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Retinal gene therapy has advanced significantly, offering potential treatments for
inherited retinal diseases (IRDs) such as retinitis pigmentosa, which previously
lacked effective interventions. Central to this progress are adeno-associated virus
(AAV)-based delivery systems, which have become the primary platform for
ocular gene therapy due to their favorable safety profile, ability to target specific
retinal cell types, and long-lasting therapeutic effects. However, accumulating
evidence reveals that even “immune-privileged” retinal microenvironments are
not exempt from immune challenges, affecting both the safety and efficacy of
these therapies. Both innate immune pathways and adaptive responses can
induce intraocular inflammation, leading to reduced transgene expression and
compromised treatment. Understanding how these immune mechanisms
interact with therapeutic outcomes is crucial for developing effective
intervention strategies. This review examines evidence from both animal
models and human trials to explore how immune activation affects treatment
efficacy across various delivery methods and vector designs. We also assess
emerging strategies aimed at protecting retinal function while reducing
systemic toxicity.

KEYWORDS
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1 Introduction

Inherited retinal diseases (IRDs) are a diverse group of genetic disorders that cause
progressive retinal degeneration and irreversible vision loss. Affecting an estimated 5 to 10
million people worldwide, with a prevalence of 0.06% to 0.2%, IRDs pose a significant public
health challenge (1). While no curative treatments currently exist, gene therapy has emerged
as a promising approach to preserving or restoring vision by delivering functional genes to
affected retinal cells. Among various gene delivery methods, adeno-associated virus (AAV)
vectors have gained prominence due to their ability to efficiently deliver genes, sustain long-
term expression, and maintain a strong safety profile with minimal risk of integrating into the
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host genome (2). However, immune responses to AAV vectors
remain a major challenge. Pre-existing neutralizing Antibodies
(NAbs), along with innate and adaptive immune activation
following vector administration, can reduce transduction efficiency,
trigger inflammation, and ultimately affect treatment success.

Although the retina is traditionally considered an immune-
privileged site, IRDs alter its immune microenvironment in ways
that may influence vector-mediated immune responses. Figures 1
and 2 illustrate these changes, highlighting the immune landscape
in IRDs and the impact of gene therapy. This review provides a
comprehensive analysis of immune responses in retinal gene
therapy and explores emerging strategies to overcome these
immune related barriers.

To ensure appropriate scope and depth, we conducted a
structured search across PubMed, Web of Science Core
Collection, and Scopus focusing on IRDs, AAV mediated gene
therapy, and immune responses, complemented by targeted
screening of ClinicalTrials.gov and backward citation chaining.
Queries combined controlled vocabulary and free text terms,
including retinal dystrophy and retinal degeneration, IRDs, AAV,
gene therapy, NAbs, innate immunity, adaptive immunity,
intravitreal delivery, and subretinal delivery, covering January
1990 to June 2025. We included peer reviewed original studies,
methods papers, reviews, and clinical trials that directly addressed

10.3389/fimmu.2025.1664968

the topic, and we excluded conference abstracts, duplicates, studies
lacking primary data, and studies with low topical relevance.

2 Current status of AAV-based retinal
gene therapy clinical trials

2.1 Ongoing clinical trials

AAV-mediated gene therapy has made significant strides in
treating IRDs and age-related retinal degenerative disorders.
Currently, most clinical trials are in phases I and II, with fewer
advancing to phase III. The ongoing clinical trials, summarized in
Table 1, use various AAV serotypes (AAV2, AAV5, AAVS, AAV2/
4, AAV2/5, AAV2(tYF)), target different genes (e.g., RPE65, REP1,
RPGR, sFLT1, VEGF, RS1), and employ diverse delivery methods,
including subretinal injection (SRI) and intravitreal injection (IVT).
A significant challenge in these trials is the immune response
triggered against both the AAV capsid and the transgene product,
which can affect the efficacy and safety of the therapy. While the
overall incidence of immune-related adverse events is relatively low,
most cases are mild. The majority of inflammatory cases involve the
entire eye, including both the anterior and posterior segments, while
a smaller proportion are limited to the anterior segment. Overall,
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The immune microenvironment of the retina in two different conditions. (A) Homeostatic retinal immune microenvironment. Under physiological
conditions, the retinal structure is well-preserved and tightly regulated. Astrocytes, resting microglia, and Muller cells maintain homeostasis by
supporting the BRB, monitoring neural integrity, and regulating the ionic microenvironment. The BRB effectively restricts the entry of systemic
immune cells and inflammatory mediators, ensuring immune quiescence and retinal stability. (B) Retinal immune microenvironment in IRDs. In IRDs,
progressive degeneration of photoreceptors, bipolar cells, and ganglion cells disrupts retinal architecture, accompanied by RPE dysfunction and
gliosis. Astrocytes become reactive, microglia transition to an ameboid morphology, and Muller cells undergo reactive gliosis and proliferation.
Breakdown of the BRB, due to pericyte and endothelial cell loss, leads to vascular leakage and pathological neovascularization. Macrophages and
dendritic cells actively phagocytose cellular debris, while infiltrating CD4* and CD8* T cells contribute to local immune activation, exacerbating

retinal inflammation and degeneration.
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Retinal immune microenvironment in IRDs following gene therapy. Retinal gene therapy is commonly administered via intravitreal, subretinal, or
suprachoroidal injection. These delivery methods introduce immunogenic components, including viral capsid proteins, liposomes, nanoparticles,
polymeric vectors, vector DNA, transgene RNA, transgene-derived proteins, PTMs of the capsid, and CRISPR-associated proteins such as Cas9 and
sgRNA. While therapeutic transgene expression may facilitate partial restoration of retinal function, it can also exacerbate immune activation.
Astrocytes, microglia, and Muller cells undergo heightened reactive gliosis and proliferation. Additionally, increased infiltration and activation of
peripheral immune cells, including macrophages, dendritic cells, and T lymphocytes, alter the local immune microenvironment, potentially impacting

therapeutic efficacy and long-term retinal homeostasis.

Immune responses to retinal diseases are variable, depending on the
disease type, the patient’s genetic background, and the specific
gene targeted.

2.2 Influence of dose, serotype,
administration, and immunosuppression on
immune responses in AAV clinical trials

AAV retinal gene therapy has demonstrated promising efficacy
across various indications. However, factors such as dose, serotype,
and administration route significantly influence both gene
expression and the immune response. As the dose of AAV
vectors increases, the incidence and severity of immune responses
also rise. When the AAV dose exceeds 1x10'" vg/eye, ocular
immune responses and severe complications significantly increase
(3). In human IVT trials for X-linked retinoschisis (AAV8-RS1),
dose-related ocular inflammation was observed, with all subjects at
1x10''-3x10"" vg/eye developing intraocular inflammation in one
study (4), whereas another report noted that doses up to 1x10"" vg/
eye were generally tolerated but still showed dose related ocular
events (5).

Clinical data also indicate serotype dependent differences in
immune responses. AAV2, including engineered intravitreal
variants such as 2.7m8, has shown more pronounced inflammatory
signals in humans. In a diabetic macular edema program employing
anti VEGF expression, severe inflammation and ocular hypotony led
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to early termination, whereas cohorts with neovascular age related
macular degeneration exhibited milder steroid responsive
inflammation over longer term follow up (6). AAV8 in human
XLRS (AAV8-RS1) produced inflammatory events that were
generally controllable (5). In patients with X linked retinitis
pigmentosa, AAV5 hRKp.RPGR (Botaretigene Sparoparvovec) has
predominantly shown manageable inflammation alongside
functional signals in phase I and II studies (7).

SRI is the most common route for retinal gene therapy, carrying
a lower risk of systemic immune responses than IVT. However, it
can still cause localized retinal inflammation, typically mild anterior
chamber reactions such as uveitis, and a temporary rise in anti-
AAV NAbs. In contrast, IVT elicits a stronger immune response,
especially at higher doses. In the NCT01024998 trial, 12 of 19
patients developed anti-AAV2 antibodies, potentially reducing
treatment efficacy (8). This highlights the greater immune
challenge of IVT and the need for stronger immunosuppressive
strategies. Additionally, IVT induces higher NAb levels in serum
and ocular fluids, which may impact second-eye treatment
success (9).

Additionally, immune management and long-term monitoring
are crucial considerations. Most patients exhibit mild immune
responses, typically resolved over time either with corticosteroid (7)
or even without intervention. Most treatment protocols involve the
use of corticosteroids during the first two months following retinal
gene therapy. While corticosteroids are effective in controlling
inflammation, their long-term use can result in complications such
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TABLE 1 Current clinical trials of retinal gene therapy and the associated immune responses.

NCT Serotype/ L :
yp Gene target Administration Immune response
number vector
NCT02781480 AAV2/5 RPE65 1x10"! vg, 3x10"! vg, 1x10'? vg SRI Anterior segment inflammation
NCT00749957 AAV2 RPE65 1.8x10" vg, 6x10"" vg SRI Inflammation
NCT00999609 AAV2 RPE65 1.5x10" vg SRI Anterior segment inflammation
NCT01496040 AAV2/4 RPE65 1.22x10" to 4.8x10"° vg SRI Inflammation
Anterior & teri t
NCT00643747 AAV2 RPE65 1x10" vg, 1x10% vg SRI nierior & posterior segmen
inflammation
Anterior & teri t
NCT00481546 AAV2 RPEGS 5.96x10' to 1.79x10"" vg SRI nterior & posterior segmen
inflammation
1 Anterior & posterior segment
NCT02553135 AAV2 REP1 1x10"" vg SRI ) )
inflammation
NCT02077361 AAV2 REP1 1x10"" vg SRI Inflammation
Anterior & teri t
NCT03496012 AAV2 REP1 1x10" vg, 1x10" vg SRI ferior & posterior segmen
inflammation
Anters !
NCT03507686 AAV2 REP1 1x10" vg SRI nterior & posterior segment
inflammation
Anterior & teri t
NCT02407678 AAV2 REP1 1x10" vg SRI nierior & posterior segmen
inflammation
Anterior & teri t
NCT03252847 AAVS RPGR 1x10" vg, 210" vg, 4x10"! vg SRI fiterior & posterior segmen
inflammation
NCT03116113 AAVS RPGR 5x10° vg to 5x10"" vg SRI Anterior segment inflammation
NCT01494805 AAV2 sFLT1 1x10" vg SRI Anterior segment inflammation
Anterior & teri t
NCT01024998 AAV2 SFLT1 2x10° vg to 2x10"° vg VT fiterior & posterior segmen
inflammation
VEGF-mAb Anterior & posteri t
NCT03066258 AAVS m 3x10° vg to 2.5x10"" vg SRI fierior & posterior segmen
fragment inflammation
Anterior & teri t
NCT02416622 AAV2(tYF) RS1 1x10" vg, 3x10"vg, 6x10' vg VT nterior & posterior segmen
inflammation

vg, virus vector genomes; SRI, subretinal injection; IVT, intravitreal injection.

as increased intraocular pressure (IOP), cataracts, and other immune
suppression-related issues (10). Therefore, it is crucial to closely
monitor patients for these potential side effects to ensure treatment
safety. Given the limitations associated with corticosteroid use, future
research should focus on developing more targeted and less invasive
immunomodulatory strategies.

Many current clinical trials have short follow-up periods,
leaving the long-term immune response and durability of
treatment effects unclear. Continuous monitoring of immune
responses, the persistence of AAV vectors, and overall efficacy is
therefore essential to ensure the long-term safety and effectiveness
of gene therapy. Some clinical trials have not provided detailed
immune response data and treatment effectiveness. Future studies
should combine immune response with clinical outcomes, vision
improvement and retinal function recovery, to comprehensively
evaluate the success of gene therapy. The impact of repeated dosing
in the same eye on immune responses is still uncertain and requires
further investigation. Additionally, optimizing immunosuppressive
protocols, such as adjusting corticosteroid dosing and duration,

Frontiers in Immunology

should be a priority. Exploring the use of low-immunogenic AAV
vectors will also be crucial to minimizing the impact of immune
responses on the effectiveness of gene therapy.

3 Current challenges in retinal gene
therapy

3.1 Immunogenic component

3.1.1 Viral vector capsid

The variation in the capsid structure of viral vectors, especially
AAV vectors, has a significant impact on immune responses.
Different serotypes of AAV have unique capsid structures, which
determine their ability to target specific tissues by binding to specific
receptors on host cell surfaces. These structural variations affect
antigenic properties, viral entry mechanisms, targeting specificity,
and transduction efficiency. AAV2 is the earliest and most widely
used AAV serotype. It enters cells by binding to heparan sulfate, a

frontiersin.org
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type of glycosaminoglycan expressed on the surface of host cells,
effectively transducing RPE cells (11). AAV5 and AAV8 serotypes
are more effective in transducing retinal photoreceptor cells (12).

After AAV vectors enter the body, the host immune system
recognizes specific antigenic epitopes on their capsid proteins such
as the major structural proteins VP1, VP2, and VP3 of AAV (13). B
cells produce specific antibodies (mainly IgG) against these
antigens. These antibodies can bind to AAV vectors, forming
antigen-antibody immune complexes, which then trigger the
activation of the complement system. Complement activation by
AAV IgG immune complexes has been demonstrated in human
sera, including with AAV9, generating C3a and C5a and
highlighting a potential risk of inflammatory injury at high vector
doses (14).The deposition of C3b enhances the clearance of immune
complexes and may also form the membrane attack complex
(MAC), causing direct damage to the AAV vector and the
transduced cells (15). In terms of cellular immunity, variations in
the AAV capsid can affect the activation of CD4" T cells and CD8"
T cells. The activation of these T cells can trigger more severe
inflammatory responses and immune-mediated tissue damage. In
murine intravitreal studies, administration of AAV2 provokes
clinically evident vitritis within about one week and this largely
resolves by about one month, whereas subclinical CD45"
infiltration, predominantly T cells, persists; prior exposure to
AAV accelerates these adaptive responses (16). In particular, the
cytotoxic responses mediated by CD8" T cells may directly damage
transduced cells, affecting treatment outcomes (17). Evidence from
non-ocular clinical studies shows expansion of capsid specific CD8"
T cells after AAV exposure and loss of transduced cells in a
hemophilia B trial, directly linking capsid antigen presentation to
T cell mediated cytotoxic clearance (18).

3.1.2 Vector DNA

The structure and sequence of rAAV genomes critically shape
innate sensing and downstream adaptive responses. Across mouse
hepatic and pulmonary models, self-complementary genomes
expose CpG motifs more efficiently than single stranded genomes
and consequently elicit stronger endosomal TLR9 dependent
MyD88 signaling, type I interferon (IFN) responses, and capsid
specific CD8'T cell priming; these effects are markedly blunted in
TIr9 deficient or Myd88 deficient mice (19-21). The GC-rich
palindromic inverted terminal repeat (ITR) hairpins, while
indispensable for replication and packaging, also harbor CpG
motifs recognized by TLR9. Genome engineering strategies,
including CpG depletion within the expression cassette and ITRs
and the insertion of short TLRY inhibitory oligomers, reduce
inflammatory readouts in mouse liver, muscle, and retina, and
after subretinal delivery in pigs. By contrast, in macaques,
intravitreal dosing delayed but did not prevent uveitis,
underscoring route and species dependent constraints (22, 23).

Beyond TLRY, interspecies differences in cytosolic DNA sensing
complicate translation. Murine cells depend mainly on the cGAS-
STING pathway, whereas human cells also elicit a strong STING
independent response mediated by DNA dependent protein kinase,
a kinase that can sense DNA ends and initiate innate signaling (24).
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Finally, promoter and transgene features, including length, GC
content and CpG content, and predicted secondary structure,
modulate both expression and engagement of TLR9. CpG
depleted cassettes dampen TLR9 dependent cross priming
without compromising expression in muscle and liver. CpG
depleted ITRs have retained vector activity in vivo (20, 25).
Consistent with these model data, human whole blood assays
indicate that plasmacytoid dendritic cell TLR9 dependent type I
IFN responses to AAV9 require pre-existing anti AAV9 antibodies,
highlighting the influence of host humoral background on genome
sensing (26).

3.1.3 Transgene RNA

Beyond the capsid and vector DNA, vector encoded transcripts
are not immunological bystanders. Engagement of pattern
recognition receptors (PRRs) and the magnitude of downstream
interferon programs are determined by intrinsic RNA features,
including length, sequence composition such as GU richness,
chemical modifications, and higher order structure. Within
endosomes, TLR3 senses long double stranded RNA, as shown in
TIr3 deficient mice and in polyinosinic polycytidylic acid challenge
systems, whereas TLR7 and TLR8 detect GU rich single stranded
RNA with pronounced species asymmetry. In mice, responses are
dominated by TLR7 and TLRS activity is weak or non-canonical. In
humans, TLR8 is strongly responsive to single stranded RNA in
primary monocytes, myeloid dendritic cells, and peripheral blood
mononuclear cells (27-29).

In the cytosol, RIG I preferentially recognizes short RNAs
bearing a5’-triphosphorylate, including double stranded and
single stranded species, whereas MDA5 senses long double
stranded RNA, and both receptors converge on MAVS. These
assignments are supported by studies in knockout mice, human
primary cells, and biochemical mapping of structure and length
determinants (30, 31). Relevant to AAV, sustained transduction can
generate antisense or minus-strand transcripts from the vector
template, enabling sense—antisense pairing and dsRNA biogenesis.
Across transformed cell lines (HeLa, HEK293, HepG2, Huh?7),
primary human hepatocytes (about 10-12 donors), and mice
bearing human hepatocyte xenografts, dsSRNA engages MDAS5,
signals through MAVS, and induces IFN-B, thereby curtailing
transgene expression. siRNA knockdown of MDA5 or MAVS
restores expression in vitro, directly linking transgene derived
double stranded RNA to innate activation in human cells and in
humanized mice (32). Collectively, these findings establish
transgene RNA quality, not capsid alone, as a tunable driver of
AAV immunogenicity and durability, and highlight the
requirement to factor specie specific TLR7 and 8 biology into
translational inference.

3.1.4 Transgene protein

Transgenic proteins, as the final expression product of gene
therapy, may be recognized as antigens by the host immune system,
triggering a specific immune response. The strength and nature of
this response depend on several factors related to the transgenic
protein, including its structure, function, stability, and folding state
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(33). In particular, the glycosylation patterns and folding quality of
the transgenic protein play an important role in its
immunogenicity. For example, abnormal glycosylation patterns
may cause the transgenic protein to be identified as a foreign
antigen, while a protein that is not fully folded may expose
atypical epitopes that can be recognized by the immune system.
Detection techniques, such as proteomics (34) and ELISA, can be
used in laboratory settings to assess the immunogenicity of proteins.

3.1.5 Post-translational modifications of the
protein capsid

Viral vector capsids can undergo various PTMs, such as
phosphorylation, glycosylation, and ubiquitination (35). These
modifications can significantly alter the capsid’s three-dimensional
structure, affecting its antigenicity and immunogenicity (36).
Different types of PTMs may lead to changes in the
immunogenicity of the viral vector in the body, which can impact
both the safety and therapeutic effectiveness of gene therapy (37).

3.2 Pre-existing immunity against AAV

In AAV mediated gene therapy, pre-existing antibodies against
AAV capsid proteins pose a significant challenge. Many individuals
have anti-AAV antibodies from previous infections, which reduces
the effectiveness of gene therapy by neutralizing viral vectors (38).
Because AAV capsid proteins have highly conserved amino acid
sequences, NAbs may cross-react with multiple serotypes (39).
Vectors containing exons and regulatory sequences from non-
human sources can be recognized as foreign by the immune
system (40). Furthermore, degradation products of AAV vectors
and residual materials from vector production can provoke immune
responses (41).

3.3 Immune responses within the eye

The eye is considered an immune-privileged site, with
mechanisms such as the blood-retina barrier (BRB) and local
immunosuppressive factors that protect against excessive immune
responses (42, 43). However, this unique immune environment can
pose challenges in retinal gene therapy, especially when using AAV
vectors. While the eye generally exhibits a tempered immune
response, AAV vectors can still trigger both humoral and cellular
immune responses, particularly in patients with pre-existing
immunity, leading to the neutralization of the vector and reduced
therapeutic efficacy. Additionally, local inflammatory responses
may cause retinal damage, complicating the control of immune
reactions and affecting the long-term success of gene therapy.

3.3.1 Innate immune response

The innate immune system is the first line of defense against
foreign pathogens, and in gene therapy, both viral vectors and gene
editing tools like CRISPR/Cas9 and RNA interference (RNAi) can
activate innate immune responses. Components of viral vectors,
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such as the protein capsid (44), vector DNA/RNA sequences (45),
Cas proteins, associated small guide RNA sequences (sgRNA), and
non-specific RNA degradation products in RNAi technology can be
recognized by the host’s PRRs, triggering innate immune responses
(46). PRRs are expressed on the cell membrane and in the
cytoplasm of various cells, including innate immune cells (e.g.,
macrophages, monocytes, neutrophils, natural killer cells, and
dendritic cells) (47), adaptive immune cells (such as T cells and B
cells), and non-immune cells (such as epithelial cells, endothelial
cells, and fibroblasts) (48). In the retina, PRRs are predominantly
found in retinal pigment epithelial cells (RPE cells) (49), microglial
cells (50), retinal ganglion cells (RGCs) (51), retinal astrocytes (52),
and photoreceptor cells (53).

Immune responses triggered by AAV vectors involve multiple
PRR pathways. TLR2 recognizes the protein capsid of AAV,
activating the NF-xB pathway and inducing the production of
inflammatory cytokines such as TNF-o and IL-1B (39).
Unmethylated CpG motifs within AAV genomes are detected by
TLRY, particularly in mouse models where genetic ablation of Tlr9
or Myd88 blunts type-I IFN induction and downstream adaptive
immunity (19). In the cytoplasm, RIG-I and MDAS5 detect double-
stranded RNA produced after AAV infection, which activates type I
IFN and NF-xB signaling pathways (32). Additionally, the NLRP3
inflammasome responds to AAV-induced cellular stress and
damage by activating caspase-1, leading to the release of IL-1f3
and IL-18. AIM2 detects double-stranded DNA in the cytoplasm,
triggering inflammasome activation (54).

Moreover, cGAS recognizes AAV genomic DNA and produces
c¢GAMP, which activates STING. Upon activation, STING induces
the production of type I IFNs and inflammatory cytokines. Mouse
retina shows cGAS-STING activation in vivo (e.g., diabetic
retinopathy), supporting the pathway’s relevance to ocular
inflammation and its potential contribution to innate responses
triggered by vector (55, 56). Figure 3 shows the AAV transduction
process and the innate immune responses triggered in retinal gene
therapy. These molecular pathways together form a complex immune
response network triggered by various gene therapy methods.

3.3.2 Adaptive immune response

The adaptive immune system (T cells and B cells) is gradually
activated within days to weeks after gene therapy, potentially
leading to vector clearance, loss of gene expression, and even
cytotoxic reactions. In retinal gene therapy, adaptive immune
responses mediated by T cells are key to treatment efficacy. CD4™
helper T cells activate and regulate immune responses through
cytokine secretion, while CD8" cytotoxic T cells directly kill infected
cells. Both T cell types are essential for recognizing AAV vector
components and transgene products (57).

Antigen-presenting cells (APCs), such as dendritic cells and
macrophages, process and present antigenic peptide fragments
from viral vectors or transgenes to T cells, triggering T cell
activation. After activation, CD8" cytotoxic T lymphocytes
(CTLs) proliferate and differentiate, releasing perforins and
granzymes to induce apoptosis and kill infected cells (58). During
antigen presentation, CD4" T cells recognize viral vector or
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AAV transduction and innate immune responses in retinal gene therapy. Following administration, AAV transduction occurs through sequential steps,
including cell surface binding, endocytosis, endosomal escape, capsid uncoating, transcription, and transgene translation. During this process, PRRs
detect pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), initiating innate immune responses.
TLRs play a key role in immune sensing: TLR1, TLR2, TLR5, and TLR6 recognize PAMPs and activate MyD88-dependent pathways, leading to NF-xB
activation and pro-inflammatory gene expression. TLR4, upon recognizing LPS, signals through MyD88 and TRIF, triggering NF-kB and IRFs, resulting
in the secretion of inflammatory cytokines and type | IFNs. Additionally, cytoplasmic RNA sensors contribute to immune activation: MDA5 binds
dsRNA, while RIG-I binds ssRNA, both of which activate MAVS and TBK1/IKKe, promoting NF-kB and IRF signaling. Cytosolic DNA, via the cGAS/
STING pathway, activates TBK1/IKKe, while also stimulating the AIM2 inflammasome and caspase-1, further amplifying inflammatory cascades. NLRP3
inflammasome activation, triggered by cytoplasmic DAMPs and PAMPs, reinforces inflammatory responses.

transgene antigens through MHC II molecules. Upon activation,
CD4" T cells differentiate into various subsets, including T helper 1
(Thl), Th2, Th17, and T regulatory cells (Tregs). Each subset plays
a distinct role in the immune response (59). Tyl cells secrete IFN-y,
which promotes CTL activation and enhances macrophage activity,
driving cell-mediated immunity (60). In contrast, Th2 cells produce
interleukins such as IL-4, IL-5, and IL-13, which are key for
promoting B cell-mediated antibody production and humoral
immunity (61). Thl7 cells secrete IL-17 and IL-22, involved in
inflammatory responses and tissue remodeling processes (62).
Tregs secrete immunosuppressive cytokines (IL-10 and TGF-) to
suppress excessive immune responses, prevent uncontrollable
inflammation, and maintain immune homeostasis (63).

CD8" T cells identify and eliminate target cells expressing viral
vector or transgene antigens via MHC I molecules. This process is
essential for clearing infected cells and regulating transgene
expression (58). Following antigen clearance, some T cells
differentiate into memory T cells. Central memory T cells (TCM)
and effector memory T cells (TEM) can rapidly respond to
subsequent exposures, enhancing immune protection in future
gene therapy treatments. B cells play a pivotal role in humoral
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immunity by recognizing antigens, producing specific antibodies
through plasma cell differentiation, and forming memory B cells for
long-term immune memory (64). Antibodies neutralize viruses by
blocking binding to host cell receptors or by interfering with viral
entry into the host cell membrane. This neutralization diminishes
the virus’s ability to infect and reduces the transduction efficiency of
viral vectors. Furthermore, antibodies can bind to viral antigens on
the surface of infected cells, engaging Fc receptors on effector cells
such as NK cells, thereby triggering antibody-dependent cellular
cytotoxicity (ADCC). Antibodies can also activate the complement
system, initiating a cascade that leads to viral lysis and phagocytosis.
Figure 4 illustrates the cellular and humoral immune responses
during retinal gene therapy.

3.4 Challenges in redosing

Currently, AAV-mediated gene therapy for ocular diseases in
clinical settings typically employs a unilateral injection strategy.
This approach is primarily driven by safety considerations and the
goal of preserving the patient’s vision to the greatest extent possible.
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Cellular and humoral adaptive immune responses in retinal gene therapy. Cellular adaptive immune responses. Antigenic peptides derived from gene
therapy are presented to naive and memory CD8" and CD4" T cells via MHC molecules. Naive and memory CD8* T cells differentiate into activated
CD8* T cells, which further develop into effector CD8" T cells. Effector CD8" T cells mediate cytotoxicity by secreting perforin, granzymes, IFN-y,
and TNF-a, leading to apoptosis of target cells. Upon antigen re-exposure, memory CD8" T cells rapidly differentiate into effector or memory
subsets, enabling a rapid immune response. Naive and memory CD4" T cells, upon antigen recognition, differentiate into activated CD4" T cells,
which further polarize into Thl, Th2, Thl7, and Treg subsets, each secreting distinct cytokines to modulate immune responses. Additionally, activated
CD4* T cells enhance CD8" T cell activation, reinforcing cellular immunity. Humoral adaptive immune responses. Tfh cells promote B cell activation,
leading to the differentiation of B cells into plasma cells and memory B cells. Plasma cells secrete antigen-specific antibodies, contributing to long-
term immune protection, while memory B cells provide rapid recall responses upon re-exposure to the same antigen.

However, following a single intravitreal injection of AAV, transgene
expression often declines over time due to local or systemic
immune-mediated clearance, vector off-target distribution, or
suboptimal initial transduction efficiency, making it challenging
to achieve durable therapeutic effects. Therefore, once efficacy is
confirmed in one eye, safely and effectively redosing AAV in the
other eye or the same eye to sustain transgene expression for
bilateral or repeated treatment remains a major challenge in
ocular gene therapy.

The success of AAV redosing depends on factors such as
administration route, vector dose, dosing interval, and recipient
age, all of which significantly influence the host immune response
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and thus determine the outcome of repeated gene delivery. It has
been reported that intravitreal injection of AAV induces a humoral
immune response against the capsid, which impairs transgene
expression upon re-administration via the same intravitreal route,
but does not affect transduction following SRI in the contralateral
eye. In contrast, subretinal administration does not elicit a humoral
immune response and does not interfere with subsequent AAV
delivery, whether intravitreal or subretinal (65). Lindsey Weed and
colleagues demonstrated in non-human primates (NHPs) that
AAV2-hRPE65v2 can be safely and effectively readministered
subretinally in the same eye, even in the presence of NAbs, with
good local and systemic tolerability (66).
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Strategies to overcome humoral immunity and enable effective
AAV redosing are actively being explored, building on insights from
ocular studies. For example, the IgG-degrading endopeptidase
Imlifidase (IdeS) reduces anti-AAV antibody levels, facilitating
efficient liver gene transfer in mice and enhancing transduction in
NHPs, even after vector re-administration (67). Alternatively,
tolerogenic nano-adjuvants (RICP), combining rapamycin
(RAPA) and itaconate (ITA), disrupt the T follicular helper cell
(Tth cell) and germinal center B cell axis via metabolic modulation
while inducing Tregs, significantly improving hepatic transgene
expression upon redosing (68). B cell-targeted approaches also
show promise: Anti-CD19 CAR-T therapy depletes peripheral and
tissue-resident B cells and plasma cells, eradicating high-titer AAV8
NAbs and permitting successful transgene expression upon
systemic AAVS8 re-administration in mice (69). Similarly,
plasmapheresis offers a clinically feasible method to lower anti-
AAV antibodies, particularly for repeat dosing (70). Capsid
engineering further expands redosing options. Recent studies
demonstrate that modified AAV9 vectors can cross the blood-
brain barrier, enabling efficient brain endothelial transduction in
mice and NHPs after multiple doses. Although species-specific
differences exist, this approach allows serotype switching to
circumvent pre-existing immunity during redosing (71).

3.5 Personalized immune management

Immune responses can vary significantly between individuals
due to factors such as sex, age (72), genetic differences, personal
immune history, lifestyle, diet, environmental exposures, immune
system variations, and physiological conditions. Personalized
immune management is especially important in gene therapy for
inherited retinal diseases. By creating personalized treatment plans
based on each patient’s genomic data and immune history, genetic
variants related to therapeutic responses can be precisely identified,
optimizing treatment strategies. The challenge lies in effectively
integrating real-time immune monitoring technologies and making
timely adjustments to treatment plans based on monitoring results
to enhance safety and efficacy. By integrating genomic data and
immune biomarkers, more precise treatment plans can be
developed. Additionally, a validated IFN-y ELISpot method
facilitate adjustments to treatment based on changes in immune
status during clinical trials, thereby improving treatment outcomes
and reducing side effects (73).

4 Strategies to harness the immune
system

4.1 Pharmacological and therapeutic
interventions

4.1.1 Immunosuppressive drugs

In retinal gene therapy, immunosuppressive drugs play a pivotal
role in managing post-treatment inflammation and enhancing
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safety. Corticosteroids such as dexamethasone and prednisone are
commonly used to suppress the release of inflammatory mediators,
significantly reducing retinal tissue inflammation. Dexamethasone,
well-known for its strong anti-inflammatory effects, inhibits
cytokine and chemokine release, thus controlling immune
responses to gene therapy (74). Additionally, it induces dendritic
cells to exhibit tolerogenic properties, reducing the expression of co-
stimulatory molecules and limiting T cell activation (75).
Prednisone reduces inflammation by blocking the NF-«xB pathway
and decreasing inflammatory gene expression (76), offering
protection to the retinal microenvironment. Clinical trials also
indicate that prednisone helps mitigate chronic inflammation and
retinal degeneration over prolonged treatment periods (6). Despite
their therapeutic benefits, corticosteroids are not a panacea and
present significant limitations. Local administration carries
substantial risks, with 20-30% of long-term users developing
corticosteroid-induced glaucoma and cataract formation. Systemic
administration (oral/intravenous routes) may lead to more
extensive complications, including immunosuppression and
metabolic disturbances with prolonged use (77).

Beyond steroids, calcineurin inhibitors modulate T cell
activation. Cyclosporine A mitigates disease in rat experimental
autoimmune uveoretinitis (EAU), supporting a T cell targeted
mechanism in vivo (78). Tacrolimus (FK506) similarly inhibits
calcineurin and reduces ocular inflammation in rabbit and rat EAU
after intravitreal delivery, with preservation of retinal structure and
electroretinography (ERG) function (79, 80). Although ocular AAV
specific tacrolimus data are limited, systemic tacrolimus prolonged
rAAVS8 and rAAV9 transgene expression in NHPs after skeletal and
muscle delivery, indicating translatable T cell control across species
and tissues (81, 82). Other agents are being explored. Mycophenolate
mofetil inhibits lymphocyte proliferation. However, in mouse liver
directed models, it lessens single stranded AAV transduction and
may thereby limit overall efficiency (83). These challenges mirror
broader findings in AAV gene therapy, where a systematic review of
73 clinical and real-world studies identified immunosuppression
optimization as a critical determinant of treatment safety and
efficacy (84).

4.1.2 Immune modulation therapy

Immune modulation is essential in controlling immune
responses during retinal gene therapy. Immunoglobulin (IVIG), a
key immunomodulator, neutralizes pathogenic antibodies and
regulates immune functions, significantly reducing immune-
mediated adverse reactions. IVIG is commonly used in clinical
settings to manage acute immune reactions triggered by AAV
vectors by binding to immune molecules, reducing inflammation,
and improving treatment outcomes.

Plasmapheresis, though rarely used, can effectively reduce
inflammation by removing pathogenic antibodies and immune
complexes from the bloodstream, alleviating retinal inflammation
(70, 85). In NHPs with pre-existing AAVrh74 immunity, two to
three exchanges lowered neutralizing titers and enabled redosing,
capsid based immunoadsorption columns also deplete anti-AAV
IgG ex vivo and in animal models (70).
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Rituximab (anti-CD20) depletes B cells, thereby reducing
antibody mediated responses. In mouse and NHP models, B cell
depletion, frequently paired with sirolimus, mitigated anti-capsid
immunity and permitted AAV redosing. In clinical practice,
rituximab is also employed for refractory ocular inflammation
(86, 87). mTOR inhibition with rapamycin or sirolimus
suppresses T and B cell activity. Phase III trials demonstrated that
intravitreal sirolimus improves non-infectious uveitis. In mice and
NHPs, rapamycin loaded tolerogenic nanoparticles (ImmTOR)
attenuated anti-AAV immunity and enabled vector redosing (88,
89). JAK inhibition similarly reduces inflammatory signaling.
Tofacitinib suppresses experimental autoimmune uveitis in mice,
and ruxolitinib alleviates endotoxin-induced uveitis in rats,
supporting pathway relevance to ocular inflammation even if
direct AAV data are preclinical (90, 91). Moreover,
immunoenzymes that transiently debulk antibodies are
particularly promising in AAV settings. IgG-degrading
endopeptidases (IdeS/IdeZ) restore AAV transduction in mice
passively immunized with human Ig and permit in vivo gene
transfer in NHPs in the face of NAbs. IceMG, a dual protease
engineered to cleave IgM and IgG, rapidly clears both isotypes in
rhesus macaques, reinstates AAV transduction in mice carrying
human antisera, and reduces complement activation (67, 92, 93).

4.1.3 Cytokine and signaling pathway modulation

In retinal gene therapy, cytokine modulation plays a key role in
managing inflammation. AAV vector injections activate Miiller glial
cells and microglia, triggering the release of pro-inflammatory
cytokines including TNF-o. and IL-1B (94). These glia—cytokine
dynamics are consistent with broader microglia and Miiller biology
in mouse retina.

Although not specific to gene therapy, clinical experience in
humans with non-infectious uveitis supports targeting these
cytokines when intraocular inflammation threatens structure or
function. Anti-TNF-o agents (e.g., infliximab) achieve
corticosteroid sparing control in refractory uveitis (adult and
pediatric cohorts), while anti-IL-6R (tocilizumab) is effective for
uveitic cystoid macular edema and in juvenile idiopathic arthritis
associated uveitis refractory to anti-TNF therapy. In ophthalmic
practice they are generally systemic and used off label to suppress
ocular inflammation (95-98).

Targeting the NF-xB and PI3K/Akt signaling pathways can also
reduce immune overactivation, providing an additional strategy for
immune response modulation. In mouse models of retinal and
choroidal inflammation and neovascularization, microglial NF-xB
activation is a driver of lesion development. Pharmacologic or
genetic dampening of this axis reduces inflammatory infiltration
and pathology. In parallel, PI3K/Akt signaling in retinal microglia
governs activation and cytokine release, and blocking PI3K (e.g.,
LY294002) reduces retinal inflammatory programs in the oxygen-
induced retinopathy model while dampening BV2 activation.
Microglia-focused PI3K regulation (e.g., PIK3IP1) further links
this pathway to retinal inflammatory angiogenesis in mouse
models. Together, these data support NF-xB and PI3K/Akt as
tractable nodes for adjunctive immunomodulation around ocular
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gene transfer, while acknowledging translation to AAV specific
settings remains to be fully defined (99-101).

4.2 Vector design and optimization

4.2.1 AAV vector engineering

Modifications to AAV vector capsids are critical in reducing
immunogenicity and improving therapeutic efficacy. Glycosylation
of the capsid helps mask antigenic epitopes, making the vector less
recognizable by the immune system (102). Techniques such as
directed evolution and synthetic biology enable the development of
AAV variants with lower immunogenicity. Mutations in capsid
proteins, sequence recombination, and structural optimization can
reduce immune responses while maintaining high transduction
efficiency (103, 104). CRISPR/Cas9 technology also facilitates
precise modifications to existing AAV vectors, further enhancing
their properties (105). Non-viral vectors, such as liposomes and
nanoparticles, also hold potential in retinal gene therapy, with
modifications in size, surface charge, and composition improving
their ability to evade the immune system and deliver genes more
efficiently (106, 107). The use of AAV serotypes with low
immunogenicity, such as AAV8 and AAVY, is an established
strategy to enhance treatment outcomes. These serotypes exhibit
high transduction efficiency and reduced immunogenicity in certain
tissues (108).

4.2.2 Immune evasion

Polyethylene glycol (PEG) modification of AAV vectors can
reduce immune recognition, extending their circulation time in the
body (109). Immunomodulatory coatings, such as the regulatory
protein CTLA-4, can also be applied to the surface of AAV vectors
to reduce immune responses (110). Decoy capsid technology, where
immune cells bind to non-therapeutic capsids, can further reduce
immune activation against the therapeutic vector (111). Epitope
masking, which conceals antigenic epitopes, is another promising
approach to reducing immune recognition (112).

5 Future directions and clinical
implications

5.1 Next-generation gene therapy
approaches

Emerging non-viral vectors, including lipid nanoparticles (LNPs),
polymeric nanoparticles, and mRNA delivery systems, are opening
new options for retinal gene therapy across multiple preclinical
systems. For example, PEG variant LNPs achieved robust genome
editing after SRI in mice (RPE-restricted editing with some Miiller
transduction), and certain surface chemistries unexpectedly enabled
photoreceptor transfection, highlighting tunable tropism by
formulation choice (113). Peptide guided LNPs have likewise
expanded neural retina mRNA delivery in mice, while separate
studies show mouse and human retinal tissues can be transfected
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with LNP-mRNA without marked inflammation, supporting
translational potential (106, 114). In parallel, compacted DNA
nanoparticles (CK30-PEG) demonstrated high level photoreceptor
and RPE expression in mice and favorable ocular safety in vivo,
offering a non-viral plasmid platform with large cargo capacity (115).
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Another active area is precise regulation of transgene
expression. Doxycycline inducible Cre in RPE and tamoxifen-
inducible CreERT2 lines targeting RGCs or RPE constitute robust
conditional platforms in the mouse retina, enabling spatiotemporal
regulation while underscoring practical issues, including tamoxifen
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dosing and toxicity (116-118). Optogenetic control provides a
complementary route. A clinical proof of concept in degenerative
blindness demonstrated partial vision recovery with an intravitreal
vector combined with light stimulating goggles, and concordant
studies in NHPs using the same regimen provided supporting
evidence (119).

The application of single-cell sequencing technologies is enabling
deeper insights into the retinal immune microenvironment (120, 121).
This approach allows researchers to better understand the complex
interactions between retinal cells and the immune system, identifying
potential therapeutic targets and informing the design of more effective
treatments. Finally, Al-driven design is beginning to optimize vector
components to improve targeting and, by enabling lower and more
selective dosing, may help mitigate immune risks. Recent Machine
Learning (ML) models trained on mouse in vivo and human in vitro
screens accurately predict macaque AAV capsid performance,
evidencing cross-species generalization, and reviews describe their
integration into retinal gene delivery pipelines (122, 123).

5.2 Emerging strategies for immune
tolerance

Cell-based Tregs therapies, encompassing polyclonal and
antigen-specific Tregs and exploratory CAR-Tregs, have shown
feasibility and early safety in transplantation and autoimmunity,
yet remain preclinical or at best early phase for controlling AAV
immunogenicity (124, 125). For retinal translation, several priorities
stand out. First, generate lineage-stable FOXP3™ Tregs with a
demethylated TSDR that are resistant to pro-inflammatory
cytokine signaling (126). Second, confer specificity for the AAV
capsid and the therapeutic transgene to limit bystander suppression
(125). Third, achieve ocular tropism and residence, choose the
optimal route (systemic, periocular, intravitreal, or subretinal), and
set dose levels with a primary emphasis on safety. Finally,
incorporate safety circuits such as suicide switches, and adopt
standardized immune and ocular monitoring, including binding
and NAbs assays, T cell readouts, inflammation grading, and optical
coherence tomography (OCT) or ERG, to link immunomodulation
with clinical benefit. Given the added manufacturing and clinical
complexity, cell-based Treg therapy is best positioned as a mid to
long-term strategy pending AAV retina specific evidence of efficacy
and durability.

As efforts to translate Treg therapies continue, attention is also
turning to Mesenchymal stromal cells (MSCs) derived modalities
that may broaden the immunomodulatory toolkit for retinal gene
therapy. MSCs and their extracellular vesicles (EVs) attenuate Th1/
Th17 responses, expand Tregs, and confer neuroprotection in
ocular inflammatory and degenerative models, largely via
paracrine mediators such as IL-10, TGF-B, and PGE, (127-129).
EVs and exosomes recapitulate much of this immunomodulatory
and neuroprotective activity in experimental autoimmune uveitis
and retinal injury models (129, 130). Therefore, direct evidence that
MSCs mitigate anti-AAV ocular immunity remains limited.
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5.3 Translational challenges and regulatory
considerations

During treatment, regular immune monitoring is essential,
including the use of flow cytometry to analyze changes in T cell
subsets in peripheral blood (131). Researchers have also optimized
IFN-y and IL-2-based ELISpot assays to assess T cell responses to
AAV peptide antigens. Additionally, a chemiluminescence based
ELISA has been developed to measure antibody levels against AAV8
in human serum, offering an alternative to traditional NAD assays.
This method, owing to its simplicity and operational ease, is a
valuable tool for pre-dose baseline screening (132).

Moreover, all clinical trials must adhere to the regulatory
guidelines of the respective country, such as FDA regulations in
the United States or EMA standards in Europe. Trial designs and
operations must also undergo review by ethics committees to ensure
compliance with ethical standards and protect participants’ rights.
Any adverse events related to immune responses must be
thoroughly documented and reported to allow for timely
adjustments to treatment protocols, thereby improving future
research. To mitigate immune risks, researchers have suggested
strategies such as adjusting the dose and frequency of gene therapy
administration to reduce the immune system’s burden (133, 134).
Figure 5 illustrates strategies to address immune responses in retinal
gene therapy.

6 Conclusion

Retinal gene therapy has made substantial progress in treating
IRDs. However, immune responses remain a significant challenge,
impacting the safety and long-term efficacy of these therapies. Despite
the retina’s immune-privileged status, AAV vectors can trigger
immune reactions, leading to inflammation, uveitis, or other adverse
effects. While some immune responses are inevitable, strategies such as
immunosuppressive drugs, immune modulation, and vector
engineering have shown promise in managing these responses.
Furthermore, personalized treatment approaches, immune
monitoring, and adjunctive therapies like cell therapy hold significant
potential for enhancing treatment success. Future research should focus
on optimizing vector design, refining immunomodulatory therapies,
and improving immune monitoring techniques to ensure the safety
and long-term effectiveness of retinal gene therapies. Collaboration
between clinicians, immunologists, and gene therapy researchers will
be essential in overcoming the immune-related barriers and realizing
the full potential of gene therapy for retinal diseases.
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