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Adoptive T cell therapy has transformed cancer treatment, with chimeric antigen

receptor (CAR) T cell therapy demonstrating remarkable clinical success in

hematological malignancies. By genetically engineering a patient’s own T cells to

recognize and attack cancer cells, CAR T therapy has achieved durable remissions in

several blood cancers. However, its efficacy in solid tumors remains limited, largely

due to the immunosuppressive tumor microenvironment (TME), which impairs T

cell infiltration, persistence, and function. To address these challenges, innovative

strategies are being developed to reprogram T cell signaling within the hostile TME.

One promising class involves chimeric non-antigen receptors (CNARs), which

modulate T cell activity independently of direct antigen recognition. Among

these, chimeric switch receptors (CSRs) convert inhibitory checkpoint signals into

activating cues, while inverted cytokine receptors (ICRs) redirect suppressive

cytokine signals to promote T cell activation. In this review, we provide a focused

overview of the design principles, mechanistic functions, and therapeutic potentials

of CSRs and ICRs as adjuncts to CAR T therapy in solid tumors. We also discuss key

considerations regarding safety, specificity, and clinical translation to inform future

advancements in engineered receptor strategies for cancer immunotherapy.
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1 Introduction

Adoptive T-lymphocyte therapy has emerged as a transformative

approach for cancer treatment, offering a targeted strategy to harness

the immune system against tumors (1, 2). Among its modalities,

chimeric antigen receptor (CAR) T cell therapy has shown remarkable

clinical success, particularly in hematological malignancies (3–6).

However, its efficacy in solid tumors remains limited due to

multiple challenges, including antigen heterogeneity, physical

barriers, and most notably, the immunosuppressive tumor

microenvironment (TME) that inhibits T cell activation and

function (7–9). These hurdles underscore the urgent need for

innovative strategies to enhance the specificity, persistence, and

efficacy of CAR T cells within solid tumors.

One promising strategy involves chimeric switch receptors

(CSRs), engineered receptors that convert inhibitory signals into

activating ones within the TME (10). Under physiological

conditions, immune checkpoint receptors such as programmed

death-1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4

(CTLA-4) serve as negative regulators of T cell activity by engaging

ligands like PD-L1, thereby maintaining immune homeostasis and

preventing autoimmunity (11, 12). Many solid tumors exploit these

pathways by upregulating such ligands, leading to chronic
Frontiers in Immunology 02
inhibitory signaling, T cell exhaustion, and diminished anti-tumor

responses (13–15). CSRs counteract this suppression by fusing the

extracellular domains of inhibitory receptors with intracellular

signaling domains of costimulatory molecules like cluster of

differentiation 28 (CD28) and 4-1BB (CD137). This design

enables T cells to transform immunosuppressive signals into

costimulatory cues, thereby enhancing T cell activation and

persistence in the hostile TME (Figure 1) (12, 16–18).

CSRs belong to a broader class of synthetic receptors termed

chimeric non-antigen receptors (CNARs), which modulate T cell

activity independently of direct antigen recognition (19). Within

this class, various receptor designs have emerged to bolster T cell

responses in immunosuppressive environments. One such subclass

includes inverted cytokine receptors (ICRs), which similarly aim to

overcome immunosuppressive cues. ICRs convert suppressive

cytokine signals, such as those from transforming growth factor-b
(TGF-b) (18, 20, 21) or granulocyte-macrophage colony-

stimulating factor (GM-CSF) (22), into stimulatory outputs that

promote T cell activation. However, unlike CSRs, which directly

rewire inhibitory checkpoint pathways into stimulatory signals,

ICRs rely on the local cytokine milieu and can exhibit context-

dependent effects that vary across tumor types. Their inclusion here

highlights the expanding landscape of receptor engineering
FIGURE 1

Design of chimeric switch receptors (CSRs) to enhance CAR T cell efficacy against solid tumors. CSRs are engineered receptors that bind to
inhibitory ligands on tumor cells and convert these suppressive signals into stimulatory ones. CSRs consist of an extracellular inhibitory ligand-
binding domain (ECD), a transmembrane (TM) domain, and a stimulatory intracellular signaling domain (ICD). In the figure, second-generation
chimeric antigen receptors (CARs) contain a single-chain variable fragment (scFv) for antigen recognition, a hinge, a TM domain, a costimulatory
domain, and a CD3z signaling domain. When co-expressed in CAR T cells, CSRs promote T cell activation, proliferation, and antitumor function by
reversing inhibitory cues in the tumor microenvironment. CSRs can function independently or synergize with CARs or T cell receptors (TCRs) to
enhance T cell responses against tumors.
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strategies targeting immune suppression, though mechanically and

functionally, ICRs represent a distinct and more variable approach

compared to CSRs.

This review provides a focused overview of engineered receptor

strategies designed to enhance T cell function in the TME, with a

particular focus on CSRs and ICRs. While CSRs directly reprogram

inhibitory checkpoint signals into costimulatory cues, ICRs harness

immunosuppressive cytokines and redirect their signaling to

promote T cell activation. Together, these complementary

approaches exemplify the versatility of CNARs, a growing class of

synthetic receptors modulating T cell behavior independently of

direct tumor antigen recognition. Although still limited in number,

a few early-phase clinical trials are exploring the safety and efficacy

of CSR-engineered T cells, underscoring their emerging

translational potential. By dissecting their mechanisms, design

principles, and therapeutic potential, we highlight how CSRs and

ICRs can be leveraged to overcome immune suppression and

improve the efficacy of CAR T cell therapy in solid tumors.
2 Targeting the PD-1 pathway

2.1 PD-1 signaling pathway

PD-1 is a type 1 transmembrane protein that is widely expressed

on immune cells, including B cells, tumor-associated macrophages

(TAMs), and is most notably enriched on tumor-infiltrating T cells,

where it plays a key role in suppressing antitumor immunity (23–

25). Alongside CTLA-4, PD-1 functions as a key immune

checkpoint receptor that inhibits T cell activity in the TME.

These two checkpoint receptors have been extensively studied for

their roles in tumor immune evasion, leading to the development of

several FDA-approved PD-1 inhibitors for clinical use (26, 27). In

addition to its role in cancer, PD-1 signaling is critical for

maintaining immune homeostasis and self-tolerance by

preventing excessive immune activation. This regulation helps

protect against autoimmune diseases, chronic inflammation, and

T cell exhaustion under physiological conditions (28–30). Among

its known ligands, programmed death ligand-1 (PD-L1) is the

primary binding partner of PD-1 and is frequently upregulated

on both tumor cells and immunosuppressive stromal cells. Upon

binding to PD-L1, PD-1 inhibits T cell receptor (TCR) signaling

(31) by recruiting the phosphatases SHP-1 and SHP-2, which

dephosphorylate key signaling molecules such as PI3K/AKT and

ZAP70. This results in reduced cytokine production, T cell

proliferation, and cell cycle progression (32). Additionally, PD-1/

PD-L1 interactions indirectly suppress TCR signaling by inhibiting

the activity of casein kinase 2 (CK2), further dampening T cell

responses (23).

Beyond modulating T cell activation, recent studies have shown

that PD-1/PD-L1 signaling also contributes to other aspects of immune

regulation, including dendritic cell migration. A study by Kantheti et al.

(33) demonstrated that PD-1/PD-L1 interactions influence the

trafficking of DCs, suggesting that this pathway plays a broader role

in coordinating immune responses across multiple cell types.
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In cancer, the PD-1/PD-L1 pathway is exploited by tumor cells

to evade immune surveillance. Tumor and stromal cells in the TME

upregulate PD-L1 expression, thereby enhancing PD-1-mediated

inhibitory signaling and suppressing anti-tumor immune responses

(34, 35). In cases of adaptive immune resistance, tumors take

advantage of the natural physiology of PD-L1 induction,

particularly the secretion of proinflammatory cytokines, to

activate PD-1 signaling (24). These cytokines, particularly IFN-g
and TNF-a, are secreted by activated tumor infiltrating

lymphocytes (TILs) (10). Sustained exposure to high levels of PD-

L1 in the TME leads to persistent upregulation of PD-1 on TILs,

driving T cell exhaustion and impairing effective immune

surveillance (36). Moreover, PD-1/PD-L1 signaling facilitates the

recruitment and maintenance of regulatory T cells (Tregs) and

other immunosuppressive cell types, further reinforcing a

tolerogenic microenvironment that supports tumor growth and

immune escape (37).
2.2 PD-1-based CSRs

One of the most well-characterized CSRs combines the

extracellular domain of PD-1 with the intracellular signaling

domain of CD28, a key costimulatory receptor that promotes T

cell activation (Figure 2A). Prosser et al. (38) initially developed PD-

1/CD28 CSRs by substituting the transmembrane and intracellular

domains of PD-1 with those of CD28 and transduced them into

CD8+ cytotoxic T lymphocytes. These engineered T cells retained

PD-L1 binding while exhibiting enhanced ERK phosphorylation,

cytokine production, and proliferative capability. While these early

constructs incorporated both the transmembrane and intracellular

domains of CD28, more recent studies have focused on hybrid

receptors that retain PD-1 transmembrane domain and fuse only

the intracellular domain of CD28. Kobold et al. (39) demonstrated

that this conformation significantly improved T cell activation,

cytokine release, and tumor cell killing, likely due to increased

CSR surface expression and greater binding affinity for the PD-

L1 ligand.

Recent clinical studies have evaluated the safety and bioactivity

of PD-1/CD28 CSRs in patients (Table 1). In a Phase I Clinical Trial

(NCT02937844), Guo et al. (40) treated PD-L1-positive

glioblastoma patients with PD-1/CD28-engineered T cells.

Treatment led to increased T cell infiltration and elevated levels

of IFN-g and IL-6 in cerebrospinal fluid, with no adverse events

beyond grade 2, neurotoxicity, or cytokine release syndrome (CRS),

indicating the safety profile of CSRs. Although this clinical trial

involved a limited number of patients, another clinical trial

(NCT02930967) has also evaluated the safety and efficacy of PD-1

CSRs in recurrent or metastatic malignancies.

While CSRs offer a powerful approach by converting inhibitory

signals into activating ones, genetic knockout (KO) strategies – such

as CRISPR/Cas9-mediated deletion of inhibitory checkpoint

receptors like PD-1-represent an alternative that removes

inhibitory signaling altogether. PD-1 KO T cells have shown

enhanced motility, effector functions, and improved in vivo
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performance in preclinical infection and tumor models (41, 42).

However, knockouts may also disturb regulatory or homeostatic

functions of the receptor, potentially leading to dysregulation or

exhaustion impacts (43, 44). In comparison, CSR designs can

preserve some of the receptor’s regulatory architecture by

replacing or repurposing cytoplasmic signaling domains, perhaps

mitigating risks associated with total loss of function.
2.3 PD-1-based CSRs combined with CARs

Inhibitory signaling pathways, such as PD-1/PD-L1

interactions, not only suppress immune function in natural T

cells but also limit the therapeutic efficacy of CAR T cells in

cancer. To address this, recent studies have explored combining

PD-1 CSRs and CAR constructs to enhance CAR T cell

performance. For example, Liao et al. (45) developed a first-

generation dual-targeting CD19/HER2 CAR, co-expressed with a

universal PD-1/CD28 CSR, and evaluated its functionality and
Frontiers in Immunology 04
antitumor efficacy both in vitro and in vivo using human tumor

xenograft mouse models. The engineered CAR T cells displayed

comparable cytotoxic activity against CD19/HER2+ tumor cells

regardless of PD-L1 presence but showed increased proliferation

and cytokine release in the presence of PD-L1. Importantly, in the

absence of the tumor antigens CD19 and HER2, these CAR T cells

exhibited no cytotoxicity against PD-L1+ cells, indicating safety for

normal tissues while maintaining the ability to eliminate tumor cells

with low tumor antigen expression. These results suggest that PD-1

CSRs can both minimize on-target, off-tumor toxicity and function

as “immune accelerators” by counteracting PD-L1-mediated

inhibition to enhance tumor-lytic activity of engineered T cells. In

one of the first in-human studies of CSR/CAR T therapy

(NCT03258047), Liu et al. (46) evaluated CD19-targeting CAR T

cells co-expressing PD-1/CD28 CSRs in patients with PD-L1+ B cell

lymphoma. Compared to conventional anti-CD19 CAR T cells, the

CD19-PD-1/CD28 CAR T cells exhibited superior antitumor

activity, with enhanced T cell proliferation, cytokine production,

and cytotoxicity observed both in vitro and in vivo. Clinically, these
FIGURE 2

Structural design of PD-1-based CSRs. (A) PD-1/CD28 CSRs with a CD28 transmembrane and/or intracellular domain. (B) PD-1/4-1BB CSRs with a
4-1BB intracellular domain.
TABLE 1 Clinical studies of chimeric switch receptor-mediated treatment.

Strategy Cell Product Engineering Indication NCT identifier Status

CSR

Anti-PD-L1 CSR T cells Anti-PD-L1 CSR Recurrent Glioblastoma Multiforme NCT02937844 Phase 1 (40)

Anti-PD-L1 CSR T cells Anti-PD-L1 CSR
Recurrent PD-L1+ Malignant Tumors;
Metastatic PD-L1+ Malignant Tumors

NCT02930967 Phase 1
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engineered T cells were well-tolerated, as patients experienced no

severe neurologic toxicity or symptoms of CRS. While early-phase

trials such as NCT04850560 and NCT03932955 are also evaluating

the efficacy of CD19-targeting CAR T cells co-expressing a PD-1/

CD28 CSR, larger clinical studies are still needed to fully assess their

therapeutic potential (47, 48).
2.4 PD-1-based CSRs with other
costimulatory domains

Aside from CD28, alternative costimulatory domains have been

incorporated into CSRs to improve T cell activation and persistence.

One such domain is 4-1BB a member of the tumor necrosis factor

receptor (TNFR) superfamily, known to promote T cell survival and

memory formation (Figure 2B) (49). Salvermoser and others (50,

51) investigated the efficacy of PD-1/4-1BB switch receptors in

combination with preferentially expressed antigen in melanoma

(PRAME)-specific TCRs to enhance T cell function under chronic

antigen stimulation. Using both 2D and 3D in vitro models that

mimic immunosuppressive conditions, they found that PD-1/4-

1BB CSR expressing T cells exhibit improved cytotoxicity,

proliferation, and persistence in the presence of PD-L1,

supporting the use of 4-1BB as a costimulatory domain capable of

reversing PD-1-mediated inhibition. Ma et al. (52) further evaluated

the efficacy of PD-1/4-1BB CSRs coexpressed with second-

generation HER2-specific CAR T cells in treating pleural and

peritoneal metastasis. The study found that the CSRs enhanced

the functionality of the anti-HER2 CAR T cells in terminating

metastatic tumors in xenograft mouse models and showed

increased expression of T cell activation and proliferation. These

preclinical findings led to the initiation of a Phase I clinical trial

(NCT04684459) investigating PD-1/4-1BB CSRs in patients with

pleural or peritoneal metastasis. Another promising costimulatory

domain used in CSR design is DNAX-activating protein 10

(DAP10), which like CD28 and 4-1BB, promotes immune cell

activation, but through a distinct signaling cascade. DAP10 has

been shown to promote T cell effector function and induce signal

transduction in a manner that favors therapeutic efficacy in

immunosuppressive setting. Lynch et al. (53) sought to explore

the therapeutic potential of PD-1/DAP10 CSRs when compared to

PD-1/CD28 CSRs, specifically when treating lymphoma. PD-1/

DAP10 was found to induce a central memory phenotype in

murine effector CD8 T cells, leading to greater persistence and

anti-tumor immunity in vivo. These findings suggest that DAP10-

based CSRs may drive distinct cytokine profiles and T cell

differentiation states, offering an alternative costimulatory

platform with therapeutic advantages over traditional CD28-

based constructs.
3 Targeting other signaling pathways

Besides PD-1, several other inhibitory immune checkpoint

receptors on T cells are exploited by tumors to evade immune
Frontiers in Immunology 05
surveillance. Recent studies have explored engineering CSRs from

these inhibitory receptors, including CTLA-4, T cell immunoglobulin

and mucin domain-containing protein 3 (TIM-3), and T cell

immunoreceptor with Ig and ITIM domains (TIGIT), in order to

convert inhibitory signals to stimulatory signals. This strategy aims to

overcome immune suppression within the TME (Figure 3).
3.1 CTLA-4-based stimulatory switch
receptors

CTLA-4 is type 1 transmembrane receptor expressed on T cells

that functions as a negative regulator of immunity following T cell

activation (10). As an inhibitory receptor, CTLA-4 plays a critical

role in maintaining immune homeostasis along with stimulatory

receptor CD28 by mediating a balance between stimulatory and

inhibitory signals. In suppressing T cell activation, CTLA-4 also

serves to prevent autoimmunity.

CTLA-4 transmits an inhibitory signal to activated T cells via

two primary mechanisms: 1) cell-intrinsic inhibition: CTLA-4

recruits phosphatases such as SHP2 and PP2A to its cytoplasmic

tail, leading to the dephosphorylation of key signaling

molecules involved in T cell activation, including LAT and ERK

(54); 2) cell-extrinsic inhibition: CTLA-4 competes with CD28 for

binding to the B7 ligands CD80 and CD86, which are expressed

on antigen-presenting cells (APCs) (10). CTLA-4 has a much

higher binding affinity for these ligands than CD28, effectively

sequestering them and blocking CD28-mediated recruitment of

PI3K, Grb2, and Vav1, molecules critical for delivering the

costimulatory signals required for T cell proliferation and

function (10, 55).

Tumors can exploit CTLA-4-CD80/86 axis to evade immune

surveillance by upregulating CD80/86 expression (56), thereby

chronically engaging CTLA-4 and delivering sustained inhibitory

signals that promote T cell exhaustion. To overcome this

immunosuppressive mechanism, several CTLA-4-based CSRs

have been developed by combining the extracellular and

transmembrane domains of CTLA-4 with the intracellular

domains of CD28 and 4-1BB (Figure 3A). Shin et al. (55) were

among the first to introduce a CTLA-4/CD28 CSR into both CD8

and CD4 T cells and found it improved antitumor effects, including

increased cytokine secretion of IFN-g and IL-2, in murine tumor

models. Lin et al. (56) developed a CTLA-4/CD28 CSR that

exhibited enhanced antitumor activity against CD80/86-positive B

cell malignancies. In vitro, CSR-expressing T cells secreted higher

levels of IFN-g and IL-2 and demonstrated higher cytotoxicity.

Significant decreases in tumor volume and weight were also

observed when the CSR-expressing T cells were tested in vivo in

patient-derived xenograft mice models. However, regarding safety,

the study found that CSR-expressing T cells exhibited toxicity

against non-malignant CD80/86-positive cells, raising the concern

of off-target effects. Another safety concern was that mice infused

with CSR-expressing T cells were observed to experience mild graft-

versus-host-disease (GvHD) and mild cytokine release syndrome

(CRS), though neither proved lethal.
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While the studies found that CTLA-4/CD28 CSRs enhanced

anti-tumor efficacy, concerns about potential safety risks

underscore the importance of developing CSRs with improved in

vivo safety and tumor specificity. Prinz et al. (57) addressed this by

designing a novel CAR/CSR construct consisting of a first-

generation anti-CD19 CAR co-expressed with a CTLA-4/4-1BB

CSR, intended to reduce off-target effects on healthy cells by

selectively targeting cells expressing CD19 and CD80/CD86. The

study demonstrated that CAR/CSR T cells exhibited enhanced

cytotoxicity and increased secretion of IFN-g and IL-2 compared

to second-generation CAR T cells when co-cultured with Burkitt

lymphoma cells overexpressing CD80/CD86. In vivo, CAR/CSR

treatment resulted in higher complete remission rates in a first-line

mouse model and significantly prolonged survival in a second-line

model of tumor relapse, suggesting a promising strategy to enhance

the efficacy of anti-CD19 CAR T cell therapy for relapsed/refractory

B cell lymphoma. Regarding safety, the CAR/CSR construct

induced reduced secretion of interleukin-6 (IL-6). This cytokine is

commonly elevated during cytokine release syndrome (CRS), and

its reduction indicates the potential to mitigate the risk or severity

of CRS.

Finally, Park et al. (58) investigated CTLA-4/CD28 CSR in the

context of allogeneic T cell therapies, where donor-derived T cells

are used to treat patients. The study found that CSR expression

enhanced the graft-versus-tumor (GVT) effect in models of relapsed
Frontiers in Immunology 06
hematologic malignancies, such as acute lymphoblastic leukemia

(ALL). However, to mitigate the associated increase in GvHD risk,

the study co-administered IL-10-overexpressing mesenchymal stem

cells, providing an immunosuppressive buffer to preserve efficacy

while improving safety.
3.2 TIM-3-based stimulatory switch
receptors

TIM-3 is a type 1 transmembrane protein expressed on immune

cells including activated T cells, NK cells, myeloid cells, and Treg

cells (59). Upon T cell activation, TIM-3 is upregulated to maintain

T cell homeostasis by inhibiting T cell mediated cytotoxicity (60).

Unlike other checkpoint receptors, TIM-3 lacks any known

inhibitory signaling motifs in its intracellular domain, but

contains conserved tyrosine residues that may mediate alternative

signaling functions (59). Ligand binding (e.g. galectin-9, high

mobility group box protein 1 (HMGB1), carcinoembryonic

ant igen ce l l adhes ion molecule 1 (CEACAM1) , and

phosphatidylserine) induces phosphorylation of these tyrosines,

leading to dissociation of BAT3 and enabling TIM-3-mediated

inhibition of T cell responses (59, 60). As with other checkpoint

receptors, tumor cells exploit this pathway by upregulating TIM-3

ligands to suppress anti-tumor immunity.
FIGURE 3

Structural design of CSRs and CAR/CSRs based on immune checkpoint receptors other than PD-1. (A) CTLA-4-based CSRs and CAR/CSRs with a
CD28 or 4-1BB intracellular domain. (B) TIM-3-based CSRs and CAR/CSRs with a CD28 intracellular and/or transmembrane domain. (C) TIGIT-based
CSR with a CD28 intracellular domain and dual PD-1/TIGIT/CD28 CAR/CSR.
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TIM-3 ligands are expressed on the surface of almost all tumor

types, making them far more widely expressed compared with

ligands of other checkpoint receptors PD-1, CTLA-4, and TIGIT

(60). Despite this widespread expression, relatively few TIM-3-

based CSRs have been developed and tested (Figure 3B). Zhao et al.

(61) were the first to develop a TIM-3/CD28 CSR by fusing the

extracellular domain of TIM-3 with the transmembrane and

intracellular domains of CD28 and test its efficacy in vitro and in

vivo. The study found that the CSR-expressing anti-CD19 4-1BB

CAR T cells exhibited enhanced cytotoxicity via the IL-21/Stat3

axis, increased cytokine secretion, and decreased exhaustive

phenotype compared to second-generation 4-1BB-based anti-

CD19 CAR T cells (61). Upon repeated infusions of CSR-

expressing CAR T cells, there were remarkably no symptoms of

CRS toxicity or neurotoxicity detected in tumor-bearing mice.

Blaeschke et al. (59) further explored the structural

optimization of TIM-3/CD28 CSRs by engineering six variants

with differing lengths of the TIM-3 and CD28 transmembrane

domains. Their goal was to determine whether including larger

parts of CD28 may enhance CSR function. This approach was

informed by earlier findings from Oda et al. (62), who suggested

that the inclusion of a cysteine bond in the CD28 extracellular

domain promotes receptor multimerization, thereby strengthening

CD28 signaling. Consistent with this, Blaeschke et al. (59) found

that the two CSRs containing the largest CD28 domains induced the

greatest levels of T cell proliferation and cytokine production. The

study found that both generation anti-CD19 CARs expressing the

CSR demonstrated higher CAR numbers, increased proliferative

potential, increased CD25 expression, and decreased levels of late-

effector phenotype. Interestingly, second-generation CAR T cells

expressing the CSR had decreased percentages of cytokine-secreting

cells, and interestingly, both generations expressing the CSR

showed higher proliferative potential even in the absence of target

cells, though reassuringly significant cytokine release was not

detected in the absence of target cells. These unexpected findings

raise important questions regarding the long-term implications of

CSR-driven proliferation, including the potential for premature T

cell exhaustion. Further in vivo studies are warranted to validate

these results, evaluate durability and specificity, and assess safety

profiles in preclinical models.
3.3 TIGIT-based stimulatory switch
receptors

T cell immunoreceptor with Ig and ITIM domains (TIGIT) is a

co-inhibitory immune checkpoint receptor that negatively regulates T

cells and NK cells. TIGIT has a higher binding affinity than the

stimulatory receptor CD226 for binding to CD155 and CD112 ligands

(63). Upon binding to CD155, TIGIT inhibits T cell proliferation and

activation. As with other immune checkpoint ligands such as PD-1

and CTLA-4, tumors diminish the immune response by

overexpressing TIGIT ligands. To counter these inhibitory effects,

studies have explored TIGIT-based CSRs (Figure 3C).
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Hoogi et al. (63) developed two TIGIT/CD28 CSRs composed

of the extracellular TIGIT domain, the intracellular CD28 domain,

and the transmembrane domain of either TIGIT or CD28. They

found that the CSR containing the TIGIT transmembrane domain

demonstrated superior performance. When tested in vitro and in

human tumor xenograft in vivo, the CSR enhanced cytokine

secretion, delayed tumor growth, upregulated activation markers,

and protected against T cell hypofunction following repeated

antigen exposure when combined with a melanoma-specific TCR.

The study further found that the CSR enhanced the functionality of

anti-CD19 CARs in a manner dependent on CD155 expression by

the target cells.

As CSRs have demonstrated significant potential in overcoming

the challenges posed by the immunosuppressive TME, it has been of

recent interest to investigate a CSR capable of simultaneously

targeting multiple inhibitory checkpoint receptors. This may be

particularly beneficial in cases when tumors develop mechanisms to

circumvent the single checkpoint targeting strategies of most

existing CSRs and in cases where CSRs targeting a single

checkpoint pathway may not sufficiently achieve optimal anti-

tumor effects. Additionally, such a strategy may further enhance

the efficacy of CAR T cell therapy. Zhao et al. (64) were the first to

develop a novel dual PD-1/TIGIT/CD28 CSR targeting both PD-1

ligand PD-L1 and TIGIT ligand CD155 by fusing the extracellular

domains of PD-1 and TIGIT with the transmembrane and

intracellular domain of CD28. Co-expression of the PD-1/TIGIT/

CD28 CSR with an anti-EGFR CAR with the 4-1BB costimulatory

domain resulted in enhanced cytokine release, proliferation and

cytotoxicity in vitro. In xenograft mouse models, CSR-expressing

CAR T cells reduced tumor progression and volume, increased

overall survival, and rejected rechallenged tumors. Likewise, in

patient-derived xenograft (PDX) mouse models, CSR-expressing

CAR T cells demonstrated enhanced anti-tumor effects and robust

infiltration. TIGIT-based CSRs show a great deal of promise but

remain to be optimized before entering the clinical setting.
4 Targeting cytokines

The TME consists of several immunosuppressive cytokines such

as transforming growth factor-b (TGF-b), IL-4, and IL-10. These

cytokines are capable of recruiting immunosuppressive cells such as

myeloid-derived suppressor cells (MDSCs), Tregs, and tumor-

associated macrophages (TAMs) in order to support tumor

development and suppress CAR T cell antitumor responses (65).

Cytokine signaling also plays a pivotal role in T cell function,

proliferation, and differentiation (66). To enhance CAR T cell

efficacy in the immunosuppressive TME, several chimeric receptors

called inverted cytokine receptors (ICRs) have been explored

(Table 2). These ICRs link the extracellular domain of an

immunosuppressive cytokine receptor with the transmembrane and

intracellular domains of an immunostimulatory cytokine receptor,

converting an inhibitory signal into a stimulatory signal upon binding

to the immunosuppressive cytokine. Recent studies developing ICRs
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TABLE 2 Inverted cytokine receptors (ICRs) designed to supplement CAR T cells.

Cytokine Extracellular Intracellular CAR target
Cancer type CAR/ICR efficacy Reference

Prostate
Enhanced CAR T cell cytolytic activity and proliferation via
STAT3/STAT5/ERK phosphorylation in response to IL-4.

(67)

Pancreatic, Breast
Improved T cell proliferation and antitumor activity in IL-4-
rich environments; no significant increase in cytotoxicity

observed.
(68, 69)

Pancreatic
Increased expansion, activation, cytotoxicity, and cytokine
release; reduced exhaustion and higher proportion of less

differentiated T cell phenotypes
(70)

Not specified
Superior antitumor efficacy; retained cytotoxicity and reduced

exhaustion in the presence of IL-4, potentially due to
activation of STAT3 and polarization to Th17-like phenotype

(71)

Prostate
Mitigated exhaustion; enhanced proliferation, cytokine
secretion, and cytotoxicity of CAR T cells in vitro

(20)

Prostate, B-cell Lymphoma
Enhanced proliferation and cytotoxicity in vitro; improved

antitumor effects and higher cytokine release in vivo
(18, 21)

Solid Tumors
Increased expansion and cytokine production upon chronic
antigen exposure; potent antitumor activity in vivo at lower

cell doses
(22)

Solid Tumors

Enhanced proliferation upon antigen stimulation; elevated
STAT3 and STAT5 phosphorylation; effectively sequestered
monocyte-derived IL-6 and IL-1b associated with CRS and

neurotoxicity in vitro

(72)

Not specified

Enhanced expansion, cytokine secretion, and proliferation in
the presence of PSCA, TGF-b, and IL-4; no significant
differences in activation, exhaustion, and memory profile

compared to unmodified CARs

(73)

, Signal transducer and activator of transcription 3; STAT5, Signal transducer and activator of transcription 5; PSCA, Prostate stem
tate 1 (STEAP1); GM-CSF, Granulocyte-macrophage colony-stimulating factor; CRS, cytokine release syndrome.
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category
ICR type

domain domain antigen

IL-4 Based

4/2 IL-4Ra IL-2Rb MUC1, PSMA

4/7 IL-4Ra IL-7Ra PSCA, MUC1

4/15 IL-4Ra IL-15Rb NKG2D

4/21 IL-4R IL-21R Not specified

TGF-b-Based

TGF-b/IL-2/15 TGF-bR IL-2/IL-15 Rb STEAP1

TGF-b/IL-7 TGF-bR IL-7Ra PSMA, CD19

Other

GM-CSF/IL-18 GM-CSFRa/b IL-18Ra/b Not specified

IL-6/IL-7 IL-6Ra/b IL-7Ra CD19

Multi CSR/ICR TGF-bR, IL-4Ra 4-1BB, IL-7Ra PSCA

ICR, Inverted Cytokine Receptor; CAR, Chimeric Antigen Receptor; MUC1, Mucin-1; PSMA, Prostate-specific membrane antigen; STAT3
cell antigen; NKG2D, Natural-killer group 2, member D; Th17, T helper 17; STEAP1, Six transmembrane epithelial antigen of the pro
s
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have explored using the intracellular domain of cytokines belonging to

the common g chain (gc) cytokine family, which includes IL-2, IL-4,

IL-7, IL-9, IL-15, and IL-21 (Figure 4) (66).
4.1 IL-4-targeting ICRs

Multiple cancers including renal cell carcinoma, melanoma,

breast, glioblastoma, lung, prostate, bladder and head and neck

cancers have been found to have increased IL-4 receptor (IL-4R)

expression (66). Several ICRs have been developed to enhance CAR

T cell functionality in the TME by sequestering immunosuppressive

IL-4. These ICRs simultaneously limit IL-4 availability to tumors

and convert immunosuppressive signals into stimulatory signals.

One of the first groups to develop an ICR, Wilkie et al. (67) designed

a 4ab ICR by fusing the IL-4Ra extracellular domain with the

transmembrane and intracellular domains of IL-2Rb, which is

shared by IL-2 and IL-15. Upon TCR and costimulatory

signaling, activated T cells produce IL-2 to stimulate proliferation.

Although IL-2 also drives effector differentiation of naive T cells, IL-

2Rb signaling has been found to enhance the CAR T cell efficacy.

The study found that MUC1- or PSMA-CAR T cells expressing the

4ab ICR exhibited increased cytolytic activity and exponential

proliferation via STAT3/STAT5/ERK phosphorylation in response

to IL-4.
4.2 IL-4/IL-7 ICR + CAR

IL-7 promotes the survival and homeostatic expansion of naive

and memory T cells and has been used for in vitro expansion of

CAR T cells (66). Mohammed et al. (68) composed an IL-4/IL-7
Frontiers in Immunology 09
ICR by fusing the IL-4Ra ectodomain with the transmembrane and

intracellular domains of IL-7Ra and investigated the in vitro and in

vivo potential of prostate stem cell antigen-targeting CARs (CAR-

PSCA) expressing the ICR in treating pancreatic cancer, which is

characterized by high IL-4 levels and PSCA expression. The study

found that the ICR-expressing T cells exhibited enhanced T cell

proliferation, and CAR-PSCA cells expressing the ICR displayed

enhanced antitumor activity in an IL-4 and PSCA-dependent

manner. In a similar study, Bajgain et al. (69) explored the in

vitro and in vivo potential of mucin 1-targeting CARs (MUC1-

CAR) expressing an IL-4/IL-7 ICR in the IL-4 rich and PSCA-

upregulated breast cancer microenvironment. ICR-expressing

second-generation MUC1-CARs demonstrated enhanced

antitumor activity and proliferation, while ICR-expressing first

generation MUC1-CARs expanded but exhibited an exhausted

phenotype and failed to produce superior antitumor effects.

Interestingly, neither study noted increases in cytotoxicity with

the addition of the ICR to the CAR.
4.3 IL-4/IL-15 ICR+CAR

IL-15 has been found to enhance CD8+ T cell and NK expansion

and function (66). Zhou et al. (70) developed a novel natural killer

group 2, member D (NKG2D)-targeting CAR construct expressing a

IL-4/IL-15 ICR consisting of the IL-4R extracellular domain linked to

the transmembrane and intracellular domains of IL-15. NKG2D

receptors play a role in tumor immunosurveillance and are expressed

on the surface of immune cells such as T cells and NK cells (74).

Ligands for NKG2D (NKG2DL) are expressed on stressed cells. In the

process of malignant transformation, tumor cells undergo various

forms of stress, including DNA damage, activation of heat shock
FIGURE 4

Structures and functions of the six members of the common g chain (gc) cytokine family (IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21) used for the
intracellular domain of ICRs. gc cytokines play critical roles in T cell development and differentiation and primarily signal through the JAK-STAT
pathway upon activation.
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proteins, and oxidative stress (75). These forms of cellular stress induce

the expression of NKG2D ligands (NKG2DL) on tumor cells. The

study found that the CAR/ICR construct demonstrated increased

expansion and activation, cytotoxicity, and cytokine release in the

pancreatic cancer TME both in vitro and in vivo. Additionally,

the CAR/ICR construct mitigated exhaustion and increased the

proportion of less differentiated T cell phenotypes in vitro. However,

while the NKG2D pathway is a viable avenue, tumors may deploy

countermeasures including proteolytic-mediated shedding of

NKG2DL or exosome-mediated secretion to release soluble NKG2D

ligands in order to evade NKG2D surveillance (76, 77). Elevated levels

of soluble NKG2D ligands are associated with worsened patient

outcomes for several cancer types (75–77). These forms of immune

evasion may pose challenges to the efficacy of the CAR.
4.4 IL-4/IL-21 ICR+CAR

IL-21 has been found to improve antitumor T cell immunity by

preventing T cell differentiation and inhibiting Treg expansion (66).

Wang et al. (71) designed an IL-4/IL-21 ICR that demonstrated

superior anti-tumor efficacy in vitro and in vivo in combination

with CARs in comparison to IL-4/IL-7 CAR/ICRs. Unlike IL-4/IL-7

CAR/ICRs, IL-4/IL-21 CAR/ICRs retained cytotoxicity and

demonstrated attenuated exhaustion in the presence of

immunosuppressive IL-4. This may in part be explained by the

differing phospho-STAT signaling cascades activated by each ICR.

The IL-4/IL-7 ICR activates STAT5 phosphorylation and promotes

Th1 differentiation, while the IL-4/IL-21 ICR activates STAT3

phosphorylation and polarization to the Th17-like phenotype, which

exhibit lower exhaustion markers than Th1 cells. As IL-21 is a

pleiotropic cytokine and may be influenced by the presence of other

cytokines, further studies are needed to investigate safety and efficacy

when the ICR constructs are clinically translated.
4.5 TGF-b-targeting ICRs

TGF-b plays a key paradoxical role in cancer progression and is

involved in regulating various cancer cell functions such as cell cycle

progression, apoptosis, and differentiation (78). Its effects on cancer

progression can vary with tumor type and genetic landscape.

Interestingly, it switches from tumor suppressive in early-stage

tumors to tumor promoter in later-stage tumors (79). In normal

and premalignant cells, TGF-b primarily functions as a tumor

suppressor by inhibiting cell proliferation and inducing

apoptosis (80). However, tumor cells can selectively bypass TGF-

b-mediated growth inhibition by activating oncogenes via

mutations and inactivating mutations in tumor suppressor

genes (80). By inhibiting TGF-b-mediated growth inhibition,

tumor cells then take advantage of TGF-b signaling to increase

the epithelial-to-mesenchymal transition (EMT), promoting their

own migration and invasion abilities (80). TGF-b can also act in a

paracrine manner and shape the TME by activating cancer-

associated fibroblasts (CAFs), promoting angiogenesis, and
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stimulating extracellular matrix production to promote cancer

progression (80).

Similar to IL-4-based ICRs, several TGF-b-based ICRs have

been developed by fusing the exodomain of the immunosuppressive

TGF-b receptor to the transmembrane and intracellular domains of

stimulatory receptors. Beck et al. (20) generated a TGF-b-IL-2Rb
CSR and found it mitigated exhaustion and enhanced the in vitro

proliferation, cytokine secretion, and cytotoxicity of CAR T cells

targeting STEAP1, a highly expressed protein in prostate cancer.

Further studies are needed to determine the in vivo efficacy of the

CSR as well as to identify potential off-target effects of the CAR/ICR

T cells exhibiting enhanced activity in any environment outside the

TME with high TGF-b concentrations. Weimin et al. (21)

developed a TGF-b/IL-7 CSR co-expressed with CAR T cell

targeting prostate-specific membrane antigen (PSMA) and found

the CAR/ICR exhibited enhanced proliferation and cytotoxicity in

vitro following repeated antigen activation by tumor cells. In mouse

xenograft models, higher cytotoxicity and enhanced anti-tumor

effects were noted with the CAR/ICR combination. Elevated

cytokine release was also found in mouse PDX models. Noh et al.

(18) found that anti-CD19 CAR T cells expressing a TGF-b/IL-7
CSR exhibited superior anti-tumor efficacy, including prolonged

overall survival rates and the prevention of tumor recurrence in a

murine model of CD19+ B cell lymphoma. While TGF-b-based
ICRs in CAR-T therapy are promising and some early-stage clinical

trials are exploring them, they have not yet been widely adopted in

clinical settings.
4.6 Other ICRs

Several ICRs containing other cytokines have recently been

developed to enhance the efficacy and specificity of CAR T cell

therapy, particularly in the immunosuppressive TME of solid tumors.

Repeated antigen stimulation in the TME is a major driver of CAR T

cells cell dysfunction, leading to exhaustion and impaired persistence.

Studies have found that an inducible costimulatory molecule capable of

activating MyD88, the central signaling hub for Toll-like receptors and

the IL-1 and IL-18 receptors, may help sustain CAR T cell effector

functions when facing chronic antigen exposure in the TME (22). Lange

et al. (22) identified the cytokine GM-CSF as a potential candidate due

to its invariable expression after T cell activation. They developed a

novel GM-CSF/IL-18 CSR that enhances the effector functions of CARs

in an antigen- and activation-dependent manner by combining the

extracellular domains of the a/b chains of GM-CSF receptor and

transmembrane and intracellular domains of the a/b chains of the

IL-18 receptor. This establishes an autocrine loop linking T cell

activation, indicated by the expression of GM-CSF, with the MyD88

signaling pathway. The CAR/CSR exhibited greater expansion and

cytokine production in repeat stimulation assays mimicking chronic

antigen exposure as well as potent antitumor activity in vivo solid tumor

xenograft models at lower cell doses than standard CAR T cells.

CRS remains a major limitation of CAR T cell therapy, with

cytokine IL-6 being one of the most elevated cytokines during CRS

episodes. To mitigate this toxicity, Yoshikawa et al. (72) designed a
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G6/7R CSR from the extracellular IL-6 domain and the

transmembrane and intracellular IL-7 receptor that constitutively

activates the JAK-STAT pathway important for various aspects of the

immune response. In vitro, CSR-expressing anti-CD19 CAR T cells

exhibited enhanced proliferation upon antigen stimulation, elevated

phosphorylation of STAT3 and STAT5, and the ability to effectively

sequester monocyte-derived IL-6 and IL-1b, which are associated

with CRS and neurotoxicity, respectively. However, further studies

are necessary to validate these in vitro findings and evaluate the

relationship between CAR T cell dose, expansion, and serum IL-6

levels in vivo.

Recent studies have also explored strategies to increase the

specificity of later generation CARs that target antigens such as CD19

which may be expressed on normal cells, potentially resulting in

undesirable “on-target, off-tumor” toxic effects. Though rare, some

patients treated with anti-CD19 CARs develop lifelong B-cell aplasia,

as the target CD19 antigens are also expressed on non-malignant B cells.

Similarly, anti-HER2 CAR T cells have been attributed to lethal toxic

effects and CRS due to the expression of HER2 on normal tissues of vital

organs. Sukumaran et al. (73) designed a novel study to test whether co-

expressing an anti-PSCA first-generation CAR with both TGF-b/4-1BB
CSR and 4/7 ICR could enhance CAR specificity at the tumor site.

CARs expressing the CSR+ICR demonstrated enhanced expansion in

the presence of PSCA, TGF-b and IL-4 while unmodified CARs failed to

expand. CSR+ICR-expressing CARs also exhibited higher cytokine

secretion and enhanced expansion. However, despite enhanced

proliferation and cytokine production, there were no significant

differences in activation markers, exhaustion phenotype, and memory

subset distribution between modified and unmodified CAR T cells,

highlighting the need for further refinement to improve selective activity

and long-term safety.
5 Conclusion

CSRs offer a promising approach to improve the therapeutic efficacy

of CAR T cell therapies for solid tumors. The inhibitory-to-stimulatory

design of CSRs involving key checkpoint inhibitors holds great potential

in mitigating challenges to CAR T cell therapy presented by the

immunosuppressive TME of solid tumors such as T cell exhaustion

and decreased cytotoxicity. In designing these receptors, safety remains a

critical consideration, given that some studies have found potential side

effects such as autoimmune reactions and cytokine release syndrome.

Additional in vitro and in vivo studies are thus critical to investigate

unexpected immune interactions, assess long-term safety, and identify

potential off-target effects before advancing to clinical trials.

Looking ahead, expanding CSR designs to target a broader array of

inhibitory receptors and combining them rationally with ICRs offers an

exciting avenue to further improve tumor specificity and reduce

toxicity. Furthermore, emerging synthetic receptor platforms, such as

synthetic Notch (synNotch) receptors (81–86), enable logic-gated

antigen sensing and inducible expression of therapeutic payloads,

including CSRs or cytokines. These systems allow for context-specific

activation of T cells within the TME, offering an additional layer of

control to enhance precision and minimize off-tumor effects. Such
Frontiers in Immunology 11
integrated and programmable strategies hold great promise for refining

the precision and therapeutic index of next-generation engineered T

cell therapies.
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