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Immune checkpoint inhibitors have revolutionized the treatment of solid tumors;

however, their clinical efficacy remains limited to a subset of patients. Novel

immunotherapy agents are being investigated in phase I clinical trials, with an

increasing focus on biomarker selection strategies to optimize patient outcomes.

Prior evidence suggests that biomarker-selected tumors may have better

outcomes when treated with molecularly-guided therapies. However, the high

complexity of tumor-host interactions and inter-patient variability indicates that

a one-size-fits-all biomarker approach is unlikely to be sufficient in the

immunotherapy landscape. This review highlights current biomarker-

enrichment strategies in immunotherapy early drug development, addressing

challenges and potential future directions for their effective implementation.
KEYWORDS
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1 Introduction

Immune checkpoint inhibitors (ICIs) have dramatically changed the therapeutic

landscape of several tumor types, offering durable responses, prolonged survival, and

even the potential for long-term remission in a small subset of patients. The approval of

ipilimumab, the first anti-CTLA-4 monoclonal antibody (mAb), for the treatment of

melanoma in 2011 marked the advent of a new era (1). This was followed by significant

advances with the development of anti-programmed cell death 1 (anti-PD-1) or its ligand

(anti-PD-L1) mAb, such as nivolumab or pembrolizumab, becoming part of the standard

treatment for multiple cancer types (2–4). Despite these therapeutic milestones, nearly 80%
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of patients either fail to respond to ICIs or develop resistance over

time (5). Furthermore, a clinically significant proportion of patients

treated with ICIs experience severe immune-related adverse events

(irAEs), which lead to treatment discontinuation, and a subset may

even exhibit rapid disease progression, a phenomenon known as

hyperprogression (6–8). To address current limitations with classic

ICIs, an expanding array of next-generation immunotherapeutic

agents—including novel checkpoint inhibitors, T-cell engagers,

cytokine modulators, and cell-based therapies—is being evaluated

in early-phase trials, aiming to broaden the population of

responders while overcoming mechanisms of intrinsic or delaying

acquired resistance (9, 10). A critical priority in immunotherapy

early drug development is optimizing patient selection to accelerate

efficacy signals while mitigating toxicity risks, even during dose

escalation phases (11).

Currently, fewer than 10% of oncology drugs entering phase 1

trials ultimately receive regulatory approval (12). This rate may be

even lower for immunotherapies due to their biological and clinical

complexities, underscoring a critical need, as the development of

immunotherapy agents is a highly complex, time-intensive, and

costly process (13). A pivotal shift in immuno-oncology (IO) has

been the growing emphasis on biomarker enrichment strategies. A

comprehensive analysis, which reviewed 17,368 drug development

trajectories (2000-2015), found biomarker-guided patient selection

significantly increased success rates in drug development (10.7% vs

1.6%) (12). Similarly, the use of biomarker-guided therapies has

been associated with better outcomes in patients treated with

immunotherapy in phase 1–2 trials (14). Overall, these data

highlight the need to implement biomarker-driven enrichment
Frontiers in Immunology 02
strategies in early-phase immunotherapy trials to refine patient

selection and enhance trial efficiency. In this regard, the tumor-

agnostic approval of pembrolizumab in 2017 for the treatment of

microsatellite instability-high (MSI-H) or mismatch repair–

deficient (dMMR) tumors represented a paradigm shift. This

marked the first time the U.S. Food and Drug Administration

(FDA) approved a cancer therapy based on the presence of a

molecular biomarker independently of tumor histology (15, 16).

Moreover, tumor mutational burden (TMB) has also emerged as

another critical predictive biomarker. TMB high (TMB-H), defined

by the presence of equal or more than ten mutations per megabase

(Mb), has been correlated with increased neoantigen load and

improved responses to ICIs across various malignancies (17, 18).

Indeed, the FDA approved TMB in 2020 as a tissue-agnostic

companion diagnostic for pembrolizumab in solid tumors, based

on the results of the KEYNOTE-158 phase 2 trial, which showed an

overall response rate (ORR) of 29% (19, 20). Furthermore, to

optimize novel drug development, biomarker discovery and

validation have been increasingly shifting from late-stage studies

to early-phase clinical trials. However, despite substantial efforts in

searching robust biomarkers, only programmed death-ligand 1

(PD-L1) expression, TMB, and dMMR/MSI-H are currently

validated and used in routine clinical practice, while others

remain under investigation (Table 1) (35). Integrating high-

throughput technologies into early-phase clinical trial design may

improve efficiency, patient selection and refine endpoint

determination (36).

In this narrative review, we aimed to provide a comprehensive

overview of the current landscape of biomarkers and enrichment
TABLE 1 Established and emerging biomarkers for immunotherapy in solid tumors.

Biomarker Predictive value Assay/Tissue type Limitations

PD-L1 (21)
Predicts response in NSCLC, HNSCC,
gastric, TNBC, cervical, urothelial

IHC (clones: 22C3, 28-8, SP142,
SP263) on tumor and/or immune
cells

- Heterogeneity (intra/inter-tumoral,
temporal).
- Assay variability.
- Lack of universal cut-off.
- Variability in predictive value across
tumor types.

dMMR/MSI-H (22, 23)
Strong predictor of response; FDA-
approved for pembrolizumab (tissue-
agnostic)

IHC (MLH1, MSH2, MSH6,
PMS2); PCR; NGS

- Discordant cases (IHC vs PCR/NGS)
may still respond.
- Biological heterogeneity (co-alterations
may modulate response).

TMB-H (17, 18)
Predicts response; FDA-approved for
pembrolizumab (tissue-agnostic)

Targeted panels, WES, WGS or
liquid biopsy (ctDNA)

- Lack of standardization.
- Variable panel sizes.
- Predictive value inconsistent across
tumor types.

POLE/POLD1 mutations in EDMs (24)
Predict sensitivity (ultramutator
phenotype)

NGS, Sanger sequencing, FFPE
assays

- Very low prevalence (<3%).
- Requires broad prescreening.

SWI/SNF complex (ARID1A, PBRM1,
SMARCA4, SMARCB1) (8)

Predict potential sensitivity NGS, molecular profiling - Exploratory.

Resistance mutations (B2M, JAK1/2, STK11/
LKB1, KEAP1, EGFR, PTEN, MDM2) (7, 8,
25–34)

Associated with resistance or
hyperprogression

NGS, molecular profiling

- Context-dependent: not absolute (e.g.,
some MSI-H with B2M/JAK1/2 still
respond).
- Remain exploratory.
NSCLC, non-small cell lung cancer; HNSCC, neck squamous cell carcinoma; TNBC, triple-negative breast cancer; IHC, immunohistochemistry; TPS, Tumor Proportion Score; CPS, Combined
Positive Score; ctDNA, circulating tumor DNA; PCR, polymerase chain reaction; NGS, next-generation sequencing; WES, Whole exome sequencing; WGS, Whole genome sequencing; FFPE,
specialized mutation assays using formalin-fixed paraffin-embedded; EDMs, exonuclease domains.
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strategies in immunotherapy while highlighting advances,

limitations, and persistent barriers associated with the broad

implementation of biomarker-driven patient selection in early-

phase trials.
2 Tissue-based immunotherapy
biomarkers

2.1 Programmed cell death-ligand 1

PD-L1 has been extensively investigated for predicting response

to ICIs (37). PD-L1 immunohistochemistry (IHC) has received

regulatory approval as a companion or complementary diagnostic

test for several ICIs across various tumor types, including non-small

cell lung cancer (NSCLC), gastric cancer, triple-negative breast

cancer (TNBC), cervical cancer, urothelial carcinoma, and head

and neck squamous cell carcinoma (HNSCC) (21). Despite its

initial promise, translating it into a consistently reliable

biomarker for patient selection has been significantly challenged

by inherent biological complexities and technical standardization

(38). PD-L1 expression can be induced by cytokines such as

interferon-gamma (IFN-g), exhibiting notable intra-tumoral and

inter-metastatic heterogeneity, and frequently diverges between

primary tumors and metastases (39–41). For example, discordant

expression was observed in 50% of advanced melanoma patients

when they were longitudinally sampled (40). Also, PD-L1

expression can be modulated by prior or concurrent treatments,

adding temporal variability as another layer of complexity (41–43).

For instance, in a cohort of patients with metastatic NSCLC, prior

ICI exposure was associated with reduced PD-L1 expression

compared to treatment-naïve patients (44). This results in

significant heterogeneity within and across tumor sites, making a

single pre-treatment biopsy a potentially unreliable indicator of the

overall immune landscape (19, 20, 45). Moreover, the predictive

value of PD-L1 varies depending on whether expression is assessed

on tumor cells (TCs) or immune cells (ICs). While PD-L1

expression on TCs has shown a more consistent correlation with

treatment outcomes, expression on ICs has demonstrated variable

and often limited associations with response to ICIs (39). Such

sampling bias can lead to misclassification, limiting the ability to

detect efficacy signals, which is especially critical in small,

exploratory phase 1 trials. PD-L1 expression can be evaluated

using different scoring systems, such as the Tumor Proportion

Score (TPS) and the Combined Positive Score (CPS), each with

distinct clinical cut-offs specific to the assay, tumor type, and

therapeutic agent. Moreover, differential predictive value has been

observed across these methods, adding further complexity to the

interpretation of PD-L1 expression (21). Beyond biological

complexity, the utility of PD-L1 as a reliable biomarker is further

constrained by significant technical challenges. The FDA has

approved multiple IHC assays for PD-L1 detection utilizing

different antibody clones (Dako 22C3, Dako 28-8, Ventana

SP142, and Ventana SP263), each developed in conjunction with

specific PD-(L)1 inhibitors (21).
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In phase 1 clinical trials, the use of different thresholds to define

PD-L1 positivity has yielded variable results, underscoring the lack

of standardization in the application of this biomarker. The

expansion cohort of the KEYNOTE-001 reported an ORR of 45%,

16.5% and 10.7% in patients with a TPS ≥50%, 1–49% and <1%,

respectively (46). These findings led to FDA approval for PD-L1

expression and provided the basis for subsequent trials such as

KEYNOTE-010 (cut-off ≥1%) and KEYNOTE-024 (cut-off ≥50%)

in NSCLC (4, 47). Similarly, other anti-PD-(L)1 mAbs (e.g.,

atezol izumab or nivolumab) demonstrated responses

predominantly in patients with high PD-L1 expression (Table 2)

(48, 59). However, growing evidence suggests that PD-(L)1

blockade efficacy may be independent of PD-L1 expression in

specific contexts, with clinical benefits observed in PD-L1

negative tumors (2, 60). For example, in advanced renal cell

carcinoma (RCC) treated with nivolumab, the median overall

survival (OS) was paradoxically longer in the PD-L1<1%

population (27.4 months) compared to PD-L1≥1% group (21.8

months), challenging the pan-cancer predictive value (61). Overall,

these limitations constrain its pan-cancer application. While PD-L1

remains an established biomarker in clinical decision-making for

approved ICIs in specific, well-defined contexts, its profound

biological dynamism and susceptibility to technical variability

render it an insufficient enrichment tool in early-phase drug

development (62). Assay-dependent misclassification and

arbitrary thresholds may overestimate drug activity in biomarker-

selected populations or inadvertently exclude PD-L1–negative

patients who could benefit from treatment. Therefore, while PD-

L1 retains clinical utility as an accessible and widely implemented

biomarker, particularly for patient selection in specific indications,

its limitations suggest that it may be more appropriately integrated

as a stratification factor, an exploratory endpoint, or as part of a

more comprehensive, multi-parametric biomarker approach.
2.2 Mismatch repair deficiency

Tumors harboring deficiencies in the DNA mismatch repair

(MMR) pathway characteristically accumulate an exceptionally

high number of somatic mutations, a state known as MSI-H. This

high mutational load makes dMMR/MSI-H tumors particularly

rich in immunogenic neoantigens, providing a strong rationale for

their generally higher sensitivity to ICIs (22, 23). The prevalence of

dMMR/MSI-H tumors varies across cancer types, ranging from

approximately 30% of the cases in endometrial cancer (EC), 10-15%

in colorectal cancer (CRC), 5-8% in gastric cancers, and under 5%

in many other solid tumors (63). Detection methods include IHC

for MMR proteins (MLH1, MSH2, MSH6, PMS2), as well as

molecular techniques such as polymerase chain reaction (PCR)

and next-generation sequencing (NGS) to assess MSI status

(Table 1) (64). While NGS and PCR concordance is generally

high, with a reported rate of approximately 98.8%, historical

discordance rates between IHC and molecular methods (NGS/

PCR) have ranged from 1-10% (64, 65). More recent data using

improved methodologies suggest a lower discordance rate (0.3–
frontiersin.org
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1.6%) (Supplementary Table S1) (66, 67). However, each technique

offers unique strengths and limitations. While IHC offers shorter

turnaround times and cost-effectiveness, it may fail to identify

dMMR in cases of missense mutations where non-functional

proteins retain antigenicity. Conversely, NGS provides superior

sensitivity, detecting MSI-H tumors that are missed by IHC (e.g.,

those with atypical gene involvement as MLH1, PMS1, or co-

occurring POLE mutations), but it often entails longer

turnaround time and higher costs (68, 69). Importantly,

discordant cases such as pMMR/MSI-H tumors may still harbor a

high mutational burden and consequently respond favorably to ICIs

(17, 67). Therefore, the choice of detection method in early-phase

trials may be significant, as it can influence the characterization of

the enriched patient population and the subsequent interpretation

of efficacy signals (63).

The clinical utility of dMMR/MSI-H as a predictive biomarker

for ICIs was first demonstrated across multiple studies. KEYNOTE-

016, a phase 2 study, reported an ORR of 40% and 71% with

pembrolizumab in advanced dMMR/MSI-H CRC and dMMR/

MSI-H non-CRC, respectively (57). Subsequently, the phase 2

multicohort trial, KEYNOTE-158, showed an ORR of 34.3% with

a median progression-free survival (PFS) of 4.1 months and OS of

23.5 months, in pre-treated patients with various dMMR/MSI-H

non-CRC solid tumors (58). These findings culminated in the 2017

FDA accelerated approval of pembrolizumab for dMMR/MSI-H

solid tumors, establishing it as the first tissue-agnostic biomarker

for cancer therapy (Table 2) (70). More recently, phase 3 trials, such

as CheckMate 8HW and KEYNOTE-177, have confirmed the

benefit of ICIs in the first-line treatment of dMMR/MSI-H mCRC

compared with standard chemotherapy combinations (52, 53).

Despite robust evidence, there is a critical need for further

understanding of dMMR/MSI-H tumors. Not all dMMR/MSI-H
Frontiers in Immunology 04
tumors respond equally, suggesting biological heterogeneity that

could guide future enrichment strategies. For example, the presence

of co-occurring oncogenic alterations in the PI3K-AKT signaling

pathway (e.g., PTEN loss, AKT1 mutations) has been implicated in

primary resistance to ICIs. Such alterations are hypothesized to

contribute to an immune-excluded phenotype by modulating

cytokine dysregulation, reducing T-cell infiltration, and impairing

antigen presentation (71). Interestingly, loss of expression of both

MLH1 and PMS2 has been associated with stronger responses due

to greater neoantigen load (71). Additionally, discordant profiles,

such as pMMR/MSI-H tumors, may still exhibit TMB-H and

respond favorably to ICIs (17, 67). These data suggest that further

patient stratification within the dMMR/MSI-H population may be

required. Early-phase trials could be designed to identify these

“hyper-responders” subgroups or rationally design combination

therapies aimed at overcoming these potentially resistant pathways.
2.3 Tumor mutational burden

TMB is defined as the total number of non-synonymous

mutations per Mb of the tumor genome and can be considered as

a surrogate marker of overall tumor immunogenicity, emerging as a

potential pan-cancer predictive biomarker for response to ICIs.

TMB can be estimated using NGS approaches, ranging from whole-

genome/exome sequencing (WGS/WES) of paired tumor and

normal DNA to targeted gene panels based on tumor tissue or

liquid biopsies (68, 69). However, its clinical application is hindered

by a lack of standardization across testing platforms and analytical

methodologies. We summarized common assays used in clinical

practice in Supplementary Table S2. WES-based TMB calculations

typically focus on missense mutations, but TMB values are also
TABLE 2 Main diagnostic assays and thresholds enabling ICI use in common solid tumors.

Tumor
type

Approved
biomarker

Assay/Clone
FDA-approved threshold for ICI
use

Reference trial

NSCLC PD-L1 (TPS) IHC (22C3, 28-8, SP263)
TPS ≥50%: pembrolizumab (4)
TPS ≥1%: pembrolizumab (47) or nivolumab
plus ipilimumab (48)

KEYNOTE-024 (4), KEYNOTE-010 (47),
CheckMate-227 (48)

HNSCC PD-L1 (CPS) IHC (22C3) CPS ≥1: pembrolizumab (49) KEYNOTE-048 (49)

Gastric/GEJ PD-L1 (CPS) IHC (22C3)
CPS ≥5: nivolumab (50)
CPS ≥10: pembrolizumab (51)

CheckMate 649 (50)
KEYNOTE-859 (51)

Colorectal
Cancer

dMMR/MSI-H
IHC (MLH1, MSH2, MSH6,
PMS2); PCR; NGS

dMMR/MSI-H
KEYNOTE-177 (52), CheckMate-8HW
(53)

Cervical
cancer

PD-L1 (CPS) IHC (22C3) CPS ≥1: pembrolizumab (54) KEYNOTE-826 (54)

Urothelial
carcinoma

PD-L1 (CPS or IC
%)

IHC (22C3, SP142)
CPS ≥10: pembrolizumab (55)
IC ≥5%: atezolizumab (56)

IMvigor210 (56), KEYNOTE-052 (55)

Tissue-
agnostic

dMMR/MSI-H
IHC (MLH1, MSH2, MSH6,
PMS2); PCR; NGS

dMMR/MSI-H (any tumor) KEYNOTE-016 (57), KEYNOTE-158 (58)

Tissue-
agnostic

TMB-H NGS (FoundationOne CDx) ≥10 mut/Mb KEYNOTE-158 (58)
NSCLC, non-small cell lung cancer; IHC, immunohistochemistry; TPS, Tumor Proportion Score; HNSCC, neck squamous cell carcinoma; CPS, Combined Positive Score; GEJ, gastroesophageal
junction; IC, immune cells; NGS, next-generation sequencing; Mb, megabase.
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highly influenced by pre-analytical factors such as tumor purity,

with low purity potentially leading to TMB underestimation (72,

73). Moreover, variability in panel size, sequencing depth, and

mutation filtering criteria further complicates cross-platform

comparability and limits the utility of TMB for prospective

patient selection in early-phase trials (74). International initiatives

such as Friends of Cancer Research (Friends) and the Quality in

Pathology (QuIP) have developed frameworks aimed at

standardizing and harmonizing TMB assessment across platforms

and centers globally (75, 76).

Based on the results of the single-arm phase 2 KEYNOTE-158

trial showing an ORR of 29% across tumor histologies, the FDA

granted the tumor-agnostic approval of pembrolizumab for patients

with unresectable or metastatic solid tumors exhibiting TMB ≥10

mutations/Mb, as determined by a specific assay (FoundationOne

CDx) (Tables 1, 2) (19). Further evidence has emerged from clinical

trials in gastric cancer (such as KEYNOTE-061), HNSCC

(CONDOR and HAWK), or hepatocellular carcinoma

(EPOC1704), which have contributed to this evidence base,

particularly for combination immunotherapy strategies (77–82).

Another study found that higher log-transformed TMB values were

associated with improved response rates. Notably, some viral-

related cancers (anal, cervical, and hepatocellular) exhibited better

responses than expected based solely on TMB, suggesting that

additional factors may influence ICI responses (83). While this

approval marked a significant step forward in precision IO, major

concerns still exist around the clinical application of TMB. For

instance, the predictive value of TMB is not consistent across tumor

types. Despite the presence of TMB-H in certain tumors such as

breast, prostate cancer, and gliomas, TMB has not been definitively

associated with increased immunotherapy sensitivity. This suggests

that a TMB-H is not necessarily indicative of effective immune

recognition, potentially due to factors such as a lack of functional

neoantigens or insufficient CD8+ T-cell infiltration (84).

Importantly, the predictive value is not universal, so its utility

depends significantly on tumor-intrinsic and patient-specific

characteristics. For instance, a retrospective study analyzing

survival outcomes in over 8000 patients with solid tumors treated

with ICIs showed that TMB-H was significantly associated with

longer OS in the pan-cancer setting, including the CRC subgroup.

Nevertheless, among patients with MSS CRC, no differences were

observed according to TMB status, suggesting that this benefit may

be driven by the dMMR/MSI-H sub-population (85).

Moreover, in a cohort of 1,662 patients analyzed using the

MSK-IMPACT targeted NGS panel, higher somatic TMB (defined

as the top 20% within each histologic subtype) was associated with

improved OS with ICIs across cancer types. However, specific TMB

cut-offs defining this “high” stratum varied markedly between

histologies, suggesting a universal TMB threshold is unlikely to be

optimal (86). Commonly used assays for TMB evaluation are

presented in Supplementary Table S2. Consequently, applying

fixed TMB thresholds for patient enrichment in early drug

development, particularly across heterogeneous pan-tumor

cohorts, risks oversimplification. This could compromise

sensitivity by excluding potential responders or reduce specificity
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by including non-responsive TMB-H individuals. Notably, a lack of

concordance has been observed between TMB and other

biomarkers such as PD-L1 expression. For instance, in

CheckMate-026 and CheckMate-227, patients with NSCLC who

had TMB-H experienced prolonged PFS with ICI treatment,

regardless of PD-L1 status (87, 88). This supports the idea that

TMB may define a distinct subset of immunotherapy-responsive

patients, underscoring the need for integrative, multi-parametric

biomarker strategies in early-phase settings. Recognizing the

limitations of tissue-based TMB (tTMB) assessment, plasma-

based TMB (blood TMB or bTMB) offers a less invasive

alternative. Clinical trials, such as MYSTIC and BFAST, in

NSCLC have explored bTMB, demonstrating its feasibility, as well

as the challenges, including assay failure due to insufficient

circulating tumor DNA (ctDNA) (25-30% in MYSTIC) and only

moderate concordance (around 50-60%) with tTMB (89, 90).

Currently, the clinical implementation of bTMB remains

constrained by technical and biological limitations. These include

but are not limited to low ctDNA abundance in early-stage disease,

low-shedding tumors, and the resulting suboptimal sensitivity and

concordance with tTMB (91). In summary, although TMB shows

potential as a predictive biomarker for ICIs response, its clinical

utility remains constrained by methodological variability and the

need for integration with complementary biomarkers.
2.4 Genomic determinants of
immunotherapy sensitivity and resistance

Specific genomic alterations may indicate increased sensitivity

or inherent resistance to immunotherapy and may have a role in

guiding patient stratification and rational combination approaches

in early-phase clinical trials. Pathogenic mutations in the

exonuclease domains (EDMs) of DNA polymerases epsilon

(POLE) and delta 1 (POLD1) are emerging as predictive

biomarkers of sensitivity to ICIs. These mutations impair

proofreading, leading to an “ultramutator” phenotype

characterized by a high frequency of base substitution mutations,

distinct from the indel-driven frameshifts common in MSI-H

tumors (Table 1) (24). Somatic or germline POLE/POLD1

mutations in EDMs occur at low frequencies; somatic POLE and

POLD1 mutations were estimated at 2.79% and 1.37%, respectively

(92, 93). Notably, POLE EDMs and dMMR/MSI-H can co-occur,

potentially creating an exceptionally immunogenic neoantigen

landscape enriched by MSI-H-driven indels, which could enhance

T-cell infiltration (93). Promising clinical evidence supports their

predictive value. For instance, a phase 2 trial evaluating the anti-

PD-1 agent, toripalimab, in advanced solid tumors, reported an

ORR of 21.4%, with a notably higher response rate among patients

harboring POLE EDMs (66.7%) compared to those with non-EDM

POLE/POLD1 variants (9.1%) (94). Similarly, the KEYNOTE-028

study reported durable responses to pembrolizumab in patients

with POLE-mutated EC (95). Prospective studies are ongoing (e.g.,

NCT05103969, NCT02693535, NCT03491345, and NCT06118658)

(96–98). Despite their distinct biology and potential for profound
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ICI sensitivity, their low pan-cancer incidence poses a practical

hurdle for patient enrichment in early-phase trials, often requiring

extensive molecular prescreening programs or a strategic focus on

tumor types with already known higher prevalence, like EC.

Alterations in chromatin remodeling complexes, particularly

components of the SWI/SNF complex (e.g., ARID1A, PBRM1,

SMARCA4, SMARCB1), have also emerged as potential

biomarkers of ICI sensitivity, outlined in Table 1 (8). These

mutations can lead to increased mutational burden, an inflamed

tumor microenvironment (TME), and enhanced immune

infiltration, suggesting their utility in identifying responsive

subgroups across various tumor types (8, 99–101).

Conversely, multiple genomic alterations have been implicated

in both primary and acquired resistance to ICIs. Distinct but

functionally convergent mechanisms of immune resistance

include alterations in b2-microglobulin (B2M), which impair

antigen presentation by disrupting MHC-I; inactivating mutations

in JAK1/2, key mediators of IFN-g signaling; and chromosomal

losses like 9p21.3, which encompass CDKN2A/B and potentially

JAK2, leading to immune exclusion and reduced CD8+ T cell

infiltration (8, 25, 26, 102). The close genomic proximity of

CDKN2A and JAK2 on chromosome 9p facilitates frequent co-

deletions, which have been observed across multiple tumor types,

including melanoma (75%), lung squamous cell carcinoma (90.5%),

and bladder urothelial carcinoma (80%) (103). These co-deletions

are associated with impaired IFN-g signaling, diminished immune

infiltration, and further diminishing ICI sensitivity (26, 102–106).

Similarly, loss-of-function mutations in B2M or JAK1/2 have been

identified in patients with melanoma that progresses on anti–PD–1

therapy, suggesting acquired resistance, Table 1 (8, 25, 26).

However, emerging evidence indicates that the presence of these

mutations does not uniformly predict treatment failure. For

instance, among patients with dMMR/MSI-H CRC, the presence

of B2M or JAK1/2 mutations associated with clinically meaningful

responses to PD-1 blockade, challenging the assumption that these

alterations universally mediate resistance (107). Inactivation of the

tumor suppressor Serine/Threonine kinase 11 (STK11/LKB1),

frequently observed in KRAS-mutant NSCLC, is strongly

associated with primary resistance to ICIs, even in tumors with

TMB-H (27, 28). This alteration contributes to an immunologically

“cold” TME, characterized by poor T-cell infiltration and low PD-

L1 expression (27). Similarly, loss-of-function mutations in KEAP1,

which lead to constitutive activation of the NRF2 pathway, are

associated with immune exclusion and ICI resistance (29). KEAP1

mutations occur in approximately 2.7% of all cancers and are

particularly enriched in NSCLC (15.8%) (8). EGFR mutations,

also common in NSCLC, may promote immune escape through

the upregulation of PD-(L)1 and CTLA-4, and EGFR amplifications

have been implicated in hyperprogression following ICI therapy.

However, supporting data remain inconsistent (7). In addition,

PTEN loss fosters an immunosuppressive TME via activation of the

PI3K–AKT signaling pathway, while MDM2 amplification,

potentially through NFATc2 degradation, has also been associated

with hyperprogression and resistance (30–34). Emerging genomic

alterations that mediate resistance or hyperprogression under ICI
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therapy are summarized in Table 1. Together, these alterations

outline a molecular landscape of intrinsic resistance to

immunotherapy. Understanding this landscape of resistance

mutations is critical for refining patient selection in early-phase

clinical trials, potentially by excluding patients unlikely to benefit

from certain monotherapies or by identifying candidates for

rational combination approaches designed to overcome these

specific resistance mechanisms.
3 Non-invasive immunotherapy
biomarkers

3.1 Circulating tumor DNA

While profiling specific genomic alterations and other tissue-

based biomarkers provides critical biological insights, the static

nature of single biopsy timepoints limits this approach. ctDNA has

emerged as a minimally invasive biomarker offering dynamic

insights into tumor burden, mutational landscapes and

therapeutic response. ctDNA encompasses fragmented DNA

released into the bloodstream from apoptotic or necrotic tumor

cells, circulating tumor cells, and tumor-derived exosomes. Its

potential to revolutionize early-phase immunotherapy trials lies in

its ability to provide real-time molecular data, overcoming many

limitations of traditional tissue-based tumor biopsies. Several

studies support the prognostic and monitoring utility of ctDNA

in patients receiving ICIs. Persistently detectable ctDNA levels

during anti-PD-(L)1 treatment have been associated with worse

clinical outcomes (108–110). For example, a prospective phase 2

trial (NCT02644369) evaluated patients with advanced solid tumors

treated with pembrolizumab. The study found that a decrease in

ctDNA levels from baseline was associated with better outcomes

under immune checkpoint blockade (111). These findings have

been supported by additional pieces of data across multiple tumor

types, highlighting the potential of ctDNA early dynamics to serve

as a prompt surrogate endpoint for ICI efficacy outcomes (112).

Compared to conventional tissue-based molecular profiling,

ctDNA offers distinct advantages. For instance, it is minimally

invasive, facilitating repeated sampling for longitudinal

monitoring; it may more accurately reflect spatial and temporal

tumor heterogeneity; and it may be able to detect earlier response or

resistance compared to standard imaging (113, 114). These

attributes are particularly valuable in early-phase immunotherapy

trials, where timely and dynamic genomic insights can inform

patient selection, cohort stratification, and early assessment of

treatment response (115). Importantly, ctDNA also enables the

non-invasive evaluation of key immunotherapy biomarkers such as

TMB and MSI. Several commercial and academic platforms have

demonstrated the feasibility of estimating bTMB and MSI status

from ctDNA (116). However, as discussed previously, limitations in

analytical sensitivity, particularly in patients with low tumor burden

or low ctDNA shedding, remain a challenge (117). Substantial

heterogeneity currently exists across ctDNA testing platforms.

Differences in laboratory-developed protocols, sequencing
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technologies, bioinformatic pipelines, and variant calling thresholds

can lead to discordant findings, posing challenges for assay

reproducibility and clinical interpretation (117). Successful

integration of ctDNA into routine clinical trials and practice

would benefit from standardized methodologies and harmonized

assay performance. Given the variability in ctDNA quantification,

which is affected by tumor type, stage, anatomical location, tumor

burden, prior treatment lines and response to therapy among

others, the FDA advises manufacturers developing ctDNA-based

molecular residual disease (MRD) assays for solid tumors and

incorporation of ctDNA endpoints into prospective, randomized

trials to support evidence generation and eventual regulatory

approval (113). This lack of harmonization is a critical barrier to

the broader validation and adoption of ctDNA as a decision-making

tool. Therefore, ctDNA should be interpreted cautiously in early-

phase trials, especially in contexts where under-detection could

obscure early efficacy signals or lead to the premature termination

of promising agents (118). To facilitate the clinical implementation

of ctDNA as a reliable early endpoint, initiatives like the Friends of

Cancer Research ctDNA for Monitoring Treatment Response

(ctMoniTR) project represent important steps forward. By

analyzing harmonized patient-level data from five clinical trials

involving over 200 patients with advanced NSCLC treated with PD-

L1 inhibitors, the ctMoniTR initiative demonstrated that on-

treatment reductions in ctDNA levels were strongly associated

with improved OS and PFS (119). Additionally, dynamic changes

in variant allele frequency (VAF) were predictive across multiple

clinical endpoints (119). These findings underscore the potential of

ctDNA dynamics as an early indicator of therapeutic benefit. To

advance the field, key priorities identified through such

col laborat ive efforts include standardizing analyt ical

methodologies and data reporting across assays, ensuring

methodological transparency, systematically collecting

clinicopathological data (e.g., tumor type, prior treatment), and

defining minimum intervals between diagnosis and sampling (113).

In conclusion, ctDNA offers a transformative, minimally invasive

approach for dynamic tumor assessment in IO, with strong

potential to refine patient selection and accelerate decision-

making in early-phase trials. Realizing this potential critically

hinges on overcoming current challenges in analytical validation

and methodological standardization.
3.2 Serum biomarkers

Beyond ctDNA, several circulating biomarkers detectable in

serum or plasma offer a minimally invasive approach to assess

systemic inflammation, host immune function and tumor dynamics

in patients undergoing ICI therapy. Baseline hematological

parameters have been explored (120, 121). For instance, baseline

absolute lymphocyte count (ALC) has been proposed as a surrogate

marker of immune competence. Given the central role of

lymphocytes in antitumor immunity, low pretreatment ALC may

indicate impaired immune readiness and has been associated with

inferior clinical outcomes in patients with NSCLC and melanoma
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(120, 121). Moreover, dynamic changes in lymphocyte counts

following ICI initiation are complex, but their direct link to intra-

tumoral immune infiltration and ICI sensitivity remains to be fully

elucidated (122, 123). More consistently, derived ratios from

peripheral blood counts such as the neutrophil-to-lymphocyte

ratio (NLR), lymphocyte-to-monocyte ratio (LMR), and platelet-

to-lymphocyte ratio (PLR), have demonstrated prognostic value

across multiple tumor types (124–131). A high baseline NLR,

indicative of systemic inflammation and relative lymphopenia, is

consistently associated with worse outcomes with ICIs (132).

Derived NLR (dNLR) has been used as an alternative to NLR and

is associated with immunotherapy outcomes (133, 134). Both the

dNLR and the systemic immune-inflammation index (SII), which

incorporates platelet counts, have been associated with worse

prognosis (132).

Markers of systemic inflammation and tumor burden, such as

C-reactive protein (CRP) and lactate dehydrogenase (LDH), may

also provide prognostic information. Elevated LDH at baseline

often reflects increased tumor burden, tumor cell turnover,

hypoxia, and anaerobic glycolysis, which contribute to an acidic

and immunosuppressive TME (135). Consequently, higher LDH

levels at baseline have been consistently associated with worse

survival in ICI-pretreated patients (135). Interestingly, high LDH

can help to identify patients with aggressive disease phenotypes less

likely to benefit from immunotherapy monotherapy, guiding

towards combination strategies. Similarly, elevated CRP, driven

by inflammatory cytokines such as IL-6, can indicate an

immunosuppressive TME, with expanded regulatory T cells

(Tregs), myeloid-derived suppressor cells (MDSCs), and

inhibitory cytokines (136). Elevated baseline CRP levels have been

associated with adverse PFS and OS (137). An emerging

phenomenon, the “CRP flare-response”, a transient rise in CRP

within the first month of ICI therapy followed by a drop below

baseline, has been linked to favorable outcomes, possibly indicating

an effective antitumor immune activation (138). The phase 3 OAK

trial, which compared atezolizumab with docetaxel in NSCLC, the

CRP flare was predictive of improved survival only in the

immunotherapy arm, supporting its potential as a tumor-

agnostic, immunotherapy-specific marker (139). Beyond LDH

and CRP, various other circulating soluble factors (e.g., sCD25,

immunomodulatory cytokines, angiogenic molecules) have been

linked to reduced response rates to ICIs. However, their current

utility is largely exploratory due to assay variability and lack of

standardization (140–147). In summary, while several serum

biomarkers are readily available and inexpensive, their main

limitation is the lack of specificity. Their clinical utility is often

limited by a non-specific and incomplete understanding of their

precise biological roles in the context of immunotherapies and

multiple factors, including infections, concurrent medications, or

underlying comorbidities, can influence these markers.

Consequently, while they might serve as useful stratification

factors or contribute to multifactorial prognostic scores, their

utility for definitive patient enrichment is limited due to a high

risk of misclassifying patients based on non-specific inflammatory

states (148, 149).
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4 Additional enrichment strategies

To fully optimize patient selection, molecular markers may be

integrated with established, real-world clinical factors that define a

patient’s overall disease state and fitness for therapy. Furthermore,

clinical factors may serve as surrogates for underlying tumor

immunogenicity or immune fitness, potentially improving the

detection of efficacy signals. However, their application requires

careful consideration of complexities and trade-offs. With

increasing ICI exposure in phase 1 populations, prior

immunotherapy response becomes a relevant consideration for

patient selection. ICI-naïve patients generally show better

outcomes, suggesting immune exhaustion or resistance in the ICI-

exposed population (150). However, a history of clinical benefit

from ICIs may represent a subset with intrinsically more

immunogenic tumors and, subsequently, more likely to benefit

from ICI rechallenge or novel immunotherapies, as demonstrated

by several retrospective studies (151–153). Nevertheless, this

approach risks excluding patients with primary resistance to ICIs

who might respond to different combinations, especially since some

novel agents (e.g., tebentafusp) may even show enhanced effects

post-ICI (154–156).

The number of previous lines of therapy may also influence

outcomes. Heavily pre-treated patients, common in phase 1 trials,

may have a detrimentally altered TME and exhausted systemic

immunity, potentially lowering the response probability to novel

agents, including adoptive cell therapy (157–160). Evidence

suggests earlier ICI administration often enhances efficacy (161,

162). Hence, limiting inclusion to patients with fewer prior lines

might reduce heterogeneity and improve signal detection. However,

this enrichment strategy raises ethical considerations regarding

patient access and may limit the generalizability of early phase

clinical trial results. Furthermore, the impact of treatment lines can

be tumor-specific (e.g., MSS metastatic CRC showing minimal ICI

benefit regardless of line) and may be outweighed by factors like

performance status or overall tumor burden, emphasizing the need

for integrated decision-making (163).

Baseline tumor burden and pattern of metastatic spread are also

key considerations. Higher tumor burden at baseline has been

associated with worse ICI outcomes (164). Specific metastatic

sites, such as the liver, have been consistently associated with

poorer ICI responses across multiple tumor types due to their

association with a uniquely immunosuppressive TME (e.g., reduced

CD8+ T-cell infiltration, increased T-cell apoptosis, systemic

immune tolerance induction) (165–168). Brain metastases also

present distinct challenges associated with the central nervous

system (CNS) microenvironment, which is influenced by the

blood-brain barrier and comprises TILs, regulatory T-cells, and

glial-derived immunomodulatory cytokines, such as TGF-b (169,

170). Nevertheless, ICI combinations have shown intracranial

activity in melanoma and NSCLC (169, 171–174). Inclusion of

metastatic patterns as selection criteria may be balanced against the

need to understand drug activity in these high-need sub-

populations and would require careful integration with

assessment of overall tumor burden and tumor type.
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Moreover, a history of prior irAEs during prior ICI therapy

presents further considerations. While irAEs during an initial ICI

course have been linked to better outcomes in different retrospective

studies, their predictive value for subsequent immunotherapy

benefit is largely unproven (175–177). A large meta-analysis

showed only weak correlation between previous irAEs and OS

(178). Excluding patients with severe prior irAEs is a common

safety measure, supported by recurrence rates estimated at 30%

when re-treating (179).

In conclusion, clinically oriented factors like prior ICI response,

treatment history, metastatic patterns, and irAEs history

significantly contribute to patient heterogeneity in early-phase IO

trials, complicating the interpretation of efficacy signals. Leveraging

these factors for enrichment strategies requires a nuanced approach.

While such strategies may offer clearer efficacy signals in selected

subgroups and potentially de-risk development, they must be

carefully balanced against the goals of ensuring broad patient

applicability, maintaining ethical access to trials, and the critical

need for prospective validation to confirm their utility in truly

optimizing trial design.
5 Challenges and future directions

Over the past two decades, biomarker-driven clinical trials have

significantly transformed oncology drug development by enabling

early go/no-go decisions, real-time monitoring, and the co-

development of companion diagnostics (180). Nevertheless, many

current “all-comer” trial designs still fail to incorporate predictive

biomarkers, resulting in potential over- or under-treatment.

Addressing this limitation, while simultaneously reducing the

redundancy of “me-too” drug development, will be essential to

refine patient selection strategies and enhance immunotherapy

efficacy across tumor types and indications, ultimately moving the

field beyond its current plateau (181). Rapid advancements in NGS

and multi-omics technologies have further fueled the identification of

novel biomarkers, contributing to recent FDA approvals that mark a

paradigm shift in precision oncology (182). As outlined in this review,

these advances have driven a swift evolution in trial strategies from the

foundational tissue-based markers, such as PD-L1, dMMR/MSI-H,

and TMB, toward a more precise understanding of specific genomic

drivers and the advent of dynamic, plasma-based monitoring. This

evolution underscores a fundamental shift, where the imperative is

replacing the pursuit of a single biomarker with the development of an

integrated, multi-modal framework capable of capturing tumor and

immune system complexity to guide the next generation of

personalized treatments.
5.1 Challenges in trial design and
biomarker validation

A central challenge remains the distinction between prognostic

and predictive biomarkers. Prognostic markers provide information

about clinical outcomes regardless of the therapy received, reflecting
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tumor or host factors that influence disease progression and

survival (8, 132). Therefore, they can support clinical trial design

by enabling risk stratification. In contrast, predictive biomarkers

indicate the likelihood of response or resistance to a specific therapy

and require formal interaction analyses to confirm the association

of biomarker positivity and a differential response to a given

immunotherapy versus a control regimen (183, 184). While some

biomarkers may have both prognostic and predictive roles, this

distinction is critical in the context of biomarker-driven clinical trial

design. Concrete examples from early-phase immunotherapy trials

illustrate this distinction. MSI-H/dMMR status, demonstrated in

the KEYNOTE-016 phase II trial, represents a robust predictive

marker of ICI benefit (57). Similarly, in the KEYNOTE-001 trial, a

PD-L1 tumor proportion score (TPS) ≥50% was associated with

improved ORR and PFS, supporting its role as a predictive

biomarker (46). In contrast, elevated baseline LDH has

consistently been a negative prognostic factor in phase I

melanoma studies, reflecting tumor burden rather than

treatment-specific effects (132).

As described, many widely used immunotherapy biomarkers,

such as elevated baseline LDH or ctDNA levels, may function

primarily as prognostic indicators or surrogates of tumor burden

rather than as specific predictors of response to ICI therapy (132).

This challenge is magnified in early-phase, often single-arm trials,

where the absence of a control arm makes it statistically challenging

to distinguish between true predictive value and prognostic

influence. The implementation of narrow, biomarker-driven

eligibility criteria lacking rigorous predictive validation risks over

selection, which can severely limit trial enrollment and reduce the

external validity of the trial´s findings to a broader, real-world

patient population (185, 186). This approach carries the risk of

systematically excluding subgroups of patients who might have

derived benefit from treatment. Therefore, robust statistical

validation, including formal interaction testing within the trial

design, and a strong biological rationale are imperative before any

biomarker is used for stringent patient enrichment (132, 186).
5.2 Operational, analytical and
technological frontiers

As highlighted for established markers like PD-L1 or TMB, the

path from biomarker discovery to clinical implementation is limited

by significant operational barriers that further complicate the

integration of novel biomarkers into early-phase immunotherapy

trials. High costs, lengthy assay turnaround times, lack of

harmonized testing platforms, and complex regulatory

environments all contribute to delays in trial activation and limit

feasibility across institutions (187). For instance, with the

implementation of the new in-vitro diagnostic device (IVD)

regulation in Europe, a 6- to 12-month delay in clinical trial

activation has been estimated for clinical trial protocols using

IVDs (188). These challenges are particularly pronounced for

complex assays beyond standard sequencing, such as deep

proteomic or spatial profiling, which face persistent hurdles
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related to data variability, standardization, reproducibility, and

the need for robust bioinformatics infrastructure and expertise

(189). Initiatives like the Clinical Proteomic Tumor Analysis

Consortium (CPTAC) and transcriptomic tools such as Oncotype

DX and MammaPrint have underscored the clinical value of multi-

omic integration (190, 191). However, balancing the scientific

advantages of biomarker-driven design with the need for broad

applicability and operational efficiency remains a persistent

dilemma, and the routine implementation of such approaches in

early-phase trials continues to be scarce. Ultimately, clinical

response to immunotherapy is rarely dictated by a single marker;

instead, it emerges from the complex interplay between the tumor

and the host immune system within a dynamic and heterogeneous

TME. Acknowledging this complexity is the critical first step toward

developing more effective biomarker strategies, compelling a move

away from linear measurements. The path forward will likely

require a multidimensional approach that concurrently integrates

genomic data on resistance mechanisms, molecular and immune

contexture profiling, and patient-specific characteristics to guide

patient enrichment and support rational combination strategies in

early-phase trials.

This vision is being enabled by a technological revolution that

allows investigation into the tumor-immune interplay with

unprecedented resolution. The most immediate evolution is in

refining our genomic and transcriptomic insights. While NGS/

WES provides the foundation for broad biomarkers like TMB,

their application has matured to support a more specific

assessment of tumor immunogenicity (192). This includes

identifying specific resistance mutations, such as STK11, that

predict ICI failure even in tumors with TMB-H, or sensitizing

mutations like those in POLE that define a distinct “ultramutator”

phenotype (124). This focus also extends to non-mutational drivers

of immunogenicity; in virus-associated malignancies, for instance,

the expression of viral antigens provides a source of highly potent

T-cell targets. This was shown in the CheckMate 358 and CAN-

2409 oncolytic virus studies, which exemplify how viral antigens

can serve both as therapeutic targets and predictive tools (193, 194).

To capture the functional state of this interplay, the field is moving

beyond DNA alterations and toward transcriptomics (195). Pre-

defined signatures offer a more nuanced predictor of a pre-existing

anti-tumor immune response. For example, the 12-gene VIGex

score includes 12 genes involved in immune activation and T-cell

exhaustion (196). VIGex categorization has been associated with

immunotherapy outcomes in patients enrolled in early phase

clinical trials. Also, the 18-gene T-cell inflamed Gene Expression

Profile (GEP) integrates the expression of multiple genes related to

IFN-g signaling and cytotoxic activity and has been associated with

outcomes of patients treated with ICIs (197).

While deep genomic and transcriptomic profiling offers critical

insights, tissue biopsies remain limited by their static, single-

timepoint nature, failing to capture both spatial and temporal

heterogeneity. Liquid biopsy platforms are addressing these

limitations by enabling longitudinal assessment of therapeutic

responses and clonal evolution. Notably, ctDNA may include data

from all tumor sites, offering a systemic snapshot that can overcome
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1664443
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Catani et al. 10.3389/fimmu.2025.1664443
spatial heterogeneity inherent in single-site tissue biopsy. This

enables the non-invasive assessment of established biomarkers,

such as bTMB or MSI status, and can extend beyond ctDNA to

other circulating components (198). Measuring circulating

exosomal PD-L1, for instance, may provide a more representative

readout of the total immunosuppressive landscape than a single

tissue sample (199, 200). Another challenge of single-tissue biopsy

is addressing the lack of spatial context. To resolve this limitation,

technologies such as multiple immunohistochemistry and

immunofluorescence (mIHC/IF) and spatial transcriptomics are

finally elucidating the critical architecture of the TME,

distinguishing among inflamed, immune-excluded, and desert

phenotypes, and revealing interactions between nearby cells (201–

203). Additionally, integrating diverse biological data with

advanced computational tools may enable a comprehensive vision

of clinical trials, moving beyond traditional endpoints and

embracing quantitative, reproducible biomarker assessment (204).

Furthermore, radiomics and computational tools may also provide

a non-invasive method to explore this heterogeneity on a

macroscopic scale by extracting quantitative features from

standard medical imaging to create a complete digital portrait of

the tumor burden (205).

The biomarker landscape is further expanding beyond the

tumor to encompass systemic host factors that can profoundly

modulate treatment efficacy. A prominent example is the gut
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microbiota, where growing evidence suggests that the

composition of intestinal flora can influence systemic immunity

and patient response to ICIs (206, 207). For instance, taxa such as

Faecalibacterium and Ruminococcus have been associated with

improved outcomes. This systemic view is further enriched by

metabolomics, which analyzes the metabolic products of both

tumor cells and the host immune system, providing a real-time

functional snapshot of the ongoing host-tumor interplay. Moreover,

these discoveries not only provide information regarding potential

biomarkers but may also support novel therapeutic strategies. For

example, patient-derived fecal microbiota transplantation has

shown promise in phase I melanoma trials (208). Artificial

intelligence (AI) is emerging as necessary to integrate high-

dimensional data and generate composite immune response

scores. AI-driven approaches aim to overcome limitations of

traditional statistical models in handling high-dimensional multi-

omic data to identify predictive, not just prognostic, signatures (209,

210). For example, the proposed Predictive Biomarker Modeling

Framework (PBMF) has demonstrated its capability by accurately

identifying known IO biomarkers in phase 2 and 3 trials (209).

Recently, SCORPIO, a machine learning model based on routine

blood tests and clinical data, outperformed TMB and PD-L1 in

predicting ICI benefit across multiple tumor types and settings

(211). The promise of AI tools lies in their potential to uncover

novel and non-linear interactions that could define responsive
FIGURE 1

Summary of emerging biomarkers and integrative platforms under investigation in immunotherapy. To overcome the challenges associated with the
implementation of novel biomarkers and multi-modal integration in early phase immunotherapy trials, efforts focused on harmonization,
standardization, and prospective validation will be essential.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1664443
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Catani et al. 10.3389/fimmu.2025.1664443
patient subsets for early-phase IO trials. However, the “black-box”

nature of some AI algorithms, limited training datasets in early-

phase settings, and the need for prospective validation limit their

adoption in regulatory decision-making for early trials (212). These

emerging integrative platforms, along with novel biomarkers, are

summarized in Figure 1.
5.3 Regulatory challenges

Overcoming operational and regulatory hurdles is paramount

to translating these multi-modal strategies from concept to clinic.

The clinical maturation of less invasive biomarkers such as ctDNA,

combined with the power of computational tools, already offers a

pathway to faster and more efficient data generation. However,

technology alone is insufficient without a concerted effort toward

harmonization. Establishing unified frameworks through

international collaboration is therefore essential. Landmark

initiatives, such as the guidelines developed for ctDNA by Friends

of Cancer Research and the FDA, provide a blueprint for

standardizing data acquisition and reporting (213, 214). Such

standardization is a prerequisite for streamlining regulatory

processes, reducing clinical trial activation times, and building the

large, high-quality datasets needed to robustly validate emerging

biomarkers. In Europe, the In Vitro Diagnostic Regulation (IVDR)

framework exemplifies this duality: while it enhances diagnostic

assays’ reliability and patient safety through harmonized standards,

its stringent requirements have also introduced practical delays in

the activation of early-phase trials (215). Specifically, the

regulation’s rigorous validation demands for laboratory-developed

tests, which are essential for novel biomarkers, create significant

cost and logistical hurdles that affect academic-led research.

Ultimately, these collaborative frameworks between academia,

industry and regulatory authorities will be key to accelerating the

cycle of discovery, validation and clinical implementation.

However, open questions remain on whether exploratory

biomarkers for hypothesis generation require undergoing the

complete clinical validation framework. In this regard, stringent

criteria at early stages may hinder innovation, whereas inadequate

rigor can promote non-reproducible findings. It may become

essential to adopt a balanced approach that fosters innovation

while maintaining methodological integrity.
6 Conclusion

Optimizing early-phase IO trials requires a paradigm shift,

integrating genomic, transcriptomic, spatial, and systemic host

data into a cohesive patient portrait, where adaptive trial designs

and collaborative, transparent validation efforts converge. While

this multi-dimensional approach offers exciting prospects for

precision IO, translating these into validated, actionable tools for

selecting patient populations in early-phase trials remains a

significant challenge. Overcoming hurdles in analytical

standardization, achieving robust prospective validation and
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ensuring their practical and economic feasibility are key to their

successful clinical integration. Ultimately, focusing on these aspects

is essential to move the path forward from exploratory observations

into strategies that accelerate the development of next-

generation immunotherapies.
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84. McGrail DJ, Pilié PG, Rashid NU, Voorwerk L, Slagter M, Kok M, et al. High
tumor mutation burden fails to predict immune checkpoint blockade response across
all cancer types. Ann Oncol. (2021) 32:661–72. doi: 10.1016/j.annonc.2021.02.006

85. Gandara DR, Agarwal N, Gupta S, Klempner SJ, Andrews MC, Mahipal A, et al.
Tumor mutational burden and survival on immune checkpoint inhibition in >8000
patients across 24 cancer types. J Immunother Cancer. (2025) 13:e010311. doi: 10.1136/
jitc-2024-010311

86. Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY,
et al. Tumor mutational load predicts survival after immunotherapy across multiple
cancer types. Nat Genet. (2019) 51:202–6. doi: 10.1038/s41588-018-0312-8

87. Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, et al. First-line
nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med. (2017)
376:2415–26. doi: 10.1056/NEJMoa1613493

88. Hellmann MD, Ciuleanu TE, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette
C, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational
burden. N Engl J Med. (2018) 378:2093–104. doi: 10.1056/NEJMoa1801946

89. Si H, Kuziora M, Quinn KJ, Helman E, Ye J, Liu F, et al. A blood-based assay for
assessment of tumor mutational burden in first-line metastatic NSCLC treatment:
Results from the MYSTIC study. Clin Cancer Res. (2021) 27:1631–40. doi: 10.1158/
1078-0432.CCR-20-3771

90. Peters S, Dziadziuszko R, Morabito A, Felip E, Gadgeel SM, Cheema P, et al.
Atezolizumab versus chemotherapy in advanced or metastatic NSCLC with high blood-
based tumor mutational burden: primary analysis of BFAST cohort C randomized
phase 3 trial. Nat Med. (2022) 28:1831–9. doi: 10.1038/s41591-022-01933-w

91. Friedlaender A, Nouspikel T, Christinat Y, Ho L, McKee T, Addeo A. Tissue-
plasma TMB comparison and plasma TMB monitoring in patients with metastatic
non-small cell lung cancer receiving immune checkpoint inhibitors. Front Oncol.
(2020) 10:14. doi: 10.3389/fonc.2020.0014

92. Wang F, Zhao Q, Wang YN, Jin Y, He MM, Liu ZX, et al. Evaluation of POLE
and POLD1 mutations as biomarkers for immunotherapy outcomes across multiple
cancer types. JAMA Oncol. (2019) 5:1504–6. doi: 10.1001/jamaoncol.2019.2963

93. Hwang HS, Kim D, Choi J. Distinct mutational profile and immune
microenvironment in microsatellite-unstable and POLE-mutated tumors. J
Immunother Cancer. (2021) 9:e002797. doi: 10.1136/jitc-2021-002797

94. Jin Y, Huang RJ, Guan WL, Wang ZQ, Mai ZJ, Li YH, et al. A phase II clinical
trial of toripalimab in advanced solid tumors with polymerase epsilon/polymerase delta
(POLE/POLD1) mutation. Signal Transduct Target Ther. (2024) 9:227. doi: 10.1038/
s41392-024-01939-5

95. Ott PA, Bang YJ, Berton-Rigaud D, Elez E, Pishvaian MJ, Rugo HS, et al. Safety
and antitumor activity of pembrolizumab in advanced programmed death ligand 1-
positive endometrial cancer: results from the KEYNOTE-028 study. J Clin Oncol.
(2017) 35:2535–41. doi: 10.1200/JCO.2017.72.5952

96. Federation Francophone de Cancerologie Digestive. Multicenter prospective
cohort of tumors with POLE/POLD1 mutation(2024). Available online at: https://
clinicaltrials.gov/study/NCT05103969 (Accessed May 12, 2025).

97. A single-arm, open, multicenter phase II study of chemotherapy-sequential
tislelizumab adjuvant therapy after radical resection in patients with gastric or
colorectal adenocarcinoma with dMMR/MSI-H or POLE/POLD1 mutations(2023).
Available online at: https://clinicaltrials.gov/study/NCT06118658 (Accessed May 12,
2025).

98. A phase II open label study of toripalimab, a PD-1 antibody, in participants with
POLE or POLD-1 mutated and non-MSI-H advanced solid tumors(2023). Available
online at: https://clinicaltrials.gov/study/NCT03810339 (Accessed May 12, 2025).

99. Wu JN, Roberts CW. ARID1A mutations in cancer: another epigenetic tumor
suppressor? Cancer Discov. (2013) 3:35–43. doi: 10.1158/2159-8290.CD-12-0361

100. Jelinic P, Ricca J, Van Oudenhove E, Olvera N, Merghoub T, Levine DA, et al.
Immune-active microenvironment in small cell carcinoma of the ovary, hypercalcemic
type: rationale for immune checkpoint blockade. J Natl Cancer Inst. (2018) 110:787–90.
doi: 10.1093/jnci/djx277

101. Bakouny Z, Braun DA, Shukla SA, Pan W, Gao X, Hou Y, et al. Integrative
molecular characterization of sarcomatoid and rhabdoid renal cell carcinoma. Nat
Commun. (2021) 12:808. doi: 10.1038/s41467-021-21068-9

102. Spiliopoulou P, Yang SYC, Bruce JP, Wang BX, Berman HK, Pugh TJ, et al. All
is not lost: learning from 9p21 loss in cancer. Trends Immunol. (2022) 43:379–90.
doi: 10.1016/j.it.2022.03.003
frontiersin.org

https://doi.org/10.1056/NEJMoa1504627
https://doi.org/10.1002/cncr.33033
https://doi.org/10.3390/jmp2030018
https://doi.org/10.3390/jmp2030018
https://doi.org/10.1038/nm.4191
https://doi.org/10.1038/s41598-021-99364-z
https://doi.org/10.23750/abm.v89i9-S.7960
https://doi.org/10.1016/j.esmoop.2021.100120
https://doi.org/10.1200/PO.23.00648
https://doi.org/10.1038/nrc3816
https://doi.org/10.1186/s13046-022-02422-1
https://www.cancerresearch.org/regulatory-approval-timeline-of-active-immunotherapies
https://www.cancerresearch.org/regulatory-approval-timeline-of-active-immunotherapies
https://doi.org/10.1038/s41571-025-01015-z
https://doi.org/10.1038/s41571-024-00932-9
https://doi.org/10.1158/2159-8290.CD-20-0522
https://doi.org/10.1002/ijc.31878
https://doi.org/10.1136/jitc-2019-000147
https://doi.org/10.1016/j.jtho.2020.01.023
https://doi.org/10.1158/1078-0432.CCR-22-012
https://doi.org/10.1016/S0140-6736(18)31257-1
https://doi.org/10.1016/j.ejca.2018.11.015
https://doi.org/10.1001/jamaoncol.2018.4628
https://doi.org/10.1158/1078-0432.CCR-22-2765
https://doi.org/10.1158/1078-0432.CCR-21-1929
https://doi.org/10.1056/NEJMc1713444
https://doi.org/10.1056/NEJMc1713444
https://doi.org/10.1016/j.annonc.2021.02.006
https://doi.org/10.1136/jitc-2024-010311
https://doi.org/10.1136/jitc-2024-010311
https://doi.org/10.1038/s41588-018-0312-8
https://doi.org/10.1056/NEJMoa1613493
https://doi.org/10.1056/NEJMoa1801946
https://doi.org/10.1158/1078-0432.CCR-20-3771
https://doi.org/10.1158/1078-0432.CCR-20-3771
https://doi.org/10.1038/s41591-022-01933-w
https://doi.org/10.3389/fonc.2020.0014
https://doi.org/10.1001/jamaoncol.2019.2963
https://doi.org/10.1136/jitc-2021-002797
https://doi.org/10.1038/s41392-024-01939-5
https://doi.org/10.1038/s41392-024-01939-5
https://doi.org/10.1200/JCO.2017.72.5952
https://clinicaltrials.gov/study/NCT05103969
https://clinicaltrials.gov/study/NCT05103969
https://clinicaltrials.gov/study/NCT06118658
https://clinicaltrials.gov/study/NCT03810339
https://doi.org/10.1158/2159-8290.CD-12-0361
https://doi.org/10.1093/jnci/djx277
https://doi.org/10.1038/s41467-021-21068-9
https://doi.org/10.1016/j.it.2022.03.003
https://doi.org/10.3389/fimmu.2025.1664443
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Catani et al. 10.3389/fimmu.2025.1664443
103. Horn S, Leonardelli S, Sucker A, SChadendorf D, Griewank KG, Paschen A.
Tumor CDKN2A-associated JAK2 loss and susceptibility to immunotherapy
resistance. J Natl Cancer Inst. (2018) 110:677–81. doi: 10.1093/jnci/djx271

104. Han G, Yang G, Hao D, Lu Y, Thein K, Simpson BS, et al. 9p21 loss confers a
cold tumor immune microenvironment and primary resistance to immune checkpoint
therapy. Nat Commun. (2021) 12:5606. doi: 10.1038/s41467-021-25894-9

105. Davoli T, Uno H, Wooten EC, Elledge SJ. Tumor aneuploidy correlates with
markers of immune evasion and with reduced response to immunotherapy. Science.
(2017) 355:eaaf8399. doi: 10.1126/science.aaf8399

106. Roh W, Chen PL, Reuben A, Spencer CN, Prieto PA, Miller JP, et al. Integrated
molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals
markers of response and resistance. Sci Transl Med. (2017) 9:eaah3560. doi: 10.1126/
scitranslmed.aah3560

107. Zhang C, Li D, Xiao B, Zhou C, Jiang W, Tang J, et al. B2M and JAK1/2-
mutated MSI-H colorectal carcinomas can benefit from anti-PD-1 therapy. J
Immunother. (2022) 45:187–93. doi: 10.1097/CJI.0000000000000417

108. Khagi Y, Goodman AM, Daniels GA, Patel SP, Sacco AG, Randall JM, et al.
Hypermutated circulating tumor DNA: correlation with response to checkpoint
inhibitor-based immunotherapy. Clin Cancer Res. (2017) 23:5729–36. doi: 10.1158/
1078-0432.CCR-17-1439

109. Heitzer E, Ulz P, Geigl JB. Circulating tumor DNA as a liquid biopsy for cancer.
Clin Chem. (2015) 61:112–23. doi: 10.1373/clinchem.2014.222679

110. Lee JH, Long GV, Boyd S, Lo S, Menzies AM, Tembe V, et al. Circulating
tumour DNA predicts response to anti-PD1 antibodies in metastatic melanoma. Ann
Oncol. (2017) 28:1130–6. doi: 10.1093/annonc/mdx026

111. Bratman SV, Yang SYC, Iafolla MAJ, Liu Z, Hansen AR, Bedard PL, et al.
Personalized circulating tumor DNA analysis as a predictive biomarker in solid tumor
patients treated with pembrolizumab. Nat Cancer. (2020) 1:873–81. doi: 10.1038/
s43018-020-0096-5

112. De Almeida Toledo R, Calahorro Garcıá AM, Mirallas O, Moreno A, Galvao V,
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ICIs Immune checkpoint inhibitors
Frontiers in Immunol
mAb Monoclonal antibody
anti-PD-1 anti-programmed cell death 1
anti-PD-L1 anti-programmed cell death ligand 1
irAEs Immune-related adverse events
IO Immuno-oncology
MSI-H Microsatellite instability-high
dMMR Mismatch repair–deficient
FDA U.S. Food and Drug Administration
TMB Tumor mutational burden
TMB-H Tumor mutational burden high
Mb Megabase
ORR Overall response rate
PD-L1 Programmed death-ligand 1
IHQ Immunohistochemistry
NSCLC Non-small cell lung cancer
TNBC Triple-negative breast cancer
HNSCC Head and neck squamous cell carcinoma
TCs Tumor cells
ICs Immune cells
TPS Tumor Proportion Score
CPS Combined Positive Score
RCC Renal cell carcinoma
OS Overall survival
MMR Mismatch repair
EC Endometrial cancer
CRC Colorectal cancer
PCR Polymerase chain reaction
NGS Next-generation sequencing
PFS Progression-free survival
ogy 18
WGS/WES Whole-genome/exome sequencing
tTMB Tissue-based TMB
bTMB Blood TMB
ctDNA Circulating tumor DNA
EDMs Exonuclease domains
POLE DNA polymerases epsilon
POLD1 DNA polymerases delta 1
TME Tumor microenvironment
STK11/LKB1 Serine/Threonine kinase 11
MRD Molecular residual disease
ctMoniTR ctDNA for Monitoring Treatment Response
VAF Variant allele frequency
ALC absolute lymphocyte count
NLR Neutrophil-to-lymphocyte ratio
LMR Lymphocyte-to-monocyte ratio
PLR Platelet-to-lymphocyte ratio
dNLR Derived NLR
SII Systemic immune-inflammation index
CRP C-reactive protein
LDH Lactate dehydrogenase
Tregs Regulatory T cells
MDSCs Myeloid-derived suppressor cells
CNS Central nervous system
IVD In-vitro diagnostic device
CPTAC Clinical Proteomic Tumor Analysis Consortium
GEP Gene Expression Profile
mIHC/IF Immunohistochemistry and immunofluorescence
AI Artificial intelligence
PBMF Predictive Biomarker Modeling Framework
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