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SARS-CoV-2 vaccines induce a
diverse spike-specific CD4+ T
cell receptor repertoire in
people living with HIV

with low CD4 nadirs
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People living with HIV with low CD4 T cell nadirs on antiretroviral therapy have
suboptimal responses to immunization. We analyzed the SARS-CoV-2 spike-
specific CD4+ T cell repertoire in individuals with CD4 nadirs of less than 100
cells/ul who received a primary SARS-CoV-2 mRNA vaccine series as well as the
bivalent ancestral/BA.5 spike mRNA vaccine. We tested the hypothesis that
antigenic imprinting would result in the preferential expansion of pre-existing
cross-reactive T cells that were primed against the 4 common cold
coronaviruses. We found that these individuals made robust effector and
memory T cell responses to the SARS-CoV-2 spike protein that exceeded the
responses to spike proteins from the common cold coronaviruses. Furthermore,
in 4 individuals, the number of SARS-CoV-2 specific TCRs far exceeded the
number of common cold coronavirus-specific T cell receptors. TCRs that were
cross-reactive for common cold coronaviruses and SARS-CoV-2 comprised less
than 10% of the total detected SARS-CoV-2 specific T cells. The diversity of the
SARS-CoV-2 spike-specific repertoire in 6 study participants was comparable to
that of the repertoire in vaccinated HIV healthy donors. Our data suggests people
living with HIV with low CD4 nadirs can have significant functional immune
reconstitution with little evidence of antigenic imprinting due to pre-existing T
cell responses to common cold coronaviruses.
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Introduction

People living with HIV (PLWH) with low CD4 nadirs have
limited responses to immunization with antigens and some vaccines
(1, 2). Lange et al. found that the CD4 nadir predicted T cell
responses to immunization with tetanus toxoid, diphtheria-toxoid,
and keyhole limpet hemocyanin in PLWH on antiretroviral therapy
(1). Similarly, Tebas et al. found that PLWH with low CD4 nadirs
on antiretroviral therapy were less likely to respond to an HIN1
vaccine (2). The mechanisms responsible for this are unknown but
disruptions in the T cell receptor (TCR) repertoire that are not fully
restored with antiretroviral therapy have been reported in these
individuals (3). The presence of a restricted naive TCR repertoire
could potentially lead to the phenomenon of antigenic imprinting
which is also called the original antigenic sin. The latter term was
coined by Thomas Francis in 1960 to describe the observation that
infection with a new strain of Influenza boosted the antibody
responses against strains of the virus that an individual had been
previously exposed to (4). A similar phenomenon has been
observed with T cell responses (5), and recent observations
suggest that in some cases, the expansion of pre-existing cross-
reactive responses can come at the expense of the development of
mono-reactive responses. This is important as mono-reactive T
cells may have higher affinity for the novel antigen they are primed
against (6, 7). Many studies have shown some degree of pre-existing
T cell immunity to SARS-CoV-2 due to cross recognition of SARS-
CoV-2 by T cells that were primed against the 4 common-cold
coronaviruses (8). In this study we tested the hypothesis that
patients with low CD4 nadirs with variable degrees of immune
reconstitution on antiretroviral therapy would show evidence of
antigenic imprinting and thus would not have a robust mono-
reactive T cell response to immunization with SARS-CoV-2 mRNA
vaccines. We achieved this by using the functional expansion of
specific T cells (FEST) assay to compare the T cell receptor
repertoire after stimulating peripheral blood mononuclear cells
(PBMCs) with spike protein from SARS-CoV-2 or the 4 common
cold coronaviruses (7-12). This assay sequences the CDR3 region of
the beta chain of the T cell receptor (TCR) of cells that have been
cultured with antigens and therefore can identify expanded antigen-
specific clones (13, 14). It can also distinguish between TCRs that
cross-recognize SARS-CoV-2 and common cold coronavirus spike
proteins versus those that are mono-reactive for a specific spike
protein (7). Our data suggest that the SARS-CoV-2 specific T cell
response in PLWH with low CD4 nadirs was mostly mono-reactive
in nature. Thus, antigenic imprinting does not appear to play a
major role in the T cell responses to SARS-CoV-2 in these patients.

Methods
Study participants
The study was approved by the Johns Hopkins University

Institutional Review Board. Written informed consent was obtained
from all participants prior to their inclusion in the study. The clinical

Frontiers in Immunology

10.3389/fimmu.2025.1663819

characteristics of the study participants studied are summarized in
Supplementary Table 1. The healthy donors were described in a prior
study (11). Blood for the initial SARS-CoV-2 ELISpot and FEST
assays was drawn a median of 189 days after receipt of the bivalent
ancestral spike/BA.5 spike mRNA vaccine (range 127-278 days) and
the participants had a median age of 45 years (range 29-57 years).
The PLWH had blood drawn a median of 174 days post vaccination
(range 54 to 307 days) and had a median age of 55 years (range 37 to
63 years). The median CD4 nadir was 36 cells/ul (range 1-90). One
study participant (CP100) had a CD4 nadir of 2 cells/ul and
prolonged SARS CoV-2 shedding prior to initiating ART (15). For
the SARS-CoV2 and common cold coronavirus FEST assays, blood
was obtained a median of 436 days after the bivalent ancestral spike/
BA.5 spike mRNA vaccine was given (range 426-487 days,
Supplementary Table 2). CP100, had also received the monovalent
XBBI1.5 vaccine 106 days prior to the blood draw.

Serology

Multi-array electrochemiluminescence detection technology
from MesoScale Diagnostics V-Plex SARS-CoV-2 Panel 31 were
used to evaluate IgG binding antibodies to SARS-CoV-2 spike
protein in a prior study (11). PLWH with low CD4 nadirs were
also tested for antibodies against HCoV-NL63, HCoV-OC43,
HCoV-229E, and HCoV-HKUI. Antibody responses were
evaluated using ELISA kits purchased from Alpha Diagnostics
International following the manufacturer’s instructions as
previously described (9).

Peptides and ELISpot assays

The ELISpot data in Figure 1A were previously obtained (11).
The SARS-CoV?2 ancestral spike peptide pool consisted of a pool of
315 peptides derived from 15 mers with 11 amino acid overlaps
obtained from JPT Peptide Technologies. Peptide pools for the
spike proteins of HCoV-NL63, HCoV-229E, HCoV-OC43, and
SARS-Cov-2, shown in Figure 1B were obtained from BEI
Resources and were reconstituted with DMSO at a concentration
of 10 mg/mL. The HCoV-229E S protein peptide pool has 195
peptides consisting of 17 mer with 11 amino acid overlaps. The
HCoV-NL63 S protein peptide pool has 226 peptides made up of
14-17 mer with 11-13 amino acid overlaps. The HCoV-OC43 S
protein peptide pool has 226 peptides made up of 17 or 18 mer with
11 amino acid overlaps. The SARS-CoV-2 peptides are 12 mer, 13
mer, or 17 mer, with 10 amino acid overlaps. IFN-y ELISpot assays
were performed as previously described (11). Briefly ELISpot Pro
and ELISpot Plus kits with precoated plates were purchased from
Mabtech. The wells were plated with unfractionated PBMCs or CD8
+ T cell-depleted PBMCs at 130,000-250,000 cells/well, and the
cells were cultured for 20 hours with HCoV peptides at a
concentration of 1 ug/mL. The plates were then processed
according to the manufacturer’s protocol and read by a blinded
independent investigator using an automated reading system.
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FIGURE 1
SARS-CoV-2 ELISpot responses and polyfunctional responses after peptide expansion. (A) IFN-y ELISpot with the SARS-CoV-2 spike peptide pool
(S2S) on PBMCs from HIV-seronegative donors and PLWH with historical CD4 nadir <100; DMSO controls shown for each cohort (ns, not
significant). (B) Low-nadir CP IFN-y ELISpot responses to DMSO, S2S, and common-cold coronavirus pools (HCoV-NL63, -229E, -OC43). (**p<0.01,
***n<0.001). (C) Representative flow cytometry plots for CP86. Day-10 spike-expanded CD4" T-cells were re-stimulated for 16 hours with DMSO
(top row) or the indicated peptide pools (bottom row); numbers indicate % IFN-y"TNF-a." of CD4* T cells. (D) Quantification of IFN-y*TNF-o* CD4*
T cells across low-nadir CPs after 7-day (CP71, CP100) or 10-day (CP86, CP92) culture with each peptide pool vs DMSO. Each pair represents the
same participant; lines connect paired conditions.

Expa nsion culture assay replaced with fresh media with 10 U/ml IL2 on day 3 and day 7.
The cells were then washed and replated in fresh media and rested

PBMCs were cultured in RPMI with 10% fetal calf serum with  for 6 hours before they were stimulated again with 5 g/mL of either

10 U/mL IL-2 and raltegravir (4uM) and 1 ug/mL of peptide pools  the same peptide pool or DMSO with protein transport inhibitors
or DMSO for either 7 (CP71, CP100) or 10 days (CP86, CP92) as  (GolgiPlug, 1 pg/mL; GolgiStop, 0.7 ug/mL) and lug/ml of
previously described (9). Half of the media was removed and antibodies against CD28 and CD49d (all from BD Biosciences).
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After a 16-hour incubation, the cells were washed and stained with
antibodies against CD3 (APC-Cy-7, BioLegend), and CD4 (PerCP-
CY-5.5, BioLegend). The cells were then fixed, permeabilized, and
stained intracellularly for TNF-o (PE-Cy-7, BD Biosciences,
557647) and IFN-y (APC, BD Biosciences).

FEST assay

The FEST assay utilized ancestral SARS-CoV-2, HCoV-NL63,
HCoV-229E and HCoV-OC43 spike peptide pools from BEI
resources (NIAID, NIH) as well as HCoV-HKU1 spike peptides
from JPT Peptide Technologies (Berlin, Germany), to activate CD8
+ T cell-depleted PBMCs from the 4 participants as previously
described. One participant, CP88, had 2 assays performed. One with
SARS-CoV-2, HCoV-NL63, HCoV-229E and HCoV-OC43 spike
peptides, and another with SARS-CoV-2 and HCoV-HKU1 spike
peptides alone. All peptide pools were used at a concentration of 1
ug/ml. On day 10, cells were harvested, and DNA was extracted
using the QIAmp micro-DNA kit (QIAGEN). TCR-Seq was
conducted at the Johns Hopkins FEST and TCR
Immunogenomics Core Facility (FTIC) using the Ampliseq TCR
Beta Short-Read Assay, sequenced on the Illumina sequencer
platform (iSeq100, MiSeq and NextSeql1000) with unique dual
indexes as previously described (7). Data was uploaded to the
MANAFEST analysis tool (http://www.stat-apps.onc.jhmi.edu/
FEST/) to identify antigen-specific T cell clonotypes. Positive
responses were required to have a mean frequency of greater than
0.1% in at least two replicates, with at least a 5-fold increase over the
DMSO controls. Mono-reactive responses were identified if these
criteria were met and the mean frequency was 5-fold higher than
responses to other spike proteins. Individual receptors analyzed are
detailed in Supplementary Table 3.

Spike-specific repertoire diversity

From the three replicate experiments performed for each
patient in the FEST assay, frequencies of spike-specific clonotypes
were normalized to the spike-specific subset. Shannon’s diversity
index (log2 base) was calculated for each individual replicate of each
patient. Then, the indices for each patient were averaged and the
patient groups were compared using the Mann-Whitney U test. P <
0.05 was considered statistically significant. It is noted that
Shannon’s diversity index is a metric conventionally used for
entire TCR repertoires, while it is used here to compare antigen-
specific subsets.

Levenshtein distances for sequence
homology

The spike-specific TCR sequences for the two patient groups

were pooled together to assess homology across groups. To obtain
the non-redundant region of the TCR sequences, the first three and
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last three amino acids were removed from the TCR V[ CDR3
sequence. Then, the Levenshtein distances were computed for every
pair of TCR sequences across the pooled dataset using the stringdist
R package (16). An unrooted phylogenetic tree was generated to
visualize sequence homology using the ape R package, with each leaf
representing a TCR V3 CDR3 sequence (17). From the overall tree,
branches were manually selected by node number and visualized as
heatmaps using the pheatmap R package (18). In the heatmaps,
each row represented a TCR V3 CDR3 sequence and the color scale
was fixed across maps. All analyses were performed using R
version 4.4.2.

Results

PLWH with low CD4 nadirs have robust
SARS-CoV-2-specific effector and memory
T cell responses

In a prior study, we used the IFN-y ELISpot assay to measure
the frequency of ancestral SARS-CoV-2 spike-specific effector T cell
responses in PLWH and healthy donors after they received the
bivalent ancestral/BA.5 spike mRNA vaccine (11). As shown in
Figure 1A, there was no significant difference in the frequency of
effector T cells in the 2 groups of study participants. In order to
compare the frequency of effector T cells that recognized spike
peptides from SARS-CoV-2 versus 3 of the 4 common cold
coronaviruses, we again performed an ELISpot assay. As shown
in Figure 1B, the frequency of ancestral SARS-CoV-2 spike peptide-
specific T cells was significantly higher than the frequency of T cells
specific for spike peptides from HCoV-OC43, HCoV-NL63, and
HCoV-229E.

To determine the frequency of memory T cells that recognized
the spike peptides from each virus, we performed an expansion
assay where PBMCs were cultured with either DMSO or spike
peptide pools from each virus for 7 to 10 days and then restimulated
the cells for 16 hours with the same peptide pool. As shown for
CP86 in Figure 1C, there was an expansion of SARS-CoV-2 and
HCoV-OC43 spike-specific memory CD4+ T cells that co-
expressed IFN-y and TNF-o. However, the frequency of the
SARS-CoV-2 specific memory cells was 5-fold greater. In all 4
participants tested, the frequency of SARS-CoV-2 spike-specific
memory CD4+ T cells was higher than the frequency of memory
CD4+ T cells specific for the common cold coronavirus spike
peptides (Figure 1D).

The number of detected TCRs specific for
SARS-CoV-2 greatly exceeds the number
of TCRs specific for the common cold
coronavirus in PLWH with low CD4 nadirs

The ELISpot and expansion assays measure the frequency of the

antigen-specific T cells but not the breadth of the response. In order
to measure this parameter, we performed the FEST assay to
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determine the breadth of TCRs that were specific for spike proteins
from SARS-CoV-2 versus the common cold coronaviruses. As seen
in Figure 2, the number of total SARS-CoV-2 specific TCRs
detected ranged from 82 to 115 TCRs with a median of 100.5
TCRs. In contrast, the numbers of TCRs specific for each of the
common cold coronaviruses detected ranged from 7 to 54 TCRs
with a median of 14 TCRs for HCoV-NL63, 3 to 13 TCRs with a
median of 8.5 TCRs for HCoV-229E, 5 to 29 TCRs with a median of
11 TCRs for HCoV-OC43, and 6 to 28 TCRs with a median of 19.5
TCRs for HCoV-HKUI.

The percentage of SARS-CoV-2 spike
mono-reactive TCRs greatly exceeds those
of SARS-CoV-2 and common cold
coronavirus cross-reactive TCRs

Functional assays cannot distinguish between individual T cells
with receptors that cross-recognize different antigens versus
separate populations of T cells that recognize each antigen. Thus,
we used the FEST assay to determine the frequency of TCRs that
cross-recognized spike peptides from SARS-CoV-2 and the
common cold coronaviruses. We identified TCRs that recognized
SARS-CoV-2 spike alone and others that cross-recognized SARS-
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CoV-2 and common cold coronavirus spike peptides in each
participant. Three representative mono-reactive and cross-reactive
TCRs are each shown for CP100 in Figure 3A. Across all 4
participants, the percentage of mono-reactive TCRs (median of
96.4%, range from 90.1% to 97.4%) greatly exceeded that of cross-
reactive TCRs (median of 4.5% range from 2.6% to 9.9%)
(Figure 3B). Of the cross-reactive TCRs specific for SARS-CoV-2
and at least 1 common cold coronavirus, the majority cross-
recognized SARS-CoV-2 and HKU1 spike peptides
(Supplementary Figure 2). There were a few TCRs that cross-
recognized spike peptides from SARS-CoV-2 and 2 or more
common cold coronaviruses (Supplementary Figure 2).

Diversity of the SARS-CoV-2 spike-specific
TCRs is similar to that seen in vaccinated
healthy donors

In order to determine whether the total TCR diversity was
different in healthy donors versus PLWH with low CD4 nadirs, we
analyzed the CD4 TCR repertoire from 5 age matched individuals
from each group and analyzed the CD4+ TCR repertoire. Diversity
was measured with the Shannon index. As shown in Figure 4A, the
TCR repertoire from healthy donors was more diverse than TCR
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Frequency of spike-specific CD4" T cell receptors recognizing SARS-CoV-2 and common cold coronavirus peptides. The total number of spike-
specific CD4" TCR clonotypes identified by the FEST assay is shown for four CPs with low CD4 nadirs. TCRs were classified based on their
expansion following stimulation with spike peptide pools derived from SARS-CoV-2 (S2S) or common cold human coronaviruses HCoV-NL63,
HCoV-229E, HCoV-OC43, and HCoV-HKUL. Each bar represents the total number of unique spike-specific TCRs detected per condition, with error

bars indicating standard deviation across three technical replicates.
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Cross-reactivity of spike-specific CD4" TCRs following in vitro peptide stimulation. (A) Representative expansion profiles of three mono-reactive
(CASSPRPGSLDGYTF, CSASRTGGNSPLHF, CASSPLDRGNNQPQHF) and three cross-reactive (CASSYLTSGVDTQYF, CATSLWGSSSTDTQYF,
CSARDGSLNYGYTF) CD4" TCR clonotypes from participant CP100. TCRs were identified using the FEST assay. The frequencies (% of cultured CD4*
T cells, y-axis) of distinct TCR clonotypes (z-axis) across peptide conditions (x-axis), including SARS-CoV-2 spike (S2S) and common cold
coronavirus (HCoV-NL63, HCoV- 229E, HCoV-OC43, HCoV-HKU1) peptide pools. Three technical replicates were performed for each condition.
(B) Quantification of the proportion of mono-reactive versus cross-reactive S2S-specific CD4" TCR clonotypes for four CPs. Horizontal lines
indicate group medians. Mono-reactive TCRs were defined as those expanding only in response to S2S peptides, while cross-reactive TCRs
expanded to both S2S and at least one common cold coronavirus peptide pool. ****p < 0.0001.
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repertoire from the PLWH with low CD4 nadirs. There was no
correlation between either the nadir or current CD4 count and the
Shannon Index (Supplementary Figure 3A).

To investigate whether the spike-specific TCR repertoire was
also different in the 2 groups of participants, we compared the
previously described SARS-CoV-2 spike-specific T cell repertoire in
4 PLWH with low CD4 nadirs (CP88, CP89, CP100, CP104) and 10
healthy donors who received bivalent ancestral/BA.5 spike COVID
mRNA vaccines (11). We also analyzed the spike-specific T cell
repertoire from 2 PLWH with low CD4 nadirs in the current study
(CP71 and CP86). We found there were no significant differences in
the diversity of the spike-specific TCR repertoire in PLWH with low
CD4 nadirs and healthy donors (Figure 4B). Furthermore, in a prior
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study of healthy donors, we showed that SARS-CoV-2 spike-
specific TCRs share sequence homology within and among
participants. We performed a similar analysis and showed that
there was significant homology of spike-specific TCRs in patients
with low CD4 nadirs and healthy donors (Figure 4C). There was no
correlation between either the nadir or current CD4 counts and the
Shannon Index (Supplementary Figure 3B).

Discussion

In this study, we analyzed TCRs specific for SARS-CoV-2 and
the 4 common cold coronaviruses spike proteins in PLWH with low
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Diversity and sequence homology of T receptors. (A) Shannon index of the diversity of all TCRs from PLWH with low CD4 nadirs (orange) and HIV
seronegative donors (blue). (B) Shannon index of the diversity of SARS-CoV-2-specific TCRs from PLWH with low CD4 nadirs (orange) and HIV
seronegative donors (blue). (C) Phylogenetic tree showing SARS-CoV-2-specific TCRs from PLWH with low CD4 nadirs (orange) and HIV seronegative

donors (blue).
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CD4 nadirs who had received monovalent and bivalent COVID
mRNA vaccines. These individuals responded well to vaccination
with antibody titers and CD4+ T cell responses that were similar to
healthy donors. The frequencies of SARS-CoV-2 spike-specific
effector and memory T cells in these individuals exceeded the
frequencies of effector and memory T cells that recognized spike
peptides from common cold coronaviruses. We used the FEST assay
to distinguish between TCRs that were mono-reactive for SARS
CoV-2 versus those that cross-recognized spike proteins from
common cold coronaviruses. We previously validated the FEST
assay by transferring cloned TCRs into Jurkat cells and
demonstrated that TCRs that were identified as cross-reactive in
the FEST assay recognized spike peptides from SARS-CoV-2 and
HCoV-NL63, whereas TCRs that were identified as being mono-
reactive only recognized spike peptides from SARS-CoV-2 (7).

Disruptions of the TCR repertoire in PLWH with low CD4
nadirs are not completely reversed with antiretroviral therapy (3).
This could explain the suboptimal responses to immunization that
are generally seen in these individuals (1, 2). A skewed TCR
repertoire could potentially lead to antigenic imprinting where
there is preferential expansion of pre-existing, cross-reactive T
cells. This would be pertinent in recipients of COVID vaccines as
cross-reactive TCRs have a lower functional avidity for SARS-CoV-
2 spike peptides than mono-reactive T cells (6, 7). We reasoned that
if antigenic imprinting was occurring in these patients, the spike-
specific T cell response would consist predominantly of TCRs
primed against the common cold coronaviruses that cross-reacted
with SARS-CoV-2. Instead, we found that in all 4 individuals we
analyzed, more than 90% of the total SARS-CoV-2 spike specific
TCRs were mono-reactive for SARS-CoV-2. We found a similar
phenomenon in healthy donors who were vaccinated after
experiencing natural infection in a prior study (10), and here we
show that in spite of lower total TCR diversity, the diversity of the
spike-specific TCR repertoire in the PLWH with low CD4 nadirs we
analyzed is comparable to that of healthy donors. Furthermore, we
demonstrated that SARS-CoV-2 spike-specific TCRs share
sequence homology within and among healthy donors and
PLWH with low CD4 nadirs suggesting similar immune
responses in these individuals.

Our study is limited by sample size. We evaluated 4 participants
with low CD4 nadirs for cross-reactive TCRs, however, we analyzed
large numbers of TCRs for each participant, and we saw the same
dramatic finding in each of the 4 participants. It is possible that our
assay may not detect low frequency clones that could potentially
have been cross-reactive. Our diversity analysis is limited by the fact
the PLWH with low CD4 nadirs were older and 2 of the 6
individuals were further removed from the time of vaccination
compared to the healthy donors. In spite of this, we saw comparable
levels of diversity. Interestingly, there appeared to be lower diversity
in the SARS-CoV-2 spike specific T cell responses in a subset of the
healthy donors, but larger studies will be needed to confirm this
finding. Our results suggest that in spite of having CD4 nadirs as
low as 2 cells/ul, PLWH can make robust T cell responses in
response to SARS-CoV-2 vaccination that are not due to an
expansion of pre-existing cross-reactive TCRs. The high titer of
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SARS-CoV-2 spike-specific antibodies seen in these individuals is
most likely a manifestation of this robust functional CD4+ T cell
immune reconstitution. CP100, who had undetectable SARS-CoV-2
specific antibodies despite receiving the first dose of the primary
mRNA vaccine series and having prolonged SARS-CoV-2 shedding
when he had a CD4 count of 2 cells/ul (15), seroconverted after
initiating ART and receiving subsequent mRNA vaccine doses. It
will be important to analyze TCR repertoire responses to other
vaccines in these participants to determine whether this
phenomenon is unique to COVID mRNA vaccine induced T
cell responses.
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