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NOD-like receptors in fish:
evolution, structure, immune
signaling, and targeting for
aquaculture vaccine adjuvants
Banikalyan Swain* and Kavi R. Miryala

Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of
Florida, Gainesville, FL, United States
Teleost fish possess a highly diverse innate immune system, which is well-adapted

to the pathogen-rich aquatic environment in which they reside. NOD-like

receptors (NLRs), a conserved family of cytosolic pattern recognition receptors,

are at the center of this defense mechanism, activating immune responses,

recognizing pathogen-associated molecular patterns (PAMPs) and damage-

associated molecular patterns (DAMPs). Here, we present an integrative

overview of the current state of fish NLRs in terms of their evolutionary

diversification, structural framework, signaling pathways, and functional roles in

the context of bacterial, viral, and parasitic pathogens. We discuss six principal

NLRs: nucleotide-binding oligomerization domain-containing protein 1 (NOD1),

NOD2, NLRC3, NLRC5, NLR family member X1 (NLRX1), and NLR family pyrin

domain-containing 1 (NLRP1), highlighting their domain structures, 3D

conformations, and downstream signal chains. We focused on the immune

regulatory roles of NLR family acidic transactivation domain-containing (NLRA)

and NLR family CARD domain-containing (NLRC) subfamily components, the

formation of the NLRP1 inflammasome, and the new roles of mitochondrial-

specific NLRs in antiviral immunity. We discuss future directions for NLRs as

immunological targets in aquaculture, referencing known NLR-activating

adjuvants, exploring their ligand specificity, and highlighting challenges like

functional redundancy. Much of the insight into the fish NLRs in this review

comes from their well-researched mammalian counterparts. NLR-based

immune modulation represents the ability of these receptors to detect microbial

or danger signals and regulate key signaling pathways, such as nuclear factor

kappa-light-chain-enhancer of activated B cells (NF-kB), activator protein 1 (AP-1),

interferon regulatory factors (IRFs), and inflammasome activation. These pathways

help shape the immune response by negatively or positively altering cytokine

production and improving antigen presentation. By bringing together what we

know about NLR evolution, structure, and function, this review aims to support

new ideas and research into how fish defend themselves from disease and howwe

might strengthen that defense through improved vaccine and adjuvant design.
KEYWORDS

NOD-like receptors (NLRs), teleost fish immunity, pattern recognition receptors (PRRs),
inflammasome signaling pathway, aquaculture vaccine development, host-pathogen
interactions in fish
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1 Introduction

Fish in aquatic environments constantly face challenges that trigger

innate immunity, such as the introduction of pathogens and stressors.

Within this first line of defense, components of pattern recognition

receptors (PRRs) trigger downstream signaling cascades that lead to

inflammation, cytokine production, apoptosis, and pathogen clearance

(1). This occurs in the presence of pathogen-associated molecular

patterns (PAMPs) and damage-associated molecular patterns

(DAMPs), such as flagellin, nucleic acids, lipopolysaccharides (LPS),

g-D-glutamyl-meso-diaminopimelic acid (iE-DAP), lipoproteins,

muramyl dipeptide (MDP), glucans, N-formylmethionine, and toxins

(2, 3). The sources of these elements originate from bacterial, viral, and

parasitic infections that activate various PRRs in fish, including Toll-

like receptors (TLRs), the most heavily investigated, as well as retinoic

acid-inducible gene-I-like receptors (RLRs), C-type lectin receptors

(CLRs), and the subject of this review, NOD-like receptors (NLRs) (4).

NLRs are emerging as key sensors in pattern-triggered immunity

(PTI) and are located intracellularly in the cytoplasm, unlike the

majority of TLRs, which are located either on the cell surface or

within intracellular compartments. Depending on the subfamily of

the protein, NLRs act as positive or negative regulators of pro-

inflammatory mediated responses through nuclear factor kappa-

light-chain-enhancer of activated B cells (NF-kB) and activator

protein-1 (AP-1) via mitogen-activated protein kinase (MAPK)

signaling, and interferon regulatory factors (IRFs) (3, 5, 6). Upon

activation, NF-kB is a transcription factor that activates pro-

inflammatory and cell survival genes, producing cytokines (7–9).

At the same time, MAPK is a highly conserved family of serine/

threonine kinases that transmits PAMPs/DAMPs from the cell

membrane to the nucleus through a phosphorylation cascade,

ultimately producing AP-1, which regulates immune responses,

apoptosis, development, and stress adaptation in fish (5, 10). In

addition, specific subfamilies of NLRs are activated as

inflammasomes via pro-caspase-1 signaling, making them

modulators and negative regulators of innate immunity to maintain

a stable immune response through various pathways (2, 3, 5, 11).

NLRs consist of an N-terminal effector domain, a central

nucleotide-binding oligomerization domain (NBD), and a C-terminal

leucine-rich repeat (LRR) domain, forming a tripartite structural

arrangement (3, 12, 13). Each of these three domains plays a distinct

role, which is vital within the PTI. The effector domain participates in

signal transduction through protein interactions (13). This results in

the distinction of five key subfamilies of NLR proteins: NLR family

acidic transactivation domain-containing (NLRA), NLR family

baculoviral inhibitor of apoptosis repeat (BIR)-containing (NLRB),

NLR family caspase activation and recruitment domain-containing

(NLRC), NLR family pyrin domain-containing (NLRP), and NLR

family proteins with alternative effector domains (NLRX) (3, 12, 14,

15). Further distinctions across these classes will be detailed in section

2.1. NBD is responsible for oligomerization mediation and contains

ATPases associated with diverse cellular activity (AAA+) subdomains

for ATPase activity (3, 16, 17). This is also known as the NACHT

domain, whose name originates from the four proteins that it was first

identified in, NAIP, CIITA, HET-E, and TP1 (17). Along with this, the
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C-terminal segment, consisting of the LRR domain, plays a vital role in

recognizing PAMPs/DAMPs upon entering the cell by binding to the

ligands present (13). These domains are present in most NLRs, with

evolutionary variations leading to exceptions (18). Further functional

domains may also be present as a result of evolutionary adaptations

across various taxa or factors of divergence within NLR subfamilies.

Given this, NLRs are structurally conserved across all known

vertebrates, with fish displaying a unique expansion, structurally and

functionally, most likely shaped by pathogen-driven selective pressures

(18, 19). Unlike vertebrates, non-vertebrates lack an adaptive immune

system, resulting in an evolutionary expansion of PRRs, such as in

corals and sea urchins (18, 20). NLRs were initially discovered in

mammalian species and later began to be researched in plants, reptiles,

amphibians, birds, and most importantly, fish — the taxonomic class

that will be expanded on in this review.

The role of fish NLRs in disease resistance is of increasing

interest, especially in aquaculture, where infectious diseases

threaten global fish production. Upon activation following ligand

binding, NLRs can act as innate immunity pathogen receptors and

regulate MHC gene expression depending on their classification

(13). Along with this, some NLRs display inflammasome function,

boosting cytokine release, antigen presentation, and adaptive

immunity, allowing for their implementation in vaccine

development as targets for adjuvant strategies (21).

In this review, we focus on six key members of the NLR family:

NOD1, NOD2, NLRC3, NLRC5, NLRX1, and NLRP1. We base our

selection on four main criteria: (i) their presence in North American

and well-studied fish, (ii) the availability of full-length, annotated

amino acid sequences in public databases like NCBI and Ensembl,

and (iii) the existing or emerging functional evidence from studies

on gene expression, domain structure, or immune responses. (iv)

frequency of co-study between NLRs presented in this review.

While NLRP3 has been studied extensively in cyprinids such as

zebrafish (10.1074/jbc.RA119.011751) and grass carp (https://

doi.org/10.1016/j.fsi.2024.109367), many available sequences are

partial or not verified in these species. Also, NLRP3 fails criterion

iv, as it is independently identified in experimental assays of current

literature. On the other hand, NLRP1, though less functionally

studied, is found in multiple genomes with complete sequences,

which allows for comparative analysis.

This review explores the historical overview of NLR discovery,

evolutionary classification, domain structure, and 3D modeling

analysis (generated by AlphaFold), signaling mechanisms,

functional roles in various pathogen defenses, and implications

for vaccine or adjuvant development in aquaculture. The functional

basis of these proteins offers key future directions that can be

applied in other aspects of veterinary medicine.
2 Nomenclature, history, evolution of
NLRs

The NLR family is an evolutionarily conserved family of PRRs

located intracellularly (22). Identification of this class of proteins

began in mammals in the 1990s as a key player in the activation of
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innate immune responses via inflammation, host defense, and

autoimmune diseases. Despite sharing common roles in

immunity, the classification, evolutionary patterns, and structural

features in mammals and teleosts differ.

This section will discuss the diversity of nomenclature systems

used for NLRs across species, highlighting the inconsistency in

teleost classification and the requirement for a uniform

nomenclature based on phylogenetic relationships. We will then

outline the historical timeline of key milestones in NLR discovery

from early mammalian research to the more specialized work in fish

(Figure 1). Following this, the evolutionary diversification of NLRs

in teleosts and mammals will be considered, drawing on

phylogenetic analyses that reveal conserved patterns and species-

specific adaptations. Lastly, the functional domain elements will be

detailed, followed by 2D and 3D structural characterizations.

Together, these topics provide a foundation for understanding the

diversity and rationale of NLRs across piscine species for

subsequent sections on the functional investigation in

immune signaling.
2.1 Nomenclature

The discovery of a majority of NLRs was initially done in

mammals due to their accessibility and significance to human

health. This resulted in delayed research in fish that have

displayed a unique characterization of NLRs, which varies in gene

expansion, domain architecture, and evolutionary lineage. Due to

this complexity, a majority of fish species have been referred to with

nomenclature that varies from the standardized nomenclature

system established by the HUGO Gene Nomenclature Committee

(HGNC) (23–25).

As mentioned, variations in the N-terminal segment constitute

the distinction between these five subfamilies. In mammals, NLRA

consists of an acidic activation domain, NLRB includes a

baculovirus inhibitor of apoptosis repeat (BIR) domain, NLRC

includes a caspase activation and recruitment domain (CARD),

and NLRP has a pyrin domain (PYD) (3, 12, 14, 24). The NLRX

subfamily varies, however, as it lacks an effector domain with a

mitochondrial targeting sequence (MTS) near its N-terminal

segment (26). In contrast, teleost fish exhibit a much more

complex NLR repertoire, leading to distinct naming schemes. For

example, zebrafish NLRs are grouped into NLR-A (NOD-like),

NLR-B (NALP and NLRP-like), and the expansive, teleost-specific

NLR-C subfamily, which includes hundreds of genes, many

containing a C-terminal B30.2/PRY-SPRY domain (25, 27, 28).

The B30.2 subfamily, also found in grass carp and other teleosts,

likely evolved from a NOD3-like ancestor and does not exist in

mammals. Likewise, grass carp categorize some NLRs as NLR-B30.2

as well (24). In contrast to these teleost-specific naming systems,

species like channel catfish adopt a mostly mammalian-style

nomenclature, using names such as NOD1, NOD2, NLRC3,

NLRC5, and NLRX1, reflecting their structural similarity and

simplifying cross-species comparison (24). Given this, even

channel catfish have NLR proteins that are novel to teleosts
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(24, 27, 29). However, despite the shared names, proteins

like “NLRC3” and “NLRC5” in zebrafish and grass carp may not

be direct orthologs to their mammalian counterparts. This

underscoresxthe broader issue: NLR nomenclature varies

significantly between fish and mammals, and even among fish

species due to species-specific gene duplication, structural

divergence, and varying domain compositions, complicating

orthology and functional inference.

Chuphal et al. provide a comprehensive naming comparison of

these NLRs in several teleost fish to their mammalian orthologs

(27). The teleosts mentioned in the study include: zebrafish, channel

catfish, common carp, goldfish, Japanese flounder, olive flounder,

rohu, grass carp, miiuy croaker, mrigal, orange-spotted grouper,

Nile tilapia, catla, Atlantic salmon, rainbow trout, Asian seabass,

point snout bream, turbot, Japanese pufferfish, spotted snakehead,

and Ya-fish (27).

In this review, we standardize the naming of NOD1, NOD2,

NLRC3, NLRC5, NLRX1, and NLRP1 for all species for clarity.

Although subfamily classification is historically based on the

presence of specific N-terminal domains (e.g., CARD in NLRCs,

PYD in NLRPs), evolutionary divergence has resulted in the loss or

modification of these domains in some orthologs, particularly

across vertebrate lineages. Furthermore, we do not introduce new

nomenclature but rather adhere to standardized protein names

provided by NCBI and Ensembl, along with recent literature

conventions that correlated to the homology and clade of the

protein leading to evolutionary conservation, rather than strict

structural criteria as represented in the phylogenetic tree

(Figure 2) and structural representations (Figure 3). For example,

genes such as NLRC3 or NLRC5 may retain their designation

despite lacking characteristic domains.
2.2 Discovery of NLRs in mammals

The majority of experimentation to characterize vital NLRs in

mammals occurred in human and mouse species starting from the

1990s. Figure 1 provides a condensed timeline of key mammalian

discoveries, together with fish discoveries detailed in the following

section, summarizing the findings discussed in the text. The founding

member of the NLR protein family is CIITA, an MHC class II gene

expression regulator, which was first discovered in 1993 in mice

through complementation cloning (39). Its tripartite structure is

similar to today’s known NLRs; however, the presence of a Proline,

Serine, and Threonine (PST) rich domain located at the N-terminus

contributes to functional differences as a transcriptional co-activator

via nuclear localization and export signals in most antigen-presenting

cells (APCs) (22, 40–43). This finding was followed by the discovery of

nucleotide-binding oligomerization domain-containing protein 1

(NOD1) in mice as an Apoptotic protease activating factor-1 (Apaf-

1)-like molecule containing CARD, nucleotide-binding domain

(NBD), and LRR domains, the basis of NLRs (44). Apaf-1 is a

cytosolic adaptor protein consisting of WD40 repeats, which is

similar to that of LRRs in NOD1 (44–46). NOD1 was also found to

perform homophilic CARD–CARD interactions to activate NF-kB by
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FIGURE 1

Timeline of NLR discovery and evolution in mammals and fish. This timeline highlights pivotal discoveries and major conceptual advances in the
study of NOD-like receptors (NLRs) in both mammals (orange) and fish (teal), spanning from the early characterization of mammalian NLR functions
in immunity to the growing body of research focused on teleost-specific genes, functions, and evolutionary mechanisms. The timeline underscores
the increasing contribution of fish studies in recent years, revealing both conserved and lineage-specific insights into NLR biology. While this timeline
captures several defining milestones in NLR research, we recognize that it does not include many additional contributions to the field due to space
constraints. The image was created using BioRender.com.
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binding to Receptor–Interacting Serine/Threonine–Protein Kinase 2

(RIP2 or RICK), a kinase containing a CARD domain (44, 46). This

activation is driven by NOD1’s ability to self-associate, which enables

the recruitment of RIP2 to the g subunit of the IkB kinase (IKKg).
Along with this, the NBD region or NACHT domain was further

distinguished as a central ATPase core characterized by nucleotide

binding and hydrolysis (16, 47, 48). These structural features allow the

NACHT domain to regulate conformational changes essential for

NLR oligomerization and activation in the presence of PAMPs/

DAMPs (16). The discovery of NOD2 in 2001 was especially

important as a frameshift mutation in the tenth LRR of NOD2 was

found to impair its responsiveness to bacterial lipopolysaccharides by

inhibiting NF-kB and altering the region of linkage on chromosome

16, resulting in increased susceptibility to Crohn’s disease in humans

(49–53). In 2003, this was expanded on when NOD2 was shown to

detect muramyl dipeptide (MDP), a conserved component of bacterial

peptidoglycan, gram-negative but primarily gram-positive bacteria,

due to their abundance of peptidoglycan (54, 55). NOD1, however,

was shown to only detect meso-diaminopimelic acid (meso-DAP) in

gram-negative bacteria, activating NF-kB (56, 57).

In a further human study in 2001, NLRC4 (now known as Ipaf)

was identified to directly interact with and activate procaspase-1 via

CARD–CARD interactions, establishing it as a specific and direct

activator of caspase-1 (58, 59). Truncation of NLRC4’s LRR domain

led to constitutive activation of caspase–1–dependent apoptosis,

marking the first functional identification of an inflammasome-like

platform in human cells (58, 59). The discovery of NLRP1 added to

the class of inflammasome complex proteins, involving Apoptosis-

associated speck-like protein containing CARD (ASC) or Pycard,

caspase-1, caspase-5, and NALP1, a pyrin-domain protein

homologous to NODs (60–64). Here, the ASC/Pycard is essential

to mediate the cleavage of pro-IL-1b into its active form through the

activity of caspase-1, resulting in a pro-inflammatory response

(60–63).

The following NLRs have been shown to act as negative

regulators of innate immunity to maintain immune homeostasis

and protect tissues from damage. In 2008, researchers identified

NLRX1 as a noncanonical mitochondrial NLR that acts as a

modulator rather than a receptor of PAMPs (65). The protein

interacted with the mitochondrial antiviral signal protein (MAVS),

also known as Cardif, VISA, and IPS-1, at the mitochondrial

membrane, disrupting its association with RIG-I and MDA5

(RLRs), negatively regulating IFN-I transcription, interferon

regulatory factor 3 (IRF3), NF-kB, and generating reactive oxygen

species (ROS), resulting in a unique function from the previously

mentioned NLRs (65–71). Two years following this study, NLRC5

was shown to result in similar inhibitions of antiviral signaling with

varied mechanisms from NLRX1. NLRC5 interacts with the same

cytosolic sensor RLRs, resulting in the upstream inhibition of

MAVS, suppressing IFN-I responses. Along with this, NLRC5

performed inhibitory binding to IKKa and IKKb, preventing NF-

kB signaling (72–74).

Apart from antiviral signaling, in response to cytoplasmic

protein degradation peptides (type of DAMP), NLRC5 promotes

MHC class I expression by acting as a type II interferon gamma
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(IFN-g)–inducible transcriptional regulator that binds to MHC

class I gene promoters such as HLA-A, HLA-B, and HLA-C to

present antigens for CD8+ T cell docking and apoptosis (75, 76).

This expression is vital, as although CIITA can transactivate MHC

class I genes, its function as such is not widespread, limiting its

expression specifically to lymphocytes and APCs and primarily

functioning as a novel MHC class II regulator (75, 77–82).

NLRC3 acts as a negative regulator of innate immunity by

binding to TRAF6, preventing its K63-linked ubiquitination (7).

This, along with the upstream signaling interference via MyD88,

resulted in the suppression of NF-kB activation, similar to several

other NLRs and TLR signaling (7, 83). Unlike NLRC5 and NLRX1,

which suppress MAVS-mediated type I interferon (IFN-I)

signaling, NLRC3 specifically dampens TLR-driven inflammation

as a distinct but complementary immunomodulator (7). NLRC3

was shown to directly bind to the ligand of viral double-stranded

DNA (dsDNA) and, to a lesser extent, double-stranded RNA

(dsRNA) via its LRR domain (84). This interaction enhances

NLRC3’s ATPase activity and triggers a conformational change

that causes it to release a stimulator of interferon genes (STING)

and TANK-binding kinase 1 (TBK1) (84, 85). Freed TBK1

phosphorylates IRF3, lifting its suppression of the IFN-I pathway

(84). NLRC3 functions to suppress CD4+ T cell activation,

proliferation, and cytokine production, which dampens Th1 and

Th17 responses through inhibition of NF-kB and extracellular

signal-regulated kinase (ERK) signaling pathways (86). In both

viral (LCMV) and bacterial (Mycobacterium tuberculosis)

infections, NLRC3 deficiency enhanced protective immunity by

promoting robust CD4+ T cell responses, positioning NLRC3 as a

key modulator of adaptive immunity to prevent possible

autoimmunity and chronic inflammation (86, 87). The

modulators mentioned act as an immune “brake” to prevent

overreaction of immunity, despite promoting pathogen survival in

some cases due to this suppression of protective immunity.

In 2015, the first cryo-EM structure of an activated NLR

inflammasome was presented, revealing that a single ligand-

activated NAIP2 molecule results in conformational changes that

nucleate the polymerization of multiple NLRC4 molecules (59).

This was shown to form a large oligomeric complex, resembling a

wheel, that activates downstream caspases and initiates the

inflammatory response (59, 88–91). Prior to cryo-EM ’s

structuring, X-ray crystallography was used to map the 3D

structure of these proteins, but this method required crystallized

proteins, which were often difficult to obtain, and lacked the ability

to capture multiple conformational states (92). Protein mapping has

advanced with tools like AlphaFold in 2018, which uses neural

networks to predict 3D structures from amino acid sequences by

leveraging evolutionary data and structural templates (37).
2.3 Discovery of NLRs in fish

With the rising economic value of aquaculture globally,

immunological studies on NLRs in fish have gained traction, with

the first classification occurring in 2008. In channel catfish,
frontiersin.org
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structural, phylogenetic, and genomic analyses characterized

NOD1, NOD2, NLRC3, NLRC5, and NLRX1 (93). These PRRs

were constitutively expressed in cell lines of leukocytes and other

tissues in catfish with enteric septicemia caused by Edwardsiella

ictaluri (93). With this, zebrafish orthologs for all five mammalian

NOD proteins (NOD1–NOD5) were identified as well as over 200

teleost-specific NLRC genes, many encoding a B30.2 domain (25).

Phylogenetic analysis showed that NLRC likely evolved from a

NOD3-like ancestor, and RT-PCR confirmed expression of NLRA,

NLRB, and NLRC genes in the intestine, liver, and spleen (25). The

naming of these zebrafish NLRs varies from what will be used in this

review, as detailed in section 2.1.

In 2012, the first characterization of downstream signaling by

NOD1 in Indian major carp (rohu) was performed by Swain et al. The

full-length NOD1 cDNA was mapped, and its domains were displayed

(94). Exposure to LPS and poly I:C led to robust, tissue-specific

upregulation of NOD1 (up to 80-fold in blood) and its adaptor

RIP2, indicating activation of downstream NF-kB and MAPK

pathways (94). Several other studies have used LPS and poly I:C to

elicit varied NLR responses in fish species. Furthermore, pathogen

challenge with A. hydrophila, E. tarda, and S. flexneri confirmed

inducible NOD1–RIP2 signaling in vivo (94). Soon after, the first

structural insights into ligand recognition by fish NOD1 identified

LRR1–2, LRR3–7, and LRR8–9 as critical binding motifs for poly I:C,

LPS, and g-D-glutamyl-meso-diaminopimelic acid (iE-DAP),

respectively, and confirmed conserved NOD1 signaling activation in

rohu (95). This was performed through methods of molecular docking

and 6-ns molecular dynamics simulation (95). Swain et al. also

characterized NOD2 in rohu, and observed upregulation of the

protein (~4-fold at 4 hours and ~7-fold at 24 hours) in peripheral

blood leukocytes upon muramyl dipeptide (MDP) stimulation,

confirming MDP as a potent ligand for rohu NOD2 (95). Much like

NOD1, NOD2 displayed concurrent upregulation of the downstream

adaptor protein RIP2 (~6.3-fold at 4 hours), establishing both NODs as

key cytosolic sensors in teleost innate immunity (95, 96). In mrigal,

similar RIP2 upregulation (~5.6-fold in 6 hours) was seen upon MDP

stimulation in vivo along with upregulation of IL-1b (~6-fold in 6

hours), resulting in a pro-inflammatory response (96). Similar

upregulation of these NODs was discovered in Nile tilapia, goldfish,

miiuy croaker, Japanese flounder, and catfish (previously mentioned)

upon ligand and pathogen introduction, possibly indicating conserved

signaling pathways across teleost fish (93, 97–100).

In 2016, Howe et al. identified the origins of these teleost-

specific NLRC genes in zebrafish, B30.2 domains that underwent

extensive tandem and segmental duplications, especially on

chromosome 4 (18). Similar genomic duplications and expansions

were shown in other fish species, contributing to their naming

discrepancies as mentioned. Following this, NOD1, NOD2, and

NLRC3 were functionally characterized in Nile tilapia and shown to

be upregulated at the mRNA and protein levels in response to

Streptococcus agalactiae, with distinct tissue-specific expression

patterns (97). They demonstrated that NOD1 activates NF-kB in

a ligand-independent manner, whereas NOD2 requires MDP, and

NLRC3 requires either MDP or iE-DAP to enhance NF-kB
signaling (97). This upregulation of NF-kB signaling represents
Frontiers in Immunology 06
the context-dependent role as a regulator in fish, whereas in

mammals, NLRC3 is known to inhibit the NF-kB pathway.

Around this same time, the first activation mechanism of an

inflammasome was identified in zebrafish as an NLRP1 homolog

(DrNLRP1) (28). Here, two pro-inflammatory caspases,

DrCaspase-A and DrCaspase-B, are activated in an ASC-

dependent manner where homotypic interactions occur.

Interestingly, the study was the first to identify the teleost-specific

presence of PYD instead of CARD in DrCaspase-A/B, which was

later replicated in channel catfish (28, 101). DrCaspase-A is

activated first to initiate IL-1b processing, followed by DrCaspase-

B to complete its maturation (28).

A genome-wide study in 2020 systematically identified 65 NLR

genes in grass carp (24). These subfamilies, along with most other

fish NLRs that have been characterized genomically, have been

organized with their mammalian orthologs in 2022, bringing clarity

to the field as mentioned in 2.1 (27). Recently, flounder NLR genes

were highly expressed in mucosal tissues such as gills, skin, and

hindgut following intraperitoneal and immersion vaccination with

inactivated Vibrio anguillarum (13). Notably, the teleost-specific

NLR-C subfamily members, especially those with B30.2 domains,

showed the most pronounced immune responses, emphasizing

their potential role in mucosal immunity (13).

Together, these findings display the earliest discoveries of

evolutionary innovation and functional diversification of NLRs in

teleosts, driven by gene duplication events and selective pressures

from aquatic pathogens. As immunological tools and genomic

resources continue to expand, fish NLRs, especially teleost

members, are becoming increasingly valuable for guiding vaccine

development in aquaculture.
2.4 Evolution and diversity of fish NLRs

A circular phylogenetic tree was generated, based on full-length

protein sequences for six NLR subtypes (NOD1, NOD2, NLRC3,

NLRC5, NLRX1, and NLRP1) across diverse vertebrate species,

emphasizing teleost fish (Figure 2). The amino acid sequences used

to construct this phylogenetic tree, along with their accession

numbers, are provided in Supplementary Table S1. The teleost

fish selected for this phylogenetic analysis were chosen for their

commercial importance and representation across diverse aquatic

environments, ranging from freshwater to saltwater habitats. The

selection criteria used to generate the tree dictated which NLRs were

included in this review; because NLRP3 failed to meet most of those

criteria, it was omitted. Each NLR subtype formed separate clades,

color-coded to show their evolutionary relationships. NOD1 (pink)

and NOD2 (blue) are presented to be highly conserved across

teleosts, forming sister groups that underscore their shared

evolutionary origin. NOD2 is ubiquitous in fish species; however,

it is not present in some of the presented vertebrates.

The NLRC3 and NLRC clades appeared across fish and non-fish

species, forming closely related sister clades that suggest a common

ancestral origin and divergence through gene duplication. NLRP1

(green clade) clustered compactly and basally with fewer teleost
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members, implying limited duplication and elements of

conservation. It was more closely related to NLRX1 than to other

NLRs, suggesting a deeper shared ancestor. Likewise, NOD1 and

NOD2 formed a sister clade, highlighting duplication-driven

diversification. Catfish, tuna, and bass each formed species-

specific clades, indicating within-group evolutionary relationships,

while NOD2 was uniquely observed in tuna species among the

taxa represented.

Overall, the phylogenetic tree highlights a clear divergence

between teleosts, likely in response to aquatic pathogen diversity

and environmental pressures. In addition to the diverse

representation of teleost fish, the phylogenetic tree also includes
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key higher vertebrates, such as mammals (human, mouse), birds

(chicken), reptiles (alligator), and amphibians (hourglass tree

frog), which serve as reference points for evolutionary

comparison. These species consistently form distinct, well-

supported clades from teleost branches within each NLR

subtype. Given that teleosts represent an early-diverging lineage

among vertebrates, the observed clade structure supports the

inference that fish are ancestral to these higher vertebrate

lineages. The driving force of evolutionary divergence in these

non-aquatic vertebrate NLRs likely reflects adaptation to

terrestrial environments, including exposure to novel pathogens

and immune challenges.
FIGURE 2

Phylogenetic tree of NLR proteins across vertebrate species, focusing on teleost fish.This circular phylogenetic tree shows the evolutionary
relationships of various NLR subtypes—NOD1, NOD2, NLRC3, NLRC5, NLRX1, and NLRP1—from vertebrates such as teleost fish, amphibians
(hourglass tree frog), reptiles (American alligator), birds (chicken), and mammals (mouse and human). Clades are color-coded: pink (NOD1), blue
(NOD2), purple (NLRC3), orange (NLRC5), green (NLRP1), and black (NLRX1). We conducted a phylogenetic analysis of 57 freshwater and marine
teleost fish—selected for their status as well-studied model organisms, evolutionary conservation across lineages, broad recognition, or
representation of North American fauna—and five higher vertebrates, revealing both conserved and divergent patterns of NLR evolution within and
across species. The phylogenetic tree was constructed using complete, full-length protein sequences of NLRs obtained from the NCBI’s protein
database (GenPept). BLAST searches were conducted to identify proteins in other species containing >90% query coverage and an E value of 0
(30–33). FASTA sequences were aligned and analyzed using MEGA12 software, applying the neighbor-joining method to infer evolutionary
relationships (34, 35).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1665071
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Swain and Miryala 10.3389/fimmu.2025.1665071
2.5 Key functional domains of Fish NLRs

The CARD is a conserved protein–protein interaction module

commonly found at the N-terminus of NLRs and was found on

NOD1, NOD2, NLRC3, and NLRP1 in the proteins we mapped

(Figure 3). The CARD domain is a part of the death domain (DD)

superfamily, which also includes pyrin and death effector domains.

Members of this superfamily typically adopt a six-helix bundle fold

with a bent or disrupted H1 helix along with a hydrophobic core

that stabilizes the structure (102–104). The functional interactions

are generally driven by charge complementarity across helices H1–

H4, often forming filament-like assemblies that serve as signaling

platforms (105, 106). As a result, CARDs mediate homotypic

interactions, enabling recruitment of adaptor proteins and

downstream effectors involved in apoptotic and inflammatory

signaling pathways, including caspase activation and NF-kB
regulation (107–109). Although CARD sequences show low

identity, their structural conservation allows for interaction

diversity and pathway specificity (110, 111). Noncanonical

variants like the untypical CARD (uCARD) domain of NLRC5

also exist, which have been shown to remain solvent-exposed in

both open and closed states and contain a nuclear localization signal

(NLS), implicating a potential dual role in both signaling and

nuclear import (112).

The NACHT (NAIP, CIITA, HET-E, and TP1) domain belongs

to the NB-ARC superfamily of signal-transducing modules and was

found in all mapped NLRs (16, 104). Structurally, the NACHT

domain consists of several subregions: NBD (Walker A and Walker

B motifs), helical domain 1 (HD1), HD2, and winged-helix domain

(WHD), which coordinate ATP binding and hydrolysis as

mentioned (16, 47, 48, 113). These subdomains form a tightly

packed core, with the NBD centrally located and flanked by

regulatory helices and a winged-helix fold that stabilizes the

domain structure and promotes conformational changes

necessary for oligomerization and downstream signaling

(102, 114, 115). The domain has since been identified to drive the

assembly of multimeric complexes such as inflammasomes and

apoptosomes in NLRs. Despite variability in adjacent domains,

NACHT-mediated ATP binding is broadly required for the

activation, autoinhibition release, and structural reorganization of

these signaling platforms (16, 104).

LRR domains are found in all NLRs that were mapped across

species, which emphasizes their functional necessity (Figure 3). LRRs

are conserved motifs typically forming tandem arrays (two or more

repeats), forming curved solenoid architecture ideal for protein-

protein interactions (116, 117). This hook-type shape can be seen in

the 3D display of the LRR region, colored blue (Figure 3). Each motif

is typically around 20–30 amino acids and is characterized by a

hydrophobic core and is made of an 11-residue pattern of LxxLxL

where “L” is a hydrophobic amino acid such as leucine, isoleucine,

valine, or phenylalanine, and “x” is any amino acid (118–121). This

pattern supports a parallel b-sheet along the concave surface,

represented as arrows on the 3D cartoon display indicating the

polypeptide chain’s N-terminus to C-terminus direction (Figure 3)
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(118, 119). These b-sheets can only be seen in some angles, which were

not completely displayed in all the NLRs in Figure 3 to allow

visualization of the other domains. However, the b-sheet surface is

key for its ligand recognition properties, while other surfaces are also

less commonly involved (116, 122–127). Also, this concave surface

interacts with other domains, such as CARD, to maintain an inactive

state, but this interaction is disrupted upon ligand binding, triggering

activation through conformational changes (128, 129). With this, the

truncation of the C-terminal LRR region often causes NLRs to become

constitutively active as well (128, 130). The convex surface, however, is

composed of a-helices, polyproline II helices, 310 helices, b-turns, and
b-strands that are interwoven (116, 118, 119, 131).

These three mentioned domains are the basis of NLRs, and at

least two of these elements are present in every NLR that we

mapped. The order of these domains consistently falls in the

order of CARD, NACHT, and lastly the LRR region from the N-

to C-terminus, except in NLRP1, which will be expanded on in the

following section. Also, section 3.1 will display these domains’

binding affinities and their functional role in downstream signaling.
2.6 Structure and classification of fish NLRs

Understanding the structural organization of NLRs across

diverse vertebrate species is critical for unraveling how innate

immune recognition has evolved and diversified. Displaying both

the 2D domain architecture and 3D protein conformation may offer

insight into the conservation and divergence of key functional

motifs such as CARD (caspase activation and recruitment

domain), NACHT, LRR, transmembrane, coiled-coil, PYD

(pyrin), and FIIND (function to find domain) (132). These

regions of the protein collectively mediate pathogen recognition

and signal transduction. By comparing representative species of

teleost fish and other previously mentioned vertebrates, these

structural visualizations represent shared evolutionary origins and

lineage-specific adaptations that bridge sequence-based annotations

with spatial protein dynamics, allowing for the interpretation of

how structure relates to immune function across vertebrates. Some

vertebrates and fish species lacked some of these NLRs, which is

why there is no consistent display of the same species and a limited

display of NLRP1.

The acidic activation domain, B30.2/PRY-SPRY domain, AAA+

domain, uCARD domain, and others could not be displayed in

Figure 3 as they did not reach the threshold to be mapped in the

SMART database, despite possibly playing a role in immunogenicity

(36). The AAA+ domain is especially important as it is a conserved

subregion within the larger NACHT domain, responsible for ATP

binding and oligomerization for inflammasome formation of NLRP1

following the cleavage within the FIIND domain, which will be

discussed (115, 133). The nomenclature used in this paper is based

on evolutionary history rather than the presence of specific domains,

as not all proteins within a given subfamily consistently share the

same domain architecture (Figure 3). Also, each NLR type maintains

a relatively similar LRR range across species, though not often the
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same, while different NLR types display substantial variation

(Figure 3). These patterns are likely driven by evolutionary

pressures to recognize diverse PAMPs.

The 3D models reveal that the CARD domain appears to be

surface-exposed and spatially distinct, supporting its role in

initiating downstream signaling through homotypic interactions.
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For NOD1 and NOD2, this is especially important for binding to

RIP2, while in NLRP1, ASC binding occurs to form the

inflammasome. Likewise, the LRRs display a stereotypical bent

architecture in the form of a curved solenoid projecting outward

from the NACHT domain. Several of the mapped LRRs contain

identical amino acid regions to other species mapped. These
FIGURE 3

Comparative domain architecture and 3D structures of vertebrate NLR proteins. This figure displays the domain organization (top panels) and
AlphaFold-predicted 3D structures (bottom panels) of six NOD-like receptors (NLRs): NOD1, NOD2, NLRC3, NLRC5, NLRX1, and NLRP1, across a
diverse set of vertebrates including fish (e.g., zebrafish, rohu, Atlantic salmon, Atlantic herring, and greater amberjack) and representative tetrapods
(e.g., mouse, human, chicken, American alligator, and Hourglass tree frog). Each protein’s domain architecture includes the CARD (green), NACHT
(purple), LRR (blue), PYD (red), and FIIND (orange) domains, with the domain key shown in the final panel. The same structural domain legend also
applies to all pathway figures referencing these proteins. FASTA sequences were obtained from the NCBI protein database, and domain predictions
were made using the SMART (Simple Modular Architecture Research Tool) database (36). 3D structures were generated using AlphaFold, and final
visualizations were created with BioRender.com (37, 38).
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observations only apply to the applicable NLRs containing these

domains. The NACHT domain, however, is present in every

mapped NLR and forms the structural and functional core that

connects upstream sensing to downstream effector activation

through ATP-driven conformational changes. The AAA+ domain

that controls this was not displayed in Figure 3, but is present in

most NACHT domains displayed.

Several NLR-specific observations were made from the species

in Figure 3. NOD1 displays a conserved domain organization across

all examined vertebrate species, consisting of a single N-terminal

CARD domain, a central NACHT domain, and a C-terminal array

of LRR motifs. Regarding the 3D structure, functional studies have

shown that NOD1’s CARD domain must present a negatively

charged surface to effectively engage in the RIP2-CARD

formation (3). It can also be observed that several of the

displayed species have seven LRRs for iE-DAP and other ligand

binding. NOD2 contains tandem CARD domains, which are

conserved across both teleost and non-teleost species, indicating

functional importance. Also, the number of LRRs ranged from six

to eight, which likely preserves its function to recognize MDP. This

consistent structural organization of domains can only be seen in

these two NLRs, suggesting that selective pressures have maintained

the signaling framework while permitting mild interspecies

variation in domain repeat number and sequence.

NLRC3 exhibits more variability at the N-terminus, where only

some species—including Atlantic salmon, chicken, alligator, and

frog, retain a CARD domain. However, in NLRC5 and NLRX1, no

CARD domains are present. This suggests an evolutionary gain or

loss of the CARD domain, with its presence in some teleosts

indicating functional divergence. The NLRC subfamily also seems

to display the first instance of a considerably expanded LRR region,

often over ten repeats, with even more in NLRC5, possibly

indicating a varied capacity for ligand discrimination. NLRC5 is

unique as the LRR domains have notable discontinuities in the 3D

models, appearing as structural gaps, contributing to a much longer

amino acid sequence with possible flexible loop regions within the

LRR segment. The protein’s structural features likely enable its role

in controlling nuclear trafficking, where histone acetyltransferase-

mediated retention in the nucleus enhances its ability to activate

MHC class I expression (134). Much like NOD1, NLRX1 consists of

four to seven LRRs, with a straighter solenoid structure.

NLRP1 shows notable divergence from other NLRs in both

domain architecture and species distribution. Structurally, NLRP1

is distinct in 3D conformation, with a more compact, globular fold

and a unique arrangement of domains involved in inflammasome

activation. In humans, NLRP1 contains an N-terminal PYD, which

differs from the C-terminal CARD domain displayed in fish species

of rohu and zebrafish. This is also unique, as the other NLR

subfamilies have a CARD at the N-terminus. Also, all mapped

NLRP1 proteins contain a conserved FIIND domain, along with

NACHT and LRR domains. The functional role of these domains

will be further detailed in section 3.3. The order of these domains is

as follows: PYD (if present), NACHT, LRR, Function to Find

Domain (FIIND), and CARD. Despite slight structural variability,

domain conservation in these NLRs allows for the preservation of
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function in microbial sensing, inflammasome formation, and pro-

inflammatory effects throughout vertebrate evolution.
3 NLR signaling pathways in fish

This section details how NOD1, NOD2, NLRC3, NLRC5,

NLRX1, and NLRP1 in fish activate immune responses through

several key signaling cascades. NOD1 and NOD2 recognize

bacterial peptidoglycan fragments, iE-DAP and MDP,

respectively, triggering the recruitment of RIP2 and subsequent

activation of inflammation. NOD1, NOD2, NLRC5, and in some

teleosts, NLRC3 display characteristics of adaptive immune

response through the upregulation of IFN-Is, cytokines, and

MHC-I transcription, which will be detailed.

NLRC3 and NLRC5 are recognized as negative regulators of

immune signaling, acting to constrain excessive inflammation, and

at times can promote pathogen survival. Moreover, NLRC3 was

shown to act as a positive regulator at times, specifically in some

teleosts. While both belong to the NLR family, they engage in

distinct inhibitory interactions with signaling hubs involved in

innate immunity, particularly those tied to IFN-1 and cytokine

expression, along with MHC Class I promotion.

NLRX1 localizes to mitochondria and negatively regulates

antiviral signaling by disrupting STING and MAVS interactions,

thereby reducing IFN-I responses, as well as negative regulation of

cytokines in a similar mechanism to NLRC3. Meanwhile, NLRP1

varies by contributing to inflammasome formation by interacting

with ASC and caspase proteins. These proteins are structurally

different in piscine species, resulting in varied homotypic

interactions, which will be expanded on.

Several other pathways may also be present, but will not be

displayed in the signaling pathway figures due to their relative rarity

and space constraints. Currently, research on parasite-induced NLR

expression has been lacking, which is why it is not shown with the

bacterial and viral pathogenic components in the following

signaling pathways. However, it should be noted that NLRs are

vital in resistance to parasitic infection in teleosts.
3.1 NOD1 and NOD2

Figure 4 summarizes the established signaling pathways of NOD1

and NOD2 in fish, which are described in detail below. NOD1’s LRR

domain binds to iE-DAP, a PAMP released by gram-negative and, to

a lesser extent, gram-positive bacteria and acid-fast bacteria such as

Mycobacterium (56). This binding triggers a conformational change

that allows NOD1 to recruit RIP2 (135–137). Similar to iE-DAP,

MDP is released from the peptidoglycan of primarily gram-positive

bacteria, due to its abundance, which is recognized by NOD2,

similarly recruiting RIP2 (54, 135–137). It should be noted that

gram-negative bacteria also release MDP, but in trace amounts,

resulting in variability of NOD2 signaling (54). The RIP2 signaling

complex is formed when two NOD1/NOD2 molecules dimerize

upon ligand binding and recruit two RIP2 adaptors through
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CARD–CARD interactions, creating a stable 2:2 NOD1–RIP2

tetrameric signaling unit (135–137). This initiates K63-linked

polyubiquitination, in which ubiquitin molecules are sequentially

attached via their lysine-63 residues to form a flexible, linear chain

that serves as a scaffold for recruiting signaling proteins rather than

marking substrates for degradation by K48-linked chains (138). This

structure and binding were not visually displayed in Figure 4 to avoid

confusion with other signaling pathways. These ubiquitin chains then

serve as docking sites for IKKg (NEMO), by binding to its ubiquitin-

binding domains (138). This interaction facilitates the spatial

proximity required for the TAK1-TAB kinase complex to

phosphorylate and activate the catalytic subunits IKKa and IKKb
within the IKK complex (138–140). Once activated, the IKK complex

phosphorylates the cytoplasmic heterodimer of IkB proteins, leading

to their degradation and the release of NF-kB (138, 141, 142). Freed

from its inhibitor, NF-kB translocates into the nucleus, where it binds

to consensus DNA-binding kB sites, located in the promoter regions

of target genes (141). This promotes the transcription of genes

encoding key pro-inflammatory cytokines such as TNF-a, IFN-g,
IL-6, IL-1b, and IL-8, resulting in a robust innate immune response

(96, 139, 143–145). NF-kB was also shown to modulate ntl

expression, the zebrafish ortholog of the mammalian Brachyury

gene, which is involved in mesoderm formation and notochord

development during early embryogenesis in zebrafish (141). This
Frontiers in Immunology 11
represents influences in developmental gene expression. In parallel,

TAK1 also activates MAPKs, driving AP-1-mediated transcription

and releasing TNF-a, IL-1b, IL-6, and IL-8 (96, 144–148). The exact

MAPKs found across teleost fish are unclear; however, one study in

ayu (Plecoglossus altivelis) classified the phosphorylation of ERK, p38,

and JNK through western blotting analysis, which may represent

conserved MAPKs across other teleost fish (144).

The antiviral signaling pathway is kicked off through the

binding of viral dsRNA or ssRNA (149–152). Here, cytosolic

NOD1/2 collaborate with MDA5, a RIG-like receptor (RLR)

through homotypic CARD interactions (149, 153). The RNA

binding itself occurs in the helicase/CTD regions of MDA5,

resulting in oligomerization that exposes its CARDs, docking

onto MAVS and NOD1/2 (149, 153–157). Retinoic acid-inducible

gene (RIG-I) in place of MDA5 has also been shown to display

similar interactions in Zebrafish (149, 153–156). Much like these

RLRs, an adaptor protein, TNF Receptor–Associated Factor 3

(TRAF3) recruits MAVS on NOD1 specifically (149, 156, 158).

Following the formation of the MAVS complex, mediated by these

MAVS recruiting proteins, TBK1 activates to phosphorylate

interferon regulatory factors, IRF3 and IRF7, leading to their

dimerization and translocation into the nucleus (154, 158). The

result is a key driver in innate immunity through the formation of

IFN-Is (IFN-a/b) as well as IFN-stimulated genes (ISGs) (149, 153–
FIGURE 4

NOD1 and NOD2 signaling activation of innate immunity. The figure illustrates the signaling pathways activated by NOD1 and NOD2 in response to
bacterial and viral ligands in teleost fish. NOD1 and NOD2 recognize distinct bacterial elements, such as iE-DAP and MDP, respectively, along with
viral elements of dsRNA and single-stranded RNA (ssRNA), respectively, in teleost fish. Ligand binding activates RIP2, binding to NOD1/2 that recruits
TAK1 and initiates AP-1 and NF-kB signaling. NOD2 also interacts with MAVS mediated via MDA5, RIG-I, and TRAF3 to activate TBK1 and IRF pathways
during viral detection. The resulting transcriptional responses lead to the production of pro-inflammatory cytokines (1–2) and interferons (3–4), as
indicated by the color-coded circles. The image was created using BioRender.com.
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156, 158). This integrated signaling network results in a vast

transcriptional program coordinated by NF-kB, AP-1, IRF3, and
IRF7 to counter both bacterial and viral infections. The proteins

have not been found to detect viral DNA, suggesting their ligand

specificity is biased toward RNA.

NOD1/2 have a clear role in innate immunity and the

subsequent priming of adaptive immune components. Although

not represented in Figure 4, the production of IFNa/b has been

found to activate dendritic cell maturation, increasing antigen

presentation (159, 160). Similarly, TNF-a, IL-1b, IL-6, and IFN-g
increase MHC and costimulatory molecule expression on antigen-

presenting cells. These features support Th1 differentiation and

create an inflammatory environment that improves CD4+ and

CD8+ T cell priming (159–161).

A study on Grass carp (Ctenopharyngodon idella) demonstrated

that NOD1 recruited autophagy-related genes to initiate

autophagosome formation (162, 163). These autophagosomes

subsequently fuse with lysosomes, enabling the lysosomal

degradation of the gram-negative bacteria, highlighting a NOD1-

dependent autophagy pathway in the presence of iE-DAP in teleost

fish (162, 164). Autophagy is a highly conserved catabolic process

where these cytoplasmic components, including intracellular

pathogens, are sequestered into double-membraned autophagosomes

formed through the conjugation activity of autophagy-related proteins
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such as ATG16L1, ATG5, and ATG12 (162–164). This signaling

pathway is similar in mammals as well (164).

Due to the complexity of Figure 4 and space constraints, the

signaling pathway of ROS (reactive oxygen species) expression by

NOD2 was not displayed. Following the previously mentioned

NOD2 binding with MDP, the plasma membrane translocates,

where it physically interacts with the dual oxidase (DUOX2) via

its LRR domain (165). This interaction, aided by the DUOXA2

activator, stimulates DUOX2 to produce ROS, specifically hydrogen

peroxide (165, 166). The resulting ROS contributes directly to

bacterial killing and amplifies NOD2-mediated NF-kB signaling

and cytokine production (165–167).
3.2 NLRC3 and NLRC5

Figure 5 summarizes the inhibitory signaling roles of NLRC3

and NLRC5, which are described in detail below. NLRC3 is broadly

inhibitory across multiple inflammatory axes. In a key mechanism

in large yellow croaker, NLRC3 directly binds to the adaptor

protein, STING, inhibiting its binding to TBK1 in the presence of

viral RNA or DNA (27, 168, 169). This attenuates their ability to

activate IRF3/IRF7 promoters, which in turn limits IFN-I

production (27, 168, 169). This mechanism parallels findings in
FIGURE 5

NLRC3 and NLRC5 signaling activation of innate immunity. The schematic representation of NLRC3 and NLRC5 signaling pathways in immune
regulation. This diagram reflects the known inhibitory roles of NLRC3 in IFN-I, NF-kB, and AP1 signaling via suppression of STING-TKB1, TRAF6, RIP2,
and IRF-mediated pathways. The “X” symbol in red represents some form of inhibition or suppression of the subsequent biomolecule. The “?” symbol
represents an unknown pathway where teleost-specific interactions may differ by contributing to cytokine upregulation in fish species. Similarly,
NLRC5 presents a similar result by downregulating cytokine production downstream of NF-kB and IFN-I response through inhibitory binding to the
IKK complex and RLRs (MDA5 or RIG-I), while also directly promoting MHC class I expression via binding to the MHC class I promoter. The image
was created using BioRender.com.
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mammalian models and underscores a conserved inhibitory

strategy within vertebrates. By blocking this pathway, NLRC3

reduces downstream expression of ISGs (169). In addition,

NLRC3 promotes proteasome-mediated degradation of IRF7,

further dampening IFN-I (IFN-a/b) response (170).
NLRC3 also acts on NF-kB and AP-1 signaling by binding to or

interacting with critical upstream components such as RIP2 and

TRAF6 (87, 137, 168, 169). In teleosts, overexpression of NLRC3

binding to TRAF6 selectively suppressed K63-linked ubiquitination,

required for signaling, and enhanced K48-linked ubiquitination of

TRAF6, promoting its proteasomal degradation. As a result, TRAF6

abundance in the cytoplasm was reduced, preventing the assembly

of the TAK1–TAB complex, which is necessary for activating both

the IKK complex (leading to NF-kB nuclear translocation) and

MAPKs (activating AP-1) as outlined in section 3.1 (87, 137, 168,

169). In addition to TRAF6, piscine NLRC3 also interacts directly

with RIP2 via its NACHT domains (171). This binding interferes

with the formation of the NOD1–RIP2 complex, thereby

suppressing NOD1-mediated activation of NF-kB and MAPKs

(171). Overexpression of zebrafish NLRC3 not only blocked this

signaling axis but also downregulated the transcription of genes

encoding key cytokines and chemokines during bacterial infection

(137, 171). In contrast, in goldfish, NLRC3 interacts with RIP2

without binding to suppress NF-kB, AP-1, and IFN-I activity,

suggesting species-specific variation in regulatory mechanisms

(137, 172).

Interestingly, NOD1 and RIP2 can act as transcriptional

regulators of NLRC3, downregulating these proteins in the

presence of NLRC3 in zebrafish (137, 171, 173, 174). Also, the

pathway may be modulated differently in teleost fish, where NLRC3

was associated with the upregulation of pro-inflammatory

cytokines, indicating possible teleost and pathogen-specific

pathways, which are not completely understood (137). This could

result in a similar potential to NOD1/2 as a stimulator of

adaptive immunity.

NLRC5 similarly inhibits the NF-kB and type I interferon

pathways, but through distinct molecular interactions. Instead of

acting upstream, NLRC5 binds directly to the IKK complex,

blocking its ability to phosphorylate IkB and thereby preventing

the release and nuclear translocation of NF-kB (72, 175, 176). This

suppression of NF-kB results in the downregulation of several

cytokines in teleost mucosal and systemic tissues. Additionally,

NLRC5 inhibits RLRs such as MDA5 and RIG-I, resulting in MAVS

association that interferes with TBK1’s recruitment of IRF3 and

IRF7, suppressing IFN-I production (72, 154, 175). In zebrafish, this

function appears to be IFN-independent, as overexpression of

NLRC5 reduced viral replication of SVCV (spring viremia of carp

virus) without activating type I IFN promoters, distinguishing it

from classical antiviral PRRs (175).

A unique feature of NLRC5 is its dual role in immune

regulation. In addition to suppressing inflammation, it has a

transcriptional regulatory capacity (27, 75, 175, 177). In

mammals, NLRC5 translocates to the nucleus via a bipartite

nuclear localization signal (NLS) and acts as a master

transactivator of MHC class I genes through interaction with the
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SXY module of the MHC I enhanceosome (175, 178–182). In

contrast, zebrafish NLRC5 contains a monopartite NLS and

shows a nuclear-cytoplasmic distribution. It was even found that

microinjected larvae of zebrafish selectively activate MHC class II

genes, substituting CIITA’s function, resulting in a unique discovery

(175, 178, 179). NLRC5 in teleosts can translocate into the nucleus

and bind directly to the MHC class I promoter, facilitating its

expression in response to IFN-g (27, 75, 175, 177). This enhances
antigen presentation and supports adaptive immune responses,

distinguishing NLRC5 from other NLRs, which typically lack

transcriptional regulatory functions.
3.3 NLRX1 and NLRP1

Figure 6 outlines the distinct signaling mechanisms of NLRX1

and NLRP1, which are detailed below. NLRX1 was shown to act

similarly to NLRC3 via its slightly varied inhibition of STING to

TBK1 binding, and inhibition of NF-kB via TRAF6 (11, 169, 183).

Upon viral infection, the zebrafish NLRX1 isoform was shown to

downregulate IFN response by targeting STING for proteasome-

dependent degradation (11). Mechanistically, NLRX1 binds to the

N-terminal domain of STING and recruits the E3 ubiquitin ligase

RNF5, which catalyzes K48-linked polyubiquitination of STING

and marks the protein for proteasome degradation (11). As a result,

STING protein levels are reduced before it can interact with and

activate TBK1, blocking the phosphorylation of IRFs and the

production of antiviral IFNs (11).

Much like NLRC5, antiviral signaling also begins with RIG-I or

MDA5 recognizing viral RNA and activating MAVS (184, 185).

Under normal conditions, MAVS oligomerizes and recruits

downstream kinases TBK1 and IKKe, which phosphorylate IRF3/

7, leading to their nuclear translocation and the induction of IFNs

and ISGs (185). However, in black carp, this signaling is negatively

regulated by the mitochondrial protein NLRX1, as the protein

prevents MAVS oligomerization upon binding at the

mitochondrial membrane and NACHT domain, blocking

recruitment of TBK1 (185, 186). TUFM, another mitochondrial-

associated protein, does not bind MAVS directly but instead

associates with NLRX1 to enhance its inhibitory effect, collectively

dampening the antiviral IFN response and promoting viral

persistence (185).

During Edwardsiella piscicida infection in zebrafish, NLRX1

overexpression led to increased bacterial proliferation and

decreased host survival (183). Mechanistically, NLRX1 interacts

directly with TRAF6 at its NACHT domain, inhibiting TRAF6’s

ability to activate downstream NF-kB signaling (183). This resulted

in the negative regulation of pro-inflammatory cytokines, IL-6, IL-

8, TNF-a, and IL-1b, and specific antimicrobial peptides in a very

similar manner to NLRC3 (169, 183).

The ligand responsible for NLRP1 activation has been identified

as MDP in fish, along with an imbalance of the redox state in

humans (28, 101). The NLR uses its FIIND domain, which is

involved in autolytic cleavage, to induce a conformational change

of the CARD domain to interact with the CARD of ASC, as
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referenced in section 2.6 (28, 187–191). This FIIND domain in

NLRP1 consists of the ZU5 and UPA subdomains in humans,

where ZU5 is cleaved, initiating the signaling cascade; however, in

fish, the structure of the domain has not been identified (192).

Moreover, these homotypic interactions of ASC in humans are

replaced by PYD-PYD interactions, which fish lack (187–191). Due

to the homology between these domains in signaling ASC, it was

found that the PYD domain was dispensable in humans (132, 187).

Both mechanisms of NLRP1-ASC binding result in nucleation of a

filamentous platform for procaspase binding.

As mentioned, procaspase-A and procaspase-B were identified

in zebrafish and are likely homologs of procaspase-1, which is the

canonical NLRP1 inflammasome protein across most studied

species (28, 193–196). Other, nonconventional proteins have been

identified in humans, caspase-4 and caspase-5, and in mice,

caspase-11. The specific type of procaspase or caspase will not be

mentioned due to the complexity of species-specific variation

involved in teleosts, and should be implied as caspase-1 or its

homologs. In zebrafish and common carp, the caspase precursor,
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procaspase, contains a PYD domain instead of the canonical CARD

domain seen in mammals (28, 101, 187, 193). This domain

substitution is critical, as it alters the recruitment mechanism:

instead of CARD–CARD binding, teleost ASC filaments interact

with procaspase via PYD–PYD binding, driving oligomerization to

form the inflammasome (28, 101, 187, 193). This distinction in

procaspase structure indicates that some or all teleosts may have

undergone lineage-specific modifications to accommodate different

innate immune contexts.

Structurally, the activated inflammasome in studied teleosts

forms a three-dimensional ring-like complex following the

cleavage of procaspase (28, 101, 193). This domain architecture is

composed of multiple NLRP1 molecules branched to ASC filaments

that form the core (28, 101, 193). Procaspase molecules are

anchored to these ASC filaments, which cannot be visualized in a

top-down view, allowing for efficient clustering and activation (28,

101, 193). The integrity of this oligomerized structure is crucial for

the spatial coordination of signal transduction, ensuring that

cytokine signaling is regulated and localized.
FIGURE 6

NLRX1 and NLRP1 signaling activation of innate immunity. This diagram illustrates the dual role of fish innate immune sensors NLRX1 and NLRP1 in
suppressing antiviral signaling and assembling the inflammasome complex, respectively. Upon viral infection, NLRX1 inhibits interferon responses by
targeting STING for RNF5-mediated K48-linked ubiquitination and proteasomal degradation, thereby preventing TBK1 recruitment and downstream
IRF activation. Similarly, TUFM enhances NLRX1-mediated inhibition of MAVS signaling by stabilizing the mitochondrial complex, parallelly dampening
IRF3/7 phosphorylation and IFN-I production. In the context of bacterial infection, NLRX1 directly interacts with TRAF6 through its NACHT domain,
preventing activation of the TAK1–TAB–IKK complex and downstream NF-kB signaling, ultimately reducing the expression of pro-inflammatory
cytokines. In parallel, MDP or unknown pathogen-associated ligands are proposed to activate fish NLRP1, which undergoes FIIND domain cleavage
and associates with ASC. This leads to the formation of a filamentous inflammasome complex, which recruits and activates caspase homologs
through PYD–PYD interactions, enabling the cleavage of pro-IL-1b into its mature, secreted form IL-1b. The structure emphasizes domain
architecture and signaling convergence between viral and bacterial response mechanisms in teleosts. The image was created using BioRender.com.
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Procaspase is then cleaved within the inflammasome at

conserved aspartate residues between its large (subunit varies) and

small (often p10) catalytic subunits, forming the active caspase

heterodimer, identified as p35 in zebrafish (28, 197). Once activated,

caspase cleaves pro-inflammatory cytokine, pro-IL-1b, in zebrafish

into its mature form, IL-1b (28). In mice, IL-1b and IL-18 are

induced following NLRP1 inflammasome formation (198).

Although NLRP3 is not expanded on in this study, the protein

has been well studied in several teleosts as an inflammasome that

results in inflammatory caspase activation and interleukin-1b
maturation, much like NLRP1, and has also been explored in

zebrafish, common carp, Atlantic salmon, goldfish, and other

teleosts (28, 172, 193, 199–202). NLRP3 can coordinate caspase

activation in a two-step manner and release IL-18, unlike NLRP1,

with both ASC-dependent and ASC-independent (via direct

caspase-B triggering) routes (28, 199). The result is linked to

gasdermin E-mediated pyroptosis, indicating broader or more

flexible downstream effector engagement (199). Despite its

importance, NLRP3 is not found in all teleost lineages, and most

studies focus on cyprinid species. Still, its similarities to mammalian

inflammasome responses make it a valuable model for studying

inflammation and immune activation in fish.
4 Functional roles of fish NLRs in
disease protection

NLR, along with other novel PRRs, can be induced by any

pathogen that stimulates the innate immune system, such as

bacterial, viral, and parasitic infections, due to the induction of

signaling molecules from the presence of specific ligands. These

infections have significant implications in aquaculture, where

immune dysfunction or overactivation can lead to mortality and

economic loss. Additionally, studying fish responses to these

pathogens can provide broader insights into vertebrate immune

evolution and adaptation.

In this section, bacterial infections will focus on gram-negative and

gram-positive bacteria due to their association with iE-DAP andMDP.

Regarding viral infections, ssRNA, dsRNA, and dsDNA viruses will

also be expanded on. Although ssDNA viruses exist, they will not be

discussed in this section due to limited research on their significance in

NLR stimulation. For parasitic infections, the discussion will center on

protozoan, ectoparasitic, and endoparasitic challenges that have been

documented to modulate NLR responses in fish species. The

phenotypic traits and genetic elements of these pathogens will be

emphasized as they are key to determining the class of NLR stimulated

via differences in ligands presented. Bacterial features like lipid A

structure andmotility, as well as TLR activation, lie beyond the scope of

this analysis but warrant future investigation. Similarly, the location of

tissue upregulation will not be a point of emphasis in terms of

organization due to the variety of teleost species and NLRs covered.

It should be noted that NOD1/2 are conserved across tissues, and are

especially prominent in the mucosal barriers of gills, skin, and intestinal

mucosa, where they provide cellular and humoral protection through
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the release of cytokines and recruitment of T cells (203). Table 1

summarizes the diversity of NLR ligands and pathogen interactions

across bacterial, viral, and parasitic infections in teleost fish.
4.1 Bacterial infections

The functional roles of NLRs upon bacterial infection in fish can

be pro-inflammatory or regulatory, depending on the receptor type.

Regarding pro-inflammatory defense, NOD1 was shown to elicit

the expression of IL-1b, IL-8, and other antimicrobial effectors in

zebrafish (Danio rerio) upon administration of Edwardsiella

piscicida (edwardsiellosis), promoting NF-kB and MAPK pathway

activation through RIP2 interaction (149). This same study showed

that Flavobacterium columnare had a similar effect (149). Similarly,

an E. piscicida vaccine was constructed that substituted the

chromosomal murA promoter with the arabinose-dependent araC

ParaBAD cassette (205). Removal of this arabinose upon

administration resulted in cell wall lysis and spread of the strain,

upregulating TNF-a, IL-1b, IL-8, IL-6, and IFN-g by stimulating

both NOD1 and NOD2 in channel catfish (Ictalurus punctatus)

(205). In this same fish species, NOD1 expression in the intestine

increased ~6-fold at 3 days post-infection with Edwardsiella ictaluri

(93). Similarly, three bacterial infections of Aeromonas hydrophila,

Shigella flexneri, and Edwardsiella tarda upregulated NOD1 and

RIP2, forming a complex for further signaling in rohu (94). It

should be noted that Shigella spp. do not present virulence activity

below 35°C, which limits its pathogenic potential in ectothermic

hosts such as most fish, but it was worth mentioning (234). The

mentioned bacterial species are all gram-negative bacterial

infections, resulting in the release of the iE-DAP bacterial ligand

in NOD1 specifically, as outlined in Figure 4 (56, 93, 96, 149, 205).

Gram-positive bacteria can also upregulate NOD1 upon iE-DAP

stimulation with S. agalactiae infection in Nile tilapia (Oreochromis

niloticus) as well as Streptococcus uberis in mrigal (Cirrhinus

mrigala), which increased NF-kB and subsequent pro-

inflammatory cytokine production (96, 97).

Gram-negative bacteria still contain a peptidoglycan, releasing

MDP in some cases for NOD2 ligand binding (54). As a result, in

rohu (Labeo rohita), E. tarda infections upregulated NOD2 ~5-6-

fold, inducing IFN-g production up to ~10-fold (55). This same study

found rohu infected with A. hydrophila upregulated NOD2 from ~2

to ~5-fold, while infected mrigal (Cirrhinus mrigala) upregulated

both NOD1 and NOD2, conferring the production of IL-8, IL-1b,
and IFN-g, primarily in the liver, kidney, and spleen (96). Similarly,

miiuy croaker (Miichthys miiuy) infected with Vibrio anguillarum

resulted in varying expression levels of NOD1 and NOD2 in these

same organs (99). Concerning the same ligand pathway in gram-

positive bacteria, S. uberis infection in migral resulted in an even

greater NOD2 upregulation than the previously mentioned gram-

negative bacteria due to the increased presence of MDP (96).

Bacterial infections also activate other NLRs, either individually

or in combination, which vary depending on fish and bacterial

species. E. tarda and Streptococcus iniae, which are Gram-negative

and Gram-positive bacteria, respectively, resulted in the expression
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of NLRC3 in Japanese flounder (Paralichthys olivaceus),

subsequently increasing IL-1b mRNA expression (100, 215).

Likewise, a similar study induced E. tarda, A. hydrophila, and S.

iniae infections in channel catfish, resulting in the upregulation of

NOD1, NOD2, NLRC3, NLRC5, and NLRX1 in the intestine, liver,

and head kidney, along with varied instances of NLR

downregulation in the spleen (206). NOD1, NOD2, and NLRX1

were induced in goldfish (Carassius auratus L.) upon heat-killed

Aeromonas salmonicida and the acid-fast bacteriumMycobacterium

marinum challenges, indicating functional conservation of NLRs in

teleost fish (98). In a previously mentioned study, S. agalactiae

underwent MDP-stimulation, overexpressing NOD2 and NLRC3,

which peaked in the spleen, kidney, gill, and blood of Nile tilapia,

enhancing NF-kB signaling (97). E. tarda and A. hydrophila

infections were also shown to upregulate NLRP1 expression in

common carp (Cyprinus carpio) (101). E. tarda had the same effect

in zebrafish, activating caspase-A/B, functional homologs of

caspase-1 in mammals, and IL-1b, indicating inflammasome

activation (28). The further signaling pathway of pro-

inflammatory or regulatory response was not always performed;
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however, it should be noted that NLRC3, NLRC5, and NLRX1 have

been shown to result in inhibitory effects on innate immune

signaling pathways in fish, as mentioned (11, 137, 235). Direct

LPS (Lipopolysaccharide), peptidoglycan (PGN), MDP, and iE-

DAP have been administered in vitro and in vivo, resulting in

similar NLR production, further backing these mechanisms (96,

204). Several other studies using other bacterial and fish species

combinations have been performed, with the general principles of

NLR signaling applied upon infection.
4.2 Viral infections

Devastation to aquaculture has been largely driven by viral

infections. As a result, extensive research has been done in teleosts to

find downstream immunogenic signaling proteins and cytokines. Their

variability in ssRNA, dsRNA, and dsDNA forms makes it especially

challenging for the novel prediction of immune response and elicits a

wide range of NLRs, though distinctions between positive-sense and

negative-sense RNA viruses are beyond the scope of this review.
TABLE 1 Pathogen and ligand diversity driving NLR signaling pathways in teleost fish.

NLR Known ligands
Bacterial fish pathogens
activation

Viral fish pathogens
activation

Protozoan fish
pathogens
activation

NOD1
iE-DAP (95), LPS
(204), viral
dsRNA (143)

Edwardsiella piscicida (149, 205),
Flavobacterium columnare (149), Aeromonas
hydrophila (94, 96, 206), Streptococcus agalactiae
(97), Edwardsiella ictalurid (93), Shigella flexneri
(55), Edwardsiella tarda (94, 206), Streptococcus
uberis (96), Vibrio anguillarum (99),
Mycobacterium marinum (98), Aeromonas
salmonicida (98), Streptococcus iniae (206)

Nervous necrosis virus (NNV) (207), Tilapia
lake virus (TiLV) (97), Grass carp reovirus
(GCRV) (208–211), catfish hemorrhage reovirus
(CCRV) (206), Poly (I:C) (143)

Cryptocaryon
irritans (212)

NOD2
MDP (Muramyl
dipeptide) (213), viral
ssRNA (153)

Edwardsiella piscicida (205), Aeromonas
hydrophila (96, 206), Edwardsiella tarda (55,
206), Vibrio anguillarum (99), Streptococcus
agalactiae (97), Edwardsiella tarda (55, 206),
Streptococcus uberis (96), Vibrio anguillarum
(99), Mycobacterium marinum (98), Aeromonas
salmonicida (98), Streptococcus iniae (206)

TiLV (97), GCRV (208–211), CCRV (206) NA

NLRC3
Viral RNA (214), viral
DNA (84), LPS (214)

Aeromonas hydrophila (206), Edwardsiella tarda
(100, 206, 215), Streptococcus agalactiae (97),
Streptococcus iniae (100, 206, 215)

Hirame novirhabdovirus (HIRRV) (216),
hematopoietic necrosis virus (IHNV) (217),
spring viremia of carp virus (SVCV) (137, 170),
Salmon Anemia Virus (ISAV) (218), Piscine
orthoreovirus-1 (PRV-1) (219), CCRV (219),
Poly (I:C) (214)

Ichthyophthirius
multifiliis (220)

NLRC5
Viral RNA (221),
LPS (175)

Aeromonas hydrophila (206), Edwardsiella tarda
(206), Streptococcus iniae (101, 206)

IHNV (217), ISAV (218), CCRV (206), Poly (I:
C) (221)

Cryptocaryon
irritans (212)

NLRP1
Viral RNA and DNA
(28), MDP (28, 101)

Aeromonas hydrophila (101), Edwardsiella
tarda (28)

ISAV (218) NA

NLRX1
Viral RNA and DNA
(11, 185), LPS (186)

Aeromonas hydrophila (98, 206), Aeromonas
salmonicida (98), Mycobacterium marinum (98),
Streptococcus iniae (206), Edwardsiella
tarda (206)

SVCV (11), CCRV (206)
Paramoeba
perurans (222)

NLRs
(not
identified)

Unknown NA
TiLV (223, 224), Piscine myocarditis virus
(PMCV) (225, 226), Megalocytivirus (MCV)
(227–230), CCRV (206)

Cryptocaryon irritans
(231), Ichthyophthirius
multifiliis (220),
Amyloodinium
ocellatum (232, 233)
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Several ssRNA viruses have induced NLR response in various

teleosts. One study in orange-spotted grouper (Epinephelus coioides)

found that NOD1 was slightly upregulated following infection with

the nervous necrosis virus (NNV), but acts as a negative modulator of

IFN signaling at the RNA sensor level by suppressing RIG-I- and

MDA5-mediated IFN promoter activation (207). In Nile tilapia,

Tilapia lake virus (TiLV) infection activated NOD1 and NOD2,

such as TRAF-mediated NF-kB activation, which induces pro-

inflammatory cytokines, particularly IL-1b, which, together with

viral viroporins, promotes NLRP3 inflammasome formation (97,

223, 224, 236–238). Also, the Hirame novirhabdovirus (HIRRV) in

Japanese flounder upregulated NLRC3 and several interferon-

stimulated genes, including IRF3, IRF7, IKKb, and TBK1 (216).

Signaling became broader when rainbow trout infected with

hematopoietic necrosis virus (IHNV) significantly upregulated

NOD1, NLRC3, and NLRC5 expression in their skin, alongside

pro-inflammatory cytokines such as IL-1b, IL-6, IL-8, TNF-a, and
IFN-I (217). NLR studies of spring viremia of carp virus (SVCV) were

tested in several teleosts where species-specific immune modulation

occurred (137, 170). In zebrafish, NLRC3-like proteins act as either

positive or negative regulators during pathogen infection, while in

grass carp, NLRC3 acts as a negative regulator by degrading IRF7 and

suppressing the RLR-mediated interferon response, ultimately

enhancing viral replication (137, 170). Along with this, SVCV

upregulates NLRX1 in zebrafish and suppresses the IFN response

by degrading and disrupting STING–TBK1 signaling (11). In Atlantic

salmon infected with Infectious Salmon Anemia Virus (ISAV),

NLRC3, NLRC5, and NLRP1 were upregulated in gills and head

kidney alongside interferon-stimulated genes and pro-inflammatory

cytokines (218). The specific regulatory effects on innate immunity of

these three NLRs were not further explored in this study (218).

Similarly, the effects of dsRNA viruses have also been observed in

grass carp infected with grass carp reovirus (GCRV), where NOD1 and

NOD2 expression was significantly upregulated in the spleen and trunk

kidney (208–211). In Atlantic salmon red blood cells exposed to Piscine

orthoreovirus-1 (PRV-1), NLRC3-like receptors were primarily

expressed (219). Likewise, a broader study focused on the outcomes

of Atlantic salmon suffering from cardiomyopathy syndrome (CMS)

following intraparietal injection of piscine myocarditis virus (PMCV)

in the heart, displayed the general upregulation of NLRs (225, 226). The

last notable finding was the production of NOD1, NOD2, NLRC3,

NLRC5, and NLRX1 from a previously mentioned bacterial study that

also introduced a channel catfish hemorrhage reovirus (CCRV)

challenge (206). None of these dsRNA virus studies explored any

form of downstream immune regulation mediated by these NLRs.

Also, upon polyinosinic:polycytidylic acid (poly (I:C)) challenge,

NLRC5 was upregulated, and failed to activate IFN-Is (239).

The last classification of piscine viruses is composed of dsDNA,

such as megalocytivirus (MCV) administered in spotted knifejaw

(Oplegnathus punctatus), which presented general NLR expression,

while channel catfish virus (CCV) elicited NLR, RIG-I, and MDA5,

constitutively expressed across different tissues (227–230). There

are several other ssRNA, dsRNA, and dsDNA viruses studied or are

yet to be studied that may play a pivotal role in identifying a

canonical ligand or signaling pathways to predict NLR expression.
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4.3 Parasitic infections

In contrast with bacterial and viral pathogens, parasites

typically develop long-term relationships with their hosts, testing

the immune system in novel ways. Interactions with NLRs in

response to infection vary with patterns of fish and parasite

species but may act as a key driver for resistance in teleosts.

Research on NLR response following parasitic infection in fish

has been sparsely addressed, primarily focusing on protozoan,

ectoparasite, and endoparasitic challenges in vivo.

Cryptocaryon irritans is an obligate ciliate parasite that embeds

itself in the epithelial tissue of marine fish species, leading to white

spot lesions and secondary infections (240). Exposure to C. irritans

in golden pompano (Trachinotus ovatus) led to elevated expression

of APAF1 and NOD1 in nearby skin regions (NRS), while NLRC5

was downregulated in that region, suggesting increased apoptotic

and inflammatory activity (212). Another study in Japanese

pufferfish (Takifugu rubripes) infected with the same parasite also

revealed NLR induction (231). On the other hand, the ciliate

protozoan parasite, Paramoeba perurans, makes surprising

attempts to possibly even evade innate immune responses in

Atlantic salmon by downregulating NLRX1 along with IL-1b,
TNF-a, IFNa3, and IRFs (222).

In grass carp infected with Ichthyophthirius multifiliis, a

bacterium causing white spot disease in freshwater fish,

significantly upregulated NLRC3 and NLRP3 in resistant

individuals, contributing to pathogen recognition and resistance by

suppressing NF-kB signaling to prevent excessive inflammation

(220). Another study found that following an Amyloodinium

ocellatum infection, the inflammasome, NLRP12, and other NLR

components, including CARD9 and Proline-Serine-Threonine

Phosphatase Interacting Protein 1 (PSTPIP1), were significantly

upregulated in the skin of golden pompano (232, 233). While

studies on parasite-induced NLR activation in fish remain limited,

mammalian research has demonstrated a wide range of NLRs, such

as NOD1, NOD2, NLRP1, NLRP3, and NLRP12, which are activated

in response to protozoan infections of Entamoeba histolytica,

Leishmania spp., Plasmodium spp., Toxoplasma gondii, and

Trypanosoma cruzi leading to inflammasome assembly, cytokine

production, and modulation of Th1/Th2 responses in mouse, human

epithelial, monocytic cells, and in rats (201, 241–257).
5 Emerging role of NOD-like
receptors in vaccine-induced
immunity in aquaculture

As aquaculture continues to expand globally, effective vaccination

strategies remain essential for disease control and fish health

management. While many current vaccines rely on surface PRRs

such as Toll-like receptors (TLRs) for immune activation, recent

research suggests that intracellular sensors like NLRs may also play a

role in modulating vaccine-induced innate and adaptive immunity,

possibly through pathways outlined in section 3. Disease outbreaks
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pose a major threat to the rapidly growing aquaculture industry, and

effective vaccination is crucial for sustainable production.

Vaccination exposes fish to antigenic components of a pathogen

to trigger a protective immune response to prevent disease upon

subsequent exposure. They are often coupled with an adjuvant to

boost innate immune activation and antigen presentation, and with

a delivery vector to enhance cellular uptake, stability, and targeting.

Adjuvants often contain known bacterial ligands which have the

potential to engage with fish NLRs, especially NOD1 and NOD2 to

encourage the previously mentioned pathways of immune response.
5.1 Adjuvants and vaccines as NLR agonists

NLRs, like other PRRs, are not used as adjuvants themselves due

to several challenges. This includes their intracellular, cytosolic

presence, risk of hyperinflammation, as there may be overexpression

of cytokine response, and impracticality, as activation through known

NLR activating ligands is more ideal. Mammalian studies have shown

that NLR upregulation follows the administration of adjuvants and

vaccines serving as analogs of canonical ligands, such as iE-DAP and

MDP, eliciting NOD1 and NOD2 activation, respectively. This can

trigger signaling pathways inside cells that influence cytokine

production and antigen presentation. These systems are better

characterized in mammals due to more extensive immune cell

profiling and transgenic animal availability. Although there is

currently no direct evidence that NLRs serve as immune targets in

developing aquaculture adjuvants in fish, new studies hint at their

possible role in shaping host immune responses. Therefore, we suggest

NLRs as promising, though unverified, candidates for

immunomodulation in aquaculture.

In mammals, MDP-containing adjuvants such as Complete

Freund’s Adjuvant (CFA), Murabutide, and Muramyl-Tripeptide

Phosphatidylethanolamine (MTP-PE) have been shown to elicit

NOD2, and even in some cases NOD1 (258–264). Notably, MDP

was identified as a key component of CFA’s adjuvancy, where

NOD2 is required for effective CD4+ T cell priming, resulting in

immunoglobulin G (IgG1 and IgG2c) production (258, 260, 265).

The MDP synthetic derivative, Murabutide, was shown to activate

HIV-infected antigen-presenting cells and induce cytokines that

suppress viral replication, further demonstrating NOD2’s

immunomodulatory potential (258, 261, 262). Similarly, MTP-PE

reduced pyrogenicity and significantly enhanced cellular immunity

(258, 263, 266). It should be noted that N-acetyl MDP is produced

by most bacteria and activates NOD2; however, N-glycolyl MDP is

produced by the NamH enzyme in Mycobacterium and has been

found to evade NOD2 signaling in mammals, which most likely also

applies to fish (260). DAP containing adjuvants also exist, signaling

NOD1, such as CFA and the synthetic peptides, FK-156 and FK-

565. In CFA, DAP-type PGN fragments exist, promoting Th1

polarization and class switching to IgG2b, IgG2c, and IgG3

antibody isotypes, while FK-156/565 induced a Th2-biased

immune response in human dendritic cells (264, 265, 267). To

effectively introduce NOD ligands, encapsulation using poly(lactic

acid) nanoparticles has been used and added with the antigenic
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components of a vaccine to produce NOD1 and NOD2 activation

(258, 268). In fish, these adjuvants have also been explored

extensively and have been clearly shown to elicit cytokine and

immune responses. While direct demonstration of NOD1/2

activation remains limited in fish, the conservation of NLR

signaling in fish studies from other methods of iE-DAP and

MDP-based challenges suggests similar effects by these adjuvants

(269, 270). In mammals, several adjuvants were also shown to act as

NLRP3 agonists, resulting in a similar inflammasome cascade as

NLRP1, producing IL-1b and IL-18 (258, 271).

Although the role of NLRs in fish immunity is still emerging,

their potential as adjuvant targets spans several vaccine platforms.

Live attenuated and DNA vaccines may naturally engage NLRs

through intracellular PAMPs, while inactivated and subunit

vaccines could benefit from co-administered NLR agonists, like

the ones mentioned, potentially enhancing cytokine production,

APC maturation, and T or B cell responses. However, studies

directly assessing NLR activation by these different vaccine

platforms are limited. Recent literature has demonstrated that

recombinant attenuated Edwardsiella piscicida vaccines (RAEVs)

activate NOD1- and NOD2-mediated signaling pathways in teleost

fish, resulting in the upregulation of pro-inflammatory cytokines

and robust innate immune responses that confer protection against

wild-type E. piscicida challenge (205). These findings align with

recent reviews highlighting the importance of NOD-like receptor

pathways in modulating mucosal and systemic immune responses

to Aeromonas hydrophila vaccines in fish, particularly under

immersion and oral delivery conditions (272). Some notable

previously mentioned studies include a heat-killed bacterial

challenge in goldfish and a live-attenuated, recombinant,

Edwardsiella piscicida vaccine in channel catfish (98, 205). The

first study resulted in the upregulation of NOD1, NOD2, and

NLRX1, as mentioned, with no further downstream analysis,

while the second produced IL-8, IL-1b, TNF-a, IL-6, and IFN-g
following the NF-kB pathway from NOD1 and NOD2 activation

(98, 205). Along with these, a formalin-inactivated Vibrio

anguillarum vaccine tested in Japanese flounder resulted in

upregulation of NOD1, NOD2, NLRC3, and NLRC5, along with

key proteins involved in the cascade to produce cytokines (13). In

this same species, strictly NLRC5 was tested upon formalin-killed E.

tarda and S. iniae infections, and was significantly upregulated from

only the E. tarda vaccine (239).
6 Challenges and future directions in
aquaculture

As the aquaculture industry continues to face evolving pathogen

challenges and production demands, recent innovations in fish

vaccination have focused on improving antigen design, adjuvant

efficacy, and mucosal delivery strategies (273). These advances

underscore the importance of integrating host-pathogen interaction

studies with practical immunization platforms to achieve sustainable

disease management (273). Despite the advances in the knowledge

about fish NLRs, several gaps continue to restrict their use in
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aquaculture. One such challenge is the partial functional

characterization of many teleost NLRs. The unique structural

domains and context-dependent processes of mammalian homologs

in fish make it difficult to make direct comparisons. In this regard,

teleost-specific subfamilies such as within NLRC have resulted in

inconsistent nomenclature of the protein. Also, evolutionary

divergence regarding gene duplications and structural diversity results

in species-specific mechanisms for signaling. Notably, adaptations such

as the teleost-specific modification of NLRC3, acting as a positive

regulator of downstream pro-inflammatory responses, indicate

functional divergence from the mammalian counterpart. This

highlights the need for both comparative genomics and functional

verification in commercially relevant aquaculture models.

Another key obstacle is ligand specificity. While some ligands’

functional roles have been displayed, such as iE-DAP and MDP, many

other ligands remain unidentified or untested in fish species. Mapping

these ligand-receptor relationships is critical for understanding how

different antigenic elements trigger innate responses through NLRs.

These efforts would also inform vaccine development, as interspecies

variation in NLR expression and signaling presents challenges for

adjuvant design. Also, certain NLR agonists may be ineffective or

incompatible with specific vaccine formulations, stressing the

importance of determining optimal dosages and delivery systems to

minimize inflammation or toxicity.

Approaches such as nanoparticle-mediated delivery could also

idealize target effects. Along with this, the development of multi-

component adjuvant systems combining NLR agonists with ligands

for other PRRs may yield synergistic effects, amplifying protective

immunity. However, these combinations must be empirically tested

in fish models, detailing the presence of cross-talk and downstream

signaling cascades in the presence of TLRs, RLRs, etc., to confirm

compatibility and efficacy. One of the major challenges in advancing

fish vaccine development is the limited understanding of mucosal

immune mechanisms and the intracellular PRRs that regulate them.

Despite promising data on the involvement of NLRs in pathogen

sensing, few studies have systematically explored their role in

mucosal immunization or adjuvant response (272).

The central focus of subsequent studies should be the discovery of

novel NLR agonists that are safe, efficient, and applicable for

aquaculture. Currently, fish studies use several known mammalian

NLR agonists as adjuvants; however, these studies lack findings of

NLR induction for vaccine use other than the use of the ligand itself.

Integrating high-throughput transcriptomic and proteomic approaches

may aid in uncovering the implications of these vaccine components,

uncharacterized NLR pathways, and their regulators in fish.
7 Conclusion

The study of NLRs in fish reveals a remarkably intricate and

evolutionarily diverse family of intracellular immune regulators,

first identified in mammals. These proteins expanded and

diversified structurally in teleosts, likely in response to the unique
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selective pressures imposed by aquatic pathogens, preceding further

divergence in terrestrial vertebrates. Through phylogenetic

mapping, structural modeling, and functional characterization,

this review illustrates how NLRs in fish retain universal signaling

motifs, CARD, NACHT, and LRR domains, which form their

nomenclature, while also possessing lineage-specific adaptations

that affect ligand recognition, downstream signaling, and

immune modulation.

NLRs of fish coordinate a diverse array of activities in response

to bacterial, viral, and parasitic infections. NOD1 and NOD2 act as

pro-inflammatory sensors by recruiting RIP2 to trigger canonical

NF-kB and MAPK cascades. Others, including NLRC3, NLRC5,

and NLRX1, serve as immunological brakes, inhibiting IFN-I and

inflammatory signaling to avert immune overactivation. Piscine

NLRC3 has been shown to also upregulate these cascades in some

species, while NLRC5 has a bifunctional role as an MHC-

expressional transcriptional regulator and a cytoplasmic

inflammatory pathway suppressor. The NLRP1 inflammasome

formation displays teleost-specialized adaptations, including

unique domain substitutions and mechanisms of caspase

activation, further reflecting the structural and functional

plasticity of NLR’s gene family in fish.

Even though NLR signaling in parasite and vaccine response

has been comparatively less well-explored, new information

indicates responsiveness of NLRs to pathogen types and potential

to be key determinants of immune resistance. Conservation of

central signaling pathways like NF-kB and IRF-mediated

cascades, combined with variations in ligand specificity and tissue

expression, argues for the application of fish NLRs as targets for

immunomodulation to benefit aquaculture. A range of mammalian

NLR-agonist adjuvants, with MDP- and iE-DAP–derived

compounds leading the list, hold potential in fish. However, the

species specificity of NLR expression, localization, and signaling

response remains the central challenge.

Future work must prioritize the identification of novel fish-

specific NLR ligands, high-throughput screening of NLR-adjuvant

interactions, and the development of delivery platforms that target

these intracellular pathways without provoking deleterious

inflammation. It will be vital to standardize nomenclature, extend

functional analysis across commercial teleosts, and combine

transcriptomic and proteomic tools such as molecular docking to

close the gap between evolutionary insight and vaccine production.

Collectively, these endeavors put fish NLRs at the center stage, not

only as key innate immunity mediators but potential molecular levers

to modulate disease and vaccine efficacy in today’s aquaculture.
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Glossary

NLRA NLR family acidic transactivation domain containing
Frontiers in Immunol
NLRB NLR family BIR domain containing
NLRC NLR family CARD domain containing
NLRP NLR family PYD domain containing
NLRX NLR family with alternative effector domains
NOD1 Nucleotide Binding Oligomerization Domain Containing

Protein 1
NOD2 Nucleotide Binding Oligomerization Domain Containing

Protein 2
NLRC3 NLR family CARD domain containing protein 3
NLRC4 NLR family CARD domain containing protein 4
NLRC5 NLR family CARD domain containing protein 5
NLRP1 NLR family PYD domain containing protein 1
NLRX1 NLR family member X1
CARD Caspase Activation and Recruitment Domain
PYD Pyrin Domain
NB ARC Nucleotide Binding Apaf 1, R proteins, CED 4 domain
NACHT Domain named after NAIP, CIITA, HET E, and TP1
LRR Leucine Rich Repeat
BIR Baculoviral Inhibitor of Apoptosis Repeat
FIIND Function to Find Domain
uCARD Untypical CARD Domain
PRY SPRY Protein Interaction Domain
AAA+ ATPases Associated with diverse cellular Activities
WHD Winged Helix Domain
PST Proline, Serine, and Threonine–rich region
iE DAP g D glutamyl meso diaminopimelic Acid
MDP Muramyl Dipeptide
DAP Diaminopimelic Acid
LPS Lipopolysaccharide
PGN Peptidoglycan
poly I:C Polyinosinic:polycytidylic acid
Murabutide Synthetic MDP derivative
MTP PE Muramyl Tripeptide Phosphatidylethanolamine
FK 156 and FK 565 synthetic diaminopimelic acid–derived peptides
ogy 27
PLA Polylactic acid nanoparticle delivery
TLR Toll Like Receptor
RLR RIG I Like Receptor
CLR C type Lectin Receptor
PRR Pattern Recognition Receptor
NF kB Nuclear Factor kappa light chain enhancer of activated B cells
AP 1 Activator Protein 1
MAPK Mitogen Activated Protein Kinase
IRF3 and IRF7 Interferon Regulatory Factors 3 and 7
IFN I/IFN a/b Type I Interferon, alpha/beta
IFN g Type II Interferon Gamma
IL 1b IL 6, IL 8, IL-18, Interleukins 1b, 6, 8
TNF a Tumor Necrosis Factor Alpha
RIP2 Receptor Interacting Serine/Threonine Protein Kinase 2
TRAF3 and TRAF6 TNF Receptor Associated Factors 3 and 6
MAVS Mitochondrial Antiviral Signaling Protein
STING Stimulator of Interferon Genes
TBK1 TANK Binding Kinase 1
TAK1 Transforming Growth Factor Beta Activated Kinase 1
IKKa IKKb, IKKg, IkB Kinase subunits a, b, g
NEMO NF kB Essential Modulator
MyD88 Myeloid Differentiation Primary Response 88
MHC Major Histocompatibility Complex
ROS Reactive Oxygen Species
NCBI National Center for Biotechnology Information
BLAST Basic Local Alignment Search Tool
SMART Simple Modular Architecture Research Tool
Cryo EM Cryo Electron Microscopy
RT PCR Reverse Transcription Polymerase Chain Reaction
ATG Autophagy Related Gene family
TUFM Tu Translation Elongation Factor, Mitochondrial
RNF5 Ring Finger Protein 5
CIITA Class II Transactivator.
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