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The functional Mi-2/Foxo
complex targets PGRP-SC2 for
the Drosophila immune defense
against bacterial infection
Xianrui Zheng1,2*†, Umar Ali1,2†, Yiheng Jin2, Erwen Ding2,
Yangyang Zhu2,3, Muhammad Usama1,2, Qingshuang Cai2

and Shanming Ji2*

1Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China, 2Center for
Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China,
3Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment,
Bengbu Medical University, Bengbu, Anhui, China
Innate immunity is orchestrated by an array of conserved signaling pathways and

transcriptional regulators. While Forkhead box O (Foxo) has emerged as a pivotal

transcription factor in regulating immune homeostasis, its interactionwith chromatin

remodeling machinery remains poorly defined. Here, we identify the chromatin

remodeler Mi-2 as a crucial component of the Drosophila antibacterial immune

defense. Silencing ofMi-2 abrogates the induction of antimicrobial peptides in adult

flies and leads to reduced host survival following systemic bacterial challenge. Co-

immunoprecipitation assays demonstrate a physical interaction between

endogenous Mi-2 and Foxo in the Drosophila fat body. Of interest, Foxo silencing

phenocopies Mi-2 knockdown, suggesting a functional interdependence between

the two factors. Mechanistically, the Mi-2/Foxo functional complex binds to the 5’

flanking region of Peptidoglycan recognition protein SC2 (PGRP-SC2), a negative

regulator of the immune deficiency (IMD) signaling pathway, to prevent PGRP-SC2

expression. Genetic epistasis experiments support a hierarchical relationship, with

PGRP-SC2 acting downstream of Mi-2/Foxo. Collectively, our findings uncover a

previously uncharacterized chromatin-based regulatory mechanism whereby Mi-2

collaborates with Foxo to mediate the antibacterial immune response in Drosophila.
KEYWORDS

Mi-2, Foxo, PGRP-SC2, IMD signaling pathway, antibacterial immune defense,
Drosophila melanogaster
1 Introduction

Innate immunity serves as the first line of the host defense against invading pathogens

across metazoan species (1–4). In recent decades, Drosophila melanogaster (fruit fly) has

been extensively utilized as a powerful animal model for dissecting the molecular

mechanisms of innate immunity due to its clear genetic tractability, short life cycle, and
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the evolutionary conservation of key immune pathways (5, 6).

Insights gained from Drosophila studies have significantly

advanced our understanding of how innate immune responses are

precisely regulated. In Drosophila, two major signaling pathways

govern the host systemic immune response: the Toll and the

immune deficiency (IMD) signaling pathways (5, 7–9). The

activation of these pathways leads to the induction of a repertoire

of antimicrobial peptides (AMPs), which are primarily synthesized

in the fat body, the fly analog of the mammalian liver. These AMPs

serve as potent immune effectors that target microbial membranes,

thereby directly limiting pathogen proliferation (5, 7, 10–12).

The regulation of AMP gene expression has been extensively

investigated at the level of signaling cascade and transcription factor

activity (9, 11). The Toll and IMD signaling pathways initiate

distinct but partially overlapping immune responses (9, 13, 14).

The Toll pathway is primarily activated upon recognition of lysine-

type peptidoglycans (PGNs) and fungal b-glucans by pattern

recognition receptors (PRRs) such as Peptidoglycan recognition

protein SA (PGRP-SA), Gram-negative bacteria binding protein 1

(GNBP1), and Peptidoglycan recognition protein SD (PGRP-SD)

(15–17). This triggers a proteolytic cascade that cleaves and

activates the cytokine-like molecule Spätzle (Spz), which in turn

binds and activates the Toll receptor. Upon Toll activation, the

adaptor proteins Myeloid differentiation factor 88 (Myd88), Tube

(Tub), and the kinase Pelle (Pll) are recruited, leading to the

degradation of the inhibitor Cactus (Cact) and the subsequent

nuclear translocation of nucleic factor kappa B (NF-kB)
transcription factors Dorsal (Dl) and Dorsal-related immunity

factor (Dif). These transcription factors drive the expression of

Toll-dependent AMP genes such as Drosomycin (Drs) and

Metchnikowin (Mtk) (9, 18–21).

In contrast, the IMD signaling pathway is primarily activated

upon detection of meso-diaminopimelic acid-type PGNs, which are

characteristic of Gram-negative bacteria and some types of Gram-

positive bacteria. This recognition is mediated by membrane-bound

PRRs such as Peptidoglycan recognition protein LC (PGRP-LC)

and intracellular receptors like Peptidoglycan recognition protein

LE (PGRP-LE) (22–25). Activation of the IMD pathway results in

recruitment of the adaptor protein Imd, the Fas-associated death

domain (Fadd), and the caspase death related ced-3/Nedd2-like

caspase (Dredd). This leads to a relatively complicated but fine-

tuned signal transduction reaction by a series of modulators, and

finally the cleavage and activation of the NF-kB transcription factor

Relish (Rel), which enters the cell nucleus to promote transcription

of IMD-dependent AMPs, including Attacin (Att), Cecropin (Cec),

and Diptericin (Dpt) (9, 26–28).

Beyond canonical signaling, a growing body of evidence

highlights the importance of chromatin dynamics and epigenetic

mechanisms in controlling the accessibility and responsiveness of

immune gene loci. These include histone modifications,

nucleosome remodeling, and interactions with non-coding RNAs,

all of which modulate the transcriptional landscape in response to

infection (29–34). Chromatin remodeling proteins, such as

members of the SWItch/sucrose nonfermentable (SWI/SNF)
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complex, the nucleosome remodeling and deacetylase (NuRD)

complex, and the imitation switch (ISWI) complex, have emerged

as pivotal regulators of transcriptional plasticity in development,

differentiation, and immunity (35–40). Among these, Mi-2 is a

central ATPase subunit of the NuRD complex, which coordinates

ATP-dependent nucleosome remodeling with histone deacetylation

to mediate gene repression (41–44). In Drosophila, Mi-2 has been

shown to regulate embryogenesis, neuronal development and stem

cell proliferation (45–48), but its role in the host immune response

remains poorly characterized.

Forkhead box O (Foxo) transcription factors act as central hubs

in integrating environmental cues such as nutrient status, oxidative

stress, and infection (49–52). In Drosophila, Foxo translocates into

the cell nucleus under low insulin or stress conditions and regulates

the expression of genes involved in autophagy, metabolism,

longevity, and immunity (53–58). Notably, Foxo has been

implicated in modulating basal immune tone, maintaining gut

epithelial homeostasis, and limiting systemic inflammation (56,

59). However, transcriptional activation and repression by Foxo

require cooperation with chromatin-modifying enzymes and

remodeling complexes, which remain largely undefined in

immune contexts.

In this study, we investigate the functional relationship between

Mi-2 and Foxo in the context of antibacterial immune defense in

Drosophila. Through a combination of genetic manipulation and

transcriptional profiling, we demonstrate that Mi-2 is indispensable

for AMP gene induction and host survival following bacterial

infection. We further show that Mi-2 physically associates with

Foxo and that together, they repress the expression of Peptidoglycan

recognition protein SC2 (PGRP-SC2), a negative regulator of the

IMD signaling pathway (59–63). Our findings reveal a novel

chromatin-based mechanism through which Mi-2 and Foxo

coordinate transcriptional responses to bacterial infection and

provide new insights into the integration of chromatin

remodeling and immune gene regulation.
2 Materials and methods

2.1 Drosophila strains and husbandry

Flies were raised on the standard Drosophila medium (6.65%

cornmeal, 7.15% dextrose, 5% yeast, 0.66% agar, 2.2% nipagin, and

3.4 mL/L propionic acid) at 25°C with 60% relative humidity under a

12 h/12 h light-dark cycle. To generate specific gene silencing at the

adult stage using Gal4/Gal80ts system, crossings were first performed

at 18°C. After eclosion, progenies were shifted to 29°C for 7 d. The

following fly strains were purchased from public Drosophila stock

centers: Mi-2 RNAi #1 (Vienna Drosophila RNAi Center, #107204),

Mi-2 RNAi #2 (Bloomington Drosophila Stock Center, #51774), Foxo

RNAi #1 (Vienna Drosophila RNAi Center, #106097), Foxo RNAi #2

(Vienna Drosophila RNAi Center, #107786), and PGRP-SC2 RNAi

(Vienna Drosophila RNAi Center, #104578). The lpp-Gal4, tub-

Gal80ts, GFP RNAi, and w1118
flies were described previously (64–67).
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2.2 Antibodies

The following primary antibodies were used in this study:

mouse anti-b-Tubulin (1:3000, Cowin, Cat#CW0098M), mouse

anti-Flag (1:2000, Merck, Cat#F3165), rabbit anti-Flag (1:1000,

Merck, Cat#F7425), rabbit anti-Myc (1:3000, Medical & Biological

Laboratories, Cat#562), rabbit anti-PGRP-SC2 (1:1000,

MyBioSource, Cat#MBS9013948), rabbit anti-Foxo (1:1000,

Abcam, Cat#ab195977), and rat anti-Mi-2 (1:1000, Thermo

Fisher, Cat#61463). The secondary antibodies used in this study

include goat anti-mouse IgG H & L (1:5000, Abcam,

Cat#ab150078), goat anti-rabbit IgG H & L (1:5000, Abcam,

Cat#ab6789) , and goat anti-rat IgG H & L (1:5000,

Abcam, Cat#ab182018).
2.3 Bacterial infection, fly survival, and
bacterial burden assays

Bacterial cultures were grown overnight at 30°C. Cultures were

then pelleted and resuspended in sterile phosphate-buffered saline

(PBS) solution until the OD600 reached around 1. Male adult flies

(3-d-old) were anesthetized with carbon dioxide on a flypad and

injected with bacteria (4.6 nL) by using a tungsten nanoinjector.

Subsequently, flies were carefully transferred into fresh vials

(around 50 individuals per vial). Control flies were injected with

the same volume of PBS solution. The detailed information of

Pectobacterium carotovorum carotovorum 15 (Ecc15), Serratia

marcescens (S. marcescens), and Enterococcus faecalis (E. faecalis)

was described previously (68, 69).

For fly survival analysis, infected flies were scored for daily

mortality. Flies (< 5%) that died within 2 h post-injection were not

considered. Survival data were collected from 3 biological replicates

and shown as means plus standard errors.

For bacterial burden assays, flies (10 individuals for each

sample) were homogenized in sterile PBS buffer, followed by

serial dilutions, and finally, 100 mL of each diluent was spread on

a Luria Bertani (LB) agar plate. All LB plates were further incubated

at 30°C for 24 h. Flies that were collected immediately after bacterial

injection were put in the 0-d group. The number of bacterial

colonies was counted, and data were pooled from 21 independent

biological replicates.
2.4 RT-qPCR

Reverse transcription plus quantitative polymerase chain reaction

(RT-qPCR) experiments were performed according to a previously

described protocol (70). In brief, total RNA was extracted from

dissected fat body tissues or whole flies using TRIzol reagent

(Thermo Fisher, Cat#15596026). cDNA synthesis was performed

using the TransScript All-in-one First-Strand cDNA Synthesis

SuperMix kit (TransGen, Cat#AT341-01). Quantitative PCR was

carried out using the SYBR Green One-Step kit (TransGen,

Cat#AQ211-01) on a Light Cycler 480, in which RpL32 was used as
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an endogenous control. Relative fold changes were calculated using

the DDCt method. Data were collected from 5 independent biological

replicates. The detailed information of gene-specific primers used in

RT-qPCR is shown in Supplementary Table S1.
2.5 Western blotting

Whole flies or dissected fat body tissues were lysed in lysis buffer

(150 mM NaCl, 50 mM Tris-HCl, pH = 7.5, 10% glycerol, 0.5%

Triton X-100, and 1 mM PMSF). Samples were centrifuged at

13,000 rpm at 4°C for 30 min. The supernatant was collected and

resolved on a 10% SDS-PAGE gel, transferred to a PVDF

membrane, and probed with primary antibodies at 4°C overnight.

After incubation with secondary antibodies for 1 h at room

temperature, the membrane was subjected to Western blot assay

by using the enhanced chemiluminescence substrate.
2.6 Co-IP

S2 cells were cultured in the insect medium supplemented with

10% fetal bovine serum and transfected with indicated expression

plasmids. After 48 h, cells were lysed in lysis buffer (150 mM NaCl,

50 mM Tris-HCl, pH = 7.5, 10% glycerol, 0.5% Triton X-100, and 1

mM PMSF). For in vivo samples, the fat body tissues were dissected

from w1118
flies, and lysates were prepared as described above. After

centrifugation (12,000 rpm) at 4°C for 10 min, 1/10 of the

supernatant was collected as the “Input” sample. The remaining

supernatant was incubated with indicated antibodies and agarose

beads for immunoprecipitation at 4°C overnight. Samples were then

washed with wash buffer (50 mM Tris-HCl, pH = 7.5, 500 mM

NaCl, 0.5% Triton X-100, and 10% glycerol) at 4°C for 3 times (1 h

in total), followed by Western blot experiments. Twenty percent of

the immunoprecipitant (IP) was used for the detection of

immunoprecipitation efficiency, whereas eighty percent was used

for co-IP examination.
2.7 Identification of Mi-2 interactome via
IP-LC-MS/MS

The immunoprecipitation and liquid chromatography plus tandem

mass spectrometry (IP-LC-MS/MS) was performed as described

previously (71). Briefly, Drosophila S2 cells were transfected with

Flag-Mi-2 expression plasmids, and immunoprecipitation was

performed as described above. Flag-GFP was expressed in the control

group. After immunoprecipitation, samples were washed with wash

buffer (50 mM Tris-HCl, pH = 7.5, 500 mM NaCl, 0.5% Triton X-100,

and 10% glycerol) at 4°C for 3 times (1 h in total), followed by

incubation with Flag peptide at 4°C for 30 min. After centrifugation

(12,000 rpm) at 4°C for 2 min, the supernatant was transferred into a

fresh Eppendorf tube, followed by digestion with Trypsin (Thermo

Fisher, Cat#90057) at 37°C for 30 min. Samples were then desalted

using the Pierce™ C-18 spin column (Thermo Fisher, Cat#89870) and
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subjected to LC-MS/MS analysis to identify the interactome of Mi-2.

The LC-MS/MS data were processed using the Thermo Proteome

Discovery (version 1.4.1.14) and searched against the UniProt-

Drosophila database. The raw data is available online (https://

data.mendeley.com/preview/3xshb9x6w4?a=53354993-4775-4d61-

b454-bf123a85bf89).
2.8 ChIP-qPCR

The chromatin immunoprecipitation plus quantitative

polymerase chain reaction (ChIP-qPCR) experiments were carried

out according to protocols published previously (72). In detail, fat

bodies were dissected from 100 adult male flies and incubated in

10 mL ice-cold swelling buffer (0.1 M Tris-HCl, pH = 7.5, 10 mM

KOAc, 15 mM MgOAc, 1% NP-40, and 1 mM PMSF). Samples

were homogenized for 2 min using a loose-fitting Dounce

homogenizer, fixed with 1% formaldehyde for 10 min, and

quenched with 125 mM glycine to stop fixation. After

centrifugation at 1000 g for 5 min at 4°C, the pellet was

resuspended in 10 mL fresh swelling buffer and filtered through

70 mm and 40 mm cell strainers, respectively. Samples were

centrifuged at 1000 g for 5 min to obtain the nuclear pellet,

followed by nuclear lysate preparation by using lysis buffer

(50 mM Tris-HCl, pH = 7.5, 10 mM EDTA, 1% SDS, 1 mM

DTT, and 1 mM PMSF). Samples were then sonicated for 30 min at

4°C. Immunoprecipitation was performed using anti-Mi-2 or anti-

Foxo antibodies. Enrichment at different regions of PGRP-SC2 was

assessed by qPCR using specific primers (Supplementary Table S1).
2.9 Statistical analysis

Statistical analyses were conducted using GraphPad Prism

(version 10.1.2.324). The one-way ANOVA followed by Tukey’s

post hoc test was applied where appropriate. Survival curves were

compared using the Log-Rank test. The P < 0.05 was considered

statistically significant. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ns,

not significant.
3 Results

3.1 Drosophila Mi-2 is essential for the
induction of antimicrobial peptides in
response to bacterial infection

The loss-of-function mutant flies of Mi-2 are not viable due to

severe defects in early embryonic development (47, 73). To assess

the potential involvement ofMi-2 in the Drosophila innate immune

response, we silenced Mi-2 specifically in the fat body using the

Gal4/UAS system (lpp-Gal4 driver). In addition, we utilized the tub-

Gal80ts strain to drive Mi-2 silencing (referred to as lppts>Mi-2

RNAi #1 and lppts>Mi-2 RNAi #2) at the adult stage (Figure 1A).
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Western blot experiments confirmed the knockdown efficiency of

the two different Mi-2 RNAi lines in the Drosophila fat body

(Figure 1B). We further challenged these flies and the age-paired

controls (lppts>GFP RNAi) with Pectobacterium carotovorum

carotovorum 15 (Ecc15). Ecc15 is one type of Gram-negative

bacterial pathogens activating the immune deficiency (IMD)

pathway in Drosophila (74). Quantitative reverse transcription

plus polymerase chain reaction (RT-qPCR) analyses revealed that

the induction of AMPs downstream of IMD signaling, including

Attacin A (AttA), Cecropin A1 (CecA1), and Diptericin (Dpt), was

impaired in Mi-2 knockdown flies compared to those in controls

(Figures 1C–E). These data indicate thatMi-2 is required for robust

AMP gene expression in response to bacterial infection.

Consistently, we observed decreased transcript levels of AttA,

CecA1, and Dpt in Mi-2 RNAi flies when we used Serratia

marcescens (S. marcescens), another type of Gram-negative

bacterial pathogens, for infection treatment (Figures 1F-H).
3.2 Silencing of Mi-2 compromises the
Drosophila survival and bacterial clearance
activity

To determine the physiological relevance of Mi-2 in the

Drosophila antibacterial immune defense, we performed survival

assays following bacterial infections. Mi-2 knockdown flies

exhibited a reduction in survival compared to controls after Ecc15

injection while they survived in a similar way after the injection of

sterile phosphate-buffered saline (PBS) solution (Figures 2A, B).

The median survival time of Mi-2 RNAi flies after Ecc15 injection

was decreased by more than 50% (Figure 2C). A similar trend was

observed for S. marcescens injection, where Mi-2-silenced flies

showed a median survival of 2.3 d, compared to 5.7 d in controls

(Figures 2D, E).

To assess the fly efficiency of bacterial clearance, we measured

colony-forming units (CFUs) in whole-fly homogenates at 24 h

post-infection of Ecc15 or S. marcescens. Mi-2 knockdown flies

displayed higher bacterial loads than control flies (Figures 2F, G).

These findings demonstrate that Mi-2 is essential for Drosophila

survival and effective bacterial elimination upon infection.
3.3 Mi-2 is dispensable for mediating the
Drosophila Toll antibacterial immune
defense

To determine whether Drosophila Mi-2 is also involved in the

Toll pathway-mediated immune response, we assessed the

expression of Toll-dependent AMPs and host survival following

Gram-positive bacterial infection. Adult flies with fat body-specific

Mi-2 knockdown were challenged with Enterococcus faecalis (E.

faecalis), a bacterial pathogen known to activate the Toll signaling

pathway in Drosophila (74). RT-qPCR analyses revealed no

significant differences in the E. faecalis-driven induction of
frontiersin.org
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Drosomycin (Drs) and Metchnikowin (Mtk) between Mi-2 RNAi

and control flies (Supplementary Figures S1A, B). Consistently,

survival assays showed that Mi-2 knockdown flies exhibited

comparable resistance to E. faecalis infection as control flies

(Supplementary Figure S1C). Bacterial burden analyses displayed
Frontiers in Immunology 05
similar E. faecalis proliferation levels between Mi-2 RNAi and

control flies (Supplementary Figure S1D). These results

collectively indicate that Mi-2 is not required for the Toll-

mediated antimicrobial response, and its function in Drosophila

innate immunity is specific to the IMD pathway.
FIGURE 1

Drosophila Mi-2 is required for AMP induction following bacterial infection. (A) The diagram showing genetic manipulations to obtain flies with the
fat body-specific silencing of Mi-2. (B) Western blot monitoring Mi-2 protein levels in the fat body dissected from control and Mi-2 RNAi flies.
Tubulin was used as the loading control. (C-E) Adult flies, including lppts>GFP RNAi (control), lppts>Mi-2 RNAi #1, and lppts>Mi-2 RNAi #2, were
infected with Ecc15, followed by RT-qPCR assays to examine the transcript levels of AttA (C), CecA1 (D), and Dpt (E). (F-H) Similar RT-qPCR
experiments were performed as in C-E, except that S. marcescens were used for infection. In C-H, data were collected from 5 independent
replicates and shown as means plus standard errors. *P < 0.05; **P < 0.01; ***P < 0.001.
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3.4 Mi-2 physically interacts with Foxo

We explored the molecular mechanism by which Mi-2

modulates the Drosophila IMD antibacterial immune defense.
Frontiers in Immunology 06
For this, we transfected cultured Drosophila S2 cells with

plasmids expressing Flag-tagged Mi-2. By performing

immunoprecipitation and liquid chromatography plus tandem

mass spectrometry (IP-LC-MS/MS) experiments (Figure 3A), we
FIGURE 2

Mi-2 is essential for the Drosophila defense against bacterial challenge. (A-C) Survival curves of Mi-2 RNAi and control flies after the injection of PBS
(A) or Ecc15 (B). The number of flies is as follows. In A, lppts>GFP RNAi: 50, 48, 50; lppts>Mi-2 RNAi #1: 49, 49, 50; lppts>Mi-2 RNAi #2: 50, 50, 49. In
B, lppts>GFP RNAi: 50, 48, 48; lppts>Mi-2 RNAi #1: 49, 49, 48; lppts>Mi-2 RNAi #2: 49, 47, 50. The time points when half of the experimental flies
(B) died (referred to as LT50) are shown in (C–E) Survival assays were performed as in A-C, except that S. marcescens were used for injection. In (D),
the number of flies is as follows. lppts>GFP RNAi: 49, 50, 49; lppts>Mi-2 RNAi #1: 48, 49, 50; lppts>Mi-2 RNAi #2: 48, 48, 48. (F, G) Bacterial load
(CFU per fly) at 24 h post-infection with Ecc15 (F) or S. marcescens (G). In (A-E), data were collected from 3 independent replicates and shown as
means plus standard errors. In (F, G), data were pooled from 21 independent replicates. *P < 0.05; **P < 0.01; ***P < 0.001.
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identified 28 proteins/peptides that potentially interact with Mi-2

(Figure 3B, Supplementary Table S2). Gene ontology (GO)

analyses of these Mi-2-associated candidates revealed that they

predominantly belonged to categories, including signaling

homeostasis, cell communication, and sleep (Figure 3C).

Intriguingly, we noted one candidate, Forkhead box O (Foxo),

which was previously reported to physically associate with Mi-2

(75). Given that Drosophila Foxo has been implicated in regulating

immune gene expression (59, 76, 77) and that chromatin

remodeling complexes often interact with sequence-specific

transcription factors, we hypothesized that Mi-2 may form a
Frontiers in Immunology 07
functional complex with Foxo for immune regulation in

Drosophila. To test this idea, we co-transfected Drosophila S2

cells with Flag-tagged Mi-2 and Myc-tagged Foxo constructs and

performed co-immunoprecipitation (co-IP) assays. Foxo was

specifically pulled down by anti-Flag beads only in the presence

of Mi-2 (Figure 3D), confirming their physical interaction. To

explore whether Mi-2 forms a functional complex with Foxo in

vivo, we dissected the Drosophila fat body tissue for co-IP

experiments using anti-Mi-2 antibodies. Our results indicated

that the endogenous Mi-2 and Foxo associate with each other in

the Drosophila fat body (Figure 3E).
FIGURE 3

Mi-2 physically interacts with Foxo. (A) Schematic of IP-LC-MS/MS to identify potential Mi-2 interacting protein candidates. (B) The top 10
candidates of the Mi-2 interactome. (C) GO analysis of the Mi-2 interactome. (D) Co-IP from S2 cells expressing Flag-Mi-2 and Myc-Foxo. Input and
IP blots are shown for Flag or Myc. (E) The fat body tissues were dissected from w1118

flies, followed by co-IP assays using anti-Mi-2 antibodies. Rat
IgG was used in the control sample.
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3.5 Foxo RNAi phenocopies Mi-2 RNAi in
regulating Drosophila innate immunity

To determine whether Foxo functions in the same genetic

pathway as Mi-2, we first performed Foxo knockdown using the

Gal4/UAS system as described above (Figure 4A). We next analyzed
Frontiers in Immunology 08
the immune response of these flies upon bacterial infection. Similar

to Mi-2 RNAi flies, Foxo-silenced flies showed reduced expressions

of AttA, CecA1, and Dpt following Ecc15 injection (Figures 4B–D).

Furthermore, Foxo knockdown flies exhibited heightened

susceptibility to Ecc15 infection, with median survival reduced by

around 6 d (Figures 4E–G). Of note, the Ecc15 burden in Foxo RNAi
FIGURE 4

Foxo knockdown phenocopies Mi-2 depletion in the Drosophila antibacterial immune defense. (A) Western blots showing the knockdown efficiency
of different Foxo RNAi strains. Tubulin was used as the loading control. (B-D) RT-qPCR of AMP genes in fat body-specific Foxo RNAi flies after Ecc15
infection. (E-G) Survival assays of Foxo RNAi and control flies after Ecc15 challenge. The number of flies is as follows. In E, lppts>GFP RNAi: 50, 48,
49; lppts>Foxo RNAi #1: 50, 49, 50; lppts>Foxo RNAi #2: 49, 49, 49. In F, lppts>GFP RNAi: 49, 50, 50; lppts>Foxo RNAi #1: 48, 48, 49; lppts>Foxo RNAi
#2: 50, 48, 50. The time points when half of the experimental flies (F) died (LT50) were shown in (G, H) Bacterial load assays at 24 h after Ecc15
infection. In (B–D), data were collected from 5 independent replicates and shown as means plus standard errors. In (E–G), data were collected from
3 independent replicates. In (H), data were pooled from 21 independent replicates. *P < 0.05; **P < 0.01; ***P < 0.001.
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flies was increased by more than 50%, compared to that of control

flies (Figure 4H). These results suggest thatMi-2 and Foxo function

cooperatively to regulate the antibacterial immune response

in Drosophila.
3.6 Mi-2 and Foxo suppress PGRP-SC2
expression in the Drosophila fat body

Previous studies have demonstrated that Foxo prevents the

expression of Peptidoglycan recognition protein SC2 (PGRP-SC2),

which encodes a typical amidase that downregulates IMD signaling

(59–63). We therefore proposed a working model in which Mi-2

forms a functional complex with Foxo to antagonize the expression

of PGRP-SC2, thereby maintaining a robust transactivation of IMD

signaling upon bacterial infection (Figure 5A). To test our proposal,

we performed both RT-qPCR and Western blot experiments. As

illustrated in Figures 5B, C, PGRP-SC2 expression was elevated in

both Mi-2 RNAi and Foxo RNAi flies. We further carried out

chromatin immunoprecipitation plus quantitative polymerase

chain reaction (ChIP-qPCR) assays and found that both Mi-2 and

Foxo were enriched at the 5’ flanking region of PGRP-SC2

(Figure 5D), suggesting a direct transcriptional repression of

PGRP-SC2 by the Mi-2/Foxo complex.

To illustrate how Mi-2/Foxo bind to the 5’ flanking region of

PGRP-SC2, we performed ChIP-qPCR assays in either Mi-2 RNAi

or Foxo RNAi flies. Silencing of Foxo didn’t affect the binding of

Mi-2 to the PGRP-SC2 5’ flanking region (Figure 5E). However,

knockdown of Mi-2 prevented the existence of Foxo at the PGRP-

SC2 5’ flanking region (Figure 5E). Taken together, our data

indicate that Foxo binds to the 5’ flanking region of PGRP-SC2

and represses PGRP-SC2 expression in a Mi-2-dependent manner.
3.7 Genetic epistasis places PGRP-SC2
downstream of Mi-2/Foxo

To functionally validate the role of PGRP-SC2 as a downstream

target of the Mi-2/Foxo complex, we performed genetic interaction

experiments. Double knockdown of Mi-2 and PGRP-SC2 rescued

AMP expression and fly survival compared toMi-2 knockdown alone

(Figures 6A–E, S2A). Bacterial load was also markedly reduced in

double knockdown flies (Figure 6F). In addition, similar results were

obtained by using Foxo and PGRP-SC2 double RNAi flies

(Figures 6A–F and S2B). These results support a model wherein

Mi-2 and Foxo cooperatively repress PGRP-SC2 to promote effective

immune activation in the fly defense against bacterial infection.
4 Discussion

This study identifies a previously unrecognized function of the

chromatin remodeler Mi-2 in the innate immune defense of

Drosophila melanogaster and establishes a mechanistic

partnership with the transcription factor Foxo. Our results
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provide compelling evidence that Mi-2 is indispensable for the

effective induction of AMPs and protection against bacterial

infection in Drosophila. Moreover, the discovery of physical

interaction between Mi-2 and Foxo advances our understanding

of chromatin-level regulation of immune responses.

A central finding of this work is the convergence of chromatin

remodeling and transcription factor signaling at the level of

immune regulation. Foxo, a key effector of insulin signaling and

stress responses, has been shown to regulate subsets of AMPs and

immune-related genes (59, 76, 77). However, its broader regulatory

potential in host defense is constrained by chromatin architecture.

Mi-2, as part of the NuRD complex, remodels nucleosomes and

contributes to both gene repression and activation depending on

context (41–44). Our data show that Mi-2 is necessary for Foxo to

suppress the expression of PGRP-SC2, which encodes a negative

regulator of the IMD signaling pathway (59–63). This suggests that

chromatin accessibility and histone deacetylation events mediated

by Mi-2 are required for the repressive function of Foxo. Our

follow-up projects would be focusing on exploring the mechanistic

details of how Mi-2 influences Foxo recruitment to the 5’ flanking

region of PGRP-SC2, for instance the potential changes in

chromatin accessibility (via ATAC-seq), the status of histone

modifications (via H3K9me3 and/or H3K27ac ChIP assays), and

the post-translational modifications or localization dynamics of

Foxo. These are indeed important and relevant avenues of

investigations that could help elucidate the molecular basis of the

Mi-2/Foxo regulatory axis.

The rescue of AMP expression and survival in Mi-2 or Foxo

knockdown flies by co-silencing of PGRP-SC2 highlights the

regulatory hierarchy in this axis. This genetic interaction provides

not only functional validation of PGRP-SC2 as a downstream

effector but also situates Mi-2/Foxo as key upstream regulators

that fine-tune immune sensitivity. The functional importance of

this repression in flies is particularly evident during infection, where

an optimal level of immune activation is crucial. The repression of

IMD signaling via PGRP-SC2 could dampen AMP production (59–

63). Therefore, the repression of PGRP-SC2 expression through Mi-

2/Foxo action promotes rapid immune mobilization.

The implications of this work extend beyond innate immunity.

Foxo is a central node in the regulation of longevity, stress

resistance, and metabolism (49–52). By uncovering Mi-2 as a

critical cofactor, we open new avenues for understanding how

chromatin remodeling integrates environmental cues and

transcriptional responses. Furthermore, since excessive immune

activation or chronic inflammation underlies many age-related

pathologies, elucidating Mi-2/Foxo-mediated repression

mechanisms may inform strategies to modulate immune tone for

therapeutic benefit. Future studies should explore the dynamic

recruitment of Mi-2/Foxo to target loci upon infection, the

potential involvement of additional NuRD subunits, and whether

similar regulatory paradigms govern other immune genes or

signaling pathways. Integration with metabolomics and

epigenomics could also reveal how nutrient availability or stress

conditions influence Mi-2/Foxo function and chromatin landscape

in the fat body and other tissues.
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FIGURE 6

Genetic interaction between Mi-2/Foxo and PGRP-SC2. (A-C) RT-qPCR of AMPs in double knockdown of Mi-2;PGRP-SC2 or Foxo;PGRP-SC2,
compared to single knockdown. (D-E’) Survival curves comparing Mi-2 RNAi, Foxo RNAi, and double RNAi flies. The number of flies is as follows. In
(D), lpp>GFP RNAi: 49, 48, 50; lpp>Mi-2 RNAi #1: 48, 50, 49; lpp>Mi-2 RNAi #1;PGRP-SC2 RNAi: 49, 50, 50; lpp>Mi-2 RNAi #2: 48, 48, 50; lpp>Mi-2
RNAi #2;PGRP-SC2 RNAi: 49, 50, 49. In D’, lpp>GFP RNAi: 49, 48, 50; lpp>Foxo RNAi #1: 50, 49, 48; lpp>Foxo RNAi #1;PGRP-SC2 RNAi: 49, 48, 50;
lpp>Foxo RNAi #2: 50, 48, 49; lpp>Foxo RNAi #2;PGRP-SC2 RNAi: 50, 49, 48. The time points when half of the experimental flies (D, D’) died (LT50)
are shown in (E, E’), respectively. (F) Bacterial load assays in indicated flies. In (A–C), data were collected from 5 independent replicates (10 flies for
each replicate) and shown as means plus standard errors. In (D–E’), data were collected from 3 independent replicates. In (F), data were pooled from
21 independent replicates (10 flies for each replicate). *P < 0.05; **P < 0.01; ***P < 0.001.
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In summary, we demonstrate that Mi-2 and Foxo cooperate to

modulate antibacterial defense in Drosophila, in part through the

repression of PGRP-SC2. This chromatin-transcription interface

represents a novel regulatory layer in immune homeostasis and

highlights the importance of integrating chromatin remodeling with

signal-dependent gene expression programs. While this study

provides compelling evidence for the functional interaction

between Mi-2 and Foxo in regulating Drosophila antibacterial

immunity, it primarily focuses on one downstream target, PGRP-

SC2, and does not explore other potential transcriptional targets of

the Mi-2/Foxo complex. Additionally, the dynamic recruitment of

Mi-2 and Foxo to immune loci under varying physiological or stress

conditions remains uncharacterized.
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