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Background: While immunotherapy has redefined clinical paradigms for
advanced gastric cancer, reliable efficacy prediction remains a critical
unmet challenge. Unlike invasive tissue-based predictors, circulating
biomarkers offer non-invasive monitoring potential. This study investigated
serum energy metabolites, whose dysregulation drove immune evasion, as
predictors of therapeutic efficacy in advanced gastric cancer receiving first-
line chemoimmunotherapy.

Methods: We conducted a prospective observational study involving 52 patients
with advanced gastric cancer receiving first-line chemoimmunotherapy. Serum
metabolites of glycolysis and tricarboxylic acid (TCA) cycle were quantified via
high-performance liquid chromatography-tandem mass spectrometry.
Therapeutic response, progression-free survival (PFS), and overall survival (OS)
were served as evaluation endpoints.

Results: Patients exhibiting decreased serum concentrations of glycolytic
metabolites (lactate and pyruvate) demonstrated significantly higher disease
control rate (DCR) compared to those with elevated concentrations. Elevated
serum lactate and pyruvate were significantly associated with inferior PFS and OS.
Multivariate Cox regression established low lactate and pyruvate as independent
prognostic factors for improved PFS and OS. However, no significant
associations were observed between serum TCA cycle metabolites (citrate,
isocitrate, o.-ketoglutarate, succinate, fumarate, malate, and oxaloacetate) and
DCR, PFS, or OS.

Conclusion: Our findings suggest that serum lactate and pyruvate as non-
invasive glycolytic biomarkers with substantial predictive value for
immunotherapy efficacy in advanced gastric cancer, requiring validation in
larger cohorts to guide therapeutic decisions.
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Introduction

Gastric cancer remains a significant global health burden,
ranking as the fifth most diagnosed and fifth deadliest malignancy
worldwide (1). Traditional treatment modalities, including surgical
resection, chemotherapy, and radiotherapy, often show limited
efficacy in the advanced stages of the disease (2). Immunotherapy
has emerged as a cornerstone therapeutic strategy in gastric cancer,
demonstrating significant survival improvements (3). The approved
tissue-based biomarkers for gastric cancer immunotherapy include
programmed cell death 1 ligand 1 (PD-L1), microsatellite status,
and tumor mutational burden (4). However, tissue-based
biomarkers capture only a single spatiotemporal snapshot and fail
to reflect intra-tumoral and inter-tumoral heterogeneity across
timepoints (5). Liquid biopsy is increasingly utilized in precision
oncology, encompassing five key modalities: circulating tumor
DNA, circulating tumor cells, exosomes, extracellular RNAs, and
metabolic signatures. These modalities collectively enable non-
invasive disease monitoring, therapeutic guidance, and dynamic
response assessment (6). Consequently, identifying robust liquid
biopsy biomarkers to guide immunotherapy in gastric cancer is
clinically essential.

Energy metabolism sustains physiological functions by
converting nutrients into adenosine triphosphate (ATP) for
cellular homeostasis (7). By serving as a fundamental energy
source via tricarboxylic acid (TCA) and glycolytic pathways,
glucose metabolism delivers both ATP for cellular and organismal
growth, and biosynthetic precursors for macromolecular assembly
(8). Substantial evidence demonstrates that during malignancy,
glycometabolites derived from both pathways collectively
orchestrate tumor immunomodulation, mechanistically
exemplified by: (i) tumor-derived lactate generated via glycolytic
pyruvate conversion acidifying the microenvironment to
compromise anti-tumor immunity; while (ii) TCA cycle
metabolites, such as o-ketoglutarate, succinate, and fumarate,
exerting diverse immunomodulatory effects on immune cell
subsets, such as cytotoxic T cells, macrophages, and regulatory T
cells (7, 9). Although tumor cells retain the energy metabolism of
TCA cycle, they undergo metabolic reprogramming and transform
into a metabolic feature dominated by glycolysis, which is known as
the Warburg effect (10). And numerous studies have shown that
targeting energy metabolism may become a potential strategy for
enhancing the efficacy of anti-tumor treatments, including
immunotherapy (11). Therefore, the metabolites related to the
TCA cycle and glycolysis have the potential to serve as
biomarkers for predicting immunotherapy efficacy in malignancies.

Metabolomics leverages high-throughput technologies to profile
metabolites in biofluids, and tissues, profoundly advancing our
understanding of malignancies. This approach is critical for tumor
biomarker discovery and enables real-time prediction of tumor burden
and treatment response (12, 13). Here, we employed targeted
metabolomics to quantitatively profile serum energy metabolites,
investigated their associations with clinical efficacy, and evaluated
their potential to predict survival outcomes in advanced gastric
cancer patients receiving first-line chemoimmunotherapy.
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Patients and methods
Study design

This prospective observational cohort study was conducted in
the Department of Oncology at the Affiliated Huaian No.1 People’s
Hospital of Nanjing Medical University from June 2021 to
December 2024. It aimed to investigate associations between
serum metabolites involved in glycolysis and TCA cycle and both
clinical response and prognosis in advanced gastric cancer patients
receiving first-line chemoimmunotherapy. The study protocol was
approved by the Human Ethics Committee of the Affiliated Huaian
No.1 People’s Hospital of Nanjing Medical University (YX-2021-
058-01). All patients signed their informed consent.

Study population

The study population included 52 patients who were diagnosed
with advanced gastric cancer at the Affiliated Huaian No.1 People’s
Hospital of Nanjing Medical University. Inclusion criteria were as
follows: Age >18 years old; untreated, unresectable locally advanced
or metastatic gastric cancer; human epidermal growth factor
receptor 2 (HER-2) status (negative or low expression) confirmed
by immunohistochemistry and/or fluorescence in situ
hybridization; measurable disease according the Response
Evaluation Criteria in Solid Tumors (RECIST); Eastern
Cooperative Oncology Group (ECOG) performance status of 0 or
1. Exclusion Criteria were as follows: Prior immunotherapy; active
autoimmune diseases requiring immunosuppression, uncontrolled
infections, or untreated central nervous system metastases; history
of other malignancies within 5 years; severe hypersensitivity and
major surgery within 4 weeks. The patient demographics, major
metastatic lesion, grade of differentiation, status of HER-2 and PD-
L1 combined positive score (CPS), etc. were all collected.

Therapeutic regimen

All eligible patients received first-line anti-PD-1 therapy
combined with chemotherapy. The standard chemotherapy
regimens include fluoropyrimidines (fluorouracil, capecitabine or
S1) plus platinum agents (oxaliplatin or cisplatin), alongside anti-
PD-1 drugs (nivolumab, sintilimab, or tislelizumab), which were
administered every 3 weeks until disease progression or
intolerable toxicity.

Outcome evaluation

Quantification of tumor burden was performed through
computed tomography and/or magnetic resonance imaging at
baseline. Subsequent therapeutic response monitoring was
conducted at protocol-defined intervals, specifically every 2 to 3
treatment cycles, using serial radiographic evaluations. Therapeutic
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responses were categorized as complete response (CR), partial
response (PR), stable disease (SD) and progressive disease (PD)
according to the RECIST criteria. Survival endpoints were
quantified as follows: overall survival (OS) spanned from first-line
therapeutic initiation to mortality or censoring at last
documentation, while progression-free survival (PES)
encompassed the interval between treatment commencement and
either disease progression or death from any cause.

Serum sample preparation

The serum samples were thawed at 4 °C, mixed with the isotope
internal standard substance, and then cold methanol/acetonitrile
solution was added. Subsequently, the samples were subjected to
thorough vortexing, ultrasonic treatment at low temperature, and
protein precipitation at -20 °C. Afterwards, the supernatants were
collected by centrifugation and dried in a vacuum centrifuge.
Finally, the samples were re-dissolved in an acetonitrile/water
mixture, thoroughly shaken, then centrifuged to collect the
supernatant, which was used for high performance liquid
chromatography-tandem mass spectrometry (HPLC-MS/
MS) analysis.

HPLC-MS/MS analysis

Analyses were performed using an ultra-HPLC (1290 Infinity
LC, Agilent Technologies) coupled to a QTRAP 6500+ (AB Sciex).
The mobile phase consisted of two components: (A) 50 mM
ammonium acetate in water with 1.2% ammonium hydroxide,
and (B) 1% acetylacetone in acetonitrile. Samples were
maintained at 4 °C in the autosampler, while the column
temperature was controlled at 35 °C. Chromatographic separation
was carried out using a gradient elution method at a flow rate of 300
w/min, with a precise injection volume of 2 UL per sample. The
quality control samples were used to assess system stability and
repeatability, while a standard metabolite mixture was employed for
chromatographic retention time calibration. Ion pairs were detected
via multiple reaction monitoring under negative electrospray
ionization conditions. Chromatographic peaks were integrated
using MultiQuant software. Glycometabolites involved in
glycolysis and TCA cycle were identified by retention time
alignment with authenticated standards and quantified via isotope
dilution mass spectrometry using stable isotope-labeled
internal standards.

Statistical analysis

All statistical analyses were conducted using the Statistical
Package for the Social Sciences (SPSS) software. Independent
samples t-tests, which selected based on Levene’s test for equality
of variances, were applied to examine metabolite associations with
clinical parameters. Metabolites levels were assessed for normality
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via the Shapiro-Wilk test, skewed data underwent log-
transformation, with the mean serving as the threshold for
grouping into low- and high-expression groups. The association
between metabolites expression and therapeutic response was
evaluated by Chi-square test or Fisher’s exact tests, and the odds
ratio (OR) values and 95% confidence intervals (95% CIs) were
calculated. PFS, and OS distributions were analyzed through
Kaplan-Meier curves and Log-rank tests. Time-dependent
receiver operating characteristic (ROC) curves with area under
the curve (AUC) values and 95% CIs were employed to analyze
the predictive value of these metabolites for 6-month PES and 12-
month OS. Univariate and multivariate Cox regression analyses
with hazard ratios (HR) and 95% CI were employed to determine
the independent predictors of survival. P value < 0.05 was
considered statistically significant.

Results
Patient characteristics

This study enrolled 52 advanced gastric cancer patients (44 males
and 8 females) with a median age of 61 years (range: 47-80 years).
The major metastatic lesions among these patients comprised hepatic
metastases (19 cases), non-regional lymph node metastases (17
cases), peritoneal metastases (12 cases), pulmonary metastases (3
cases), and splenic metastasis (1 case). All patients exhibited
proficient mismatch repair, with 26 HER2-negative (0) and 26
HER2-low (14/2+). The PD-L1 CPS distribution showed 18
patients > 5 and 34 patients < 5. Two glycolytic metabolites and
seven TCA cycle metabolites were quantified in all patients, with the
following mean concentrations and 95% CI (Lmol/L): pyruvate: 33.27
(28.77-38.37), lactate: 1309.18 (1169.50-1462.18), citrate: 13.77
(12.30-15.42), isocitrate: 2.93 (2.92-2.94), o-ketoglutarate: 34.36
(30.13-39.17), succinate: 2.73 (2.46-3.03), fumarate: 3.06 (2.76-3.39),
malate: 5.50 (4.71-6.41), oxaloacetate: 107.15 (96.38-119.40). All data
are presented in Table 1, Figure 1. The analysis of therapeutic
response demonstrated an objective response rate (ORR) of 26.9%
(14/52) and a disease control rate (DCR) of 76.9% (40/52). The
median PFS was 7.6 months (95% CI: 6.5-8.7) without censoring
events, and the median OS was 12.6 months (95% CI: 9.6-15.6) with 6
patients censored.

Association between serum
glycometabolites and clinicopathological
parameters

Here, we examined serum glycometabolite associations with
clinicopathological parameters. Statistical analysis revealed no
significant associations (all P > 0.05) between any of the nine
metabolites (pyruvate, lactate, citrate, isocitrate, o-ketoglutarate,
succinate, fumarate, malate, and oxaloacetate) and clinicopathological
parameters including age, sex, histological differentiation grade, HER2
status, or PD-L1 CPS (Table 1).
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TABLE 1 Association between serum glycometabolites and clinicopathologic variables of advanced gastric cancer.

Metabolite expression (Mean, 95%Cl)

Clinical
variables Pyruvate Lactate Citrate Isocitrate o-Ketoglutarate Succinate Fumarate Malate Oxaloacetate
Age, years
<65 30 35.5 (28.9-42.0) 1411.9 (1205.5-1618.3) 16.2 (13.5-19.0) 2.94 (2.92-2.95) 38.9 (30.5-47.3) 3.0 (2.56-3.34) 32(2.8-3.7) 6.5 (5.4-7.6) 115.9 (96.3-135.4)
>65 22 41.6 (29.8-53.3) 1418.9 (1147.6-1690.2) 133 (10.9-15.7) 2.92 (2.91-2.94) 38.8 (28.4-49.2) 2.9 (2.37-3.40) 3.3 (2.7-4.0) 6.1 (4.5-7.7) 116.6 (92.2-141.1)
P value 0.322 0.966 0.115 0.196 0.982 0.831 0.784 0.621 0.960
Gender
Males 44 39.3 (32.4-46.1) 1376.4 (1208.4-1544.4) 15.5 (13.4-17.6) 2.93 (2.92-2.94) 38.0 (31.6-44.4) 2.93 (2.60-3.26) 32 (2.9-3.6) 63 (5.3-7.3) 117.6 (100.4-134.7)
Females 8 31.5 (16.7-46.3) 1626.5 (1064.3-2188.8) 12.3 (8.1-16.6) 291 (2.89-2.94) 43.6 (17.0-70.2) 2.88 (1.86-3.91) 3.6 (2.0-5.1) 6.7 (4.0-9.3) 108.6 (84.9-132.3)
0.358 0.260 0.220 0.338 0.528 0.990 0.458 0.754 0.665
G stage
Gl1-2 10 30.2 (19.3-42.1) 1453.5 (969.3-1937.7) 134 (11.4-15.4) 2.92 (2.90-2.93) 37.8 (24.4-51.2) 3.07 (2.01-4.13) 3.1 (2.3-3.9) 6.8 (4.2-9.4) 109.3 (61.8-156.9)
G3 42 39.9 (32.6-47.2) 1405.7 (1233.0-1578.3) 15.4 (13.1-17.6) 2.93 (2.92-2.95) 39.1 (31.8-46.5) 2.88 (2.58-3.20) 3.3 (2.9-3.7) 62 (5.2-7.2) 117.8 (102.2-133.4)
P value 0.205 0.815 0412 0376 0.867 0.646 0.643 0.621 0.653
HER-2
0 26 41.1 (32.0-50.1) 1492.8 (1240.5-1745.1) 15.4 (12.8-17.9) 2.93 (2.91-2.95) 43.1 (31.8-54.4) 3.1 (2.6-3.6) 3.5 (3.0-4.1) 6.7 (5.3-8.1) 118.7 (99.9-137.4)
1-2 26 35.1 (26.5-43.6) 13369 (1128.5-1545.3) 14.6 (11.7-17.5) 2.93 (2.91-2.94) 34.7 (28.5-40.9) 2.7 (2.4-3.1) 3.0 (2.6-3.5) 6.0 (4.8-7.2) 113.7 (89.6-137.8)
P value 0.325 0331 0.677 0.409 0.182 0.240 0.157 0.441 0.741
PD-L1 CPS
<5 34 38.0 (29.7-46.4) 1464.8 (1272.5-1655.1) 16.0 (13.3-18.7) 2.93 (2.92-2.95) 39.7 (30.9-48.5) 3.0 (2.6-3.4) 3.5 (3.0-4.0) 6.6 (5.5-7.8) 122.7 (103.8-141.5)
5 18 38.1 (29.4-46.9) 1322.4 (1013.3-1631.5) 13.1 (11.5-14.7) 2.92 (2.91-2.93) 37.3 (28.6-46.0) 2.8 (2.4-3.2) 2.8 (2.3-3.3) 5.8 (4.2-7.3) 104.0 (78.9-129.0)
P value 0.986 0.402 0.063 0.096 0715 0.592 0.062 0.368 0.229
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The expression of serum glycometabolites in patients with advanced gastric cancer. The graph illustrated the expression of glycometabolites,
expressed as the mean with 95% Cl, including pyruvate, lactate, citrate, isocitrate, o-ketoglutarate, succinate, fumarate, malate, and oxaloacetate.

Relationship between serum
glycometabolites and clinical efficacy

Among 52 evaluable patients, therapeutic responses comprised
PR in 14 cases (26.9%), SD in 26 (50.0%), and PD in 12 (23.1%) per
the RECIST criteria. Patients were stratified into low- and high-
expression groups using the mean of log-transformed serum
metabolite concentrations as the grouping threshold. No
statistically significant differences in ORR were observed across
subgroups stratified by nine different metabolites (all P > 0.05,
Table 2). Patients with low levels of glycolytic metabolites (pyruvate:
96.0% vs. 59.3%, P = 0.002; lactate: 92.3% vs. 61.5%, P = 0.019)
exhibited significantly higher DCR compared to respective high-
level groups (Table 2). TCA cycle metabolites, including o-
ketoglutarate (90.3% vs. 57.1%, P = 0.008, Table 2), and fumarate
(91.7% vs. 64.3%, P = 0.024; Table 2), demonstrated significant
associations with DCR, while citrate, isocitrate, succinate, malate,
and oxaloacetate exhibited no statistical linkage to DCR (all P >
0.05, Table 2). Besides, patients with PD-L1 CPS =5 demonstrated
markedly improved ORR (44.6% vs. 17.6%, P = 0.038) and DCR
(100% vs. 64.7%, P = 0.004) compared to those with PD-L1 CPS <
5 (Table 2).

Survival predictive effects of serum
glycometabolites

We further explored the predictive role of serum
glycometabolites and found that patients in the low pyruvate
(10.37 vs. 4.80 months, P = 0.001; Figure 2A, Table 3) and lactate
(8.43 vs. 4.80 months, P = 0.003; Figure 2B, Table 3) concentration
cohorts demonstrated significantly prolonged PFS compared to
high-concentration counterparts, whereas TCA cycle metabolites
showed no significant PES associations (all P > 0.05, Figures 2C-I,
Table 3). Patients with low concentrations of pyruvate (17.00 vs.
10.57 months, P = 0.004; Figure 3A, Table 3), lactate (17.60 vs. 10.60
months, P = 0.001; Figure 3B, Table 3) were associated with
favorable OS, whereas TCA cycle metabolites showed no OS
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associations (all P > 0.05, Figures 3C-I, Table 3). In addition,
patients with PD-L1 CPS > 5 were positively associated with
increased PFS (8.07 vs. 5.07 months, P = 0.004) and OS (19.40 vs.
11.40 months, P = 0.001) than those with PD-L1 CPS < 5 (Table 3).
To further evaluate the prognostic efficacy of serum
glycometabolites, we conducted time-dependent ROC analysis.
Pyruvate and lactate demonstrated substantial predictive accuracy
for PFS at the 6-month landmark and for OS at the 12-month
landmark, respectively (all P < 0.05, Table 4).

Univariate and multivariate analyses

Univariate analysis revealed significant associations with PFS
for PD-L1 CPS (P = 0.005), pyruvate (P = 0.001), and lactate (P =
0.004), further demonstrating robust associations with OS for PD-
L1 CPS (P = 0.005), pyruvate (P = 0.006), and lactate (P = 0.001)
(Tables 5, 6). Subsequent multivariate Cox regression confirmed
PD-L1 CPS = 5, low pyruvate levels, and low lactate levels as
independent prognostic factors for prolonged PFS and OS in
advanced gastric cancer patients underwent first-line
chemoimmunotherapy (all P < 0.05, Tables 5, 6).

Discussion

Immunotherapy offers significant survival improvements for
patients with advanced gastric cancer (3). Multiple large-scale phase
III randomized controlled trials, including KEYNOTE-859,
CheckMate-649, ATTRACTION-4, ORIENT-16, and
RATIONALE-305, have demonstrated that combining
immunotherapy with chemotherapy significantly improves the
ORR and prolongs PFS and OS in patients with previously
untreated HER2-negative advanced gastric cancer (14-18).
However, due to treatment resistance in a subset of patients, it is
crucial to meticulously select appropriate patients to ensure
therapeutic efficacy. In the present study, we evaluated the
predictive significance of serum glycometabolites in patients
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TABLE 2 Association of serum glycometabolites with ORR and DCR in advanced gastric cancer treated with chemoimmunotherapy.

Clinical efficacy

Pyruvate

Low High

Lactate

Low High

Citrate

Low High

Isocitrate

Low High

Low

Metabolite expression

o-

Ketoglutarate

High

Succinate

Low High

Fumarate

Low High

Malate

Low High

Low

Oxaloacetate

High

PDL1 CPS

) >5

PR 8 6 9 5 7 7 7 7 8 6 7 7 9 5 8 6 8 6 6 8
SD+PD 17 21 17 21 21 17 24 14 23 15 19 19 15 23 17 21 22 16 28 10
P value 0.427 0.211 0.736 0.391 0.825 1.000 0.130 0.427 0.961 0.038

OR (95% CI)

0.61 (0.18-2.09)

0.45 (0.13-1.60)

1.24 (0.36-4.22)

1.17 (0.50-5.91)

1.15 (0.33-3.98)

1.00 (0.29-3.41)

0.36 (0.10-1.29)

0.61 (0.18-2.09)

1.03 (0.30-3.56)

3.73 (1.04-13.45)

DCR

PR+SD

24 16

24 16

21 19

24 16

28 12

21 18

22 18

24 18

24 16

22 18

PD

12 0

P value

0.002

0.019

0.754

0.918

0.008

0.324

0.024

0.099

0.740

0.004

OR (95% CI)

0.06 (0.01-0.52)

0.13 (0.03-0.69)

1.27 (0.34-4.67)

0.93 (0.25-3.46)

0.14 (0.33-0.62)

0.43 (0.11-1.66)

0.16 (0.03-0.88)

0.25 (0.06-1.06)

0.67 (0.18-2.44)

1.55 (1.21-1.98)
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Kaplan-Meier PFS analysis based on serum glycometabolite concentrations in advanced gastric cancer patients receiving chemoimmunotherapy.
Graphs depicted results for individual glycometabolites: (A) pyruvate, (B) lactate, (C) citrate, (D) isocitrate, (E) a-ketoglutarate, (F) succinate, (G)

fumarate, (H) malate, (l) oxaloacetate.

undergoing first-line chemoimmunotherapy for advanced gastric
cancer, and revealed that elevated serum glycolytic metabolites
(lactate and pyruvate) were significantly associated with reduced
DCR, and served as independent prognostic biomarkers for
predicting shorter PFS and OS.

Glycolysis encompasses the catabolic breakdown of glucose or
glycogen into pyruvate, yielding modest amounts of ATP. Notably,
even under aerobic conditions, the pyruvate produced by glycolysis
is reduced to lactate through lactate dehydrogenase catalysis (10).
Moreover, tumor cells tend to utilize glycolysis to promote cell
proliferation and migration, and to evade immune surveillance by
utilizing the glycolytic metabolites (19). Pyruvate plays a central role
in glycolysis and is critical for tumor growth; it is also associated
with the progression of lung cancer (20). As a pivotal TME
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regulator, lactate drives immunosuppression mainly by impairing
functions of cytotoxic T-cells, blocking antigen presentation of
dendritic cells, polarizing M2 macrophages, suppressing activity
of NK cells, and amplifying suppression of Treg cells (21-25).
Numerous studies demonstrate that overexpression of glycolysis-
related genes associates with poor prognosis and immunotherapy
response across diverse malignancies (26-30). Excessive lactate
accumulation within the TME induces lactic acidosis in patients,
with hyperlactatemia (>2 mmol/L) associated with high tumor
burden and elevated long-term mortality in lymphoma cohorts
(10). Previous study detected elevated serum pyruvate and lactate
levels in immunotherapy non-responders of lung cancer (31). Our
data corroborate this association, with significantly higher serum
levels of pyruvate and lactate associated with reduced DCR in
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TABLE 3 Association of serum glycometabolites with survival in advanced gastric cancer treated with chemoimmunotherapy.

PFS (O}
Metabolite expression
Median (95%Cl) P value Median (95%Cl) P value

Low (25) 10.37 (8.623-12.11) 17.00 (14.00-20.00)

pyruvate 0.001 0.004
High (27) 4.80 (2.82-6.78) 10.57 (8.35-12.78)
Low (26) 8.43 (4.89-11.97) 17.60 (8.99-26.21)

lactate 0.003 0.001
High (26) 4.80 (0.01-9.59) 10.60 (9.26-11.94)
Low (28) 6.27 (4.78-7.75) 12.07 (10.44-13.70)

citrate 1.000 0.895
High (24) 8.07 (5.83-10.31) 15.53 (10.22-20.85)
Low (31) 7.20 (5.64-8.76) 12.07 (10.49-13.64)

isocitrate 0.493 0.724
High (21) 9.37 (5.98-12.76) 17.00 (10.83-23.18)
Low (31) 8.43 (6.40-10.47) 15.53 (10.65-20.42)

o-ketoglutarate 0.242 0.130
High (21) 3.93 (0.00-7.871) 11.10 (9.49-12.72)
Low (26) 7.57 (4.12-11.01) 12.40 (11.15-13.65)

succinate 0.131 0.172
High (26) 7.50 (3.79-11.21) 14.87 (8.24-21.50)
Low (24) 7.70 (4.78-10.62) 16.07 (9.31-22.82)

fumarate 0.255 0.096
High (28) 6.83 (3.16-10.51) 11.73 (9.73-13.74)
Low (25) 7.57 (4.96-10.18) 13.13 (7.15-19.12)

malate 0.099 0.060
High (27) 7.57 (5.02-10.11) 11.40 (6.72-16.08)
Low (30) 7.77 (6.60-8.93) 14.87 (10.92-18.82)

oxaloacetate 0.098 0.069
High (22) 6.20 (3.75-8.65) 11.17 (7.18-15.15)
<5 (34) 5.07 (2.88-7.26) 11.40 (10.25-12.55)

PDL1 CPS 0.004 0.001
>5 (18) 8.07 (6.89-9.25) 19.40 (16.24-22.56)

gastric cancer. Meanwhile, Mei et al. (32) have identified a
significant inverse association between serum pyruvate and
survival outcomes (PFS, and OS) in advanced non-small cell lung
cancer patients receiving chemoimmunotherapy. Mirroring this
phenomenon in advanced gastric cancer, our prognostic analysis
confirmed that elevated pyruvate levels independently predict
inferior PFS and OS. Further analysis established elevated lactate
as an independent predictor of shortened survival in
immunotherapy-treated patients with advanced gastric cancer.
Cancer cells retain functional oxidative phosphorylation in
addition to the aerobic glycolysis pathway. Certain tumors even
use oxidative phosphorylation as their primary ATP production
mechanism (33). TCA metabolites, such as citrate, o-ketoglutarate,
succinate, fumarate, regulate multiple facets of cancer progression
(34). Certain metabolites have cytokine-like effects in immune cells,
exerting both pro-inflammatory and anti-inflammatory functions.
However, the TME conditions redirect TCA cycle metabolites
toward predominantly pro-tumorigenic functions (9). For
example, o-ketoglutarate promotes the M2 polarization of
macrophages and inhibits their antigen presentation, thus
promoting immune evasion (35, 36). Tumoral succinate drives
macrophage M2 polarization to promote tumor metastasis, while
microbiota-derived succinate impairs CD8" T cell immunity,
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reducing anti-PD-1 efficacy (37-39). Similarly, cancer-derived
fumarate suppresses CD8" T cell anti-tumor function, yet its
therapeutic depletion enhances CAR-T cell anti-tumor efficacy
(40); in parallel, fumarate inhibits B cell activation, proliferation,
and inflammatory responses (41). Beyond the observed inverse
associations of o-ketoglutarate, and fumarate with DCR,
subsequent analysis revealed no significant associations between
any TCA cycle metabolites and clinical outcomes, including OS,
PES, or therapeutic efficacy in this study. The lack of predictive
significance of these metabolites may be attributed to the
complexity of the TCA cycle metabolic network and the dynamic
variability of the metabolites (42).

Liquid biopsy is being increasingly utilized for molecular
profiling of cancers, thereby enabling precision oncology
approaches (6). Serum biomarkers, including circulating tumor
DNA, exosomes, microRNAs, and metabolites, can reflect tumor
characteristics and treatment responses (43, 44). Our study
redirected biomarker discovery from tissue-based paradigms to
serum metabolites directly resulting from tumor metabolic
reprogramming (4, 45). The results demonstrated that elevated
serum lactate and pyruvate levels serve as independent prognostic
biomarkers strongly associated with therapeutic efficacy, exhibiting
predictive efficacy comparable to PD-L1 CPS. These findings
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FIGURE 3

Kaplan-Meier OS analysis based on serum glycometabolite concentrations in advanced gastric cancer patients receiving chemoimmunotherapy.
Graphs depicted results for individual glycometabolites: (A) pyruvate, (B) lactate, (C) citrate, (D) isocitrate, (E) a-ketoglutarate, (F) succinate,

(G) fumarate, (H) malate, () oxaloacetate.

advance precise stratification of gastric cancer patients and
personalized immunotherapy regimens. Additionally, the
identification of metabolic biomarkers establishes a method that
can be longitudinally monitored for treatment outcomes, enabling
timely adjustments in clinical management (46). Notably, serum
lactate and pyruvate offer a non-invasive liquid biopsy approach.
Their utility for early diagnosis of gastric cancer, disease progression
assessment, and monitoring diverse anti-tumor therapies warrants
further investigation.

Several limitations warrant acknowledgment as they may affect
the interpretation and generalizability of our findings. First, limited
statistical power stemming from the modest cohort size and
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constrained follow-up duration may compromise the robustness
of our conclusions. Second, the lack of serial metabolite
measurements prevents analysis of dynamic expression changes,
which may compromise result validity and undermine inference
robustness, necessitating future longitudinal studies to address this
limitation. Third, the absence of a healthy control cohort precludes
direct comparison of serum metabolite concentrations between
cancer patients and healthy individuals, thereby preventing
establishment of optimal clinical cut-off values for diagnostic and/
or prognostic stratification.

In conclusion, this study demonstrates that elevated serum
lactate and pyruvate—novel glycolytic biomarkers—are associated
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TABLE 4 Survival predictive accuracy of serum glycometabolites via time-dependent ROC analysis in advanced gastric cancer treated with
chemoimmunotherapy.

AUC (95%Cl)

Metabolites
PFS (6 months) P value OS (12 months) P value

pyruvate 0.80 (0.67-0.93) <0.001 0.72 (0.57-0.86) 0.007
lactate 0.73 (0.60-0.87) 0.007 0.74 (0.59-0.88) 0.004
citrate 0.49 (0.31-0.66) 0.892 0.52 (0.35-0.68) 0.854
isocitrate 0.54 (0.37-0.71) 0.631 0.50 (0.34-0.66) 0971
a-ketoglutarate 0.67 (0.52-0.83) 0.041 0.69 (0.54-0.84) 0.021
succinate 0.60 (0.42-0.78) 0.248 0.61 (0.45-0.77) 0.163
fumarate 0.73 (0.58-0.89) 0.006 0.69 (0.54-0.83) 0.021
malate 0.62 (0.45-0.80) 0.149 0.71 (0.57-0.86) 0.008
oxaloacetate 0.55 (0.38-0.73) 0.538 0.54 (0.38-0.70) 0.660

TABLE 5 Univariate and multivariate analyses of glycometabolites associated with PFS in advanced gastric cancer treated with chemoimmunotherapy.

Univariate Multivariate
Variables
HR (95%Cl) HR (95%ClI)

Age (265 vs. <65, year) 1.45 (0.82-2.56) 0.198

Gender (Female vs. Male) 1.27 (0.59-2.72) 0.543

G stage (G3 vs. G1-2) 1.71(0.82-3.55) 0.150

HER-2 (1-2 vs. 0) 0.38(0.450-1.35) 0.780

PD-L1 CPS (high vs. low) 0.42 (0.22-0.77) 0.005 0.30 (0.15-0.59) <0.001
pyruvate (high vs. low) 2.57 (1.45-4.55) 0.001 3.79 (2.01-7.15) <0.001
lactate (high vs. low) 2.43 (1.34-4.40) 0.004 2.02 (1.08-3.78) 0.028
citrate (high vs. low) 1.00 (0.57-1.75) 1.000

isocitrate (high vs. low) 0.82 (0.47-1.45) 0.494

o-ketoglutarate (high vs. low) 1.40 (0.79-2.48) 0.224

succinate (high vs. low) 1.54 (0.88-2.69) 0.134

fumarate (high vs. low) 1.38 (0.79-2.40) 0.257

malate (high vs. low) 1.60 (0.91-2.81) 0.102

oxaloacetate (high vs. low) 1.61 (0.91-2.84) 0.101

TABLE 6 Univariate and multivariate analyses of glycometabolites associated with OS in advanced gastric cancer treated with chemoimmunotherapy.

Univariate Multivariate
Variables
HR (95%Cl) P value HR (95%Cl) P value

Age (265 vs. <65, year) 1.78 (0.97-3.27) 0.061

Gender (Female vs. Male) 1.89 (0.85-4.23) 0.120

G stage (G3 vs. G1-2) 1.35 (0.62-2.92) 0.449

HER-2 (1-2 vs. 0) 0.68(0.38-1.22) 0.194

PD-L1 CPS (high vs. low) 0.42 (0.22-0.77) 0.005 0.26 (0.12-0.58) 0.001

(Continued)
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TABLE 6 Continued
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Univariate Multivariate

Variables HR (95%ClI) HR (95%ClI)

pyruvate (high vs. low) 2.34 (1.28-4.29) 0.006 3.49 (1.75-6.95) <0.001
lactate (high vs. low) 3.13 (1.59-6.14) 0.001 2.24 (1.10-4.55) 0.026
citrate (high vs. low) 1.04 (0.56-1.93) 0.896

isocitrate (high vs. low) 0.90 (0.49-1.64) 0.726

o-ketoglutarate (high vs. low) 1.61 (0.86-3.03) 0.136

succinate (high vs. low) 1.54 (0.83-2.85) 0.176

fumarate (high vs. low) 1.67 (0.16-3.07) 0.101

malate (high vs. low) 1.82 (0.97-3.43) 0.063

oxaloacetate (high vs. low) 1.77 (0.95-3.30) 0.073

with reduced DCR, shorter PFS, and inferior OS in patients with
advanced gastric cancer receiving chemoimmunotherapy, thereby
offering promise for personalizing therapeutic strategies and
monitoring treatment efficacy. Future research should prioritize
validating the clinical significance of these biomarkers in gastric
cancer and promote their application across other gastrointestinal
malignancies, while also integrating them with imaging, genomics,
or immunoassays to guide precision oncology therapeutics.
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