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Background: Hepatocellular carcinoma (HCC) faces challenges in early
diagnosis, prognosis, and treatment stratification due to molecular
heterogeneity. This study aimed to establish a plasma exosomal long non-
coding RNA (IncRNA)-based framework for molecular classification,
prognostication, and therapeutic guidance in HCC.

Methods: The transcriptomic data from 230 plasma exosomes and 831 HCC
tissues were integrated. A competitive endogenous RNA (ceRNA) network was
constructed via the miRcode, miRTarBase, TargetScan, and miRDB databases to
define exosome-related genes (ERGs). Unsupervised consensus clustering was
used to stratify HCC patients on the basis of ERG profiles. Prognostic models
were developed and optimized via 10 machine learning algorithms with 10-fold
cross-validation. Treatment responses were predicted via the SubMap, TIDE, and
oncoPredict algorithms. RT-qPCR experiments were conducted to validate the
expression of model genes.

Results: We identified 22 dysregulated plasma exosomal IncRNAs in HCC. The
upregulated IncRNAs formed a ceRNA network regulating 61 ERGs and were
significantly enriched in cell cycle regulation, TGF-J signaling, the p53 pathway,
and ferroptosis. ERG expression stratified HCC into three subtypes (C1-C3). The
C3 subtype exhibited the poorest overall survival, advanced grade and stage, an
immunosuppressive microenvironment (increased Treg infiltration, elevated PD-
L1/CTLA4 expression, highest TIDE score), and hyperactivation of proliferation
(MYC, E2F targets) and metabolic pathways (glycolysis, mTORC1). A random
survival forest-derived 6-gene risk score (G6PD, KIF20A, NDRG1, ADHIC,
RECQL4, MCM4) demonstrated high prognostic accuracy. High-risk patients
presented increased TP53/TTN mutations and increased tumor mutational
burdens. Risk model analysis predicted differential treatment responses: low-
risk patients exhibited superior anti-PD-1 immunotherapy responses, whereas
high-risk patients showed increased sensitivity to DNA-damaging agents (e.g.,
the Weel inhibitor MK-1775) and sorafenib. Experimental validation confirmed
consistent dysregulation of the six-gene signature (G6PD, KIF20A, NDRG1,
ADH1C, RECQL4, MCM4) in HCC cell lines, reinforcing the model's
biological relevance.
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Conclusion: Plasma exosomal IncRNAs enable robust molecular subtyping,
accurate prognostic stratification, and treatment response prediction in HCC.
The ERG-centric classification system and validated 6-gene risk model provide
clinically actionable tools for precision oncology.

hepatocellular carcinoma, exosomal IncRNA, molecular subtype, prognosis,

treatment response

Introduction

Hepatocellular carcinoma (HCC) represents a global health
crisis, accounting for 90% of primary liver cancers and causing
over 830,000 annual deaths worldwide (1, 2). Despite advances in
targeted therapies and immunotherapy, the five-year survival rate
for advanced HCC patients remains below 20%, largely because of
late diagnosis and heterogeneous treatment responses (3). Current
diagnostic biomarkers such as alpha-fetoprotein (AFP) exhibit
limited sensitivity for early-stage detection (4), whereas
conventional imaging fails to identify micrometastatic disease (5).
These clinical challenges underscore the urgent need for novel
molecular stratification tools.

Tumor-derived exosomes—nanoscale vesicles (30-150 nm)
carrying bioactive molecules—have emerged as pivotal mediators
of hepatocarcinogenesis (6). Among their cargo, long non-coding
RNAs (IncRNAs) function as competitive endogenous RNAs
(ceRNAs), sequestering microRNAs to derepress oncogenic
transcripts (7). For example, exosomal H19 drives metastasis
through miR-520a-3p/LIMK1 axis activation (8), whereas HEIH
induces immunosuppression via STAT3 upregulation (9). These
molecules offer unique advantages as liquid biopsy biomarkers
because of their stability in circulation and tumor-specific
expression patterns.

Critical knowledge gaps persist in translating exosomal IncRNA
biology to clinical practice. Comprehensive characterization of
plasma exosomal IncRNA profiles in large HCC cohorts remains
limited, and the functional architecture of their ccRNA networks is
poorly mapped. Moreover, the prognostic utility of exosome-
derived signatures for molecular subtyping and therapy prediction
is virtually unexplored, particularly compared with that of tissue-
based approaches.

To address these unmet needs, we integrated transcriptomic
data from 230 plasma exosome samples (112 HCC patients vs 118
healthy controls) through a multiomics framework. This study
aimed to identify dysregulated exosomal IncRNAs, construct
ceRNA networks, define exosome-related genes (ERGs), elucidate
their molecular landscapes, establish ERG-driven molecular
subtypes, and develop a machine learning-based prognostic
model for personalized risk stratification and therapeutic
guidance. Additionally, we experimentally validated the
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expression patterns of the prognostic signature genes to establish
their clinical applicability.

Materials and methods
Data collection and preprocessing

This study integrated 831 hepatocellular carcinoma (HCC)
samples from three major public databases, including The Cancer
Genome Atlas (TCGA-LIHC, n=370, https://portal.gdc.cancer.gov/
projects/TCGA), the Gene Expression Omnibus (GSE14520,
n=221, https://www.ncbinlm.nih.gov/geo/), and the International
Cancer Genome Consortium (ICGC-LIRI, n=240, https://
dcc.icgc.org/). The RNA-seq data from TCGA-LIHC and ICGC-
LIRI were downloaded as raw counts and uniformly transformed to
Transcripts Per Million (TPM) values, followed by log2
transformation. The microarray data from GSE14520 were used
as provided by the authors after log2 transformation and quantile
normalization. The exosomal IncRNA expression matrix from
exoRBase 2.0 database (10) was also log2(TPM+1) transformed,
covering plasma exosomal transcriptome data from 112 HCC
patients and 118 healthy individuals. Somatic mutation and copy
number variation data were obtained through the TCGA portal.

Construction of the ceRNA regulatory
network

We focused on the upregulated exosomal IncRNAs for ceRNA
network construction because they are more likely to act as
oncogenic ‘sponges’ that sequester miRNAs and release the
inhibition on target mRNAs, thereby driving HCC progression.
The use of three stringent miRNA-mRNA interaction databases
(miRTarBase, TargetScan, miRDB) was to ensure the reliability and
biological relevance of the predicted interactions, minimizing false
positives. A multilevel strategy was adopted: first, miRNA binding
sites of differentially expressed IncRNAs were predicted via the
miRcode database (11); subsequently, the miRTarBase (12),
TargetScan (13), and miRDB (14) databases were integrated,
retaining the miRNA-mRNA relationships supported by all three
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databases; finally, the intersection of target genes of differentially
expressed IncRNAs and upregulated mRNAs in HCC tissues
([logFC|>1, FDR<0.05) was used to define exosome-related genes
(ERGs), and a ternary regulatory network was constructed via
Cytoscape 3.9.1.

Functional and immune analyses

The following steps were executed: GO/KEGG pathway
enrichment analysis was conducted via the clusterProfiler package
(FDR<0.05 significance threshold) (15), hallmark pathway activity
was quantified via gene set variation analysis (GSVA), pathway
differences between risk groups were compared via gene set
enrichment analysis (GSEA), and the abundance of 22 immune
cell types was analyzed via the CIBERSORT algorithm (LM22
signature matrix) (16).

Identification of molecular subtypes

On the basis of the ERG expression profile, unsupervised
consensus clustering was performed via the ConsensusClusterPlus
package (17): the Pearson distance metric, PAM clustering
algorithm, 80% resampling ratio, and 1000 iterations were
adopted, and the optimal number of subtypes (k=3) was
determined according to the cumulative distribution function
(CDF) curve.

Development of the prognostic model

The TCGA-LIHC cohort was utilized as the training set, while
the remaining cohorts served as validation sets. Ten machine
learning algorithms—CoxBoost, stepwise Cox, Lasso, Ridge,
elastic net (Enet), survival support vector machines (survival-
SVMs), generalized boosted regression models (GBMs),
supervised principal components (SuperPC), partial least squares
Cox (plsRcox), and random survival forest (RSF)—were
systematically integrated under a 10-fold cross-validation
framework, resulting in 118 distinct configurations. For the
CoxBoost model, the optimal penalty (shrinkage) value was first
identified using the “optimCoxBoostPenalty” function. This value
was then combined with 10-fold cross-validation to determine the
optimal number of boosting steps. The model was subsequently
fitted with the “CoxBoost” function. Stepwise Cox regression was
performed using the survival package, with model complexity
evaluated based on the Akaike Information Criterion (AIC). All
possible configurations of the direction parameter—”both”,
“backward”, and “forward”—were examined. The Lasso, Ridge,
and Enet models were implemented using the “cv.glmnet”
function from the glmnet package. The regularization parameter
A was selected via 10-fold cross-validation, while the mixing
parameter o was varied from 0 to 1 in increments of 0.1: o0 = 1
corresponds to Lasso, o. = 0 to Ridge, and intermediate values to
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Enet. The survival-SVM model was constructed using the
“survivalsvm” function from the survivalsvm package, which
applies support vector machine methodology to survival data. The
GBM model was fitted using the “gbm” function from the gbm
package with 10-fold cross-validation. The SuperPC model, an
extension of principal component analysis (PCA), was
implemented using the superpc package, with cross-validation
performed via the “superpc.cv” function over 10 folds. The
plsRcox model was developed using the “cv.plsRcox” function
from the plsRcox package. The RSF model was built using the
“rfsrc” function from the randomForestSRC package, with two key
parameters: “ntree” (the number of trees in the forest, set to 1000)
and “nodesize” (the minimum size of terminal nodes, set to 5).
Within a 10-fold cross-validation framework, the concordance
index (C-index) was used as the evaluation metric to optimize
hyperparameters, and a risk score model based on 6 key genes was
ultimately constructed. The model was trained on the TCGA
training set and independently tested on the ICGC/GSE14520
validation set.

Prediction of treatment response

A dual-dimensional strategy was employed: drug sensitivity was
calculated on the basis of the GDSC2 database via oncoPredict to
determine ICs, values (18); immune therapy response was
evaluated via SubMap analysis (GenePattern platform) to assess
the transcriptional similarity between high- and low-risk groups
and samples treated with anti-PD-1/CTLA-4 (Bonferroni-corrected
p<0.05); and the immune escape potential was quantified via the
TIDE algorithm (http://tide.dfciharvard.edu).

Cell culture

Human hepatocellular carcinoma cell lines (HLE, Huh7, and
Hep3B) and immortalized normal hepatocyte cell lines (WRL68
and THLE-3) were obtained from the American Type Culture
Collection (ATCC) or the National Collection of Authenticated
Cell Cultures (China). All cells were cultured in Dulbecco’s
Modified Eagle Medium (DMEM) or RPMI-1640 medium
supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin/streptomycin (all from Gibco, USA). Cells were
maintained at 37°C in a humidified incubator with 5% CO,.

Quantitative real-time polymerase chain
reaction

Total RNA was extracted from different HCC cell lines using
Trizol reagent (Takara, Japan). The RNA was then reverse
transcribed into complementary DNA (cDNA) using the
PrimeScript RT reagent kit (Takara, Japan) according to the
manufacturer’s instructions. Gene expression analysis was
performed by RT-qPCR using TB Green Premix Ex Taq (Takara,
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Japan) on an ABI7500 instrument, with primers listed in
Supplementary Table S1. The internal control GAPDH was
utilized and the 2**“" values were normalized to the levels of
GAPDH for data analysis.

Statistical analysis

The analyses were performed in the R 4.2.1 environment:
differences between continuous variable groups were evaluated via
the Wilcoxon rank sum test (for two groups) or the Kruskal-Wallis
test (for multiple groups); categorical variables were analyzed via
Fisher’s exact test; survival analysis was conducted via Kaplan-
Meier curves and the log-rank test; prognostic factors were assessed
via univariate and multivariate Cox regression; correlations were
calculated via the Spearman rank correlation coefficient; the
significance threshold was set at p < 0.05 (two-tailed test); and
multiple testing correction was performed via the Benjamini-
Hochberg method.

Results

Molecular characteristics and potential
regulatory mechanisms of IncRNAs in HCC
exosomes

Using the exoRBase database, we analyzed the RNA expression
profiles of blood-derived exosomes from 118 healthy individuals
and 112 HCC patients. Differential expression analysis (selection
criteria: [logFC| > 1, adjusted P value < 0.05) identified 22 IncRNAs
that were differentially expressed between the two groups
(Figure 1A). Among them, AC003684.1 and LINC02280 were
significantly downregulated in the HCC samples, whereas 20
IncRNAs, such as AC073172.1, AC026271.3, AC108863.1,
TTTY14, and AP001107.2, were significantly upregulated
(Figure 1B). To reveal the potential regulatory mechanisms of
exosomal IncRNAs, we focused on upregulated IncRNAs and
constructed a related ceRNA network. The specific process
included predicting miRNAs bound to IncRNAs via the miRcode
database; predicting the target genes of these miRNAs via the
miRDB, miRTarBase, and TargetScan databases (Figure 1C); and
finally, taking the intersection of these target genes and the
upregulated mRNAs in HCC samples, a total of 61 genes were
obtained and defined as exosome-related genes (ERGs) (Figure 1D).
The main functions of ERG include mitotic cell cycle phase
transition, organelle fission, promoter-specific chromatin binding,
and DNA-binding transcription activator activity. KEGG pathway
enrichment analysis revealed that ERG was significantly enriched in
cellular senescence, the cell cycle, microRNAs in cancer, and cancer
pathways, involving key pathways such as the TGF-beta and P53
signaling pathways, as well as metabolism, ferroptosis, and
mitochondrial autophagy-related pathways. These results suggest
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that ERG is closely related to the proliferation and growth of cancer
cells. Protein-protein interaction (PPI) network analysis further
identified core hub molecules such as RRM2, ZWINT, KPNA2,
EZH2, E2F1, E2F2, TRIP13, KIF23, and CCNBI.

Analysis of the molecular landscape of
ERGs and related tumor clustering
subtypes

To further explore the molecular characteristics of ERG, we
conducted a univariate Cox regression analysis and found that 41
ERGs were significantly associated with the prognosis of HCC
patients (p < 0.05) (Figure 2A). The hazard ratios (HRs) of these
genes were all greater than 1, indicating that they are poor
prognostic factors. Somatic mutation analysis revealed that
19.41% of the HCC samples had ERG gene mutations, but the
mutation frequency of individual genes was relatively low (e.g.,
POLQ: 4%, ATAD2: 2%) (Figure 2B). Copy number variation
(CNV) analysis revealed that most ERGs (such as ATAD2, E2F5,
PKIA, SUCO, LAMCI1, and MYBLI) presented significant copy
number amplification in HCC samples, which might be related to
their upregulated expression (Figure 2C). Figure 2D shows the
distribution of ERGs on chromosomes, which were mainly
concentrated on chromosomes 7, 8, and 14. Expression
correlation analysis revealed a significant positive correlation
among ERGs, suggesting their potential synergistic role in HCC
(Figure 2E). These results collectively indicate that the overall
abnormal expression of ERGs is an important cause of the
malignant progression of HCC. Based on the expression profiles
of ERGs, we subsequently classified HCC patients using an
unsupervised consensus clustering algorithm. We observed that
the relative change in the area under the CDF curve was larger when
the number of clusters was 3 compared to 2, and the CDF
distribution was flatter (Figure 2F). Moreover, as the number of
clusters increased, the area under the CDF curve changed little,
indicating that further increasing the number of clusters would not
significantly enhance clustering stability. Therefore, we divided the
HCC patients into three distinct subtypes (Clusters C1, C2, and C3)
(Figure 2G). The overall expression level of ERGs was the lowest in
the C1 subtype, followed by C2, and the highest in C3 (Figure 2H).
Survival analysis confirmed that patients in the C1 subtype had the
best prognosis, followed by those in the C2 subtype, and those in the
C3 subtype had the worst prognosis, further validating the
association between high ERG expression and poor prognosis
(Figure 2I). Clinical feature correlation analysis revealed
significant differences in T stage, clinical stage, and histological
grade among the different clustering subtypes (Figure 2]).
Specifically, the proportion of patients with advanced T stage,
clinical stage, and high histological grade increased from Cl to
C2 and then to C3, reflecting an increasing trend in tumor
malignancy, indicating that our molecular classification accurately
captures and reflects the continuum of HCC clinical aggressiveness.
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Biological characterization of ERG-related
subtypes

We further analyzed the differences in biological characteristics

among the different subtypes. Immune cell infiltration analysis
revealed that the Cl1 subtype was enriched in M2 macrophages,
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monocytes, resting NK cells, and resting mast cells, whereas the C2
and C3 subtypes were enriched in follicular helper T cells (Tths),
regulatory T cells (Tregs), and MO macrophages (Figure 3A). In
addition, the proportion of activated NK cells was the lowest in the
C3 subtype. The expression levels of immune checkpoint genes also
significantly differed among the different subtypes, with PD-L1,
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CTLA4, LAG3, HAVCR2, PD-1, CD80, CD86, TIGIT, and
TNFRSF9 showing stepwise increases from C1 to C2 and then to
C3 (Figure 3B). A high tumor immune dysfunction and exclusion
(TIDE) score indicates an increased possibility of tumor cell
immune escape (Figure 3C). The analysis results revealed that the
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TIDE score was the lowest in the C1 subtype and the highest in the
C3 subtype. Survival analysis also confirmed that a high TIDE score
was significantly associated with a worse prognosis in HCC patients
(Figure 3D). These results suggest that the increased infiltration of
immunosuppressive cells (such as Tregs) and the upregulated
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expression of immune checkpoint genes in the C3 subtype might  pathways (such as MYC targets, DNA repair, E2F targets, and the

jointly induce the formation of an immunosuppressive tumor  G2M checkpoint), oncogenic pathways (such as TGF beta, Notch,
WNT beta catenin, and P53), and metabolic pathways (such as
glycolysis and mTORCI signaling) were the highest, indicating that
the cancer cells in this subtype were highly proliferative (Figure 3E).

To confirm the biological pathway characteristics of the subtypes,

microenvironment (TME), leading to poor patient prognosis.

We also compared the activity levels of tumor hallmark
signaling pathways among different subtypes. The results revealed
that in the C3 subtype, the activity levels of cell proliferation-related
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we conducted a differential expression gene (DEG) analysis for the
three subtypes (Figure 3F). The results revealed 217 genes that were
differentially expressed among the subtypes, with the majority of
DEGs having the lowest expression in the C1 subtype and the

Frontiers in Immunology

08

highest in the C3 subtype (Figure 3G). KEGG enrichment analysis
of these DEGs revealed that the most enriched pathway was the cell
cycle pathway, further confirming the rapid proliferation ability of
C3 subtype cells (Figure 3H).
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Construction and validation of the ERG-
related risk score prognostic model

Given the strong association between ERG and HCC prognosis,
we further explored its prognostic value. First, we constructed
prognostic risk score models using 118 combinations of 10
machine learning algorithms (Figure 4A). Among them, the
random survival forest (RSF) algorithm model had the highest
average C-index in all cohorts, and the error rate was the lowest
when the number of trees was 110 (Figure 4B). On the basis of this
optimal model, we selected six key genes (G6PD, KIF20A, NDRG1,
ADHIC, RECQL4, and MCM4) to construct the final risk score
model and calculate the risk score for each sample (Figure 4C).
Patients in the TCGA training cohort were divided into high-risk
score and low-risk score groups on the basis of the optimal cutoft
value. K-M curve analysis revealed that the prognosis of patients in
the high-risk score group was significantly worse than that of
patients in the low-risk score group (Figure 4D). The area under
the receiver operating characteristic curve (AUC) values of this risk
score model for predicting 1-year, 2-year, and 3-year overall
survival (OS) in HCC patients were 0.950, 0.964, and 0.964,
respectively, demonstrating extremely high prognostic predictive
accuracy (Figure 4E). In two independent validation cohorts (the
ICGC cohort and the GSE14520 cohort), the prognosis of patients
in the high-risk score group was also significantly worse than that in
the low-risk score group, further confirming the clinical predictive
value of a high-risk score for poor prognosis. The ROC curve also
verified the predictive efficacy of this risk score for OS: in the ICGC
cohort, the AUC values for predicting 1-year, 2-year, and 3-year OS
were 0.764, 0.727, and 0.750, respectively; in the GSE14520 cohort,
they were 0.648, 0.692, and 0.672, respectively (Figures 4F-I). In the
three HCC cohorts, the proportion of deceased patients in the high-
risk score group was significantly greater than that in the low-risk
score group (Figure 5A). Among the six model genes, the expression
levels of G6PD, KIF20A, NDRGI1, RECQL4, and MCM4 increased
with increasing risk score, whereas the expression of ADHIC
exhibited the opposite trend (Figure 5B). Both univariate and
multivariate Cox regression analyses confirmed that this risk
score model had significant independent prognostic predictive
value in the three HCC cohorts (P < 0.01) (Figures 5C, D).

Differences in pathological characteristics
among patients in different risk score
groups

Next, we analyzed the differences in clinical and genomic
characteristics among patients in different risk score groups. In
the TCGA cohort, we found that the low-risk score group was
composed mainly of C1 and C2 subtype patients, whereas the high-
risk score group included mainly C3 subtype patients (Figure 5E).
The risk score was the lowest for the C1 subtype and the highest for
the C3 subtype (Figure 5F). The high-risk score group also had
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higher TIDE scores and tumor mutation burdens (TMBs)
(Figures 5G, H). Further analysis of somatic mutations revealed
that the proportion of samples with gene mutations in the high-risk
score group was greater than that in the low-risk score group (low-
risk group: 82.8%; the high-risk group had a significantly greater
mutation frequency of TP53, CTNNBI, and TTN than did the low-
risk group (91.89%), suggesting that a higher gene mutation
frequency may be associated with the poor prognosis of the high-
risk group (Figure 6A). Gene set enrichment analysis (GSEA)
revealed that the top 5 significantly enriched pathways in the
high-risk group were the cell cycle, DNA replication, the mRNA
surveillance pathway, nucleocytoplasmic transport, and
spliceosome, all of which are related to cell proliferation, whereas
the low-risk group was enriched mainly in metabolic pathways such
as arginine biosynthesis, butanoate metabolism, histidine
metabolism, primary bile acid biosynthesis, and tyrosine
metabolism, indicating pathway heterogeneity (Figure 6B). In
terms of clinicopathological features, the risk score gradually
increased with increasing histological grade (grade), clinical stage
(stage), and T stage (Figure 6C).

Application of the risk score model in
treatment decision-making

Finally, we evaluated the potential response of different risk
score groups to treatment strategies. Given that the high-risk score
group had a higher TIDE score, we used the submap algorithm to
predict the response of this group to immune checkpoint inhibitors
(ICIs). The results revealed that the high-risk score group had a
lower response to anti-PD-1 immunotherapy (Figure 7A), whereas
a greater proportion of patients in the low-risk score group were
predicted to respond to immunotherapy (Figure 7B). With respect
to chemotherapy and targeted drugs, we used the oncoPredict
algorithm to predict the drugs with the greatest and smallest
differences in drug sensitivity between the high- and low-risk
score groups. Compared with the low-risk group, the high-risk
group presented significantly lower half-maximal inhibitory
concentration (IC50) values for ML323, doramapimod,
sepantronium bromide, MK-1775, BPD-00008900, and Weel
inhibitor, indicating greater treatment sensitivity (Figure 7C).
Similarly, the low-risk score group was more sensitive to
doramapimod, SB505124, Nutlin-3a (-), a JAKI inhibitor, and
AZD6482 (Figure 7C). We also explored the differences in the
response of different risk score groups to 9 commonly used
anticancer drugs for HCC. The prediction results revealed that
patients in the high-risk score group were more sensitive to
docetaxel, paclitaxel, sorafenib, vincristine, 5-fluorouracil, and
axitinib, whereas there was no significant difference in sensitivity
to cisplatin, gemcitabine, or oxaliplatin between the two groups
(Figure 7D). These results provide potential treatment references
for patients in different risk score groups and may help in the
development of individualized treatment plans.
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Clinical validation of the risk model. (A) Distribution of survival status in the high- and low-risk groups in the three cohorts. (B) Correlation between the
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Validation of the expression of risk scoring
model genes

To explore the expression of the genes included in the risk
scoring model, we compared the expression levels of these six genes
in HCC tumor tissues and normal tissues from the TCGA-LIHC
cohort. The analysis results showed that the expression levels of
G6PD, KIF20A, NDRGI1, RECQL4, and MCM4 were significantly
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higher in HCC tumor tissues than in normal tissues, while ADH1C
was significantly downregulated in HCC tumor tissues (Figure 7E).
In 50 pairs of HCC tumor tissues and matched normal tissues, we
observed the same expression trends for these six genes (Figure 7F).
Additionally, we evaluated the expression of these six genes in five
cell lines: two normal liver cell lines (WRL68 and THLE-3) and
three HCC cell lines (HLE, Huh7, and Hep3B). The results
indicated that compared with normal liver cell lines, the
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Clinical and genomic characteristics of risk groups. (A) Differences in somatic mutation spectra between the high- and low-risk groups. (B) Top 5
enriched pathways identified via GSEA. (C) Correlations between the risk score and clinical stage/grade. **P<0.01; ***P<0.001; ns, no significance.

expression of G6PD, KIF20A, NDRG1, RECQL4, and MCM4 was
significantly upregulated, while ADHIC was significantly
downregulated in HCC cell lines (Figure 7G). This result verified
the expression characteristics of the six model genes in

HCC samples.
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Discussion

HCC faces severe challenges due to delayed diagnosis and
heterogeneous treatment responses (19). This study, by
integrating RNA-seq data from 230 plasma exosome samples,
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Risk model guiding treatment decisions and validation of model gene expression. (A) Prediction of the anti-CTLA-4/PD-1 immunotherapy response
via the submap algorithm. (B) Prediction of the immunotherapy response ratio via the TIDE algorithm. (C) Top 5 drugs with differences in sensitivity
between the high- and low-risk groups (IC50 comparison). (D) Prediction of sensitivity to 9 commonly used HCC chemotherapy drugs. (E, F) The
expression differences of the six model genes between non-paired (E) and paired (F) samples of tumor and normal tissues in the TCGA-LIHC cohort.
(G) The expression levels of the six model genes in two normal liver cell lines (WRL68 and THLE-3) and three HCC cell lines (HLE, Huh7 and Hep3B).

***P<0.001.

established for the first time a molecular classification system and
prognostic model based on exosomal IncRNAs, providing a new
perspective for resolving the predicament of the precise diagnosis
and treatment of HCC. Furthermore, the ERG-driven stratification
of HCC into three subtypes (C1-C3) transcends mere prognostic
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separation; it unveils distinct biological entities with direct
therapeutic implications.

The ceRNA regulatory network of exosomal IncRNAs is a
significant finding of this study. The 22 differentially expressed
IncRNAs [such as the oncogenes SNHG25 (20) and TTTY14 (21)]
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identified in the plasma of HCC patients competitively bind to
miRNAs to regulate 61 ERGs. These genes dominate cell cycle
progression (RRM2, CCNB1) (22, 23), DNA repair (E2F1) (24), and
epigenetic remodeling (EZH2) (25) and are significantly enriched in
the TGF-, p53, and ferroptosis pathways. This finding confirms
the role of exosome-derived IncRNAs and their related ceRNA
networks in promoting HCC progression, as revealed by previous
studies (7, 26).

Molecular classification on the basis of ERG expression profiles
(C1-C3 subtypes) has clear clinical importance. The C3 subtype,
which has high ERG expression, has the poorest prognosis and is
accompanied by an advanced T stage and a high proportion of
poorly differentiated tissues. Its immune microenvironment shows
inhibitory characteristics: increased infiltration of regulatory T cells
(Tregs), upregulated expression of immune checkpoint genes (PD-
L1, CTLA4), and a significantly elevated TIDE score. Notably, C3
tumors simultaneously activate proliferation-related pathways
(MYC, E2F targets) and metabolic reprogramming (mTORCI,
glycolysis), and this synergistic effect may be a key driver of the
invasive phenotype of these tumors. By distinguishing these
populations based on plasma exosomal IncRNA signatures, our
classification system provides a minimally invasive tool to guide
first-line therapy selection and overcome the challenge of treatment
heterogeneity in HCC.

The prognostic risk model constructed in this study has
significant clinical value. The six ERG markers (G6PD, KIF20A,
NDRG1, ADHI1C, RECQL4, and MCM4) selected by the random
survival forest (RSF) algorithm achieved an AUC of 0.964 for 3-year
survival prediction in the training cohort and were successfully
validated in the ICGC/GSE14520 cohort. Patients in the high-risk
group have an increased frequency of TP53/TTN mutations and
tumor mutational burden (27, 28), and the risk score is positively
correlated with tissue grade and clinical stage. Crucially, we
validated the expression of the six-gene risk signature in HCC
clinical samples and cell lines. Consistent with bioinformatic
predictions, G6PD, KIF20A, NDRGI1, RECQL4, and MCM4 were
significantly upregulated in HCC tissues and cell lines, whereas
ADHIC was downregulated. This orthogonal validation confirms
the robustness of our risk model and its foundation in HCC biology.
The robust prognostic performance of our six-gene signature is
further underpinned by the extensively documented, and often
complementary, oncogenic roles of its constituents in HCC
pathogenesis, as established in independent functional studies.
This signature encapsulates genes that coordinately drive key
hallmarks of cancer. It includes potent regulators of sustained
proliferative signaling [KIF20A via stabilizing c-Myc (29); MCM4
as a core DNA replication helicase (30)] and agents that confer
therapy resistance [G6PD (31, 32) and NDRGI (33) by inhibiting
ferroptosis; RECQL4 by mediating DNA repair and suppressing
cGAS-STING-mediated immune awakening (34)]. Furthermore, it
encompasses drivers of activation of invasion and metastasis (G6PD
via STAT3-mediated EMT (35); NDRGI1 via transcriptional
regulation (36)) and deregulation of cellular energetics [G6PD as
the rate-limiting enzyme of the pentose phosphate pathway (35, 37);
ADHIC as a novel regulator of fatty acid degradation (38)].

Frontiers in Immunology

13

10.3389/fimmu.2025.1663943

Notably, the model also captures genes critical for evading
immune destruction [KIF20A by inducing an immunosuppressive
microenvironment and immunotherapy resistance (29); RECQL4
by inhibiting dendritic cell function (34)]. Intriguingly, ADH1C
stands out as a well-validated tumor suppressor, and its loss in high-
risk patients likely contributes to metabolic rewiring and loss of
growth control (38). The convergence of these functionally diverse
yet synergistic genes into a single predictive model, achieved
through a machine learning algorithm agnostic to these pre-
established functions, provides a compelling multi-hit biological
rationale for the aggressive phenotype observed in high-risk
patients and strongly underscores the clinical relevance of
our signature.

The model’s predictive ability for treatment provides a basis for
individualized medication. The low-risk group had a better
response to anti-PD-1 immunotherapy, which is consistent with
its immune-active microenvironment characteristics, whereas the
high-risk group was more sensitive to DNA damage agents (such as
the Weel inhibitor MK-1775) and traditional drugs (such as
sorafenib). On the basis of these findings, we propose that C3
subtype/high-risk patients can adopt a synergistic strategy of cell
cycle-targeted drugs combined with immunotherapy.

Thus, the ERG-centric classification system, complemented by
the robust 6-gene prognostic signature, provides a clinically
actionable roadmap for the personalized management of HCC
patients, from prognosis assessment to therapy selection. Despite
the comprehensive nature of our study, several limitations should
be acknowledged. Firstly, the treatment response predictions for
immunotherapy and targeted drugs are based on computational
algorithms (SubMap, TIDE, oncoPredict) and public
pharmacogenomic data. While these tools are widely used and
validated, their predictions require confirmation in prospective
clinical trials or patient-derived organoid models. Secondly, while
our study establishes strong correlations and is grounded in the
known biology of the signature genes, future work to experimentally
validate the causal role of the entire multi-gene signature as a
functional unit—using approaches such as CRISPR-based gene
editing in vivo and in vitro—will be essential to fully elucidate its
mechanistic role in driving aggressive HCC phenotypes and therapy
resistance. Thirdly, while validated in independent cohorts, our
findings warrant further validation in larger, multi-center
prospective studies to ensure generalizability. Finally, integrating
exosomal protein or metabolite data could further improve the
accuracy of our classification and prognostic model in the future.

Conclusion

This work establishes plasma exosomal IncRNAs as powerful
biomarkers for HCC molecular subtyping, prognosis, and treatment
guidance. The ERG-centric framework deciphers the IncRNA-
ceRNA regulatory axis in hepatocarcinogenesis, whereas the RSF-
derived risk model offers a clinically translatable tool for precision
oncology. Future studies should focus on validating these findings
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in interventional trials and expanding multiomic integration for
therapeutic discovery.
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