
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Jinghua Pan,
Jinan University, China

REVIEWED BY

Tao Wang,
Shanghai University of Traditional Chinese
Medicine, China
Zhenhua Li,
China Medical University, China

*CORRESPONDENCE

Jing Liu

lj8679@163.com

Xiaozhong Wang

wangxiaozhong@ncu.edu.cn

Lei Zhang

1107375031@qq.com

RECEIVED 11 July 2025

ACCEPTED 29 September 2025
PUBLISHED 15 October 2025

CITATION

Zhong F, Yao F, Wang X-L, Wang Z, Huang B,
Liu J, Wang X and Zhang L (2025)
Plasma exosomal lncRNA-related signatures
define molecular subtypes and predict
survival and treatment response in
hepatocellular carcinoma.
Front. Immunol. 16:1663943.
doi: 10.3389/fimmu.2025.1663943

COPYRIGHT

© 2025 Zhong, Yao, Wang, Wang, Huang, Liu,
Wang and Zhang. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 15 October 2025

DOI 10.3389/fimmu.2025.1663943
Plasma exosomal lncRNA-related
signatures define molecular
subtypes and predict survival
and treatment response in
hepatocellular carcinoma
Fangmin Zhong, Fangyi Yao, Xin-Lu Wang, Zihao Wang,
Bo Huang, Jing Liu*, Xiaozhong Wang* and Lei Zhang*

Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical
Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated
Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
Background: Hepatocellular carcinoma (HCC) faces challenges in early

diagnosis, prognosis, and treatment stratification due to molecular

heterogeneity. This study aimed to establish a plasma exosomal long non-

coding RNA (lncRNA)-based framework for molecular classification,

prognostication, and therapeutic guidance in HCC.

Methods: The transcriptomic data from 230 plasma exosomes and 831 HCC

tissues were integrated. A competitive endogenous RNA (ceRNA) network was

constructed via the miRcode, miRTarBase, TargetScan, and miRDB databases to

define exosome-related genes (ERGs). Unsupervised consensus clustering was

used to stratify HCC patients on the basis of ERG profiles. Prognostic models

were developed and optimized via 10 machine learning algorithms with 10-fold

cross-validation. Treatment responses were predicted via the SubMap, TIDE, and

oncoPredict algorithms. RT-qPCR experiments were conducted to validate the

expression of model genes.

Results: We identified 22 dysregulated plasma exosomal lncRNAs in HCC. The

upregulated lncRNAs formed a ceRNA network regulating 61 ERGs and were

significantly enriched in cell cycle regulation, TGF-b signaling, the p53 pathway,

and ferroptosis. ERG expression stratified HCC into three subtypes (C1–C3). The

C3 subtype exhibited the poorest overall survival, advanced grade and stage, an

immunosuppressive microenvironment (increased Treg infiltration, elevated PD-

L1/CTLA4 expression, highest TIDE score), and hyperactivation of proliferation

(MYC, E2F targets) and metabolic pathways (glycolysis, mTORC1). A random

survival forest-derived 6-gene risk score (G6PD, KIF20A, NDRG1, ADH1C,

RECQL4, MCM4) demonstrated high prognostic accuracy. High-risk patients

presented increased TP53/TTN mutations and increased tumor mutational

burdens. Risk model analysis predicted differential treatment responses: low-

risk patients exhibited superior anti-PD-1 immunotherapy responses, whereas

high-risk patients showed increased sensitivity to DNA-damaging agents (e.g.,

the Wee1 inhibitor MK-1775) and sorafenib. Experimental validation confirmed

consistent dysregulation of the six-gene signature (G6PD, KIF20A, NDRG1,

ADH1C, RECQL4, MCM4) in HCC cell lines, reinforcing the model’s

biological relevance.
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Conclusion: Plasma exosomal lncRNAs enable robust molecular subtyping,

accurate prognostic stratification, and treatment response prediction in HCC.

The ERG-centric classification system and validated 6-gene risk model provide

clinically actionable tools for precision oncology.
KEYWORDS

hepatocellular carcinoma, exosomal lncRNA, molecular subtype, prognosis,
treatment response
Introduction

Hepatocellular carcinoma (HCC) represents a global health

crisis, accounting for 90% of primary liver cancers and causing

over 830,000 annual deaths worldwide (1, 2). Despite advances in

targeted therapies and immunotherapy, the five-year survival rate

for advanced HCC patients remains below 20%, largely because of

late diagnosis and heterogeneous treatment responses (3). Current

diagnostic biomarkers such as alpha-fetoprotein (AFP) exhibit

limited sensitivity for early-stage detection (4), whereas

conventional imaging fails to identify micrometastatic disease (5).

These clinical challenges underscore the urgent need for novel

molecular stratification tools.

Tumor-derived exosomes—nanoscale vesicles (30–150 nm)

carrying bioactive molecules—have emerged as pivotal mediators

of hepatocarcinogenesis (6). Among their cargo, long non-coding

RNAs (lncRNAs) function as competitive endogenous RNAs

(ceRNAs), sequestering microRNAs to derepress oncogenic

transcripts (7). For example, exosomal H19 drives metastasis

through miR-520a-3p/LIMK1 axis activation (8), whereas HEIH

induces immunosuppression via STAT3 upregulation (9). These

molecules offer unique advantages as liquid biopsy biomarkers

because of their stability in circulation and tumor-specific

expression patterns.

Critical knowledge gaps persist in translating exosomal lncRNA

biology to clinical practice. Comprehensive characterization of

plasma exosomal lncRNA profiles in large HCC cohorts remains

limited, and the functional architecture of their ceRNA networks is

poorly mapped. Moreover, the prognostic utility of exosome-

derived signatures for molecular subtyping and therapy prediction

is virtually unexplored, particularly compared with that of tissue-

based approaches.

To address these unmet needs, we integrated transcriptomic

data from 230 plasma exosome samples (112 HCC patients vs 118

healthy controls) through a multiomics framework. This study

aimed to identify dysregulated exosomal lncRNAs, construct

ceRNA networks, define exosome-related genes (ERGs), elucidate

their molecular landscapes, establish ERG-driven molecular

subtypes, and develop a machine learning-based prognostic

model for personalized risk stratification and therapeutic

guidance. Additionally, we experimentally validated the
02
expression patterns of the prognostic signature genes to establish

their clinical applicability.
Materials and methods

Data collection and preprocessing

This study integrated 831 hepatocellular carcinoma (HCC)

samples from three major public databases, including The Cancer

Genome Atlas (TCGA-LIHC, n=370, https://portal.gdc.cancer.gov/

projects/TCGA), the Gene Expression Omnibus (GSE14520,

n=221, https://www.ncbi.nlm.nih.gov/geo/), and the International

Cancer Genome Consortium (ICGC-LIRI, n=240, https://

dcc.icgc.org/). The RNA-seq data from TCGA-LIHC and ICGC-

LIRI were downloaded as raw counts and uniformly transformed to

Transcripts Per Million (TPM) values, followed by log2

transformation. The microarray data from GSE14520 were used

as provided by the authors after log2 transformation and quantile

normalization. The exosomal lncRNA expression matrix from

exoRBase 2.0 database (10) was also log2(TPM+1) transformed,

covering plasma exosomal transcriptome data from 112 HCC

patients and 118 healthy individuals. Somatic mutation and copy

number variation data were obtained through the TCGA portal.
Construction of the ceRNA regulatory
network

We focused on the upregulated exosomal lncRNAs for ceRNA

network construction because they are more likely to act as

oncogenic ‘sponges’ that sequester miRNAs and release the

inhibition on target mRNAs, thereby driving HCC progression.

The use of three stringent miRNA-mRNA interaction databases

(miRTarBase, TargetScan, miRDB) was to ensure the reliability and

biological relevance of the predicted interactions, minimizing false

positives. A multilevel strategy was adopted: first, miRNA binding

sites of differentially expressed lncRNAs were predicted via the

miRcode database (11); subsequently, the miRTarBase (12),

TargetScan (13), and miRDB (14) databases were integrated,

retaining the miRNA–mRNA relationships supported by all three
frontiersin.org
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databases; finally, the intersection of target genes of differentially

expressed lncRNAs and upregulated mRNAs in HCC tissues

(|logFC|>1, FDR<0.05) was used to define exosome–related genes

(ERGs), and a ternary regulatory network was constructed via

Cytoscape 3.9.1.
Functional and immune analyses

The following steps were executed: GO/KEGG pathway

enrichment analysis was conducted via the clusterProfiler package

(FDR<0.05 significance threshold) (15), hallmark pathway activity

was quantified via gene set variation analysis (GSVA), pathway

differences between risk groups were compared via gene set

enrichment analysis (GSEA), and the abundance of 22 immune

cell types was analyzed via the CIBERSORT algorithm (LM22

signature matrix) (16).
Identification of molecular subtypes

On the basis of the ERG expression profile, unsupervised

consensus clustering was performed via the ConsensusClusterPlus

package (17): the Pearson distance metric, PAM clustering

algorithm, 80% resampling ratio, and 1000 iterations were

adopted, and the optimal number of subtypes (k=3) was

determined according to the cumulative distribution function

(CDF) curve.
Development of the prognostic model

The TCGA-LIHC cohort was utilized as the training set, while

the remaining cohorts served as validation sets. Ten machine

learning algorithms—CoxBoost, stepwise Cox, Lasso, Ridge,

elastic net (Enet), survival support vector machines (survival-

SVMs), generalized boosted regression models (GBMs),

supervised principal components (SuperPC), partial least squares

Cox (plsRcox), and random survival forest (RSF)—were

systematically integrated under a 10-fold cross-validation

framework, resulting in 118 distinct configurations. For the

CoxBoost model, the optimal penalty (shrinkage) value was first

identified using the “optimCoxBoostPenalty” function. This value

was then combined with 10-fold cross-validation to determine the

optimal number of boosting steps. The model was subsequently

fitted with the “CoxBoost” function. Stepwise Cox regression was

performed using the survival package, with model complexity

evaluated based on the Akaike Information Criterion (AIC). All

possible configurations of the direction parameter—”both”,

“backward”, and “forward”—were examined. The Lasso, Ridge,

and Enet models were implemented using the “cv.glmnet”

function from the glmnet package. The regularization parameter

l was selected via 10-fold cross-validation, while the mixing

parameter a was varied from 0 to 1 in increments of 0.1: a = 1

corresponds to Lasso, a = 0 to Ridge, and intermediate values to
Frontiers in Immunology 03
Enet. The survival-SVM model was constructed using the

“survivalsvm” function from the survivalsvm package, which

applies support vector machine methodology to survival data. The

GBM model was fitted using the “gbm” function from the gbm

package with 10-fold cross-validation. The SuperPC model, an

extension of principal component analysis (PCA), was

implemented using the superpc package, with cross-validation

performed via the “superpc.cv” function over 10 folds. The

plsRcox model was developed using the “cv.plsRcox” function

from the plsRcox package. The RSF model was built using the

“rfsrc” function from the randomForestSRC package, with two key

parameters: “ntree” (the number of trees in the forest, set to 1000)

and “nodesize” (the minimum size of terminal nodes, set to 5).

Within a 10-fold cross-validation framework, the concordance

index (C-index) was used as the evaluation metric to optimize

hyperparameters, and a risk score model based on 6 key genes was

ultimately constructed. The model was trained on the TCGA

training set and independently tested on the ICGC/GSE14520

validation set.
Prediction of treatment response

A dual-dimensional strategy was employed: drug sensitivity was

calculated on the basis of the GDSC2 database via oncoPredict to

determine IC50 values (18); immune therapy response was

evaluated via SubMap analysis (GenePattern platform) to assess

the transcriptional similarity between high- and low-risk groups

and samples treated with anti-PD-1/CTLA-4 (Bonferroni-corrected

p<0.05); and the immune escape potential was quantified via the

TIDE algorithm (http://tide.dfci.harvard.edu).
Cell culture

Human hepatocellular carcinoma cell lines (HLE, Huh7, and

Hep3B) and immortalized normal hepatocyte cell lines (WRL68

and THLE-3) were obtained from the American Type Culture

Collection (ATCC) or the National Collection of Authenticated

Cell Cultures (China). All cells were cultured in Dulbecco’s

Modified Eagle Medium (DMEM) or RPMI-1640 medium

supplemented with 10% fetal bovine serum (FBS) and 1%

penicillin/streptomycin (all from Gibco, USA). Cells were

maintained at 37°C in a humidified incubator with 5% CO2.
Quantitative real-time polymerase chain
reaction

Total RNA was extracted from different HCC cell lines using

Trizol reagent (Takara, Japan). The RNA was then reverse

transcribed into complementary DNA (cDNA) using the

PrimeScript RT reagent kit (Takara, Japan) according to the

manufacturer’s instructions. Gene expression analysis was

performed by RT-qPCR using TB Green Premix Ex Taq (Takara,
frontiersin.org
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Japan) on an ABI7500 instrument, with primers listed in

Supplementary Table S1. The internal control GAPDH was

utilized and the 2-DDCt values were normalized to the levels of

GAPDH for data analysis.
Statistical analysis

The analyses were performed in the R 4.2.1 environment:

differences between continuous variable groups were evaluated via

the Wilcoxon rank sum test (for two groups) or the Kruskal–Wallis

test (for multiple groups); categorical variables were analyzed via

Fisher’s exact test; survival analysis was conducted via Kaplan–

Meier curves and the log-rank test; prognostic factors were assessed

via univariate and multivariate Cox regression; correlations were

calculated via the Spearman rank correlation coefficient; the

significance threshold was set at p < 0.05 (two-tailed test); and

multiple testing correction was performed via the Benjamini–

Hochberg method.
Results

Molecular characteristics and potential
regulatory mechanisms of lncRNAs in HCC
exosomes

Using the exoRBase database, we analyzed the RNA expression

profiles of blood-derived exosomes from 118 healthy individuals

and 112 HCC patients. Differential expression analysis (selection

criteria: |logFC| > 1, adjusted P value < 0.05) identified 22 lncRNAs

that were differentially expressed between the two groups

(Figure 1A). Among them, AC003684.1 and LINC02280 were

significantly downregulated in the HCC samples, whereas 20

lncRNAs, such as AC073172.1, AC026271.3, AC108863.1,

TTTY14, and AP001107.2, were significantly upregulated

(Figure 1B). To reveal the potential regulatory mechanisms of

exosomal lncRNAs, we focused on upregulated lncRNAs and

constructed a related ceRNA network. The specific process

included predicting miRNAs bound to lncRNAs via the miRcode

database; predicting the target genes of these miRNAs via the

miRDB, miRTarBase, and TargetScan databases (Figure 1C); and

finally, taking the intersection of these target genes and the

upregulated mRNAs in HCC samples, a total of 61 genes were

obtained and defined as exosome-related genes (ERGs) (Figure 1D).

The main functions of ERG include mitotic cell cycle phase

transition, organelle fission, promoter-specific chromatin binding,

and DNA-binding transcription activator activity. KEGG pathway

enrichment analysis revealed that ERG was significantly enriched in

cellular senescence, the cell cycle, microRNAs in cancer, and cancer

pathways, involving key pathways such as the TGF-beta and P53

signaling pathways, as well as metabolism, ferroptosis, and

mitochondrial autophagy-related pathways. These results suggest
Frontiers in Immunology 04
that ERG is closely related to the proliferation and growth of cancer

cells. Protein–protein interaction (PPI) network analysis further

identified core hub molecules such as RRM2, ZWINT, KPNA2,

EZH2, E2F1, E2F2, TRIP13, KIF23, and CCNB1.
Analysis of the molecular landscape of
ERGs and related tumor clustering
subtypes

To further explore the molecular characteristics of ERG, we

conducted a univariate Cox regression analysis and found that 41

ERGs were significantly associated with the prognosis of HCC

patients (p < 0.05) (Figure 2A). The hazard ratios (HRs) of these

genes were all greater than 1, indicating that they are poor

prognostic factors. Somatic mutation analysis revealed that

19.41% of the HCC samples had ERG gene mutations, but the

mutation frequency of individual genes was relatively low (e.g.,

POLQ: 4%, ATAD2: 2%) (Figure 2B). Copy number variation

(CNV) analysis revealed that most ERGs (such as ATAD2, E2F5,

PKIA, SUCO, LAMC1, and MYBL1) presented significant copy

number amplification in HCC samples, which might be related to

their upregulated expression (Figure 2C). Figure 2D shows the

distribution of ERGs on chromosomes, which were mainly

concentrated on chromosomes 7, 8, and 14. Expression

correlation analysis revealed a significant positive correlation

among ERGs, suggesting their potential synergistic role in HCC

(Figure 2E). These results collectively indicate that the overall

abnormal expression of ERGs is an important cause of the

malignant progression of HCC. Based on the expression profiles

of ERGs, we subsequently classified HCC patients using an

unsupervised consensus clustering algorithm. We observed that

the relative change in the area under the CDF curve was larger when

the number of clusters was 3 compared to 2, and the CDF

distribution was flatter (Figure 2F). Moreover, as the number of

clusters increased, the area under the CDF curve changed little,

indicating that further increasing the number of clusters would not

significantly enhance clustering stability. Therefore, we divided the

HCC patients into three distinct subtypes (Clusters C1, C2, and C3)

(Figure 2G). The overall expression level of ERGs was the lowest in

the C1 subtype, followed by C2, and the highest in C3 (Figure 2H).

Survival analysis confirmed that patients in the C1 subtype had the

best prognosis, followed by those in the C2 subtype, and those in the

C3 subtype had the worst prognosis, further validating the

association between high ERG expression and poor prognosis

(Figure 2I). Clinical feature correlation analysis revealed

significant differences in T stage, clinical stage, and histological

grade among the different clustering subtypes (Figure 2J).

Specifically, the proportion of patients with advanced T stage,

clinical stage, and high histological grade increased from C1 to

C2 and then to C3, reflecting an increasing trend in tumor

malignancy, indicating that our molecular classification accurately

captures and reflects the continuum of HCC clinical aggressiveness.
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Biological characterization of ERG-related
subtypes

We further analyzed the differences in biological characteristics

among the different subtypes. Immune cell infiltration analysis

revealed that the C1 subtype was enriched in M2 macrophages,
Frontiers in Immunology 05
monocytes, resting NK cells, and resting mast cells, whereas the C2

and C3 subtypes were enriched in follicular helper T cells (Tfhs),

regulatory T cells (Tregs), and M0 macrophages (Figure 3A). In

addition, the proportion of activated NK cells was the lowest in the

C3 subtype. The expression levels of immune checkpoint genes also

significantly differed among the different subtypes, with PD-L1,
FIGURE 1

Expression characteristics of lncRNAs derived from exosomes in the peripheral blood of patients with HCC. (A) Heatmap of lncRNA expression
in exosomes from the HCC and normal groups. (B) Volcano plot of differentially expressed lncRNAs (screening criteria: |logFC|>1, adj.p<0.05).
(C) Intersection of target genes of differentially expressed lncRNAs and upregulated mRNAs in HCC (defined as ERGs). (D) lncRNA–miRNA-ERG
ceRNA regulatory network. (E-G) Functional annotation of ERGs: GO enrichment analysis (E), KEGG pathway enrichment (F), and PPI network core
nodes (G).
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CTLA4, LAG3, HAVCR2, PD-1, CD80, CD86, TIGIT, and

TNFRSF9 showing stepwise increases from C1 to C2 and then to

C3 (Figure 3B). A high tumor immune dysfunction and exclusion

(TIDE) score indicates an increased possibility of tumor cell

immune escape (Figure 3C). The analysis results revealed that the
Frontiers in Immunology 06
TIDE score was the lowest in the C1 subtype and the highest in the

C3 subtype. Survival analysis also confirmed that a high TIDE score

was significantly associated with a worse prognosis in HCC patients

(Figure 3D). These results suggest that the increased infiltration of

immunosuppressive cells (such as Tregs) and the upregulated
FIGURE 2

Molecular characteristics and subtype analysis of ERGs in HCC. (A) Univariate Cox regression survival analysis of ERGs (p<0.05). (B) Somatic mutation
spectrum of ERG in HCC samples. (C) Frequency of ERG copy number variation (CNV). (D) Chromosomal location distribution of ERGs. (E) Correlation
analysis of ERG expression. (F) Cumulative distribution function (CDF) distribution under different numbers of clustering clusters. (G) Consensus
clustering based on ERG expression (divided into C1-C3 subtypes). (H) Comparison of ERG expression levels among subtypes. (I) Differences in
overall survival among subtypes. (J) Association analysis of subtypes with clinicopathological features.
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expression of immune checkpoint genes in the C3 subtype might

jointly induce the formation of an immunosuppressive tumor

microenvironment (TME), leading to poor patient prognosis.

We also compared the activity levels of tumor hallmark

signaling pathways among different subtypes. The results revealed

that in the C3 subtype, the activity levels of cell proliferation-related
Frontiers in Immunology 07
pathways (such as MYC targets, DNA repair, E2F targets, and the

G2M checkpoint), oncogenic pathways (such as TGF beta, Notch,

WNT beta catenin, and P53), and metabolic pathways (such as

glycolysis and mTORC1 signaling) were the highest, indicating that

the cancer cells in this subtype were highly proliferative (Figure 3E).

To confirm the biological pathway characteristics of the subtypes,
FIGURE 3

Biological characteristics of the ERG subtypes. (A) Differences in immune cell infiltration abundance among subtypes. (B) Comparison of immune
checkpoint gene expression levels. (C) Distribution of TIDE scores among subtypes. (D) Correlations between TIDE scores and patient prognosis.
(E) Heatmap of tumor marker pathway activity scores. (F, G) Screening and expression patterns of differentially expressed genes (DEGs) among
subtypes. (H) KEGG pathway enrichment analysis of DEGs. *P<0.05, **P<0.01, ***P<0.001.
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we conducted a differential expression gene (DEG) analysis for the

three subtypes (Figure 3F). The results revealed 217 genes that were

differentially expressed among the subtypes, with the majority of

DEGs having the lowest expression in the C1 subtype and the
Frontiers in Immunology 08
highest in the C3 subtype (Figure 3G). KEGG enrichment analysis

of these DEGs revealed that the most enriched pathway was the cell

cycle pathway, further confirming the rapid proliferation ability of

C3 subtype cells (Figure 3H).
FIGURE 4

Construction of the risk score model. (A) Comparison of the prognostic prediction performance of 118 machine learning algorithms (sorted by the
average C-index). (B) Relationship between the error rate of the random survival forest (RSF) model and the number of decision trees. (C) Ranking of
gene importance in the final model. (D-I) Model validation: KM survival curves (D, F, H) and ROC curves (E, G, I) of the training set (TCGA) and
validation set (ICGC/GSE14520).
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Construction and validation of the ERG-
related risk score prognostic model

Given the strong association between ERG and HCC prognosis,

we further explored its prognostic value. First, we constructed

prognostic risk score models using 118 combinations of 10

machine learning algorithms (Figure 4A). Among them, the

random survival forest (RSF) algorithm model had the highest

average C-index in all cohorts, and the error rate was the lowest

when the number of trees was 110 (Figure 4B). On the basis of this

optimal model, we selected six key genes (G6PD, KIF20A, NDRG1,

ADH1C, RECQL4, and MCM4) to construct the final risk score

model and calculate the risk score for each sample (Figure 4C).

Patients in the TCGA training cohort were divided into high-risk

score and low-risk score groups on the basis of the optimal cutoff

value. K–M curve analysis revealed that the prognosis of patients in

the high-risk score group was significantly worse than that of

patients in the low-risk score group (Figure 4D). The area under

the receiver operating characteristic curve (AUC) values of this risk

score model for predicting 1-year, 2-year, and 3-year overall

survival (OS) in HCC patients were 0.950, 0.964, and 0.964,

respectively, demonstrating extremely high prognostic predictive

accuracy (Figure 4E). In two independent validation cohorts (the

ICGC cohort and the GSE14520 cohort), the prognosis of patients

in the high-risk score group was also significantly worse than that in

the low-risk score group, further confirming the clinical predictive

value of a high-risk score for poor prognosis. The ROC curve also

verified the predictive efficacy of this risk score for OS: in the ICGC

cohort, the AUC values for predicting 1-year, 2-year, and 3-year OS

were 0.764, 0.727, and 0.750, respectively; in the GSE14520 cohort,

they were 0.648, 0.692, and 0.672, respectively (Figures 4F-I). In the

three HCC cohorts, the proportion of deceased patients in the high-

risk score group was significantly greater than that in the low-risk

score group (Figure 5A). Among the six model genes, the expression

levels of G6PD, KIF20A, NDRG1, RECQL4, and MCM4 increased

with increasing risk score, whereas the expression of ADH1C

exhibited the opposite trend (Figure 5B). Both univariate and

multivariate Cox regression analyses confirmed that this risk

score model had significant independent prognostic predictive

value in the three HCC cohorts (P < 0.01) (Figures 5C, D).
Differences in pathological characteristics
among patients in different risk score
groups

Next, we analyzed the differences in clinical and genomic

characteristics among patients in different risk score groups. In

the TCGA cohort, we found that the low-risk score group was

composed mainly of C1 and C2 subtype patients, whereas the high-

risk score group included mainly C3 subtype patients (Figure 5E).

The risk score was the lowest for the C1 subtype and the highest for

the C3 subtype (Figure 5F). The high-risk score group also had
Frontiers in Immunology 09
higher TIDE scores and tumor mutation burdens (TMBs)

(Figures 5G, H). Further analysis of somatic mutations revealed

that the proportion of samples with gene mutations in the high-risk

score group was greater than that in the low-risk score group (low-

risk group: 82.8%; the high-risk group had a significantly greater

mutation frequency of TP53, CTNNB1, and TTN than did the low-

risk group (91.89%), suggesting that a higher gene mutation

frequency may be associated with the poor prognosis of the high-

risk group (Figure 6A). Gene set enrichment analysis (GSEA)

revealed that the top 5 significantly enriched pathways in the

high-risk group were the cell cycle, DNA replication, the mRNA

surveillance pathway, nucleocytoplasmic transport, and

spliceosome, all of which are related to cell proliferation, whereas

the low-risk group was enriched mainly in metabolic pathways such

as arginine biosynthesis, butanoate metabolism, histidine

metabolism, primary bile acid biosynthesis, and tyrosine

metabolism, indicating pathway heterogeneity (Figure 6B). In

terms of clinicopathological features, the risk score gradually

increased with increasing histological grade (grade), clinical stage

(stage), and T stage (Figure 6C).
Application of the risk score model in
treatment decision-making

Finally, we evaluated the potential response of different risk

score groups to treatment strategies. Given that the high-risk score

group had a higher TIDE score, we used the submap algorithm to

predict the response of this group to immune checkpoint inhibitors

(ICIs). The results revealed that the high-risk score group had a

lower response to anti-PD-1 immunotherapy (Figure 7A), whereas

a greater proportion of patients in the low-risk score group were

predicted to respond to immunotherapy (Figure 7B). With respect

to chemotherapy and targeted drugs, we used the oncoPredict

algorithm to predict the drugs with the greatest and smallest

differences in drug sensitivity between the high- and low-risk

score groups. Compared with the low-risk group, the high-risk

group presented significantly lower half-maximal inhibitory

concentration (IC50) values for ML323, doramapimod,

sepantronium bromide, MK-1775, BPD-00008900, and Wee1

inhibitor, indicating greater treatment sensitivity (Figure 7C).

Similarly, the low-risk score group was more sensitive to

doramapimod, SB505124, Nutlin-3a (-), a JAK1 inhibitor, and

AZD6482 (Figure 7C). We also explored the differences in the

response of different risk score groups to 9 commonly used

anticancer drugs for HCC. The prediction results revealed that

patients in the high-risk score group were more sensitive to

docetaxel, paclitaxel, sorafenib, vincristine, 5-fluorouracil, and

axitinib, whereas there was no significant difference in sensitivity

to cisplatin, gemcitabine, or oxaliplatin between the two groups

(Figure 7D). These results provide potential treatment references

for patients in different risk score groups and may help in the

development of individualized treatment plans.
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Validation of the expression of risk scoring
model genes

To explore the expression of the genes included in the risk

scoring model, we compared the expression levels of these six genes

in HCC tumor tissues and normal tissues from the TCGA-LIHC

cohort. The analysis results showed that the expression levels of

G6PD, KIF20A, NDRG1, RECQL4, and MCM4 were significantly
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higher in HCC tumor tissues than in normal tissues, while ADH1C

was significantly downregulated in HCC tumor tissues (Figure 7E).

In 50 pairs of HCC tumor tissues and matched normal tissues, we

observed the same expression trends for these six genes (Figure 7F).

Additionally, we evaluated the expression of these six genes in five

cell lines: two normal liver cell lines (WRL68 and THLE-3) and

three HCC cell lines (HLE, Huh7, and Hep3B). The results

indicated that compared with normal liver cell lines, the
FIGURE 5

Clinical validation of the risk model. (A) Distribution of survival status in the high- and low-risk groups in the three cohorts. (B) Correlation between the
risk score and model gene expression. (C, D) Univariate/multivariate Cox regression analysis of the risk score (TCGA/ICGC/GSE14520). (E) Association
analysis of risk groups and clustering subtypes. (F-H) Comparison of risk scores among subtypes (F), TIDE scores between the high- and low-risk
groups (G), and TMB levels (H).
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expression of G6PD, KIF20A, NDRG1, RECQL4, and MCM4 was

significantly upregulated, while ADH1C was significantly

downregulated in HCC cell lines (Figure 7G). This result verified

the expression characteristics of the six model genes in

HCC samples.
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Discussion

HCC faces severe challenges due to delayed diagnosis and

heterogeneous treatment responses (19). This study, by

integrating RNA-seq data from 230 plasma exosome samples,
FIGURE 6

Clinical and genomic characteristics of risk groups. (A) Differences in somatic mutation spectra between the high- and low-risk groups. (B) Top 5
enriched pathways identified via GSEA. (C) Correlations between the risk score and clinical stage/grade. **P<0.01; ***P<0.001; ns, no significance.
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established for the first time a molecular classification system and

prognostic model based on exosomal lncRNAs, providing a new

perspective for resolving the predicament of the precise diagnosis

and treatment of HCC. Furthermore, the ERG-driven stratification

of HCC into three subtypes (C1-C3) transcends mere prognostic
Frontiers in Immunology 12
separation; it unveils distinct biological entities with direct

therapeutic implications.

The ceRNA regulatory network of exosomal lncRNAs is a

significant finding of this study. The 22 differentially expressed

lncRNAs [such as the oncogenes SNHG25 (20) and TTTY14 (21)]
FIGURE 7

Risk model guiding treatment decisions and validation of model gene expression. (A) Prediction of the anti-CTLA-4/PD-1 immunotherapy response
via the submap algorithm. (B) Prediction of the immunotherapy response ratio via the TIDE algorithm. (C) Top 5 drugs with differences in sensitivity
between the high- and low-risk groups (IC50 comparison). (D) Prediction of sensitivity to 9 commonly used HCC chemotherapy drugs. (E, F) The
expression differences of the six model genes between non-paired (E) and paired (F) samples of tumor and normal tissues in the TCGA-LIHC cohort.
(G) The expression levels of the six model genes in two normal liver cell lines (WRL68 and THLE-3) and three HCC cell lines (HLE, Huh7 and Hep3B).
***P<0.001.
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identified in the plasma of HCC patients competitively bind to

miRNAs to regulate 61 ERGs. These genes dominate cell cycle

progression (RRM2, CCNB1) (22, 23), DNA repair (E2F1) (24), and

epigenetic remodeling (EZH2) (25) and are significantly enriched in

the TGF-b, p53, and ferroptosis pathways. This finding confirms

the role of exosome-derived lncRNAs and their related ceRNA

networks in promoting HCC progression, as revealed by previous

studies (7, 26).

Molecular classification on the basis of ERG expression profiles

(C1-C3 subtypes) has clear clinical importance. The C3 subtype,

which has high ERG expression, has the poorest prognosis and is

accompanied by an advanced T stage and a high proportion of

poorly differentiated tissues. Its immune microenvironment shows

inhibitory characteristics: increased infiltration of regulatory T cells

(Tregs), upregulated expression of immune checkpoint genes (PD-

L1, CTLA4), and a significantly elevated TIDE score. Notably, C3

tumors simultaneously activate proliferation-related pathways

(MYC, E2F targets) and metabolic reprogramming (mTORC1,

glycolysis), and this synergistic effect may be a key driver of the

invasive phenotype of these tumors. By distinguishing these

populations based on plasma exosomal lncRNA signatures, our

classification system provides a minimally invasive tool to guide

first-line therapy selection and overcome the challenge of treatment

heterogeneity in HCC.

The prognostic risk model constructed in this study has

significant clinical value. The six ERG markers (G6PD, KIF20A,

NDRG1, ADH1C, RECQL4, and MCM4) selected by the random

survival forest (RSF) algorithm achieved an AUC of 0.964 for 3-year

survival prediction in the training cohort and were successfully

validated in the ICGC/GSE14520 cohort. Patients in the high-risk

group have an increased frequency of TP53/TTN mutations and

tumor mutational burden (27, 28), and the risk score is positively

correlated with tissue grade and clinical stage. Crucially, we

validated the expression of the six-gene risk signature in HCC

clinical samples and cell lines. Consistent with bioinformatic

predictions, G6PD, KIF20A, NDRG1, RECQL4, and MCM4 were

significantly upregulated in HCC tissues and cell lines, whereas

ADH1C was downregulated. This orthogonal validation confirms

the robustness of our risk model and its foundation in HCC biology.

The robust prognostic performance of our six-gene signature is

further underpinned by the extensively documented, and often

complementary, oncogenic roles of its constituents in HCC

pathogenesis, as established in independent functional studies.

This signature encapsulates genes that coordinately drive key

hallmarks of cancer. It includes potent regulators of sustained

proliferative signaling [KIF20A via stabilizing c-Myc (29); MCM4

as a core DNA replication helicase (30)] and agents that confer

therapy resistance [G6PD (31, 32) and NDRG1 (33) by inhibiting

ferroptosis; RECQL4 by mediating DNA repair and suppressing

cGAS-STING-mediated immune awakening (34)]. Furthermore, it

encompasses drivers of activation of invasion and metastasis (G6PD

via STAT3-mediated EMT (35); NDRG1 via transcriptional

regulation (36)) and deregulation of cellular energetics [G6PD as

the rate-limiting enzyme of the pentose phosphate pathway (35, 37);

ADH1C as a novel regulator of fatty acid degradation (38)].
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Notably, the model also captures genes critical for evading

immune destruction [KIF20A by inducing an immunosuppressive

microenvironment and immunotherapy resistance (29); RECQL4

by inhibiting dendritic cell function (34)]. Intriguingly, ADH1C

stands out as a well-validated tumor suppressor, and its loss in high-

risk patients likely contributes to metabolic rewiring and loss of

growth control (38). The convergence of these functionally diverse

yet synergistic genes into a single predictive model, achieved

through a machine learning algorithm agnostic to these pre-

established functions, provides a compelling multi-hit biological

rationale for the aggressive phenotype observed in high-risk

patients and strongly underscores the clinical relevance of

our signature.

The model’s predictive ability for treatment provides a basis for

individualized medication. The low-risk group had a better

response to anti-PD-1 immunotherapy, which is consistent with

its immune-active microenvironment characteristics, whereas the

high-risk group was more sensitive to DNA damage agents (such as

the Wee1 inhibitor MK-1775) and traditional drugs (such as

sorafenib). On the basis of these findings, we propose that C3

subtype/high-risk patients can adopt a synergistic strategy of cell

cycle-targeted drugs combined with immunotherapy.

Thus, the ERG-centric classification system, complemented by

the robust 6-gene prognostic signature, provides a clinically

actionable roadmap for the personalized management of HCC

patients, from prognosis assessment to therapy selection. Despite

the comprehensive nature of our study, several limitations should

be acknowledged. Firstly, the treatment response predictions for

immunotherapy and targeted drugs are based on computational

algorithms (SubMap, TIDE, oncoPredict) and public

pharmacogenomic data. While these tools are widely used and

validated, their predictions require confirmation in prospective

clinical trials or patient-derived organoid models. Secondly, while

our study establishes strong correlations and is grounded in the

known biology of the signature genes, future work to experimentally

validate the causal role of the entire multi-gene signature as a

functional unit—using approaches such as CRISPR-based gene

editing in vivo and in vitro—will be essential to fully elucidate its

mechanistic role in driving aggressive HCC phenotypes and therapy

resistance. Thirdly, while validated in independent cohorts, our

findings warrant further validation in larger, multi-center

prospective studies to ensure generalizability. Finally, integrating

exosomal protein or metabolite data could further improve the

accuracy of our classification and prognostic model in the future.
Conclusion

This work establishes plasma exosomal lncRNAs as powerful

biomarkers for HCCmolecular subtyping, prognosis, and treatment

guidance. The ERG-centric framework deciphers the lncRNA–

ceRNA regulatory axis in hepatocarcinogenesis, whereas the RSF-

derived risk model offers a clinically translatable tool for precision

oncology. Future studies should focus on validating these findings
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in interventional trials and expanding multiomic integration for

therapeutic discovery.
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