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Next-generation T cell
immunotherapy: overcoming
exhaustion, senescence,
and suppression
Guangmei Li, Dengju Li and Xiaojian Zhu*

Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan, Hubei, China
T-cells are a core component of tumor immunotherapy because of their potent

ability to identify and kill cancer cells. Yet efficacy is limited by exhaustion,

senescence, metabolic dysregulation, an immunosuppressive tumor

microenvironment (TME), and limited persistence. This review analyzed these

key issues and proposed targeted improvement strategies. Emerging approaches

encompass pharmacological modulation of T cell activation and survival

pathways, epigenetic reprogramming to reverse exhaustion and senescence,

metabolic engineering, combinatorial targeting of immunosuppressive TME

components and advanced genetic tools, notably CRISPR-Cas9–based CAR-T

optimization, which exemplifies how precise genome editing can enhance

therapeutic efficacy. We review the progress and prospects of T-cell

improvement strategies in tumor immunotherapy, emphasizing the need for

further exploration to enhance the broader application and long-term efficacy of

T-cell therapies. This review highlights recent advances and future directions in

T-cell engineering, metabolic modulation, and microenvironment targeting,

aiming to translate innovations into effective cancer immunotherapies.
KEYWORDS

T-cell enhancement, tumor immunotherapy, T-cell exhaustion and aging, metabolic
regulation, microenvironment optimization
1 Background

Tumor immunotherapy leverages the immune system to identify and destroy cancer

cells and offers a more targeted approach with fewer side effects, while chemotherapy and

radiotherapy often harm healthy tissues and cause more side effects. Since the late 19th

century, when William Coley first used bacterial toxins to induce an immune response to

treat cancer (1), tumor immunotherapy has advanced significantly, highlighted by FDA

approval of immune checkpoint inhibitors like ipilimumab in 2011 (2), greatly improving

patient survival and durable immune responses against cancer (3).

In many tumor immunotherapies, T cells are the core of the adaptive immune response due

to their strong adaptability and precision in targeting tumor cells. In contrast, NK-cell–based
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therapies often exhibit limited persistence and fail to generate antigen-

specific memory. Similarly, macrophage-based approaches are highly

plastic and can be reprogrammed into pro-tumor phenotypes within

the tumor microenvironment. T cells uniquely combine durable

survival, antigen-specific recognition, and engineering flexibility,

underscoring their central role in immunotherapy development.

By targeting tumor-associated antigens presented by major

histocompatibility complex (MHC) molecules, cytotoxic T cells

(CTL) can specifically identify and destroy cancer cells without

damaging normal tissues. This highly specific targeting provides T

cells with distinct advantages over conventional cancer therapies.

Despite the remarkable success of T cell–based immunotherapies,

substantial challenges remain in achieving durable and universal

responses across diverse cancer types. Tumor cells are highly

heterogeneous and often express a spectrum of immunosuppressive

ligands, thereby enabling immune escape throughmultiplemechanisms

within the tumor microenvironment. Recent T cell-based

immunotherapies, including immune checkpoint inhibitors, chimeric

antigen receptor (CAR)-T cell therapy, TCR-engineered T cells,

bispecific T-cell engagers, and tumor-infiltrating lymphocyte (TIL)

therapy, have expanded the therapeutic landscape. These approaches

restore T-cell activity, block inhibitory signaling, and induce sustained

antitumor responses, with CAR-T therapy showing particularly notable

efficacy in hematologic malignancies. Moreover, emerging studies have

highlighted the key role of T-cells in adoptive cell therapy. It is crucial to

optimize T-cell-based immunotherapy, including T-cell activity,

proliferative capacity, persistence, and cytotoxicity. In the future,

innovative strategies to improve T-cell function are expected to

significantly enhance the clinical effectiveness of immunotherapy.

This review summarizes the strategies for improving T cell function

and explores their potential in addressing tumor immune escape and

enhancing therapeutic efficacy.
2 Mechanisms of T-cell activation and
functional regulation

In immunotherapy, antigen recognition by T cells and the

associated signaling pathways involve a complex network of
Abbreviations: 2-DG, 2deoxyglucose; AML, Acute myeloid leukemia; AAV,

Adeno-associated virus; APCs, Antigen-presenting cells; ASCT, Autologous

stem cell transplantation; CAR, Chimeric antigen receptor; CLIP, Class II-

associated invariant chain peptide; CTL, Cytotoxic T cells; DDR, DNA damage

response; TEM, Effector memory T cells; TEF, Effector T cells; ER, Endoplasmic

reticulum; ECM, Extracellular matrix; FAO, Fatty acid oxidation; HSCs,

Hematopoietic stem cells; ICB, Immune checkpoint blockade; ILT4,

Immunoglobulin-like transcript 4; IFN, g Interferon; MHC, Major

histocompatibility complex; TMEM, Memory T cells; MDSCs, Myeloid-derived

suppressor cells; OXPHOS, Oxidative phosphorylation; ROS, Reactive oxygen

species; Tregs, Regulatory T cells; TCR, T-cell receptor; T-IPSCs, T-induced

pluripotent stem cells; TME, Tumor microenvironment; CAFs, Tumor-

associated fibroblasts; TAMs, Tumor-associated macrophages; VEGF, Vascular

endothelial growth factor.
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molecular mechanisms. T cells can specifically identify and

respond to foreign pathogens or abnormal cells while avoiding

attacks on the body’s tissues. By modulating these mechanisms, the

antitumor and antiviral capabilities of T cells can be enhanced. A

deeper understanding of these processes may offer new avenues for

optimizing T-cell function in immunotherapy, ultimately

improving treatment outcomes.
2.1 Antigen presentation

Antigen-presenting cells (APCs) capture antigens via phagocytosis

or receptor-mediated endocytosis, degrade them into peptides, and

bind these peptides to major histocompatibility complex (MHC)

molecules to form MHC-antigen complexes. These complexes then

interact with T-cell receptors (TCRs) to deliver an initial activation

signal, which is fundamental for T cells to recognize specific antigens

and initiate responses. APCs deliver a second signal via co-stimulatory

molecules (e.g., CD80/CD86 interacting with CD28 on T cells) to

ensure the complete activation of T cells and prevent them from

entering a hypofunctional or tolerant state. APCs also secrete cytokines,

to deliver a third signal. These cytokines regulate the growth and

differentiation of T cells, guiding their differentiation into effector and

memory T cells. APCs play a key role in the initiation of T cell immune

responses by determining the activation, expansion, and functional

status of T cells.
2.2 Mechanisms of MHC class I and II
antigen presentation

MHC class I molecules are primarily responsible for presenting

endogenous antigens to CD8 + T cells (4). In the endoplasmic

reticulum (ER), unfolded MHC I molecules bind to calnexins to

ensure proper folding. Subsequently, MHC I binds non-covalently

to b 2-microglobulin to stabilize the structure. The transporter

associated with antigen processing (TAP) transports the peptide to

the endoplasmic reticulum for assembly into the antigen-binding

groove of MHC I. This complex is then transported to the cell

surface via the Golgi apparatus. CD8 + T cells are activated after

their receptors bind to antigenic peptides on MHC I, leading to the

release of perforin and granzyme, which directly kill infected or

cancerous cells.

MHC class II molecules primarily present exogenous antigens

to CD4 + helper cells (5). MHC class II molecules are synthesized in

the ER and bind to invariant chains to prevent endogenous antigens

from occupying the antigen-binding groove. HLA-DM then

removes Class II-associated invariant chain peptide (CLIP),

allowing exogenous antigen peptides to bind to MHC II. The

MHC II-antigen complex is transported to the cell surface, where

it interacts with the CD4 + T cell receptor to activate CD4 + T cells,

leading to the activation of CD8 + cytotoxic T and B cells,

coordinating the immune response (6).

Tumors achieve immune evasion through dysregulation of the

MHC expression pathway. Therapies that use IFN-g to restore
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MHC I expression can reenable CD8+ T cells to recognize tumors.

Additionally, enhancing the expression of MHC II on antigen-

presenting cells (APCs) can enhance the helper function of CD4+ T

cells, which is crucial for maintaining an effective anti-tumor

immune response and improving the success rate of vaccines and

immune checkpoint blockade therapies.
2.3 TCR signaling

2.3.1 Structures and signaling pathways
TCR signaling cascade starts with antigen recognition, leading

to the recruitment of the Src family kinase, Lck, to the TCR

complex. Lck phosphorylates immunoreceptor tyrosine-based

activation motifs (ITAMs) on CD3 subunits, a process that

subsequently recruits and activates the protein tyrosine kinase

zeta-chain–associated protein kinase of 70 kDa (ZAP-70) (7).

Once activated, ZAP-70 phosphorylates the key adaptor proteins

LAT and SLP-76 (7), which are essential for assembling signaling

complexes. Phosphorylated LAT acts as a docking site for several

proteins, including PLCg, GRB2, and Gads (7), which initiates

downstream signaling. The activation of PLCg is crucial for the

calcium signaling pathway. This signaling cascade enhances T-cell

activity and triggers cellular responses.

2.3.2 Costimulatory signals and their effects
While recognition of peptide–MHC complexes by TCRs

provides the initial activation signal, this alone is insufficient for

full T-cell activation. A crucial second signal is delivered through

co-stimulatory pathways, most prominently the interaction of

CD28 on T cells with CD80 (B7.1) or CD86 (B7.2) on APCs (8).

This engagement promotes T-cell proliferation, cytokine secretion,
Frontiers in Immunology 03
survival, and effector functions. These co-stimulatory signals

activate downstream pathways such as PI3K–AKT and ERK/

MAPK, reinforcing T-cell activation (Figure 1).

The design of CAR-T cells is a direct clinical application of these

TCR signaling principles. CARs incorporate ITAM-containing

CD3z domains to initiate activation and costimulatory domains

(e.g., CD28, 4-1BB) to enhance T cell persistence and function. This

synthetic biology approach exemplifies how targeted manipulation

of T cell signaling pathways can generate potent antitumor

immunity. Table 1 presents the mechanisms of T cell activation.

The corresponding immunotherapy strategies directly target

these signals: dendritic cell vaccines aim to optimize antigen

presentation and co-stimulation. Cytokine therapy provides strong

cytokine signals to drive T cell expansion andmemory differentiation.

Both are clinical transformation examples targeting the fundamental

mechanism of the APC-T cell interaction.
3 Problem analysis

Before discussing targeted solutions, it is essential to clarify the

major challenges faced by immunotherapy within the tumor

microenvironment. Such an analysis provides the conceptual

foundation for the problem-oriented strategies outlined in the

following section.
3.1 Functional exhaustion of T-cells

T cell failure is a common dysfunction in chronic infections and

cancer. This process not only impairs T cell immune responses but

also involves metabolic alterations and unique transcriptional
FIGURE 1

Mechanisms of T-cell activation and functional regulation T cells recognize antigens via T-cell receptors (TCR) presented by antigen-presenting cells
(APCs) through MHC molecules, with co-stimulatory signals and cytokines promoting T cell activation, proliferation, and differentiation into effector
and memory cells.
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programs that distinguish exhausted effector T cells (TEF) from

memory T cells (TMEM) (9). Exhausted T cells exhibit high

expression of inhibitory receptors like PD-1, Lag-3, and Tim-3,

further suppressing their function. Blocking PD-1 can reverse T cell

migration arrest and partially restore effector function (10). These

findings underscore PD-1 as a nexus integrating T cell receptor

signaling, metabolic fitness, and epigenetic programming—a

complexity that demands combinatorial targeting rather than

monotherapy. Targeting this exhaustion axis—driven by chronic

antigen exposure and manifesting as proliferative arrest, cytotoxic

collapse, and immunosuppressive checkpoint upregulation—

provides a strategic entry point for combinatorial therapies to

reinvigorate T cell function.
3.2 T cell aging mechanisms

Senescent T cells display distinct surface markers, including high

expression of senescence-associated b-galactosidase (SA-b-
galactosidase), reduced expression of costimulatory molecules

CD27 and CD28, and upregulation of inhibitory receptors such as

Tim-3. Changes in these markers and their functional features often
Frontiers in Immunology 04
lead to T-cell dysfunction, which affects their antitumor capacity (11).

For instance, loss of CD28 reduces the ability of T cells to receive

costimulatory signals critical for activation, while increased Tim-3

expression correlates with reduced cytokine production and survival.

Importantly, such surface markers also provide potential therapeutic

entry points—for example, blocking inhibitory receptors or

rejuvenating senescent T cells through telomerase activation or

metabolic reprogramming. Thus, integrating the functional and

therapeutic implications of aging markers is essential for improving

immunotherapeutic efficacy. Understanding the mechanisms of aging

and exploring effective reversal or intervention strategies are expected

to improve the success rate of immunotherapy and prognosis of

cancer patients.
3.3 Metabolic competition and inhibition in
tumor microenvironment

Upon activation, T cells undergo profound metabolic

remodeling. Effector T cells rely heavily on aerobic glycolysis to

support rapid proliferation and effector function, whereas memory

T cells depend primarily on fatty acid oxidation (FAO) and
TABLE 1 Mechanisms of T cell activation.

Signal Type Key Molecules
Primary Function and

Effect
Notes

First Signal (Antigen
Recognition)

TCR recognition of pMHC
complex

Provides antigen-specific
recognition; serves as the
foundational and initiating signal for
T cell activation.

TCR: T cell receptor, responsible for specific antigen
recognition. pMHC: Peptide-Major Histocompatibility
Complex, presented by Antigen-Presenting Cells (APCs).

Signal Initiation Lck phosphorylates ITAMs
Initiates downstream signal
transduction cascades.

Lck: A Src-family tyrosine kinase, responsible for initiating
phosphorylation. ITAMs: Immunoreceptor Tyrosine-based
Activation Motifs, which are signaling modules on CD3
molecules.

Signal Transduction
ZAP-70 is recruited and
activated

Relays and amplifies the upstream
signal for propagation to
downstream effectors.

ZAP-70: A tyrosine kinase that binds phosphorylated
ITAMs; a critical node in signal transduction.

Signal Assembly
ZAP-70 phosphorylates LAT
and SLP-76

Forms a signalosome, serving as a
scaffold platform for the assembly of
multiple downstream signaling
pathways.

LAT: Linker for Activation of T cells, a crucial adaptor
protein. SLP-76: Another key adaptor protein that functions
cooperatively with LAT.

Downstream Pathway PLCg is recruited and activated
Hydrolyzes PIP2, initiating the
calcium signaling pathway and
triggering cellular responses.

PLC: Phospholipase C gamma, acts as a bridge connecting
upstream signals to downstream pathways such as calcium
flux. Calcium signaling pathway: A rise in intracellular
calcium concentration is a pivotal event for T cell activation.

Second Signal (Co-stimulation)
CD28 (on T cell) binding to B7
(CD80/CD86 on APC)

Provides a critical co-stimulatory
signal to ensure full activation,
prevent anergy, and promote
proliferation, survival, and cytokine
production.

B7: A family of co-stimulatory molecules on APCs,
including B7.1 (CD80) and B7.2 (CD86).

Downstream Pathway
Activation of PI3K-AKT and
ERK/MAPK pathways

Activated by the co-stimulatory
signal; collectively promote T cell
activation.

Third Signal (Cytokines) Cytokines secreted by APCs

Regulate T cell growth and
differentiation, directing their
development into effector and
memory cells.
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oxidative phosphorylation for long-term survival and surveillance

(12). Specific enzymes such as hexokinase 2 (HK2) and pyruvate

dehydrogenase (PDH) regulate glycolytic flux, while transporters

such as glucose transporter 1 (GLUT1) and monocarboxylate

transporter 4 (MCT4) mediate nutrient uptake and lactate export,

respectively. Dysregulation of these pathways compromises T-cell

survival and function. In the tumor microenvironment (TME),

metabolic competition is intense: tumor cells with high glycolytic

and amino acid demands deplete glucose, glutamine, and fatty

acids, leaving T cells metabolically starved. Elevated potassium

levels and inhibitory signals (e.g., PD-L1/PD-1 axis) further

suppress T-cell metabolic fitness, blunting cytokine production

and cytotoxicity (13). Clinically, therapeutic strategies targeting

metabolic checkpoints—such as enhancing FAO in memory T

cells or inhibiting tumor glycolysis—represent promising avenues

for improving T-cell–based immunotherapies.
3.4 Tumor microenvironment-mediated
suppression

The tumor microenvironment (TME) harbors multiple

immunosuppressive mechanisms that impede effective T-cell–

mediated antitumor responses (13). For example, in pancreatic

cancer and ovarian cancer, dense stromal fibrosis forms a physical

“immune barrier” that restricts T-cell infiltration (14, 15). In

melanoma, tumor-associated fibroblasts (CAFs) secrete CXCL12,

repelling T cells away from tumor nests (16). Meanwhile, myeloid-

derived suppressor cells (MDSCs) accumulate in colorectal and

lung cancers, releasing arginase and reactive oxygen species that

suppress T-cell effector function (17). Moreover, vascular

endothelial growth factor (VEGF) and other factors indirectly

inhibit T-cell infiltration by altering blood vessel function (13).

Together, these TME-derived factors synergistically dampen

antitumor immunity and reduce the efficacy of immunotherapies.

Consequently, rationally designed combination strategies that

simultaneously target TME barriers (e.g., anti-VEGF therapy,

CAF inhibition) and enhance T-cell resilience hold strong

potential for improving clinical outcomes.
3.5 Limited persistence of T cells

T cell persistence is closely associated with the success of

immunotherapy. Although effector memory T cells (TEM) can

quickly respond to antigens, they lack persistence and rapidly

decline after antigen clearance, leading to insufficient long-term

immunity. There are multiple mechanisms for the poor persistence

of T cells, including telomere shortening which leads to accelerated

replicative senescence (18). Cytokine dependence, especially the

insufficient signals of IL-7 and IL-15, limits long-term survival (19).

Epigenetic regulation, including changes in DNMT3A and TET2,

affects memory differentiation and persistence (20). Metabolic stress

and oxidative damage can damage the health of mitochondria,

further shortening lifespan (21). Additionally, some current
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vaccines induce short-term responses dominated by TEM, which

may result in inadequate long-term immune protection (22). In

chronic infections, prolonged antigen exposure causes T cells to

undergo functional decline (exhaustion) and replicative aging,

leading to decreased function and impaired persistence (23–25).

T-cell exhaustion further aggravates the failure of immune function;

therefore, the main focus of future immunotherapy and vaccine

design should be on converting exhausted T cells into durable stem-

like memory subsets, aiming to achieve sustained tumor control

through enhanced T cell persistence.(Figure 2).

Importantly, these mechanisms are not independent. T-cell aging

accelerates the development of exhaustion, while metabolic stress in

the tumor microenvironment further amplifies both processes by

impairing mitochondrial function and nutrient utilization. In turn,

these converging pressures critically undermine T-cell persistence,

highlighting that therapeutic strategies must simultaneously address

senescence, exhaustion, metabolic fitness, and TME-mediated

suppression to achieve durable antitumor immunity.
4 Problem-oriented strategy

Having identified the key obstacles in immunotherapy, this

section turns to problem-oriented strategies. We focus on

metabolic reprogramming, checkpoint blockade combinations,

targeting of suppressive cell populations, and microenvironmental

remodeling. Collectively, these strategies aim to mitigate the

limitations described in Section 3, enhance T-cell persistence and

effector function, and facilitate the clinical translation of

immunotherapeutic approaches.
4.1 Improve T cell activation and
persistence

4.1.1 Transformation of the antigen presentation
process

Targeted optimization can be achieved by modifying the

antigen presentation process, thereby addressing the issue of

limited T cell persistence. MAPK inhibitors effectively suppress

the proliferation of cancer cells and enhance the transcription of

MHC-I genes, promoting the activation of CD8+ T cells and

increasing their infiltration into solid tumors (26). Additionally,

researchers have engineered dynamic lipid bilayers that co-present

TCR and co-stimulatory signals in a physiologically ordered

manner, sustaining T-cell expansion and cytokine (e.g., IL-2)

support while avoiding the abrupt over-activation linked to single

high-dose stimulation (27).

Despite their therapeutic potential, MAPK pathway inhibitors

(such as BRAF/MEK inhibitors) are associated with hepatotoxicity

(28), and in clinical practice adaptive or acquired resistance frequently

emerges. Meanwhile, artificial cell systems or carriers based on lipid

bilayers continue to face engineering and translational challenges in

terms of large-scale manufacturing and in vivo delivery (29). Therefore,

at the current stage, these strategies are more appropriately considered
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as adjuncts or components of combination therapies rather than

standalone treatments, unless substantive breakthroughs are achieved

in safety and delivery technologies.

4.1.2 Regulation of T cell differentiation
Optimizing T cell activation signals, enhancing their

differentiation status, and regulating their resistance to exhaustion

are key research directions in the future. Dual costimulation (4-1BB/

ICOS) amplifies the persistence of CD8+ T cells through the

interaction of NF-kB/NFATc1 (30), significantly enhancing the

efficacy of adoptive cell therapy and helping to prolong the disease-

free survival of patients and reduce the risk of recurrence (25, 31).

The regulation of T-cell differentiation and an increase in the

proportion of memory T-cells can enhance T-cell persistence.

Tcf1 + PD-1 + T cells exhibit characteristics similar to those of

stem cells (25, 31). By self-renewal, they continuously produce
Frontiers in Immunology 06
Tcf1− cells to participate in the killing of tumor cells, thereby

supporting a long-term anti-tumor response. The regulation of the

NR4A family receptors (NR4A1, NR4A2, NR4A3) can effectively

enhance T cell activation and persistence by regulating the early

activation state and promoting the differentiation of memory T

cells (32). Moreover, epigenetic regulation via the inhibition of

BCL-6 and BLIMP-1, key regulators of T follicular helper cells, can

prolong the survival of CAR T cells (33). CD4 + CAR T cells not

only show strong cytotoxic activity but also show less sensitivity to

activation-induced cell death and express fewer inhibitory

immune checkpoint receptors than CD8 + CAR T cells,

resulting in greater persistence and antitumor activity (34, 35).

This finding may enhance therapeutic effects by regulating the

differentiation of CD4 + T cells. Furthermore, regulation of T cell

polarization, particularly toward Th2 or Th9 cells, can

significantly enhance CAR T cell efficacy. Th9-polarized CAR-T
FIGURE 2

Problem analysis. (A) The accumulation of immunosuppressive cytokines is a key driver of T cell functional exhaustion. Tumor-associated
macrophages (TAMs) exacerbate this process by secreting ROS, inducing PD-L1 expression and participating in adenosine metabolism, thus forming
multiple immunosuppressive mechanisms. Lipid accumulation within tumor-infiltrating lymphocytes (TILs) induces metabolic stress and further
impairs T cell function. (B) Thymic involution leads to a reduction in T cells, aging-related signals induce the senescence-associated secretory
phenotype (SASP), and telomere shortening, along with changes in T cell phenotype and differentiation states, collectively drive T cell senescence.
Moreover, Treg cells and tumor cells utilize cAMP to induce senescence in naïve and effector T cells, resulting in the loss of CD27 and CD28,
thereby amplifying immunosuppressive effects in the tumor microenvironment. Markers of T cell senescence include KLRG1, CD57, and the recently
identified receptor TIGIT. (C) Persistent antigen stimulation and inhibitory receptors like PD-1 and CTLA-4 remodel T cell metabolism, suppressing
glucose and glutamine metabolism, impairing mitochondrial function, and increasing reliance on fatty acid oxidation. The tumor microenvironment
worsens metabolic dysfunction with hypoxia, altered tryptophan and arginine metabolism, elevated lactate, and competition with cancer cells for
glucose. (D) CCL2 indirectly inhibits the recruitment of T cells by recruiting MDSCs and macrophages. Tumor endothelial cells suppress T cell
infiltration via FasL, ETBR, and B7H3. TME metabolic abnormalities, TAMs modulated by B cells, and CAFs via ECM capture and CXCL12-driven
exclusion collectively impair T cell proliferation, infiltration, and antitumor activity while activating immunosuppressive cells. (E) Acute stimulation
generates functional T cells, while chronic stimulation induces exhaustion. Both weaken CD8+ T cell persistence, reducing their long-term
antitumor immunity efficacy.
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cells show superior efficacy in preclinical models (36). Cord

blood-derived hematopoietic stem cells (HSCs) allow large-scale

expansion of precursor T cells prior to terminal differentiation

(33)preserving proliferative capacity and functionality during

manufacturing, Together, these strategies highlight the potential

of differentiation and polarization control to improve the

durability of T cells therapy.

Although these strategies expand the design space for CAR-T

optimization and show promise in enhancing persistence and

functionality, dual costimulation may increase the risks of

cytokine release and neurotoxicity (37); lineage skewing (such as

Th2/Tfh bias) or unstable Th9 phenotypes limit reproducibility

(38); transcriptional or epigenetic modulation introduces risks of

off-target effects and autoimmunity; and large-scale production of

hematopoietic stem cell–derived products remains constrained by

manufacturing and regulatory hurdles. At present, control of

differentiation represents the most translationally promising

avenue. Future research should focus more on rational

costimulatory design and the enrichment of stem cell–like T cells,

in order to balance persistence with effector potency and ultimately

achieve safer, more predictable, and durable clinical outcomes.
4.2 Aging and improvement strategies

4.2.1 Improve culture conditions
Aging leads to enhanced immunosuppression in the tissue

microenvironment and impairs T cell function. CAR-T cells in

this environment are more likely to exhibit senescent phenotypes,

thereby reducing their anti-tumor efficacy.

Optimizing the culture conditions for CAR-T cells can help

mitigate this issue. IL-7 and IL-15 can direct T cells toward a

memory stem cell-like phenotype, improve their expansion and

viability, delay terminal differentiation, and enhance antitumor

efficacy (39–41). Prolonged or high-dose IL-2 administration

leads to T cell over-differentiation, whereas short-term or low-

dose administration can generate early memory T cells (42, 43).

Therefore, it can be seen that properly regulating the combination

and concentration of cytokines is the core strategy for enhancing

the function of CAR-T cells. Aging causes a decline in thymic

function and T-cell generation. Supplementation with young

thymic epithelial cells, gene therapy (such as the FOXN1 gene),

and cytokines such as IL-7 can help restore thymic function (44).

This strategy is most immediately translatable, but dosing precision

is critical. High-dose IL-2 toxicity and IL-7/IL-15 is activated

abnormally in the immune system or works in synergy with other

pro-inflammatory cytokines, it may be involved in the worrying

pathological process of cytokine storm. Standardizing cytokine

regimens across donors for GMP manufacturing is a priority.

4.2.2 Extended telomere length
Telomere transfer technology slows T-cell aging by extending

telomere length, thereby enhancing immune function. Telomere

transfer from APC-derived vesicles to T cells, triggered by
Frontiers in Immunology 07
ionomycin-mediated calcium signaling, delays senescence and

enhances immune activity (45–47). This strategy may play a key

role in the development of therapies to enhance immune function

and extend the lifespan of T cells. Artificial telomere elongation has

been linked to risks of tumorigenesis and genomic instability (48).

Ionomycin, although widely used as a calcium ionophore, exhibits

broad cytotoxicity and poor dose controllability. In addition, the

specificity and reproducibility of telomere transfer techniques

remain under debate, and regulatory hurdles for clinical

translation add further complexity.

4.2.3 Reprogramming and gene editing
techniques

T-cell reprogramming and gene editing techniques hold

promise for delaying T-cell aging and enhancing antitumor

immune functions. Redifferentiating T-induced pluripotent stem

cells (T-IPSCs) into naïve, cytotoxic, or dedifferentiated T cells can

help delay T cell depletion and aging (49–51). CLASH, a novel

CRISPR system used to create CAR T cells with enhanced memory

and stem cell properties by targeting genes such as PRDM1 to

extend their longevity (52). I find these strategies compelling, yet

their long-term efficacy and safety remain open questions. Similarly,

blocking inhibitory receptors such as ILT4 shows preclinical

potential to rejuvenate T cells and reprogram tumor metabolism

(53), but translating these results to patients will likely face

biological and regulatory hurdles.

4.2.4 Regulate of signaling pathways
Regulation of signaling pathways and use of anti-aging drugs

can help mitigate T cell aging. Modulating the Wnt/b-catenin and

mTOR pathways has been shown to reverse T cell aging,

particularly in memory T cells. And in vivo administration of

small-molecule Wnt agonists may help achieve sustained effects

(54). Drugs such as rapamycin and quercetin can restore CAR T-

cell function and extend their persistence and antitumor activity by

inhibiting mTOR signaling or clearing senescent cells (55). This is

attractive due to oral drug accessibility, but systemic Wnt activation

risks oncogenesis (56), and rapamycin causes immune suppression

and metabolic toxicity (57). We advocate for short-term,

perimanufacturing exposure rather than long-term systemic

therapy, coupled with biomarker monitoring.

4.2.5 Physical removal of senescent T-cells
Physical removal of senescent T cells can restore function and

promote the expansion of memory and effector subsets. Engineered

peptides can disrupt the binding of FOXO 4 and p53 to induce

apoptosis in senescent cells (58). UPAR-specific CAR T cells

efficiently eliminate senescent cells by targeting the surface receptor

uPAR and prolonging survival in mouse models (59). These

approaches highlight the potential of selectively clearing senescent

T cells to enhance immunotherapy. However, concerns remain

regarding off-target effects, durability of responses, and safety of

translating senolytic strategies into humans, underscoring the need

for careful evaluation before clinical application.
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4.2.6 Supplement with functional T cells
Autologous stem cell transplantation (ASCT) can restore naïve,

memory, and effector T-cell function, with notable success in

autoimmune diseases and hematological malignancies (60–63).

Early clinical trials (NCT00133367) shows that umbilical cord

blood–derived HSCs, and young stem cells more broadly, may

help regenerate a youthful immune system and mitigate T-cell aging

(64–66). However, such strategies face major limitations, including

conditioning regimen toxicity, graft availability, risk of graft-versus-

host disease, and uncertain long-term rejuvenation effects. Careful

patient selection and integration with safer rejuvenation approaches

will be critical for translation.

4.2.7 To restore and maintain of thymic
environment

Restoring and maintaining the thymic environment can reverse

the effects of thymic involution, thereby promoting the production of

new T-cells. Bioengineered thymic organoids incorporating cytokines

such as IL-21 have been shown to enhance T-cell output in aged mice

(67). Whether bioengineered thymic organoids, when combined with

other cytokines or immunomodulators, can support T cell

maturation and adaptability remains to be investigated. The

intrathymic injection of allogeneic hematopoietic cells successfully

restores functional T cell development after thymic reconstitution in

a mouse model of severe combined immunodeficiency (68).

However, thymic organoids still face challenges in restoring T cell

function, including establishing immune tolerance, replicating

complex thymic stroma, supporting thymic epithelial cells and

optimizing T cell maturation (69, 70). While promising for

immune rejuvenation in the elderly or immunocompromised, their

clinical utility will ultimately depend on overcoming these barriers

and demonstrating durable, safe T-cell reconstitution.
4.3 Regulation of T cell metabolism

4.3.1 Glycolysis of effector cells
Effector T cells rely on glycolysis for rapid cytokine production and

cytotoxicity. In the tumor microenvironment (TME), glucose

competition with tumor cells impairs T cell energy supply. For

instance, increased GLUT1 expression promotes glucose uptake,

thereby enhancing T cell function (71). PQDN enhances the

antitumor capacity of CD8+ T cells by activating the mitochondrial

electron transport chain and promoting glucose uptake and glycolysis

(72). While glycolytic enhancement can restore immediate function,

excessive reliance accelerates exhaustion, promotes lactate

accumulation, and risks metabolic toxicity. This approach is better

positioned as a short-term, manufacturing-phase intervention rather

than systemic therapy.

4.3.2 Glycolysis and memory cells
Although glycolysis is crucial for effector T cell function,

excessively high levels can hinder the long-term survival and

differentiation of memory T cells (73). Restricting glycolysis using

the HK2 inhibitor 2-deoxyglucose (2-DG) promoted the formation
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of memory CD8+ T cells and enhanced their antitumor capacity

(73, 74). Metformin shifts metabolism toward fatty acid oxidation

(FAO) through AMPK activation, enhancing long-term survival

and antitumor capacity (75). Proper regulation of the balance

between glycolysis and other metabolic pathways is crucial for

optimizing CD8+ T cell function. Yet systemic drugs like 2-DG

and metformin carry risks of hypoglycemia, lactic acidosis, and

variable efficacy in patients with metabolic comorbidities. Their use

should focus on ex vivo programming rather than chronic in

vivo exposure.

4.3.3 Glycolysis and CD8 + T cells
In TME and autoimmune settings, glycolytic suppression drives

CD8+ T cell dysfunction (76). The combination of anti-PD-1 therapy,

and glycolysis-promoting drugs can partially restore CD8+ T-cell

function (77). Anti-PD-1 enhances glycolysis by inhibiting pyruvate

entry into fatty acid oxidation, promoting oxidative phosphorylation

(OXPHOS) and energy production, and further increasing glycolysis

via the PI3K-mTOR pathway through the AGK kinase. Additionally,

regulating mitochondrial function or neutralizing reactive oxygen

species (ROS) can significantly improve CD8+ T-cell metabolism and

enhance antitumor capacity (78). This dual strategy is compelling but

risky—checkpoint blockade already predisposes to immune-related

adverse events, and additional metabolic activation could exacerbate

toxicity or benefit tumor metabolism. Precise timing, dosing, and

biomarker-guided monitoring are critical.

4.3.4 Fatty acid metabolism and oxidative
phosphorylation

Quiescent T cells depend on OXPHOS, whereas activated T

cells integrate glycolysis with OXPHOS (79). Upon T-cell

activation, mitochondrial fragmentation reduces OXPHOS (80).

AMPK activators (e.g., metformin) or mTOR inhibitors (e.g.,

rapamycin) stimulate FAO, promoting the generation of memory

CD8+ T cells (79), thereby extending their longevity and enhancing

immunological memory. Studies have shown that PGC1a and

PPAR agonists (e.g., bezafibrate and fenofibrate) can enhance

FAO, boosting the antitumor function of memory T cells (81–84).

In adoptive cell therapy, metabolic interventions through in vitro

reprogramming can enhance the long-term survival and anti-cancer

capacity of T cells. Targeting FAO and OXPHOS holds promise for

durable antitumor immunity, yet systemic administration of

metabolic modulators faces significant tolerability constraints.

Rapalogs and fibrates should therefore be regarded as tools for

short-term, reversible metabolic programming during ex vivo

expansion or transient in vivo windows, rather than maintenance

drugs, in order to achieve a balance between long-term persistence

and immediate cytotoxic activity.
4.4 Regulation of the tumor
microenvironment

The tumor microenvironment (TME) is a complex network of

tumor, stromal, and immune cells together with soluble factors that
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shape antitumor immunity. In this setting, T cells are suppressed by

checkpoint signals (e.g., PD-1/PD-L1), regulatory and myeloid cells

(Tregs, MDSCs, TAMs), and metabolic or vascular barriers, leading

to immune evasion. Understanding these layers of regulation is key

to developing strategies that reprogram the TME and restore T-

cell activity.

4.4.1 Immune checkpoint Inhibitors
PD-1 binds to PD-L1 to suppress T-cell activity, while IFN-g

and TNF-a in the tumor microenvironment increase PD-L1

expression, aiding tumor immune escape. Immune checkpoint

inhibitors, including PD-1 and PD-L1 inhibitors, can block the

interaction between PD-1 and PD-L1, restore T cell activity, and

enable them to recognize and attack tumor cells (85). Combining

immune checkpoint inhibitors with anti-inflammatory drugs or

other targeted therapies, such as chemotherapy or radiotherapy, can

enhance the efficacy of immunotherapy (86, 87).

The application of immune checkpoint inhibitors (ICIs) has

advanced cancer immunotherapy, yet their efficacy and safety

remain constrained. Some patients develop immune-related

adverse events, including colitis, pneumonitis, and myocarditis.

Others exhibit primary or acquired resistance, which arises from

intrinsic tumor characteristics and adaptive changes within the

tumor microenvironment, ultimately leading to the establishment

of an immunosuppressive TME (88). Although combinations with

chemotherapy, radiotherapy, or anti-inflammatory agents may

enhance therapeutic efficacy, additive toxicities hinder clinical

optimization. Future strategies must therefore achieve a more

refined balance between efficacy and safety, rather than relying on

a single immunological pathway.

4.4.2 Immunosuppressive of cells
Regulation of the function of immunosuppressive cells can

effectively enhance the antitumor activity of T cells, thereby

improving the overall efficacy of immunotherapy.

In the tumor microenvironment, regulatory T cells (Tregs)

suppress the activity of effector T cells via multiple mechanisms.

Early clinical trials (NCT00888927) shows that pharmacological

approaches such as PI3Kdinhibitors, anti-CTLA-4 antibodies,

CCR4 antagonists, and metabolic targeting (e.g., CD36 inhibition)

can reduce Treg numbers or function, thereby enhancing effector T

cell responses (89–91). Other metabolic pathways such as fatty acid

oxidation, glycolysis, and amino acid metabolism are also potential

targets for regulating Tregs and improving the efficacy

of immunotherapy.

Although these strategies may indirectly restore antitumor

immune responses, systemic depletion of Tregs can disrupt

immune tolerance and trigger severe autoimmune reactions (92).

Therefore, future studies should prioritize the selective targeting of

tumor-infiltrating Tregs and the development of delivery systems

that minimize systemic toxicity without compromising

self-tolerance.

Myeloid-derived suppressor cells (MDSCs) are immunosuppressive

myeloid cells that proliferate widely in cancerous and chronic

inflammatory environments.
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Chemotherapy drugs such as gemcitabine and 5-fluorouracil

have been shown to reduce the number of MDSCs (93). Targeted

small-molecule drugs like SRA737 (a CHK1 inhibitor) combined

with low-dose gemcitabine significantly reduce MDSC numbers,

while boosting the expression of IFNb and chemokines CCL5 and

CXCL10, enhancing T cell antitumor responses (94).

MDSCs accumulate in the tumor microenvironment via

chemokines, thereby hindering T cell function. Blocking CXCR1/

2 (e.g., with SX-682) can reduce MDSC migration in head and neck

cancer mouse models, thereby enhancing the effectiveness of NK

cell immunotherapy and anti-PD-1 treatment (95–97).

Reducing the immunosuppressive activity of MDSCs can restore

T-cell function and delay tumor progression. This can be achieved by

inhibiting key signaling pathways such as JAK/STAT or NF-kB, or by
targeting the secretion of suppressive molecules (94). PDE5 inhibitors

such as sildenafil, tadalafil, and vardenafil have been shown to weaken

MDSC function by reducing the secretion of inhibitory molecules

(98, 99). STAT3 inhibitors, such as JSI-124 can further reduce MDSC

activity (100). Reducing MDSC activity can help restore T-cell

function and enhance the antitumor immune response.

Current strategies targeting MDSCs primarily involve reducing

their numbers, blocking their recruitment, and inhibiting their

immunosuppressive functions, thereby restoring T cell activity

and enhancing antitumor immunity. However, these agents often

lack specificity and may simultaneously affect normal myeloid cells,

leading to bone marrow suppression and increased risk of infection

(101). Moreover, the high degree of heterogeneity of MDSCs across

different tumor types and patients, coupled with the absence of

standardized biomarkers for their identification, has significantly

limited the clinical translation of these approaches.

M2-type tumor-associated macrophages (TAMs) suppress T-cell

function and promote tumor progression, making their

reprogramming into M1-type macrophages an attractive

therapeutic approach. Agents such as TLR agonists (3M-052, CpG

ODN), anti-CD40 antibodies, and low-dose metformin can induce

M1 polarization, enhance macrophage and T-cell antitumor activity,

and increase T-cell infiltration into the tumor microenvironment

(102–105).

Targeting TAMs with small-molecule inhibitors or

nanotechnology can effectively inhibit their tumor-promoting

functions and enhance the efficacy of therapies, such as immune

checkpoint inhibitors.

This indicates that reprogramming TAMs not only directly

enhances T cell function but also significantly improves the tumor

microenvironment, offering synergistic benefits for immunotherapy.

However, the inherent plasticity of tumor-associated macrophages

(TAMs) often renders these effects transient, and the systemic

administration of Toll-like receptor (TLR) agonists may trigger a

cytokine storm (106). Recently, antibody-mediated and

nanomedicine-based strategies have been explored to improve TAM

targeting, yet issues such as delivery efficiency, off-target uptake, and

long-term safety remain unresolved (107). Although TAM

reprogramming is conceptually sound, it must be refined through

targeted delivery systems and combinatorial therapies to achieve

durable clinical benefits.
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Future directions may also involve the integration of

nanotechnology or biomaterial-based delivery systems to precisely

modulate the TME, thereby enhancing therapeutic specificity

and durability.
4.5 Regulation of depletion strategies

4.5.1 PD1 maintains an exhausted state
PD1 plays a critical role in maintaining an exhausted state. By

using PD1 or PD-L1 inhibitors, exhausted T cells can regain some

of their functions (8), particularly their proliferative capacity and

cytotoxicity. Importantly, such blockade preferentially activates

progenitor-like exhausted T cells, which display superior

proliferative and functional recovery compared to terminally

differentiated exhausted subsets (108–110). In contrast, terminally

differentiated exhausted T cells respond less to PD1 blockade but

retain significant cytotoxic potential (108–110). These findings

highlight that PD1 inhibition does not fully reverse exhaustion

but can augment effector capacity within specific subsets. Sustained

use of PD-1 blocking agents has the potential to exacerbate

autoimmune responses and destabilize immune homeostasis,

emphasizing the necessity of carefully balancing immune

reactivation and safety considerations.
4.5.2 Epigenetic regulation reverses T-cell
exhaustion

Epigenetic regulation is a promising strategy for reversing T cell

exhaustion, enhancing T cell function, and boosting the efficacy of

immunotherapy. DNMT3A-driven de novo DNA methylation

promotes dysfunction in CD8+ T cells, while treatment with

DNA methyltransferase inhibitors such as 5-aza-2-deoxycytidine

restores function when combined with PD1 blockade (111).

Deleting the DNA demethylase TET2 significantly extends the

lifespan of CAR-T cells and enhances their tumor-killing capacity

(112). TET2 deletion prevents T cell exhaustion and promotes T cell

memory formation. Early clinical trials (NCT01029366) shows that

CRISPR-Cas9–mediated CD5 knockdown enhances cytotoxicity,

proliferation, and survival, effects associated with increased Ras/

ERK and PI3K/AKT/mTOR signaling and reduced exhaustion

markers (113).

Currently, early clinical trials (NCT03179943) are evaluating

the use of epigenetic drugs such as DNA methyltransferase

inhibitors and histone deacetylase inhibitors (114) in combination

with immune checkpoint blockers, aiming to enhance the durability

of the treatment. However, the systemic nature of epigenetic

therapies has raised concerns about non-targeted effects,

hematotoxicity, and unexpected immune activation (115).

Moreover, the optimal timing of use, dosage, and patient selection

criteria have not yet been determined. Therefore, careful clinical

design is still needed to maximize the benefits of epigenetic

regulation and minimize long-term risks.

Table 2 presents details on preclinical research and clinical.
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4.6 Aging, metabolic dysregulation, and
TME-mediated immunosuppression:
interconnected barriers to T Cell Function

T cell function in cancer is limited by a convergence of aging,

metabolic dysregulation, and tumor microenvironment (TME)-

mediated immunosuppression. Aging is associated with

immunosenescence, marked by diminished T cell proliferation,

reduced memory formation, and impaired metabolic flexibility.

Upon activation, T cells undergo profound metabolic remodeling:

effector T cells rely on aerobic glycolysis to fuel proliferation and

cytotoxicity, while memory T cells depend on fatty acid oxidation

(FAO) and oxidative phosphorylation for long-term persistence.

Dysregulation of these metabolic pathways—exacerbated by tumor-

driven nutrient depletion, lactate accumulation, and inhibitory

signaling (e.g., PD-1/PD-L1)—compromises T-cell survival and

effector function. Simultaneously, the TME reinforces suppression

through physical and cellular barriers: dense stromal fibrosis limits

infiltration in pancreatic and ovarian cancers, CAF-derived CXCL12

repels T cells in melanoma, and MDSCs in colorectal and lung cancers

release arginase and reactive oxygen species that blunt T-cell activity.

VEGF and abnormal vasculature further hinder T-cell trafficking.

Together, these age-related, metabolic, and TME-derived

factors synergize to constrain antitumor immunity and diminish

the efficacy of immunotherapy. Therefore, rational combinatorial

strategies hold strong promise—for example, pairing metabolic

interventions (enhancing FAO in memory T cells, inhibiting

tumor glycolysis) with TME-targeting therapies (anti-VEGF

treatment, CAF inhibition), while considering the impact of

immunosenescence. Such approaches may restore T-cell resilience

and maximize the clinical benefit of cancer immunotherapy.
5 Conclusions

Recent breakthroughs in pharmacologically enhancing T cell

function—including small-molecule agonists, checkpoint-blocking

biologics, and genetically engineered cellular therapies—have

redefined the landscape of tumor immunopharmacology. Despite

these advances, critical hurdles persist, such as T cell metabolic

collapse in hypoxic and nutrient-deprived tumor niches, antigen-

driven terminal exhaustion, and immune-related adverse events

linked to systemic immune activation. For solid tumors, the effects

of T cell therapy remain limited because of the complexity of the

tumor microenvironment. Emerging strategies—ranging from

precise genetic editing and metabolic reprogramming to targeting

novel immunoregulatory pathways and engineering next-

generation T cells—are now providing concrete opportunities to

overcome these barriers. Importantly, the field must prioritize

translating these innovations into clinically actionable frameworks

by systematically testing combination regimens, tailoring

interventions to distinct immune phenotypes, and implementing

real-time monitoring of T cell dynamics in patients. Future progress
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will also depend on integrating AI-driven drug discovery, single-cell

multi-omics–based patient stratification, and adaptive clinical trial

designs. To accelerate this trajectory, stronger collaboration across

immunology, bioengineering, computational biology, and clinical

oncology will be essential, ultimately enabling the development of T

cell therapeutics that are both context-specific and broadly

applicable across diverse tumor immune landscapes.
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