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B cell subpopulations and
their role in the pathogenesis
of primary Sjogren’s syndrome:
insights from single-cell

RNA sequencing
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Objective: This study aims to investigate the potential role of B cells in the
pathogenesis of Primary Sjégren’'s Syndrome (pSS) by analyzing cell types,
differentially expressed genes, and associated signaling pathways using single-
cell RNA sequencing.

Methods: Peripheral blood mononuclear cells (PBMCs) from 3 pSS patients and 3
healthy controls (HCs) were collected. Single-cell transcriptomic analysis was
performed, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis, transcription factor analysis,
pseudotime analysis, cell communication analysis, and B cell receptor (BCR)
repertoire analysis. Genes and pathways potentially involved in the pathogenesis
of pSS were identified, and key genes were validated by qRT-PCR. Statistical
significance was assessed using T-tests and the Wilcoxon rank-sum test, with a
p-value < 0.05 considered statistically significant.

Results: Single-cell RNA sequencing of peripheral blood B cells from three
patients with primary Sjogren’s syndrome (pSS) and three healthy controls
(HCs) identified three subpopulations: memory B (Bmem), naive B (NaiveB),
and plasma cells (PlasmaCells). In pSS, differentially expressed genes were
enriched in Type | interferon signaling, antigen processing/presentation, and
MHC class Il binding. Transcription factors related to interferon responses,
including NR2F6, IRF5, STAT2, and IRF9, were upregulated. Cell-cell
communication analysis highlighted frequent interactions via TNFSF10-
TNFRSF10C and TGFB1-TGFBR3. Pseudotime analysis indicated accelerated
NaiveB differentiation along the effector branch. B cell receptor repertoire
analysis revealed increased IGHV4-34 usage and higher IGHJ4/IGHJ6 usage in
PlasmaCells, with reduced IGHV1-3, IGHV1-69D, and IGHV2-7D usage. qRT-
PCR validation in 22 pSS patients and 22 HCs confirmed significant I1SG15
upregulation (p < 0.0001).
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Conclusion: B cells contribute to the pathogenesis of pSS through the Type | IFN
signaling pathway mediated by genes such as ISG15, alterations in BCR clonality,
IGHV-J gene rearrangements, and abnormal gene usage.

primary Sjogren’s syndrome, single-cell transcriptome sequencing, B cells, cell
communication, pseudo-time analysis

1 Introduction

pSS is a chronic inflammatory autoimmune disease
characterized by lymphocyte proliferation and progressive
damage to exocrine glands. Patients with pSS have multiple
autoantibodies in their serum. In addition to dysfunction of the
salivary and lacrimal glands, multi-organ and multi-system
involvement may occur (1). The etiology of pSS remains unclear,
but studies suggest that disruption of the innate immune barrier,
through mechanisms involving IFN pathways, plays a key role in
the pathogenesis of SS, particularly in the early stages of the disease
(2). Research indicates that B cells play a central role in the
pathogenesis of pSS (3), although there are still differing views on
the specific mechanisms by which B cells contribute to pSS.
Clarifying the pathogenesis is crucial.

Single-cell RNA sequencing (scRNA-seq) is a new technology
for high-throughput RNA sequencing and analysis at the single-cell
level. scRNA-seq provides insights by analyzing differences between
cells and subpopulations of cells. Studies have used scRNA-seq to
analyze differential expression in synovial cells of rheumatoid
arthritis patients, offering new insights into the pathology and
heterogeneity of rheumatoid arthritis, and providing information
for novel targeted therapies (4). However, research on scRNA-seq in
pSS is limited. This study performed scRNA-seq on peripheral
blood cells from pSS patients and healthy individuals, and analyzed
the B cell subpopulations in depth, revealing differences in
expression across B cell subgroups. This provides new insights
into the involvement of B cells in the pathogenesis of pSS.

2 Materials and methods
2.1 Study subjects

A total of 25 patients diagnosed with pSS for the first time at the
Rheumatology and Immunology Department of Ningxia Medical
University General Hospital were enrolled as the pSS group.
Additionally, 25 healthy individuals from the same hospital who
underwent physical examinations were included as the HC group.
Three subjects from each group were randomly selected for single-
cell sequencing, while the remaining 22 subjects in each group were
used for qRT-PCR analysis. The pSS diagnostic criteria followed the
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2002 and 2016 classification standards established by the American
College of Rheumatology (ACR) or the European League Against
Rheumatism (EULAR) (5). Exclusion criteria: patients with other
systemic autoimmune diseases (including systemic lupus
erythematosus, dermatomyositis, rheumatoid arthritis, adult-onset
Still’s disease, etc.), vascular diseases, infectious diseases,
hematologic diseases, tumors, neuropsychiatric disorders,
pregnancy, and other conditions. The study protocol was
approved by the Ethics Committee of Ningxia Medical University
General Hospital, and all participants provided informed consent
(KYLL-2024-0327).

2.2 Research methods

2.2.1 Preparation of single-cell suspension

PBMC:s were isolated using density gradient centrifugation with
lymphocyte separation medium (Ficoll-Paque Plus, GE Healthcare)
and washed with PBS without calcium and magnesium. To remove
red blood cells, 2 mL of GEXSCOPE® red blood cell lysis
buffer (RCLB, Singleron) was added at 25 °C for 10 minutes. The
solution was then centrifuged at 500xg for 5 minutes and
resuspended in PBS. The blood sample was centrifuged at 400g
for 5 minutes at 4 °C, and the supernatant was discarded. After
removal of red blood cells, the PBMCs were separated by
centrifugation at 400g for 10 minutes at 4 °C. The supernatant
was discarded, and the PBMCs were resuspended in PBS to obtain a
single-cell suspension. The cell viability was assessed using Trypan
Blue staining, with cell viability greater than 90% based on
microscopy counting.

2.2.2 RT & Amplification & Library Construction
For single-cell sequencing, 3 pSS patient samples and 3 healthy
control samples (2x10° cells/mL, 100 uL) were loaded onto a
SCOPE-chipTM microfluidic chip. Libraries were constructed
following the protocol of sCircle® Single Cell Full Length
Immuno_BCR Library Kit (Biotechnologies). Specifically, poly(A)
tails were captured by magnetic beads with molecular markers. Cells
and mRNA were labeled after the cells were lysed. The magnetic
beads in the chip were collected, and mRNAs were reverse-
transcribed into complementary DNA (cDNA) and amplified.
After local cDNAs were fragmented and spliced, transcriptome
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sequencing libraries suitable for the Illumina sequencing platform
were constructed. The remaining cDNA was enriched to the full
length immune receptor (BCR) by three rounds. Then the enriched
products were fragmented and spliced to construct the BCR
sequencing libraries, suitable for the Illumina sequencing
platform. Finally, sequencing of the libraries was performed on
Ilumina Nova 6000, with a pair-end length of 150bp.

2.2.3 Quality control, dimensionality reduction,
and clustering

The raw sequencing reads were processed using CeleScope
v1.14.0 (Singleron Biotechnology), with default parameters.
Briefly, Barcodes and UMIs were extracted from RI reads and
corrected. Adapter sequences and poly A tails were trimmed from
R2 reads and the trimmed R2 reads were aligned against the
GRCh38 (hg38) transcriptome using STAR(v2.6.1b). Uniquely
mapped reads were then assigned to exons with FeatureCounts
(v2.0.1) (6). Successfully Assigned Reads with the same cell barcode,
UMI and gene were grouped together to generate the gene
expression matrix for further analysis. For each dataset, quality
control, dimensionality reduction, and clustering analysis were
conducted using Scanpy v1.8.2 in the Python 3.7 environment
(7). The following filtering criteria were applied: Exclude cells
with gene counts below 200 or in the top 2% of gene counts;
Exclude cells with unique molecular identifier (UMI) counts in the
top 2%; Exclude cells with mitochondrial gene content exceeding
30%; Exclude genes expressed in fewer than 5 cells.

After filtering, 65670 cells were retained for the downstream
analyses. The raw count matrix was normalized by total counts per
cell and logarithmically transformed into normalized data matrix.
Top 2000 variable genes were selected by setting flavor =
‘seurat_v3’. Principle Component Analysis (PCA) was performed
on the scaled variable gene matrix, and top20 principle components
were used for clustering and dimensional reduction. Batch effect
between samples was removed by Harmony v1.0 (8). Cells were
separated by using Louvain algorithm and setting resolution
parameter at 1.2. Cell clusters were visualized by using Uniform
Manifold Approximation and Projection (UMAP) (9).

2.2.4 Differential gene identification and cell type
annotation

To identify differentially expressed genes (DEGs), we used the
scanpy.tl.rank_genes_groups() function based on Wilcoxon rank
sum test with default parameters, and selected the genes expressed
in more than 10% of the cells in either of the compared groups of
cells and with an average log(Fold Change) value greater than 1 as
DEGs. Adjusted p value was calculated by benjamini-hochberg
correction and the value 0.05 was used as the criterion to evaluate
the statistical significance.

The cell type identification of each cluster was determined
according to the expression of canonical markers from the
reference database SynEcoSysTM (Singleron Biotechnology).
SynEcoSysTM contains collections of canonical cell type markers
for single-cell seq data, from CellMakerDB, PanglaoDB and recently
published literatures. Cell doublets were estimated based on the
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expression pattern of canonical cell markers. Any clusters enriched
with multiple cell type-specific markers were excluded for
downstream analysis.

2.2.5 Pathway enrichment analysis

To investigate the potential functions , Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis
were used with the “clusterProfiler” R package v 3.16.1 (10, 11).
Pathways with p_adj value less than 0.05 were considered as
significantly enriched. Selected significant pathways were plotted
as bar plots.

2.2.6 Transcription factor regulatory network
analysis

Transcription factor network was constructed by pyscenic
(v0.11.0) using scRNA expression matrix and transcription
factors in AnimalTFDB. First, GRNBoost2 predicted a regulatory
network based on the co-expression of regulators and targets.
CisTarget was then applied to exclude indirect targets and to
search transcription factor binding motifs. After that, AUCell was
used for regulon activity quantification for every cell. Cluster-
specific TF regulons were identified according to Regulon
Specificity Scores (RSS) and the activity of these TF regulons were
visualized in heatmaps (12).

2.2.7 Cell-cell communication network analysis

Cell-cell interaction (CCI) were predicted based on known
ligand-receptor pairs by Cellphone DB (v2.1.0) version (13).
Permutation number for calculating the null distribution of
average ligand-receptor pair expression in randomized cell
identities was set to 1000. Individual ligand or receptor
expression was thresholded by a cutoff based on the average log
gene expression distribution for all genes across each cell type.
Predicted interaction pairs with p value <0.05 and of average log
expression > 0.1 were considered as significant and visualized by
heatmap_plot and dot_plot in CellphoneDB.

2.2.8 Pseudotime analysis

Cell differentiation trajectory was reconstructed with the
Monocle2 v 2.10.0. For constructing the trajectory, top 2000
highly variable genes were selected by FindVairableFeatures, and
dimension-reduction was performed by DDRTree. The trajectory
was visualized by plot_cell_trajectory function in Monocle2
(14, 15).

2.2.9 VDJ analysis

ScBCR clonotype assignment were performed using CeleScope
vdj pipeline v1.14.0 (Singleron Biotechnology), with GRCh38 as
reference. In brief, a BCR diversity metric, containing clonotype
frequency and barcode information, was obtained. For the BCR,
only cells with one productive IGH chain and one productive IGK/
IGL chain were kept for further analysis. Each unique IGH-IGK/
IGL pair was defined as a clonotype.If one clonotype was present in
at least two cells, cells harboring this clonotype were considered to
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be clonal and the number of cells with such pairs indicated the
degree of clonality of the clonotype.

2.2.10 B cell isolation by Ficoll gradient and
CD19-positive selection

PBMCs were obtained from fresh EDTA-anticoagulated
peripheral blood of pSS patients and healthy controls by Ficoll-
Paque density gradient centrifugation (Cat#LTS1077, TBD).
PBMCs were then incubated with CD19 MicroBeads (Cat#17954,
STEMCELL Technologies) and positively selected according to the
manufacturer’s protocol. Purity of the isolated B cells was
determined by flow cytometry using an anti-human CD19-APC
antibody (Cat#309512, BioLegend) and consistently exceeded 95%.
Total RNA was extracted from the purified B cells using TRIzol
reagent (Cat#15596018CN, Invitrogen), quantified and assessed for
purity, and subsequently subjected to quantitative PCR (qRT-
PCR) analysis.

2.2.11 qRT-PCR

For qRT-PCR analysis, 22 pSS patient samples and 22 healthy
control blood samples (=5 mL) were collected. Total RNA was
extracted using the Biotech RNA extraction kit RP4002, and RNA
concentration and purity were measured using a NanoDrop 2000
spectrophotometer (Thermo Scientific). Samples with an A260/
A280 ratio of 1.8-2.0 and a concentration >50 ng/lL were stored
at -80 °C. Quantitative reverse transcription was performed using
the PrimeScript RT kit (Takara Bio). 200 ng RNA, 2 uL PrimeScript
RT Master Mix (Takara Bio), and RNase-free water were mixed to a
final volume of 10 pL to complete the reverse transcription and
obtain cDNA. qPCR was performed using 2 UL ¢cDNA, 10 uL TB-
Green Premix Ex Taq (Takara Bio), 6.4 uL RNase-free water, and
0.8 UL primers (forward and reverse). The reaction was performed
on a Lightcycler 480 System with the following conditions: 95 °C for
3 s, followed by 40 cycles of denaturation at 95 °C for 5 s and
extension at 60 °C for 30 s. Each sample was tested in triplicate, and
the difference in Ct values (fluorescence threshold cycle number)
was less than 0.5. The relative expression level of ISG15 was
analyzed using the 2-AACt method. The primer sequences used
were as follows: ISG15 forward primer: 5-CGCAGATCA
CCCAGAAGATCG-3’, reverse primer: 5-TTCGTCGCATTT
GTCCACCA-3 5 GAPDH forward primer: 5-CCACGGCTG
CTTCCAGCTCC-3’, reverse primer: 5-GGACTCCATGC
CCAGGAAGGAA-3 “.

2.3 Statistical analysis

Cell distribution comparisons between two groups were
performed using the unpaired two-tailed Wilcoxon rank-sum test.
Comparisons of gene expression or gene features between two
groups were performed using the unpaired two-tailed Student’s t-
test. Non-normally distributed quantitative data were presented as
median and percentiles [M(P25, P75)], and group comparisons
were performed using the Mann-Whitney U test. Statistical analyses
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and data presentation were performed using R and Python. A p-
value of <0.05 was considered statistically significant.

3 Results

3.1 Analysis of cell types and differential
genes in peripheral blood single cells of
pSS and HC groups

A total of 65,670 cells were captured, with 34,221 from the pSS
group and 31,449 from the HC group (Supplement tablel).
Unsupervised clustering of all cells identified 20 clusters
(Supplementary Figure SIA), which were subsequently annotated
as eight major cell types based on canonical marker gene expression
(Supplementary Figure S5B): B cells, T cells, natural killer (NK)
cells, neutrophils, basophils, mononuclear phagocytes (MPs),
plasmacytoid dendritic cells (pDCs), and erythrocytes
(Figures 1A, B). Among the 2,938 captured B cells, unsupervised
of all cells identified 4 clusters (Supplementary Figure S1C). Based
on canonical marker gene expression,the results showed
(Supplementary Figure S1D): Cluster 1 and Cluster 3 were
identified as NaiveB (IGHD,IL4R,IGHM),Cluster 2 was classified
as Bmem(CD27,TNFRSF13B,ANXA2), and Cluster 4 was
determined to be PlasmaCells(JCHAIN,MZB1, IGHGI1)
(Figure 1C). In comparison to the HC group, the pSS group
exhibited trends of increased median proportions in B cells
(4.40% vs 3.59%), MPs (11.53% vs 2.17%), NK cells (7.37% vs
4.29%), basophils (0.91% vs 0.49%), and pDCs (0.07% vs 0.06%).
Conversely, trends of decreased median proportions were observed
in T cells (24.87% vs 31.92%) and neutrophils (49.98% vs 58.47%)
(Figure 1D). Compared to the HC group, the pSS group exhibited
elevated median proportions of NaiveB (71.70% vs 67.65%) and
PlasmaCells (2.70% vs 0.67%), while the median proportion of
Bmem was reduced (25.61% vs 32.35%) (Figure 1E).The top 10
differentially expressed genes in B cells were IGHM, IGLC2,
MS4A1, IGHA1, IGLC3, IGHD, CD74, CD79A, IGHGI, and
BANKI (Figure 1F). A heatmap of the top 10 upregulated genes
in each B cell subtype revealed that NaiveB expressed high levels of
TCLIA, IGHD, and FCER2, PlasmaCells showed high expression of
IGHA1, JCHAIN, and MZB1, while Bmem cells had elevated levels
of AIM2, LINC01781, and ITGBL1 (Figure 1G).

3.2 Differential gene comparison and
functional enrichment analysis of B cell
subtypes in the pSS group

In this study, differentially expressed genes (DEGs) in the three
B cell subtypes (Bmem, NaiveB, and PlasmaCells) from patients
with pSS were analyzed using GO and KEGG pathway enrichment.
For the Bmem subtype, upregulated genes such as MX1, IFI44L,
ISG15, and STAT1 were primarily enriched in the Type I interferon
signaling pathway and immune response-related processes.
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Downregulated genes, including H1-10, FOSB, and JUN, were
mainly involved in ribosomal functions and mRNA binding
(Figure 2A). KEGG analysis showed that upregulated genes were
enriched in pathways such as "Proteasome,” "Antigen processing
and presentation,” and "Epstein-Barr virus infection" (Figure 2B),
while downregulated genes were associated with pathways like
"Ribosome," "COVID-19," and "IL-17 signaling pathway"
(Figure 2C).GO analysis revealed that upregulated genes were

"o

enriched in "Type I interferon signaling pathway," "Regulation of
innate immune response,” and "Viral response” at the biological
process (BP) level (Figure 2D), while downregulated genes were
enriched in "Ribosome” and "RNA binding" at the cellular
component (CC) and molecular function (MF) levels (Figure 2E).

In the NaiveB subtype, upregulated genes such as IFI44L,
ISG15, and STAT1 were associated with Type I interferon
responses and viral immune responses. The downregulated genes,
including RASAL2, FOSB, and KLF6, were enriched in translation
initiation and ribosomal processes (Supplementary Figure S2A).
KEGG analysis highlighted the enrichment of upregulated genes in

"o

"Prion disease" "Oxidative phosphorylation” and "Antigen
processing and presentation” (Supplementary Figure S2B), while
downregulated genes were primarily enriched in "Ribosome"

"COVID-19" and "Th17 cell differentiation” pathways
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(Supplementary Figure S2C). GO analysis indicated that
upregulated genes in NaiveB cells were mainly enriched in
"Response to type I interferon” and "Response to virus" at the BP
level, "Phagosome" and "Mitochondrial inner membrane" at the CC
level, and "MHC class II protein complex binding" at the MF level
(Supplementary Figure S2D). Downregulated genes were enriched
in "Ribosome" and "RNA binding" at the CC and MF levels
(Supplementary Figure S2E).

For PlasmacCells, the upregulated genes such as ISG15, IFI6, and
STAT1 were linked to antigen processing, MHC class II binding,
and peroxidase activity. Downregulated genes like FRAT2,
SLC25A27, and DIP2B were associated with ribosomal functions
and translation initiation (Supplementary Figure S3A). KEGG
pathway analysis revealed that upregulated genes in PlasmaCells
were enriched in "Protein processing in the endoplasmic reticulum”
"Antigen processing and presentation” and "Parkinson's disease”
(Supplementary Figure S3B), while downregulated genes were
primarily associated with "Osteoclast differentiation" and
"Endocytosis” (Supplementary Figure S3C) .GO analysis showed
that upregulated genes were enriched in "Processing and
presentation of exogenous peptide antigens" at the BP level,
"Endoplasmic reticulum protein complex” at the CC level, and
"Molecular carrier activity" and "MHC class II protein complex
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FIGURE 2

Inter-group Comparison and Functional Analysis of Differential Genes in the Bmem Subset. (A) Heatmap of top 20 differential gene expression
comparisons in the Bmem subset; (B) KEGG pathway analysis of upregulated genes in the Bmem subset of the pSS group; (C) KEGG pathway
analysis of downregulated genes in the Bmem subset of the pSS group; (D) GO term analysis of upregulated genes in the Bmem subset of the pSS

group; (E) GO term analysis of downregulated genes in the Bmem subset

of the pSS group.

binding" at the MF level (Supplementary Figure S3D).
Downregulated genes were mainly involved in "Ribosome" and
"RNA binding" processes (Supplementary Figure S3E).

3.3 Transcription factor analysis of B cell
subtypes in the pSS group

Compared to the HC group, the transcription factors NR2F6
and IRF5 were significantly upregulated in Bmem cells in the pSS
group, while KLF4 and JUNB were significantly downregulated. In
NaiveB cells, the transcription factors STAT2, IRF9, THRB, and
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BATF3 were significantly upregulated, whereas TGIF2, KLF4, FOS,
BOCH2, and FOXO1 were significantly downregulated. In
PlasmacCells, the transcription factors AHR, ZFP64, ARID3A, and
XBP1 were significantly upregulated, while ELF2, FOXO1, and
POLR3G were significantly downregulated (Figure 3A).

3.4 Cell communication network analysis
The interactions between B cells and other cell types in the pSS

group were analyzed, including 30 ranked interaction pairs,
chemokine interaction pairs, immune checkpoint interaction
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FIGURE 3

Transcriptional Regulation and Cellular Communication in B Cell Subsets. (A) Heatmap of average transcription factor expression comparisons
between groups in B cell subsets; (B) Interaction pair count plot between two cell types: The outer ring represents cell types; the inner ring shows
red for ligands and blue for receptors; line clarity is positively correlated with the number of interaction pairs between the two cell types, with
clearer lines indicating more interactions; (C) Heatmap of ligand-receptor pair counts between two cell types in the pSS group: Darker colors
represent a higher number of interaction pairs between the two cell types; (D) Heatmap of ligand-receptor pair counts between two cell types in the

HC group.

pairs, growth factor interaction pairs, and cytokine interaction
pairs. The results showed that the interaction pairs between B
cells and MPs were the most numerous (Figures 3B-D). As ligands,
B cells primarily communicate through the following pairs:
LGALS9-HAVCR2, CXCL8-CXCR2, TNFSF10-TNFRSF10C,
TGFB1-TGFBR3, HLA-E-KLRC1, FAM3C-HLA-C, among others
(Supplementary Figure S4A-E). When B cells act as receptors, the
main communication occurs through pairs such as CD28-CD86,
CXCL8-CXCR2, TNESF138-TNFRSF13C, TGFB1-TGFBR3, ARP-
CD74, COPA-CD74, etc. (Supplementary Figure S5A-E).
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3.5 Pseudo-time analysis of B cell subtypes
in the pSS and HC groups

Pseudotime trajectory analysis of B cell subtypes in the pSS
group (Figure 4A) revealed potential developmental relationships
among these subsets. The analysis identified 5 key cellular state
nodes and two main developmental branch paths. Naive B cells
were predominantly located at the starting point of the trajectory
and distributed along the initial segments of both branches. The
first branch path was primarily enriched with Naive B cells, while
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FIGURE 4

Pseudo-temporal trajectory plots of B cell subpopulations. (A) Pseudo-temporal trajectory plot of B cell evolution; (B) Distribution characteristics of
each B cell subpopulation in the pseudo-temporal differentiation trajectory; (C) Distribution of different cell subpopulations in the pseudo-temporal
differentiation trajectory; (D) Distribution of pseudo-temporal trajectories of each B cell subpopulation across different groups; (E) Distribution of
major time points of B cell clusters in different groups (HC, pSS, and all_group combined) along pseudo-time; the y-axis represents pseudo-time
(from bottom to top), the x-axis shows the proportion of cell types at different time points, and different colors represent different cell types; The
width of each colored band reflects the proportion of the corresponding cell type at a given pseudotime position; (F) Gene expression changes
along pseudo-time; the x-axis represents pseudo-time, and the y-axis shows the gene expression levels.

the second branch path indicated a progression toward effector B
cell differentiation, with Bmem cells enriched in intermediate states
along this branch (Figure 4B). Cell states along the pseudotime
trajectory were classified into 11 distinct states. State 9 was in the
early left branch, followed by State 8 before the branching point.
Transitional States 3-7, 10, and 11 clustered around the branch
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root. The long right branch was mainly State 1 at late pseudotime,
and State 2 appeared rarely at the end of the left branch (Figure 4C).
Comparison with the HC group showed that in the pSS group, the
number of Naive B cells was relatively reduced at the trajectory
starting point but significantly increased at the initial segment of the
second branch, which functions as the effector branch. PlasmaCells
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were localized at the terminus of the second branch in both the HC
and pSS groups (Figure 4D). In the HC group, naive B cells were
mainly at the origin and decreased over time. In pSS, fewer naive B
cells were present at the origin, showing a rise then decline. Memory
B cells localized to intermediate nodes in both groups, but were
more abundant at terminal nodes in pSS. Plasma cells were terminal
in both, with higher proportion in pSS. Integrated all_group data
showed dynamic changes: naive B cells increased then decreased,
memory B cells were mid-distributed with late presence, and plasma
cells were terminal (Figure 4E). Further analysis of marker gene
expression patterns along pseudotime classified them into 6 clusters
(Figure 4F): Early-stage clusters (1-2) included JUN, NFKBIA,
DUSP1, FOS (stress-responsive/MAPK, NF-kB) and FCER2,
IGHD, TCL1A (B cell activation/maturation), showing
progressive downregulation. Late-stage clusters (4-6) comprised
immunoglobulin/plasma cell genes (IGKV4-1, IGHG, IGHA, IGLC,
JCHAIN, XBP1, MZB1), B2M (MHC I), and ITGB1, HBB, HBA2
(adhesion/oxygen transport), all upregulated toward pseudotime
end. Cluster 3 (AC099560.1, RPS3A) remained low, indicating
suppression of ribosomal/metabolic programs. Overall, expression
shifted from early stress and immune activation to late antibody
production, antigen presentation, and structural remodeling.

3.6 BCR analysis

BCR data analysis of 6 samples from the pSS and HC groups
revealed that the clonal frequencies of all B-cell subsets in both
groups were predominantly single-clonotype-dominated . The
proportion of large-scale clones (clonotype frequency > 10) was
0% across all subsets. The proportion of medium-scale clones
(clonotype frequency > 1 and < 10) was low in both groups
(Figure 5A). Both NaiveB and Bmem cells exhibited clonal
expansion in samples from both groups; however, neither their
single-clonotype frequencies nor medium-scale clonotype
frequencies showed statistically significant differences between the
two groups. In contrast, PlasmaCells displayed clonal expansion in
all pSS samples (predominantly single-clonotype), whereas in the
HC group, clonality was detected only in HCO03 (Supplement table
2). Further analysis of BCR clonal diversity using the D50 diversity
index demonstrated no statistically significant differences between
the pSS and HC groups (p = 0.7) (Figure 5B).

Further analysis of the IGHV and IGH] genes of B cells from the
pSS and HC groups showed that in the pSS group, the top 5 IGHV
gene segments with the highest clonotype usage frequencies were:
IGHV3-23, IGHV4-34, IGHV4-39, IGHV3-33, and IGHV4-59. In
the HC group, the top 5 IGHV gene segments were: IGHV3-33,
IGHV3-23, IGHV4-39, IGHV4-59, and IGHV1-69D. Compared to
the HC group, the frequency of IGHV4-34 usage was higher in the
PSS group (median = 9.3% vs 3.9%), although the difference did not
reach statistical significance (p = 0.100, Mann-Whitney U =
0.000) (Figure 5C).

In terms of IGH] gene segments, both pSS and HC groups
showed relatively high usage of IGH]3, IGHJ4, IGH]J5, and IGH]J6
(Figure 5D). Further analysis of the usage frequency of heavy chain
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variable region (V) genes between the two groups in each B cell
subtype showed that in the PlasmaCells subtype, the frequency of
IGHJ4 and IGH]6 usage was higher in the pSS group compared to
the HC group, while the frequency of IGH]1 and IGHJ5 usage was
lower (Figure 5E). The usage frequency of IGHV gene segments in
the IGHV1-3, IGHV1-69D, and IGHV2-7D subtypes was relatively
decreased in the pSS group. No significant changes in heavy chain V
region gene usage frequencies were observed in the Bmem and
NaiveB subtypes (Figure 5F).

3.7 qRT-PCR analysis

From the above data, it was found that in the B cell subtypes of
pSS patients, type I IFN-related genes such as ISG15, IFI44L, and
IF144 were significantly upregulated. Both functional enrichment
and cell communication analyses suggested that the IFN pathway
may be involved in the pathogenesis of pSS. To further validate the
reliability of these results, the ISG15 gene was selected for qRT-PCR
verification. ISG15 was signifificantly overexpressed in the
peripheral blood of pSS patients (p < 0.0001) and in purifified B
cells (p = 0.0076) (Figure 6).

4 Discussion

pSS is a complex and heterogeneous disease, and its
pathogenesis remains unclear. RNA-seq technology retains the
transcriptional differences of different cells, providing a significant
advantage in identifying cell subtype characteristics and cell
interactions. In this study, we performed comprehensive
bioinformatics analysis of the transcriptome to study cell
clustering, gene differences, and related pathways in pSS. First, we
clustered a total of 65,670 cells from 6 samples of peripheral blood
from the pSS and HC groups. Compared to the HC group, the pSS
group exhibited an elevated median proportion of B cells,
suggesting that B cell activation might be related to the onset of
pSS. Subsequently, we annotated the B cell populations and
identified three B cell subtypes: Bmem, NaiveB, and PlasmaCells.
Additionally, the median proportions of both NaiveB and
PlasmaCells were higher in the pSS group. A comparison of
differential genes among the three B cell subtypes revealed that,
compared to the HC group, the upregulated genes in both Bmem
and NaiveB cells in the pSS group included ISG15, IFI44L, IF144,
STATI, IFI6, IFI3, IFIT3, and MXI. The upregulated genes
common to Bmem, NaiveB, and PlasmaCells in the pSS group
included ISG15, IFI6, and STAT1. These genes are mainly involved
in functions such as “encoding interferon-induced proteins,”
“encoding ISG15 ubiquitin-like modifiers,” and “encoding STAT1
signal transduction and transcription activation factor 1.”
Differential gene comparison showed that the upregulated genes
in all three B cell populations of the pSS group were involved in the
type I interferon response pathway. Luo S et al. found that type I
IFN stimulates monocyte differentiation and induces immature
dendritic cells to express chemokines and costimulatory
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Comparison of BCR clonotype distribution and IGHV/IHJ gene usage in B cell subpopulations. (A) The number and proportion of different BCR
clonotypes between groups: Circle size represents the total number of clonotypes (Single represents a single clonotype; Medium represents
clonotypes with a frequency greater than 1 but less than or equal to 10; Large represents clonotypes with a frequency greater than 10). The colors
within the circle represent the proportion of clonotypes with different frequencies. (B) Inter-group comparison of BCR clonal diversity: Analyzed
using D50 diversity index. The D50 diversity index represents the number of clonotypes required to account for 50% of the total BCR repertoire;
lower values suggest reduced diversity; (C) Comparison of IGHV gene usage frequency in B cell clones between the two groups. (D) Comparison of
IGHJ gene usage frequency in B cell clones between the two groups. (E) IGHV gene usage frequency in B cell subpopulations of the HC group. (F)

IGHV gene usage frequency in B cell subpopulations of the pSS group.

molecules, promoting the onset of SLE (16). Cui Y et al. used single-
cell RNA-seq to explore the common molecular mechanisms
between SLE and primary pSS and found that IFN response and
ITGB?2 signaling pathways play crucial roles in both diseases (17). It
is speculated that the type I interferon signaling pathway mediates B
cell involvement in the pathogenesis of pSS.

To further investigate the role of the type I IFN response in B
cells in pSS, GO and KEGG pathway enrichment analyses of
differential genes in B cell subpopulations showed that, compared
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to the HC group, the differentially upregulated genes in NaiveB and
Bmem cells in the pSS group were involved in the type I interferon
signaling pathway at the BP level. In this study, we observed
significant upregulation of interferon signaling pathway-related
genes (such as ISG15, IFI44L, and IFI44) in B cells from pSS
patients, along with marked increases in upstream transcription
factors (STAT?2, IRF9, and IRF5). Previous studies have shown that
IFI44L is a type I IFN-stimulated gene, and its upregulation in pSS
patients has been observed (18). ISG15 is a ubiquitin-like protein

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1665086
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Zhang et al.
PBMC
P<0.0001
40r
" o
O -
wn
= 30F n
Gy n
)
o "
.2 "
v ]
§ 20F a
& H
s i als
2 10F _BE
= ML
& S -
ol iiiSie :
HC pSS
FIGURE 6

Relative expression of ISG15

10.3389/fimmu.2025.1665086

B cell
P=0.0076

401
30 [~ o
20
10f . —_—

0 T T

HC pSS

Comparison of ISG15 expression levels between the HC group and the pSS group.

that, after activation by IFN-o. and IFN-B, conjugates with
intracellular target proteins. Cui Y et al. found that ISG15
expression levels in the saliva and serum of pSS patients were
higher than those in controls and identified IFI44L and ISG15 as
common hub genes in both pSS and SLE (17). Given that ISG15 is a
key marker of IFN-I activation and can representatively reflect
pathway activity, we selected ISG15 for subsequent validation. To
further validate this, we performed qRT-PCR analysis of ISG15
expression in the peripheral blood of 22 pSS patients and 22 healthy
controls, showing that ISG15 expression was significantly higher in
the peripheral blood of pSS patients compared to the HC group. In
addition, we examined sorted B cells and found that ISG15
expression was also markedly elevated in B cells from pSS
patients. This suggests that B cells may be involved in the
pathogenesis of pSS through IFN-related genes such as ISG15.
Our study further performed transcription factor analysis of B
cell subpopulations. In Bmem cells, NR2F6 and IRF5 were
significantly upregulated. The nuclear receptor transcription
factor NR2F6 is a member of orphan nuclear receptors. Natascha
Hermann-Kleiter et al. have demonstrated that NR2F6 antagonizes
the ability of ThO and Th17 CD4(+) T cells to induce IL-2 and IL-17
expression, suggesting that NR2F6 may be involved in the
pathogenesis of pSS (19). IRF5 is a regulator of type I IFN and
IFN-stimulated genes (ISGs). IFN induces STAT activation, which
in turn triggers ISG expression. STAT1, STAT2, and IRF9 amplify
the JAK-STAT signaling pathway to enhance the IFN response, and
the JAK-STAT pathway transduces intracellular signals for various
cytokines, which is crucial for the pathogenesis of autoimmune
diseases (20, 21). Ivashkiv LB et al. found that a common feature of
SLE patients is the increased expression of type I IFN, and IRF5
expression was significantly elevated in the peripheral blood
mononuclear cells of SLE patients (22). Su Song et al. found that
inhibiting IRF5 expression can prevent the onset and severity of
SLE. Our study showed that IRF5 is highly expressed in B cells,
suggesting that the increased expression of IRF5 in Bmem cells in
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the pSS group may be related to the disease's development (23).
KLF4 was significantly downregulated in Bmem cells. KLF4 is an
evolutionarily conserved zinc finger transcription factor that
regulates various cellular processes, such as cell growth,
proliferation, and differentiation. Tao H et al. found that KLF4
promotes dentinogenesis and odontoblast differentiation through
the regulation of TGEF- signaling and interaction with histone
acetylation (24). Some pSS patients exhibit extensive tooth loss and
multiple dental caries, suggesting that KLF4 might be involved in
the mechanisms of dental damage in pSS patients. Our study
showed that KLF4 is significantly downregulated in pSS, while it
is upregulated in the normal group. Thus, we speculate that the
downregulation of KLF4 in pSS may suppress dentin growth,
leading to tooth loss and caries in these patients.

In NaiveB cells, STAT2, IRF9, THRB, and BATF3 were
significantly upregulated. STAT is an essential transcription factor
in the type I IFN-mediated signaling pathway. STAT?2 is defined as
an auxiliary factor that participates exclusively in type I IFN (IFN-a,
-B, -7, -®) signaling transduction; IFN signals through the JAK-
STAT pathway, activating the transcription of ISGs. STAT1-2
heterodimers bind to IRF9 to form the activated transcription
complex ISGF3. In PlasmaCells, AHR, ZFP64, ARID3A, and
XBP1 were significantly upregulated. These findings suggest that
multiple transcription factors in B cells participate in the
pathogenesis of pSS through the type I IFN-mediated
signaling pathway.

Pseudotime trajectory analysis of B cell populations revealed
that Naive B cells were predominantly localized at the starting point
of the developmental trajectory and distributed along the initial
segments of both branches, suggesting their role as the origin of B
cell differentiation. The first branch was primarily enriched with
Naive B cells, potentially representing a relatively quiescent or self-
maintaining state. The second branch delineated the classical
differentiation path from Naive B through Bmem to Plasma Cells.
Compared to the HC group, the pSS group exhibited a reduced
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proportion of Naive B cells at the trajectory origin but a significant
increase at the initial segment of the second (effector) branch. This
uneven distribution implies that more Naive B cells in pSS may be
primed to prematurely enter the effector differentiation path.
Collectively, the pseudotime analysis constructed a dynamic map
of B cell evolution in pSS, initiating from Naive B states and
diverging into two paths: (1) Naive B maintenance and (2)
effector. The pSS group was characterized by accelerated and
skewed entry of Naive B cells into the effector path, highlighting a
dysregulated B cell maturation trajectory in pSS.

Notably, analysis of marker gene expression patterns along
pseudotime revealed dynamic transcriptional changes along the
trajectory. The early stage was enriched for stress-response and
immediate-early genes (JUN, FOS, NFKBIA) as well as B cell
activation-related genes (FCER2, IGHD, TCL1A), whose
expression gradually declined over pseudotime. In the
intermediate stage, ribosomal and metabolic genes (AC099560.1,
RPS3A) remained consistently low. The late stage showed marked
upregulation of immunoglobulin and plasma cell differentiation-
related genes (IGKV4-1, IGHG, IGHA, IGLC, JCHAIN, XBP1,
MZB1), antigen presentation-related genes (B2M), and adhesion
and oxygen transport-related genes (ITGB1, HBB, HBA2),
indicating a transcriptional profile associated with antibody
production and immune effector functions at the trajectory end.
These results suggest that cells in the early pseudotime phase are
dominated by stress and immune activation-related transcriptional
programs, which subsequently shift toward an immune effector-
related expression profile.

Cell communication analysis suggested that the number of
interactions between B cells and MPs cells was the highest. When
B cells acted as ligands in the pSS group, the cell communication
with MPs primarily occurred via TGF-B3 and TNF. TGF-B ligands
bind various TGF-B receptors, leading to the recruitment and
activation of SMAD family transcription factors that regulate
gene expression. These proteins can modulate the expression and
activation of interferon y and tumor necrosis factor o.

BCR analysis of peripheral blood B cells from the pSS and HC
groups revealed that both groups exhibited predominantly
monoclonal expansion across B cell subsets. While clonal
expansion was observed in Naive B and Bmem in both groups,
no statistically significant differences were detected between pSS
and HC. Notably, plasma cells showed clonal expansion in all pSS
samples but were detected in only one HC sample. The lack of
significant intergroup differences in BCR clonal diversity may be
attributed to the limited sample size (n=3 per group) and
substantial individual heterogeneity.

Further analysis of the IGHV and IGH] genes showed that the
use of these genes had changed in the pSS group compared to the
HC group. Compared to the HC group, the median usage frequency
of IGHV4-34 was higher in pSS (median = 9.3% vs. 3.9%).
Arbuckle, Odendahl, and others found that the use of the IGHV4
family increased in peripheral blood B cells in SLE, particularly
IGHV4-34 (25, 26). Doorenspleet and others also found an
increased frequency of IGHV4-34 use in synovial B cells in early
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RA (27). In the peripheral blood plasmaCells subset of pSS patients,
the frequencies of IGHJ4 and IGHJ6 use were higher, while
frequencies of IGHV1-3, IGHV1-69D, and IGHV2-7D subtypes
were relatively lower. No significant changes were observed in the
heavy chain V region gene usage in NaiveB and Bmem
subpopulations. Primary immune thrombocytopenia (ITP) is a
disease caused by IgG antibodies against platelets. Studies
analyzing BCR libraries in ITP found B cell clones carrying
IGHV4-28/IGH]J4 in all ITP patients. There is a close
immunological connection between pSS and lymphoma, with the
risk of lymphoma significantly increased in long-term pSS patients
(28). Xuemin Xue and others found that in B cell lymphoma,
rearrangements of IGHV and IGH] genes were present (29). These
studies indicate that abnormal use and rearrangements of IGHV
and IGH]J gene segments may contribute to autoimmune diseases
and lymphoma. We can also speculate that the rearrangement and
abnormal usage of IGHV and IGH] genes in B cells in pSS patients
may contribute to the disease's onset and the development of pSS
to lymphoma.

However, this study has certain limitations. The scRNA-Seq
data were derived from PBMCs rather than purified B cells, which
may limit the resolution of transcriptional features within B cell
subpopulations. In addition, experimental validation focused on
downstream interferon-effector genes such as ISG15, but not on
upstream regulators. Future studies with purified B cell subsets and
functional assays will be needed to clarify the role of IFN-I signaling
in aberrant B cell activation in pSS.

In summary, this study used scRNA-Seq and chip data analysis
to reveal the key genes and related signaling pathways in B cells
involved in the pathogenesis of pSS. B cells participate in the
pathogenesis of pSS not only through the type I IFN signaling
pathway mediated by genes like ISG15, IFI44L, IFI44, STAT1, and
IFI6, but also through changes in BCR clonotypes, rearrangements,
and abnormal usage of IGHV-] genes.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found here: https://www.jianguoyun.com/p/
DTSjHPUQyZLgDRjKnYoGIAA.

Ethics statement

This study was approved by the Medical Ethics Committee of
Ningxia Medical University General Hospital (Ethics No. KYLL-
2021-585). The studies were conducted in accordance with the local
legislation and institutional requirements. Written informed
consent for participation in this study was provided by the
participants’ legal guardians/next of kin. Written informed
consent was obtained from the individual(s) for the publication of
any potentially identifiable images or data included in this article.

frontiersin.org


https://www.jianguoyun.com/p/DTSjHPUQyZLgDRjKnYoGIAA
https://www.jianguoyun.com/p/DTSjHPUQyZLgDRjKnYoGIAA
https://doi.org/10.3389/fimmu.2025.1665086
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Zhang et al.

Author contributions

XZ: Funding acquisition, Writing - original draft. YH: Writing —
original draft. JZ: Data curation, Writing — original draft. YS: Data
curation, Writing — original draft. YZ: Investigation, Writing — original
draft. JW: Software, Writing - original draft. XX: Methodology,
Writing - review & editing. BL: Writing - review & editing,
Methodology. JT: Writing - original draft, Supervision.
LF: Writing - review & editing. HZ: Funding acquisition,
Investigation, Writing — original draft.

Funding

The author(s) declare financial support was received for the research
and/or publication of this article. The study was supported by nature
science foundation of Ningxia province (2025AAC020097), Shandong
Provincial Natural Science Foundation (ZR2023MHO66), Qingdao
Medical and health scientific research project (2024-WJKY160),
‘Clinical Medicine +X research project of Affiliated Hospital of
Qingdao University (QDFY+X2024210), Shandong Postdoctoral
Science Foundation (SDBX2024043) and the Postdoctoral Fellowship
Program of CPSF under Grant Number GZC20251551.

Acknowledgments

Xiaoyu Zhang and Yuanwei Han edited the manuscript
meticulously. Jing Zhang and Yu Song and Xinran Xin was
responsible for figure preparation and data interpretation. Yan
Zhou, Jia Wang and Jinhai Tian collected and analyzed data.
Hong Zhu, Li Fang and Bin Liu signed and instituted critical
revisions. Unanimously, all contributors endorsed and consented
to the manuscript's submission.

References

1. Mariette X, Criswell LA. Primary Sjogren’s Syndrome [J. N Engl ] Med. (2018)
378:931-9. doi: 10.1056/NEJMcp1702514

2. Brito-Zeron P, Baldini C, Bootsma H, Bowman SJ, Jonsson R, Mariette X, et al.
Sjogren syndrome []. Nat Rev Dis Prime. (2016) 2:16047. doi: 10.1038/nrdp.2016.47

3. Nocturne G, Mariette X. B cells in the pathogenesis of primary Sjogren syndrome
[J. Nat Rev Rheumatol. (2018) 4:133-45. doi: 10.1038/nrrheum.2018.1

4. Zhang F, Jonsson AH, Nathan A, Millard N, Curtis M, Xiao Q, et al.
Deconstruction of rheumatoid arthritis synovium defines inflammatory subtypes [J.
Nature. 623:616-24. doi: 10.1038/s41586-023-06708-y

5. Shiboski CH, Shiboski SC, Seror R, Criswell LA, Labetoulle M, Lietman TM, et al.
American College of Rheumatology/European League Against Rheumatism
Classification Criteria for Primary Sjogren's Syndrome: A Consensus and Data-
Driven Methodology Involving Three International Patient Cohorts [J. Arthritis
Rheumatol. (20162017) 69:35-45. doi: 10.1136/annrheumdis-2016-210571

6. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR:
ultrafast universal RNA-seq aligner[]. Bioinformatics. 291:15-21. doi: 10.1093/
bioinformatics/bts635

7. Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression
data analysis [J. Genome Biol. (2018) 19:15. doi: 10.1186/s13059-017-1382-0

8. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast, sensitive
and accurate integration of single-cell data with Harmony(]. Nat Methods. (2019)
16:1289-96. doi: 10.1038/s41592-019-0619-0

Frontiers in Immunology

13

10.3389/fimmu.2025.1665086

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative Al was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’'s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1665086/
full#supplementary-material

9. Becht E, McInnes L, Healy J, Dutertre C-A, Immanuel W, Kwok H, et al
Dimensionality reduction for visualizing single-cell data using UMAP []. Nat
Biotechnol. (2018), 3. doi: 10.1038/nbt.4314

10. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological
themes among gene clusters [J. OMICS. (2012) 16:284-7. doi: 10.1089/0mi.2011.0118

11. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic
Acids Res. (2000) 28:27-30. doi: 10.1093/nar/28.1.27

12. Van de Sande B, Flerin C, Davie K, De Waegeneer M, Hulselmans G, Aibar S,
et al. A scalable SCENIC workflow for single-cell gene regulatory network analysis [J.
Nat Protoc. (2020) 15:2247-76. doi: 10.1038/s41596-020-0336-2

13. Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R. CellPhoneDB:
inferring cell-cell communication from combined expression of multi-subunit ligand-
receptor complexes [J. Nat Protoc. (2020) 15:1484-506. doi: 10.1038/s41596-020-0292-x

14. Qiu X, Hill A, Packer J, Lin D, Ma YA, Trapnell C. Single-cell mRNA
quantification and differential analysis with Census [J. Nat Methods. (2017) 14:309—
15. doi: 10.1038/nmeth.4150

15. Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, et al. Reverse graph

embedding resolves complex single-cell developmental trajectories [J. Nat Methods.
(2017) 14:979-82. doi: 10.1038/nmeth.4402

16. Luo S, Wu R, Li Q, Zhang G. Epigenetic regulation of IFI44L expression in
monocytes affects the functions of monocyte-derived dendritic cells in systemic lupus
erythematosus [J. J Immunol Res. (2022) 2022:4053038. doi: 10.1155/2022/4053038

frontiersin.org


https://www.frontiersin.org/articles/10.3389/fimmu.2025.1665086/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1665086/full#supplementary-material
https://doi.org/10.1056/NEJMcp1702514
https://doi.org/10.1038/nrdp.2016.47
https://doi.org/10.1038/nrrheum.2018.1
https://doi.org/10.1038/s41586-023-06708-y
https://doi.org/10.1136/annrheumdis-2016-210571
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.1038/nbt.4314
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1038/s41596-020-0336-2
https://doi.org/10.1038/s41596-020-0292-x
https://doi.org/10.1038/nmeth.4150
https://doi.org/10.1038/nmeth.4402
https://doi.org/10.1155/2022/4053038
https://doi.org/10.3389/fimmu.2025.1665086
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Zhang et al.

17. Cui Y, Zhang H, Wang Z, Gong B, Al-Ward H, Deng Y, et al. Exploring the
shared molecular mechanisms between systemic lupus erythematosus and primary
Sjogren's syndrome based on integrated bioinformatics and single-cell RNA-seq
analysis [J. Front Immunol. (2023) 14:1212330. doi: 10.3389/fimmu.2023.1212330

18. Jara D, Carvajal P, Castro I, Barrera MJ, Aguilera S, Gonzalez S, et al. Type I
interferon dependent hsa-miR-145-5p downregulation modulates MUCI1 and TLR4
overexpression in salivary glands from Sjogren’s syndrome patients [J. Front Immunol.
(2021) 12:685837. doi: 10.3389/fimmu.2021.685837

19. Hermann-Kleiter N, Gruber T, Lutz-Nicoladoni C, Thuille N, Fresser F, Labi V, et al.
The nuclear orphan receptor NR2F6 suppresses lymphocyte activation and T helper 17-
dependent autoimmunity [J. Immunity. (2008) 29:205-16. doi: 10.1016/j.immuni.2008.06.008

20. Wack A, Terczynska-Dyla E, Hartmann R. Guarding the frontiers: the biology of
type III interferons [J. Nat Immunol. (2015) 16:802-9. doi: 10.1038/ni.3212

21. Ivashkiv LB, Donlin LT. Regulation of type I interferon responses [J. Nat Rev
Immunol. (2014) 14:36-49. doi: 10.1038/nri3581

22. Feng D, Stone RC, Eloranta ML, Sangster-Guity N, Nordmark G, Sigurdsson S,
et al. Genetic variants and disease-associated factors contribute to enhanced interferon
regulatory factor 5 expression in blood cells of patients with systemic lupus
erythematosus [J. Arthritis Rheumatol. (2010) 62:562-73. doi: 10.1002/art.27223

23. Song S, De S, Nelson V, Chopra S, LaPan M, Kampta K, et al. Inhibition of IRF5
hyperactivation protects from lupus onset and severity [J. J Clin Invest. (2020)
130:6700-17. doi: 10.1172/JCI120288

Frontiers in Immunology

14

10.3389/fimmu.2025.1665086

24. Tao H, Lin H, Sun Z, Pei F, Zhang ], Chen S, et al. KIf4 Promotes Dentinogenesis
and Odontoblastic Differentiation via Modulation of TGF-f Signaling Pathway and
Interaction With Histone Acetylation [J. J Bone Miner Res. (2019) 34:1502-16.
doi: 10.1002/jbmr.3716

25. Arbuckle MR, McClain MT, Rubertone MV, Scofield RH, Dennis GJ, James JA,
et al. Development of autoantibodies before the clinical onset of systemic lupus
erythematosus. [J]. N Engl ] Med. (2003) 349:1526-33. doi: 10.1056/NEJM0a021933

26. Odendahl M, Jacobi A, Hansen A, Feist E, Hiepe F, Burmester GR, et al.
Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus [J. J
Immunol. (2000) 165:5970-9. doi: 10.4049/jimmunol.165.10.5970

27. Doorenspleet ME, Klarenbeek PL, de Hair MJ, van Schaik BD, Esveldt RE, van
Kampen AH, et al. Rheumatoid arthritis synovial tissue harbours dominant B-cell and
plasma-cell clones associated with autoreactivity [J. Ann Rheum Dis. (2014) 73:756-62.
doi: 10.1136/annrheumdis-2012-202861

28. Brito-Zeron P, Kostov B, Fraile G, Caravia-Duran D, Maure B, Rascon FJ, et al.
Characterization and risk estimate of cancer in patients with primary Sjégren syndrome
[J. ] Hematol Oncol. (2017) 10:90. doi: 10.1186/s13045-017-0464-5

29. Xue X, FuL, Qiu T, Cao Z, Wang X, Rao W, et al. Losing CD45 and various B-
cell markers in a case of MYC-driven pediatric high-grade B-cell lymphoma, not
otherwise specified that transformed from Burkitt's lymphoma during rituximab-
containing treatments: a case report. [J]. Virchows Arch. (2023) 483:111-6.
doi: 10.1007/500428-022-03433-1

frontiersin.org


https://doi.org/10.3389/fimmu.2023.1212330
https://doi.org/10.3389/fimmu.2021.685837
https://doi.org/10.1016/j.immuni.2008.06.008
https://doi.org/10.1038/ni.3212
https://doi.org/10.1038/nri3581
https://doi.org/10.1002/art.27223
https://doi.org/10.1172/JCI120288
https://doi.org/10.1002/jbmr.3716
https://doi.org/10.1056/NEJMoa021933
https://doi.org/10.4049/jimmunol.165.10.5970
https://doi.org/10.1136/annrheumdis-2012-202861
https://doi.org/10.1186/s13045-017-0464-5
https://doi.org/10.1007/s00428-022-03433-1
https://doi.org/10.3389/fimmu.2025.1665086
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	B cell subpopulations and their role in the pathogenesis of primary Sj&ouml;gren’s syndrome: insights from single-cell RNA sequencing
	1 Introduction
	2 Materials and methods
	2.1 Study subjects
	2.2 Research methods
	2.2.1 Preparation of single-cell suspension
	2.2.2 RT &amp; Amplification &amp; Library Construction
	2.2.3 Quality control, dimensionality reduction, and clustering
	2.2.4 Differential gene identification and cell type annotation
	2.2.5 Pathway enrichment analysis
	2.2.6 Transcription factor regulatory network analysis
	2.2.7 Cell-cell communication network analysis
	2.2.8 Pseudotime analysis
	2.2.9 VDJ analysis
	2.2.10 B cell isolation by Ficoll gradient and CD19-positive selection
	2.2.11 qRT-PCR

	2.3 Statistical analysis

	3 Results
	3.1 Analysis of cell types and differential genes in peripheral blood single cells of pSS and HC groups
	3.2 Differential gene comparison and functional enrichment analysis of B cell subtypes in the pSS group
	3.3 Transcription factor analysis of B cell subtypes in the pSS group
	3.4 Cell communication network analysis
	3.5 Pseudo-time analysis of B cell subtypes in the pSS and HC groups
	3.6 BCR analysis
	3.7 qRT-PCR analysis

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


