macrophages have been classified into M1 and M2

macrophages. However, current understanding suggests that this

classification is over-simplified and does not reflect the complex

macrophage dynamics and plasticity in vivo (113). M1 macrophages

produce high levels of toxic effector molecules such as ROS and

nitric oxide (NO) and release pro-inflammatory cytokines including

IL-1b, tumor necrosis factor (TNF) and IL-6. They also promote T

helper (Th) 1 responses, and have microbicidal and tumoricidal

activity (114). M2 macrophages, in contrast, release extracellular

matrix components, angiogenic and chemotactic factors, as well as

IL-10 (115). Therefore, they participate in polarized Th2 responses,

clearance of parasites, tissue remodeling, angiogenesis,

immunoregulation, allergy and tumor promotion (115). In vitro,

macrophages can be polarized towards an M1 phenotype using

microbial products like LPS and cytokines like TNF-a or IFN-g,
either alone or in combination (113), while M2 polarization can be

induced using Th2 cytokines like IL-4 or IL-13 (116).

Among all cells of the innate immune system, macrophages are

perhaps the most studied ones in terms of metabolic control of their

phenotype and function (117–119). When stimulated by LPS,

macrophages switch their metabolism from oxidative

phosphorylation to glycolysis, which is a faster but less energy

efficient means for ATP production (9). Alongside this metabolic

switch, macrophages accumulate succinate and increase their

production of pro-inflammatory cytokines such as IL-1b (9).

Interestingly, accumulated succinate in BMDMs is sensed by

intracellular pathogens such as Salmonella Typhimurium to drive

their virulence and survival by facilitating antimicrobial resistance

and the promotion of type-III secretion (120).

Different mechanisms seem to govern the pro-inflammatory

macrophage phenotype driven by succinate. One such mechanism

is succinate oxidation via SDH and increased ROS production (21).

In BMDMs, inhibition of SDH using a cell permeable

dimethylmalonate reduces LPS-mediated IL-1b production and

increases IL-1 receptor antagonist and IL-10 (21). In this context,

inhibition of SDH by itaconate controls succinate levels in LPS-

activated macrophages and drives an anti-inflammatory phenotype

measured as reduced IL-12, IL-6 production and inducible nitric

oxide synthase (iNOS) expression (121). Another important

mechanism by which succinate regulates IL-1b production in

macrophages is via HIF-1a stabilization (9). Like succinate,

dimethyloxallyl glycine, an inhibitor of PHD, boosts LPS-induced

Il-1b gene expression, while a-ketoglutarate supplementation

abolishes it (9).

Besides ROS production and HIF-1a stabil ization,

succinylation is another potential mechanism driving succinate

function in macrophages. Notably, succinylation of many proteins

in response to LPS stimulation has been reported in macrophages in

the study of Tannahill and colleagues (9). However, the implications
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of this PTM in relation to the observed macrophage phenotype was

not addressed. In addition, SIRT5-mediated desuccinylation of

pyruvate kinase M2, a critical enzyme in glycolysis, reduces IL-1b
production in LPS-activated macrophages (122). Furthermore,

inhibition of SIRT2 by low concentrations of NAD+ results in the
Frontiers in Immunology 07
accumulation of acetylated a-tubulin, which in turn mediates the

assembly of NOD-like receptor pyrin domain containing 3

(NLRP3) inflammasome and drives IL-1b production in BMDMs

(123). Deletion of SIRT1 in macrophages results in hyperacetylation

of nuclear factor kappa-light-chain-enhancer of activated B cells
FIGURE 2

Succinate regulation of innate immune cell functions. Illustration of innate immune cells accompanied by annotations summarizing key research
findings on how altered succinate levels influence their functions. Relevant involved mechanisms are also indicated. SDHB, Succinate dehydrogenase
subunit B; SDH, Succinate dehydrogenase; SUCNR1, Succinate receptor 1; NET, Neutrophil extracellular trap; TNF, Tumor necrosis factor; ROS,
Reactive oxygen species; IL, Interleukin; LPS, Lipopolysaccharide; HIF-1a, Hypoxia-inducible factor-1a; DC, Dendritic cell; Th, T helper; Lactb,
Lactamase beta; Suclg2, Succinate-coenzyme A ligase subunit beta; MC, Mast cell; IgE, Immunoglobulin E; TCA, Tricarboxylic acid; VEGF, Vascular
endothelial growth factor; NK, Natural killer; ILC, Innate lymphoid cell; ETC, Electron transport chain; NAD+, Nicotinamide adenine dinucleotide.
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(NF-kB), thereby increasing the activation of NF-kB-dependent
proinflammatory targets such as TNF-a, IL-1b, manganese

superoxide dismutase and cellular inhibitor of apoptosis 2 in

response to TNF-a stimulation (124).

The engagement of SUCNR1 in succinate-mediated responses

in macrophages is also evident, however, mediating controversial

responses. Indeed, SUCNR1-mediated macrophage chemotaxis has

been implicated in obesity-induced diabetes (24). Release of

succinate from adipose tissue in response to hypoxia and

hyperglycemia drives macrophage chemotaxis to adipose tissue

inducing inflammation and glucose intolerance (24). In

SUCNR1-/- mice, significantly less macrophages infiltrate the

adipose tissue as compared to wild type and SUCNR1-/- mice

remain glucose tolerant (24). Likewise, cancer cells produce

succinate which drives macrophage migration via SUCNR1, a

response that is abrogated by an anti-SUCNR1 antibody (26).

Accumulation of microglia in the retina of SUCNR-/- mice

relative to control mice suggests a role of SUCNR1 in the

pathogenesis of age-related macular degeneration (125). While

the motility of SUCNR1-/- microglia is compromised, a global

deficiency of SUCNR1 was required to observe the phenotype in

mice proposing that the role of SUCNR1 in microglia is probably

dispensable (125).

In addition, the role of SUCNR1 in driving macrophage

polarization has been confirmed by recent evidence but has also

yielded contradicting results. While expression of SUCNR1 by M2

macrophages is, in fact, significantly higher than by M1

macrophages, subsequent activation of M2 macrophages with

succinate or compound 131 (SUCNR1 agonist) skews them to a

pro-inflammatory phenotype with increased TNF-a and reduced

IL-10 expression (126). Furthermore, stimulation of murine

BMDMs with LPS results in increased IL-1b gene expression, a

response that is hampered in SUCNR1-deficient cells (127). This

finding indicates a pro-inflammatory role of SUCNR1 in

macrophages. Notably, stimulation of BMDMs with IL-1b
increases SUCNR1 expression proposing a positive-feedback loop

that drives chronic inflammation. In this setting, SUCNR1-/- mice

show reduced macrophage activation and IL-1b production in a

model of antigen-induced arthritis (127).

This pro-inflammatory view of SUCNR1 in macrophages has

been challenged by a recent study showing that myeloid-specific

lack of SUCNR1 results in increased expression of pro-

inflammatory genes (Il1b, Il12b, Tnf and Nos2), particularly in

white adipose tissue, together with increased number of

CD11b+CD11c+CD206- pro-inflammatory macrophages (25).

Furthermore, SUCNR-/- BMDMs increase their production of

IL-6, TNF-a and NO in response to stimulation with LPS or

LPS+INF-g stimulation (128). In cancer, succinate-SUCNR1

signaling governs anti- inflammatory tumor-associated

macrophage polarization as indicated by increased expression of

arginase 1 (Arg1), Fizz1 (also known as Retnla), macrophage

galactose-type lectin 1 (Mgl1) and macrophage galactose N-

acetyl-galactosamine specific lectin 2 (Mgl2) upon treatment of

peritoneal macrophages in vitro with succinate (26). In a syngeneic

murine tumor model, succinate-treated mice have a significantly
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increased number of VCAM1+CD11c+CD11blow- tumor-associated

macrophages than control mice (26). Further data show a role of

SUCNR1 in ameliorating chronic neuroinflammation in vivo (40).

In this study, succinate released by pro-inflammatory macrophages

activates SUCNR1 in neural stem cells driving them to increase

their production of prostaglandin E2 and scavenging extracellular

succinate, which consequently contributes to the resolving of

inflammation (40). Together, succinate plays a crucial role in

driving macrophage phenotype and function, culminating in

either pro- or anti-inflammatory activity. Several factors,

including tissue context and the exact cellular mechanisms driven

by succinate, appear to be major determinants in either response.
3.2 Dendritic cells

Based on their phenotype and functionality, DCs can be

categorized into major subsets such as conventional DCs,

monocyte-derived DCs, plasmacytoid DCs and Langerhans cells

(129). These subpopulations have different migratory abilities,

follow different migratory paths and drive distinct immunological

and inflammatory responses (129). As the master antigen

presenting cells, DCs detect pathogens through their PRRs (130).

Once stimulated, DCs mature and migrate to secondary lymphoid

organs where they interact with T cells driving their activation,

expansion and differentiation into effector T cells (131). DC

maturation implies the redistribution of major histocompatibility

complex (MHC) molecules to cell surface, a reduction in endocytic

capacity and a pronounced increase in expression of co-stimulatory

molecules such as CD80 and CD86 (132, 133). Notably, DCs also

undergo profound changes in their morphology and re-organize

their cytoskeleton (134). By presenting complete unprocessed

antigens on their surface, DCs can stimulate B cells to initiate an

antigen-specific antibody response (135). Another essential

function of DCs is immune tolerance. Indeed, immature DCs

constantly present self-antigens and non-pathogenic antigens to T

cells to sustain immune tolerance via different mechanisms

including the differentiation of regulatory T cells (known as

Tregs), T cell deletion and induction of T cell anergy (136).

Resting DCs are able to use both glycolysis and mitochondrial

respiration to meet their metabolic demands (11). Like

macrophages, DCs undergo striking metabolic changes upon

stimulation with TLR agonists switching their metabolism to

favor glycolysis (10). This metabolic switch is essential for their

survival as oxidative phosphorylation and ATP production are

reduced by increased NO production (11). In addition, this

glycolytic flux is essential for the de novo synthesis of fatty acids

required for the expansion of cellular organelles responsible for the

production and secretion of proteins that are crucial for DC

activation (137). Recently, succinate-CoA ligase subunit beta

(Suclg2) has been identified as a key metabolic enzyme in the

reprogramming of pro-inflammatory mature DCs into a tolerogenic

phenotype (138). Suclg2 inhibits the succinylation of the

mitochondrial protein lactamase beta (Lactb), which subsequently

results in reduced NF-kB signaling activation (138).
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In comparison to other immune cells, immature DCs express

relatively high SUCNR1 transcripts (89). Activation of SUCNR1

drives DC chemotaxis and in synergy with TLR-3 and TLR-7, but

not TLR-2 or TLR-4, SUCNR1 potentiates the expression of

proinflammatory mediators like TNF-a and IL-1b (89). This

response culminates in enhanced antigen presentation and

activation of CD4+ T cells (89). In vivo, SUCNR1 mediates DCs

chemotaxis into draining lymph nodes, subsequently driving the

expansion of Th17 cells, which contribute to autoimmunity.

Therefore, SUCNR1-/- mice show reduced inflammation in an

experimental arthritis model (90). These findings highlight

SUCNR1 as an important target regulating the crosstalk between

innate and adapt ive immune ce l l s dur ing immune-

mediated inflammation.

Of interest, Inamdar and colleagues have used succinate-based

polymers to induce a pro-inflammatory phenotype in DCs by

modulating their metabolism (139). In mice, administration of

succinate polymer drives a significant pro-inflammatory anti-

melanoma response, thereby offering an approach for developing

antitumor metabolite-based therapies (139). Overall, the crucial role

of succinate in dictating DC phenotype and function might represent

a new frontier to modulate undesired inflammatory responses.
3.3 Neutrophils

Neutrophils, the most abundant circulating leukocytes in

humans, are the first responder immune cells in case of infection

or injury (140). They are produced from myeloid precursors in the

bone marrow and are generally viewed as short-lived cells that

circulate in the blood for few hours (141). Nonetheless, it has been

shown that neutrophil lifespan in the blood could be much longer

(142). Neutrophils migrate to sites of inflammation in response to

chemotactic signals, where they phagocytose microorganisms and

kill them using different mechanisms such as NADPH-dependent

ROS production and release of antibacterial proteins such as

cathepsins and defensins from their granules (142). To combat

extracellular pathogens, they also release neutrophil extracellular

traps (NETs), which are composed of DNA, histones, proteins like

lactoferrin and enzymes like myeloperoxidase and elastase (143).

Besides their indispensable role in acute inflammation, a role of

neutrophils in chronic inflammation and adaptive immunity is

increasingly appreciated (144, 145). These expanding functions

reflect the complexity of neutrophils and the presence of

heterogeneous neutrophil subpopulations adds another layer of

complexity to these cells (146).

Emerging evidence gradually unfolds the metabolic flexibility of

neutrophils, with the ability to rewire their metabolism upon

stimulation to perform distinct functions. As an example,

neutrophils switch to pentose phosphate pathway during

oxidative burst, which becomes the main pathway for glucose

metabolism (147). This flexibility is highly relevant since it was

traditionally believed that neutrophils rely exclusively on glycolysis

(148), with the activity of mitochondria being very limited except to

drive apoptosis (149, 150).
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Alongside this development in our understanding of the

metabolic adaptations of neutrophils, the regulatory role of

succinate in neutrophil function is increasingly appreciated.

Indeed, peripheral blood neutrophils isolated from patients with

heterozygous germline mutations in SDHB accumulate more

succinate relative to controls (151). This is paralleled by an

increase in protein succinylation, reduced constitutive apoptosis

and increased survival in hypoxia, a phenotype that is not

dependent on HIF-1a but is mostly linked to impairment of SDH

and reduced oxidative stress (151). Similarly, circulating

neutrophils from cystic fibrosis patients increase their glycolysis

(Warburg effect) as indicated by increased succinate levels,

subsequent HIF-1a stabilization and increased pro-IL-1b
production. Of note, mature IL-1b is only increased in

neutrophils from bronchoalveolar lavage fluid of patients and is

driven by the NLRP3 inflammasome via caspase-1 (152). Succinate

is also significantly increased in plasma of acute respiratory distress

patients and contributes to the sequestration of neutrophils to the

lung via SUCNR1 (153). In contrast, inhibition of neutrophil

infiltration by succinic acid is associated with amelioration of

concanavalin A-induced acute liver injury in mice (154). A role of

succinate signaling via SUCNR1 in experimental autoimmune

uveitis is linked to increased neutrophil NET formation by

succinic acid, a response that can be reversed by SUCNR1

antagonism (155). NETs can enhance a Th1/Th17 cell immune

response characterized by elevated IFN-g and IL-17A production

(155). Furthermore, inhibition of SDH by dimethylmalonate

inhibits in vivo neutrophil secretion of TNF-a and ROS

production as well as diminished phagocytosis in a thioglycolate

broth-induced neutrophil peritonitis model (156). Recently, an

interesting study examined succinate as a vaccine adjuvant to

enhance antibody production in mice (157). By increasing

neutrophil recruitment to the immunization site and increased

expression of neutrophil-derived B cell-activating factor, succinate

offers a novel mechanism in immunological enhancement (157).

Further studies following a similar approach, exploring succinate

and its derivatives, may open new avenues to modulate neutrophil-

mediated immunity.
3.4 Eosinophils

Eosinophils are produced in the bone marrow from pluripotent

progenitors and migrate to the circulation as mature cells (158).

They spend relatively short time in the circulation, around 18 h,

before they migrate to peripheral tissues under steady-state

conditions or to inflammatory sites guided by IL-5 and eotaxin-1

(CCL11), amongst others (159). Upon stimulation, eosinophils

release granule proteins, including major basic proteins,

eosinophil cationic protein, eosinophil peroxidase and eosinophil-

derived neurotoxin (160). In addition, eosinophils have the ability

to store and release both Th1 and Th2 regulatory cytokines, which

are differentially released in response to distinct stimuli (161). The

role of eosinophils in type 2 immune responses marked them as

crucial players in atopic diseases like asthma and allergy and in
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helminthic infections (162, 163). Eosinophils also play a role in

antiviral immunity as they express TLRs associated with antiviral

response both on their surface and intracellularly (164). Stimulation

of these receptors drives eosinophil degranulation and, similar to

neutrophils, release of DNA traps which contribute to viral

clearance (164). Over the last years, eosinophils have been

increasingly appreciated for a rather different role in maintaining

tissue homeostasis mainly in the gastrointestinal tract, lungs,

adipose tissue, thymus, uterus and mammary glands (165).

Depending on the tissue, eosinophils pursue a crucial role in

immunoregulation, glucose homeostasis, protection against

obesity, preparation of the uterus for pregnancy and mammary

gland development (165). The exact role of eosinophils in cancer

remains unclear with conflicting results suggesting both

tumorigenic and anti-tumorigenic roles (166–168). These distinct

and possibly opposing effector functions are mediated by different

eosinophil phenotypes including progenitor, circulatory, and tissue

resident eosinophils (169).

While eosinophils and neutrophils show comparable glycolytic

capacity, eosinophil mitochondrial respiration is significantly

higher as indicated by increased oxygen consumption rate,

maximal respiratory capacity and spare respiratory capacity (170).

In response to stimulation with phorbol-myristate-acetate, a more

sustained increase in oxygen consumption in eosinophils occurs

relative to neutrophils (170). It is therefore plausible that

eosinophils exhibit more metabolic flexibility as compared to

neutrophils enabling them to adapt to diverse roles in

different environments.

The role of succinate in eosinophil differentiation is only

recently starting to unravel. Indeed, succinate levels increase in

activated eosinophils, a metabolic shift aligning with elevated iron

levels. Here, succinate fuels the TCA cycle to sustain iron-induced

eosinophil differentiation (171). Another study shows that 4-octyl

itaconate interferes with eosinophil differentiation and reduces type

2 airway inflammation (172). While inhibition of SDH by itaconate

is established (121, 173), it has not been addressed in this study and

thus a direct role of succinate in the observed responses remains

obscure. In addition, expression of SUCNR1 in oesophageal-specific

eosinophils but not peripheral blood eosinophils suggests a role of

the local microenvironment in driving its expression. This

assumption is corroborated by the substantial increase in

SUCNR1 expression in peripheral blood eosinophils upon co-

culture with oesophageal epithelial cells (174). Notably, the gene

expression of succinate-metabolizing enzymes is dysregulated in the

esophagus of patients with eosinophilic esophagitis relative to

controls proposing a functional role of succinate in allergic

eosinophilic responses (174). These few studies shed light on

succinate as a valid target to explore in the context of

eosinophilic inflammation.
3.5 Basophils

As the rarest circulating leukocyte population, basophils are

produced in the bone marrow from progenitor cells (175). They
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have a short life span of 1 to 2 days (176). Basophils contain

cytoplasmic granules and are able to release both pre-stored and

newly synthesized pro-inflammatory molecules such as histamine,

leukotrienes and cytokines such as IL-3, IL-4 and IL-13, which are

critical in the development of allergy and hypersensitivity (177). In

addition, basophils express high affinity immunoglobulin (Ig) E

receptors (FceRI), whose aggregation occurs upon crosslinking of

adjacent IgE molecules by bound allergen (178). This triggers

basophils to degranulate and subsequently drives increased

vascular permeability and tissue swelling in IgE-dependent

anaphylactic response (179). Basophils also express TLRs, among

which TLR4 is linked to exacerbation of allergic inflammation post

infection (180, 181). Notably, basophils play a major role in

immune modulation since infiltration of inflamed tissues at sites

of allergic inflammation by basophils is usually associated with Th2

response (177). Indeed, increasing evidence suggests that basophils

have the ability to function as antigen presenting cells and are able

to induce a Th2 response to allergens and helminths (182–184).

Furthermore, activation of basophils by autoreactive IgE skewing

the immune system towards Th2 environment could influence the

production of autoantibodies and thus contribute to the

development of autoimmune diseases such as systemic lupus

erythematosus (185, 186). Therefore, there is increasing

appreciation of the role of basophils not only as effector cells

driving inflammation but also as immunomodulatory cells

bridging innate and adaptive immunity.

Currently, specific studies delineating the immune-metabolic

adaptations or the modulatory role of succinate in basophil function

are lacking. Nonetheless, it has been shown that accumulation of

HIF-1a and histamine release occur in response to anti-IgE

stimulation of primary human basophils (187). Upregulation of

HIF-1a contributes to IgE-induced production of IL-4 and VEGF

(187). Among these responses, IL-4 production is differentially

regulated upon pre-stimulation with TLR-2 or TLR-4 ligands

(188). Whether succinate is involved in HIF-1a accumulation in

this case is not known.
3.6 Mast cells

In contrast to basophils, MCs are tissue-based cells located

mainly at mucosal and connective tissues (178). They develop from

haematopoietic progenitor cells released from the bone marrow and

only differentiate in the tissue (189). MCs have a longer life span of

weeks to months (177). Similar to basophils, MCs express FceRI
and hence are important in IgE-mediated allergic responses (190).

MCs also express other receptors including TLRs (191). They have

cytoplasmic granules that contain histamine, proteases, growth

factors and cytokines including TNF-a (192). It is noteworthy

that MCs are probably the only cells storing pre-formed TNF

(177). The role of this cytokine in the modulation of neutrophil

influx during infection highlights the importance of MCs in the

regulation of innate immunity against infection (193). Further, MCs

can regulate adaptive immunity by secreted products like histamine,

which alter the cytokines produced by DCs and subsequently
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driving a Th2 phenotype (194, 195). Another study showed that

MCs prime DCs to promote a Th1 and Th17 phenotype (196). In

addition to these regulatory functions, MCs are increasingly

acknowledged for their role in extracellular matrix remodeling

and angiogenesis (197–199). MCs are heterogeneous and are

categorized into 2 subgroups based on the expression of key

granule-associated proteases into tryptase- or tryptase and MC-

specific chymase-expressing cells. These subtypes show distinct

phenotypic characteristics and anatomic locations (192).

The data available on MC metabolic rewiring during

development and activation, despite being relatively more

abundant than that for eosinophils and basophils, remain limited.

There is evidence that MCs undergo distinct metabolic shifts during

IgE- and non-IgE-mediated activation (200). The shift towards

glycolysis is indeed more prominent in non-IgE pathways (201),

while mitochondria, via different mechanisms, modulate FceRI-
mediated MC activation (202, 203).

The role of succinic acid in MCs has been examined in an early

study, which illustrated that succinic acid has an inhibitory effect on

MCs (204). Indeed, succinic acid inhibits histamine release from

MCs stimulated with compound 48/80 or dinitrophenyl IgE and

inhibits dinitrophenyl IgE-induced TNF-a production.

Interestingly, the concentration of succinic acid required to

inhibit TNF-a is lower than that required to inhibit

degranulation suggesting different regulatory mechanisms. The

stimulation with succinic acid results in an increase in cAMP

levels which might be underlying the observed inhibition (204).

Only recently, the expression of SUCNR1 was linked to MC

activation, since MCs from SUCNR1-/- mice present with a

hyperactive phenotype both in vitro and in vivo (205). This

hyperactivity does not correlate with augmented Th2 response

measured as T cell infiltration and IL-4 and IL-13 production.

While SUCNR1-/- mice had increased allergic contact dermatitis

reaction, this does not contribute to asthma or arthritis progression

(205). In this study, the authors suggest that succinate signaling is

essential for normal MC differentiation. However, this requires

further investigation. The role of SUCNR1 in MC activation was

further addressed in a study by Tang et al. who showed the

activation of SUCNR1 in MCs from the umbilical cord or the

MC line LAD-2 enhances IgE receptor-mediated degranulation and

histamine release (206). This activation is mediated by SUCNR1/

protein kinase C/ERK signaling pathway and potentiates antigen‐

induced bronchoconstriction (206). These few studies establish a

role of succinate and SUCNR1 in MC-mediated inflammation.
3.7 Natural killer and other innate lymphoid
cells

NK cells belong to ILCs, which are a heterogeneous group of cells

that derive from lymphoid lineage but lack genetically rearranged

antigen receptors (207). ILCs are categorized into different subgroups

based on the expression of key transcription factors and their
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ILCs, group 3 ILCs and lymphoid tissue-inducer cells (208).

NK cells play a crucial role in the control of viral infections and

cancer (209). They represent around 5-15% of circulating blood

cells and are also present in peripheral tissues like the liver, the

placenta and the peritoneal cavity (210, 211). While resting NK cells

circulate in the blood, they extravasate and infiltrate most tissues

that are either infected with pathogens or have malignant cells (212,

213). To avoid attacking self-cells, NK cells express inhibitory

receptors for self MHC-I molecules (214). Upon activation, NK

cells utilize different mechanisms to pursue their effector functions

including exocytosis of perforin/granzyme-containing granules,

death-receptor-induced apoptosis and IFN-g production (215,

216). The role of NK cells in regulating the function of other

immune cells is evident in their cross-talk with DCs modulating T

cell function (217). The detailed functions of other ILC subsets in

immunity and in tissue homeostasis can be reviewed

elsewhere (218).

Recently, the importance of metabolism in NK cell function

started to unfold. Indeed, resting NK cells utilize glucose to

maintain low levels of glycolysis and oxidative phosphorylation

(219). Upon activation, NK cells undergo significant metabolic

reprogramming as illustrated by increased glucose uptake and

glycolysis, which is required for IFN-g production and

granzyme B expression (220). Furthermore, in cytokine-activated

NK cells, the increased rate of oxidative phosphorylation is

associated with increased mitochondrial mass (221). We refer the

reader to other interesting reviews detailing the metabolic

characteristics of NK cells and other ILC subsets in health and

disease (222, 223).

To date, the number of studies that have addressed a link

between succinate and ILC function is rather limited. An earlier

study detected substantial levels of SDHB transcripts with a

recurrent R46X mutation in normal mononuclear blood cells,

with NK cells and monocytes being the main source of the

mutant transcripts. In this study, the authors propose that this

mutation, leading to downregulation of SDH function, might be a

mechanism to facilitate early detection of, and pre-adaptation to,

hypoxia (224). Yet, no other studies have investigated in detail how

succinate elevation might drive a phenotypic change in NK cells and

by which mechanism.

Indirect activation of group 2 ILCs in the intestine subsequent

to succinate sensing by SUCNR1-expressing tuft cells has been

demonstrated in a study by Nadjsombati et al. (225). In this context,

succinate in the intestine, which can be produced by Tritrichomonas

protists or bacterial microbiota drives a type 2 immune response via

a circuit that includes tuft cells and group 2 ILCs (225–227).

Nonetheless, succinate alone was unable to activate group 2 ILCs

(225). In line with this, subsequent to mechanical injury and

subcutaneous immunization, succinate release into the circulation

from injured tissue drives intestinal inflammation characterized by

tuft cell expansion and increased IL-25 culminating in increased

group 2 ILCs and a propagated type 2 immune response (228).
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Recently, it has been shown that succinate, by feeding the ETC, is

able to rescue group 2 ILC function upon genetic ablation or

inhibition of nicotinamide phosphoribosyl transferase, the rate-

limiting enzyme in the NAD+ salvage pathway (229).
4 Concluding remarks and future
perspectives

While numerous studies have established succinate as a critical

regulator of macrophage and DC function, its influence on other

innate immune cell populations, particularly basophils, NK and

other ILCs, remains largely unexplored. Elucidating succinate’s role

in shaping the activity of these cells could uncover novel strategies

for therapeutic targeting, especially in diseases characterized by

excessive or dysregulated immune responses.

Beyond receptor signaling, mitochondrial SDH has emerged as

a significant yet underestimated modulator of ROS production in

diverse patho-(physiological) contexts. Manipulating SDH activity

and developing targeted antioxidants to modulate cell phenotype

and function present promising opportunities for conditions in

which ROS plays a major pathogenic role, such as cancer and

ischemia-reperfusion injury. Likewise, succinylation remains poorly

understood and its potential interplay with other PTMs, such as

acetylation, which might share regulatory pathways and functional

consequences, warrants deeper investigation.

Despite growing interest in SUCNR1, the complexity of its

signaling pathways and functional outcomes remains incompletely

defined. SUCNR1 holds potential as an innovative drug target, and

the development of selective small-molecule modulators will be key

to fully characterize its contribution to health and disease.

Importantly, the potential synergistic or antagonistic interplay

between the pathways regulated by succinate warrants careful study.

Intracellular effects, such as PHD inhibition and HIF-1a stabilization,

and extracellular SUCNR1-mediated signaling can converge to

amplify inflammation or, under different conditions, counterbalance

one another to restore homeostasis. The exact timing of pathway

engagement, together with the prevailing metabolic and inflammatory

milieu, is likely to critically influence the direction and magnitude of

these effects. Understanding this context dependency will be essential

to ensure that therapeutic targeting of one pathway does not

inadvertently exacerbate harmful inflammation or suppress

beneficial responses. Future studies integrating selective pathway

modulation with precise temporal control, and employing relevant

disease models, will be critical for defining these interactions.

Ultimately, determining whether succinate alone or in

combination with cytokines and chemokines can be harnessed to
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amplify protective immunity or dampen pathogenic inflammation

remains an important and exciting avenue for future research.
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Núñez-Roa C, et al. SUCNR1 controls an anti-inflammatory program in macrophages
to regulate the metabolic response to obesity. Nat Immunol. (2019) 20:581–92.
doi: 10.1038/s41590-019-0372-7

26. Wu JY, Huang TW, Hsieh YT, Wang YF, Yen CC, Lee GL, et al. Cancer-derived
succinate promotes macrophage polarization and cancer metastasis via Succinate
Receptor. Mol Cell. (2020) 77:213–227.e5. doi: 10.1016/j.molcel.2019.10.023
Frontiers in Immunology 13
27. Xu J, Zheng Y, Zhao Y, Zhang Y, Li H, Zhang A, et al. Succinate/IL-1b signaling
axis promotes the inflammatory progression of endothelial and exacerbates
atherosclerosis. Front Immunol. (2022) 13:817572. doi: 10.3389/fimmu.2022.817572

28. Kushnir MM, Komaromy-Hiller G, Shushan B, Urry FM, Roberts WL. Analysis
of dicarboxylic acids by tandem mass spectrometry. High-throughput quantitative
measurement of methylmalonic acid in serum, plasma, and urine. Clin Chem. (2001)
47:1993–2002. doi: 10.1093/clinchem/47.11.1993

29. Atallah R, Olschewski A, Heinemann A. Succinate at the crossroad of
metabolism and angiogenesis: Roles of SDH, HIF1a and SUCNR1. Biomedicines.
(2022) 10:3089. doi: 10.3390/biomedicines10123089

30. Reddy A, Bozi LHM, Yaghi OK, Mills EL, Xiao H, Nicholson HE, et al. pH-gated
succinate secretion regulates muscle remodeling in response to exercise. Cell. (2020)
183:62–75.e17. doi: 10.1016/j.cell.2020.08.039

31. Sadagopan N, Li W, Roberds SL, Major T, Preston GM, Yu Y, et al. Circulating
Succinate is elevated in rodent models of hypertension and metabolic disease. Am J
Hypertens. (2007) 20:1209–15. doi: 10.1016/j.amjhyper.2007.05.010

32. Aguiar CJ, Rocha-Franco JA, Sousa PA, Santos AK, Ladeira M, Rocha-Resende
C, et al. Succinate causes pathological cardiomyocyte hypertrophy through GPR91
activation. Cell Commun Signal. (2014) 12:1–17. doi: 10.1186/s12964-014-0078-2
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