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Objective: This study aims to investigate the potential role of B cells in the

pathogenesis of Primary Sjögren’s Syndrome (pSS) by analyzing cell types,

differentially expressed genes, and associated signaling pathways using single-

cell RNA sequencing.

Methods: Peripheral bloodmononuclear cells (PBMCs) from 3 pSS patients and 3

healthy controls (HCs) were collected. Single-cell transcriptomic analysis was

performed, including GeneOntology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analysis, transcription factor analysis,

pseudotime analysis, cell communication analysis, and B cell receptor (BCR)

repertoire analysis. Genes and pathways potentially involved in the pathogenesis

of pSS were identified, and key genes were validated by qRT-PCR. Statistical

significance was assessed using T-tests and the Wilcoxon rank-sum test, with a

p-value < 0.05 considered statistically significant.

Results: Single-cell RNA sequencing of peripheral blood B cells from three

patients with primary Sjögren’s syndrome (pSS) and three healthy controls

(HCs) identified three subpopulations: memory B (Bmem), naïve B (NaiveB),

and plasma cells (PlasmaCells). In pSS, differentially expressed genes were

enriched in Type I interferon signaling, antigen processing/presentation, and

MHC class II binding. Transcription factors related to interferon responses,

including NR2F6, IRF5, STAT2, and IRF9, were upregulated. Cell–cell

communication analysis highlighted frequent interactions via TNFSF10–

TNFRSF10C and TGFB1–TGFBR3. Pseudotime analysis indicated accelerated

NaiveB differentiation along the effector branch. B cell receptor repertoire

analysis revealed increased IGHV4-34 usage and higher IGHJ4/IGHJ6 usage in

PlasmaCells, with reduced IGHV1-3, IGHV1-69D, and IGHV2-7D usage. qRT-

PCR validation in 22 pSS patients and 22 HCs confirmed significant ISG15

upregulation (p < 0.0001).
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Conclusion: B cells contribute to the pathogenesis of pSS through the Type I IFN

signaling pathway mediated by genes such as ISG15, alterations in BCR clonality,

IGHV-J gene rearrangements, and abnormal gene usage.
KEYWORDS

primary Sjögren’s syndrome, single-cell transcriptome sequencing, B cells, cell
communication, pseudo-time analysis
1 Introduction

pSS is a chronic inflammatory autoimmune disease

characterized by lymphocyte proliferation and progressive

damage to exocrine glands. Patients with pSS have multiple

autoantibodies in their serum. In addition to dysfunction of the

salivary and lacrimal glands, multi-organ and multi-system

involvement may occur (1). The etiology of pSS remains unclear,

but studies suggest that disruption of the innate immune barrier,

through mechanisms involving IFN pathways, plays a key role in

the pathogenesis of SS, particularly in the early stages of the disease

(2). Research indicates that B cells play a central role in the

pathogenesis of pSS (3), although there are still differing views on

the specific mechanisms by which B cells contribute to pSS.

Clarifying the pathogenesis is crucial.

Single-cell RNA sequencing (scRNA-seq) is a new technology

for high-throughput RNA sequencing and analysis at the single-cell

level. scRNA-seq provides insights by analyzing differences between

cells and subpopulations of cells. Studies have used scRNA-seq to

analyze differential expression in synovial cells of rheumatoid

arthritis patients, offering new insights into the pathology and

heterogeneity of rheumatoid arthritis, and providing information

for novel targeted therapies (4). However, research on scRNA-seq in

pSS is limited. This study performed scRNA-seq on peripheral

blood cells from pSS patients and healthy individuals, and analyzed

the B cell subpopulations in depth, revealing differences in

expression across B cell subgroups. This provides new insights

into the involvement of B cells in the pathogenesis of pSS.
2 Materials and methods

2.1 Study subjects

A total of 25 patients diagnosed with pSS for the first time at the

Rheumatology and Immunology Department of Ningxia Medical

University General Hospital were enrolled as the pSS group.

Additionally, 25 healthy individuals from the same hospital who

underwent physical examinations were included as the HC group.

Three subjects from each group were randomly selected for single-

cell sequencing, while the remaining 22 subjects in each group were

used for qRT-PCR analysis. The pSS diagnostic criteria followed the
02
2002 and 2016 classification standards established by the American

College of Rheumatology (ACR) or the European League Against

Rheumatism (EULAR) (5). Exclusion criteria: patients with other

systemic autoimmune diseases (including systemic lupus

erythematosus, dermatomyositis, rheumatoid arthritis, adult-onset

Still’s disease, etc.), vascular diseases, infectious diseases,

hematologic diseases, tumors, neuropsychiatric disorders,

pregnancy, and other conditions. The study protocol was

approved by the Ethics Committee of Ningxia Medical University

General Hospital, and all participants provided informed consent

(KYLL-2024-0327).
2.2 Research methods

2.2.1 Preparation of single-cell suspension
PBMCs were isolated using density gradient centrifugation with

lymphocyte separation medium (Ficoll-Paque Plus, GE Healthcare)

and washed with PBS without calcium and magnesium. To remove

red blood cells, 2 mL of GEXSCOPE® red blood cell lysis

buffer (RCLB, Singleron) was added at 25 °C for 10 minutes. The

solution was then centrifuged at 500×g for 5 minutes and

resuspended in PBS. The blood sample was centrifuged at 400g

for 5 minutes at 4 °C, and the supernatant was discarded. After

removal of red blood cells, the PBMCs were separated by

centrifugation at 400g for 10 minutes at 4 °C. The supernatant

was discarded, and the PBMCs were resuspended in PBS to obtain a

single-cell suspension. The cell viability was assessed using Trypan

Blue staining, with cell viability greater than 90% based on

microscopy counting.
2.2.2 RT & Amplification & Library Construction
For single-cell sequencing, 3 pSS patient samples and 3 healthy

control samples (2×105 cells/mL, 100 mL) were loaded onto a

SCOPE-chip™ microfluidic chip. Libraries were constructed

following the protocol of sCircle® Single Cell Full Length

Immuno_BCR Library Kit (Biotechnologies). Specifically, poly(A)

tails were captured by magnetic beads with molecular markers. Cells

and mRNA were labeled after the cells were lysed. The magnetic

beads in the chip were collected, and mRNAs were reverse-

transcribed into complementary DNA (cDNA) and amplified.

After local cDNAs were fragmented and spliced, transcriptome
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sequencing libraries suitable for the Illumina sequencing platform

were constructed. The remaining cDNA was enriched to the full

length immune receptor (BCR) by three rounds. Then the enriched

products were fragmented and spliced to construct the BCR

sequencing libraries, suitable for the Illumina sequencing

platform. Finally, sequencing of the libraries was performed on

Illumina Nova 6000, with a pair-end length of 150bp.

2.2.3 Quality control, dimensionality reduction,
and clustering

The raw sequencing reads were processed using CeleScope

v1.14.0 (Singleron Biotechnology), with default parameters.

Briefly, Barcodes and UMIs were extracted from R1 reads and

corrected. Adapter sequences and poly A tails were trimmed from

R2 reads and the trimmed R2 reads were aligned against the

GRCh38 (hg38) transcriptome using STAR(v2.6.1b). Uniquely

mapped reads were then assigned to exons with FeatureCounts

(v2.0.1) (6). Successfully Assigned Reads with the same cell barcode,

UMI and gene were grouped together to generate the gene

expression matrix for further analysis. For each dataset, quality

control, dimensionality reduction, and clustering analysis were

conducted using Scanpy v1.8.2 in the Python 3.7 environment

(7). The following filtering criteria were applied: Exclude cells

with gene counts below 200 or in the top 2% of gene counts;

Exclude cells with unique molecular identifier (UMI) counts in the

top 2%; Exclude cells with mitochondrial gene content exceeding

30%; Exclude genes expressed in fewer than 5 cells.

After filtering, 65670 cells were retained for the downstream

analyses. The raw count matrix was normalized by total counts per

cell and logarithmically transformed into normalized data matrix.

Top 2000 variable genes were selected by setting flavor =

‘seurat_v3’. Principle Component Analysis (PCA) was performed

on the scaled variable gene matrix, and top20 principle components

were used for clustering and dimensional reduction. Batch effect

between samples was removed by Harmony v1.0 (8). Cells were

separated by using Louvain algorithm and setting resolution

parameter at 1.2. Cell clusters were visualized by using Uniform

Manifold Approximation and Projection (UMAP) (9).

2.2.4 Differential gene identification and cell type
annotation

To identify differentially expressed genes (DEGs), we used the

scanpy.tl.rank_genes_groups() function based on Wilcoxon rank

sum test with default parameters, and selected the genes expressed

in more than 10% of the cells in either of the compared groups of

cells and with an average log(Fold Change) value greater than 1 as

DEGs. Adjusted p value was calculated by benjamini-hochberg

correction and the value 0.05 was used as the criterion to evaluate

the statistical significance.

The cell type identification of each cluster was determined

according to the expression of canonical markers from the

reference database SynEcoSysTM (Singleron Biotechnology).

SynEcoSysTM contains collections of canonical cell type markers

for single-cell seq data, from CellMakerDB, PanglaoDB and recently

published literatures. Cell doublets were estimated based on the
Frontiers in Immunology 03
expression pattern of canonical cell markers. Any clusters enriched

with multiple cell type-specific markers were excluded for

downstream analysis.

2.2.5 Pathway enrichment analysis
To investigate the potential functions , Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis

were used with the “clusterProfiler” R package v 3.16.1 (10, 11).

Pathways with p_adj value less than 0.05 were considered as

significantly enriched. Selected significant pathways were plotted

as bar plots.

2.2.6 Transcription factor regulatory network
analysis

Transcription factor network was constructed by pyscenic

(v0.11.0) using scRNA expression matrix and transcription

factors in AnimalTFDB. First, GRNBoost2 predicted a regulatory

network based on the co-expression of regulators and targets.

CisTarget was then applied to exclude indirect targets and to

search transcription factor binding motifs. After that, AUCell was

used for regulon activity quantification for every cell. Cluster-

specific TF regulons were identified according to Regulon

Specificity Scores (RSS) and the activity of these TF regulons were

visualized in heatmaps (12).
2.2.7 Cell-cell communication network analysis
Cell-cell interaction (CCI) were predicted based on known

ligand–receptor pairs by Cellphone DB (v2.1.0) version (13).

Permutation number for calculating the null distribution of

average ligand-receptor pair expression in randomized cell

identities was set to 1000. Individual ligand or receptor

expression was thresholded by a cutoff based on the average log

gene expression distribution for all genes across each cell type.

Predicted interaction pairs with p value <0.05 and of average log

expression > 0.1 were considered as significant and visualized by

heatmap_plot and dot_plot in CellphoneDB.
2.2.8 Pseudotime analysis
Cell differentiation trajectory was reconstructed with the

Monocle2 v 2.10.0. For constructing the trajectory, top 2000

highly variable genes were selected by FindVairableFeatures, and

dimension-reduction was performed by DDRTree. The trajectory

was visualized by plot_cell_trajectory function in Monocle2

(14, 15).
2.2.9 VDJ analysis
ScBCR clonotype assignment were performed using CeleScope

vdj pipeline v1.14.0 (Singleron Biotechnology), with GRCh38 as

reference. In brief, a BCR diversity metric, containing clonotype

frequency and barcode information, was obtained. For the BCR,

only cells with one productive IGH chain and one productive IGK/

IGL chain were kept for further analysis. Each unique IGH-IGK/

IGL pair was defined as a clonotype.If one clonotype was present in

at least two cells, cells harboring this clonotype were considered to
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be clonal and the number of cells with such pairs indicated the

degree of clonality of the clonotype.

2.2.10 B cell isolation by Ficoll gradient and
CD19-positive selection

PBMCs were obtained from fresh EDTA-anticoagulated

peripheral blood of pSS patients and healthy controls by Ficoll-

Paque density gradient centrifugation (Cat#LTS1077, TBD).

PBMCs were then incubated with CD19 MicroBeads (Cat#17954,

STEMCELL Technologies) and positively selected according to the

manufacturer’s protocol. Purity of the isolated B cells was

determined by flow cytometry using an anti-human CD19-APC

antibody (Cat#309512, BioLegend) and consistently exceeded 95%.

Total RNA was extracted from the purified B cells using TRIzol

reagent (Cat#15596018CN, Invitrogen), quantified and assessed for

purity, and subsequently subjected to quantitative PCR (qRT-

PCR) analysis.

2.2.11 qRT-PCR
For qRT-PCR analysis, 22 pSS patient samples and 22 healthy

control blood samples (≥5 mL) were collected. Total RNA was

extracted using the Biotech RNA extraction kit RP4002, and RNA

concentration and purity were measured using a NanoDrop 2000

spectrophotometer (Thermo Scientific). Samples with an A260/

A280 ratio of 1.8–2.0 and a concentration >50 ng/mL were stored

at -80 °C. Quantitative reverse transcription was performed using

the PrimeScript RT kit (Takara Bio). 200 ng RNA, 2 mL PrimeScript

RT Master Mix (Takara Bio), and RNase-free water were mixed to a

final volume of 10 mL to complete the reverse transcription and

obtain cDNA. qPCR was performed using 2 mL cDNA, 10 mL TB-

Green Premix Ex Taq (Takara Bio), 6.4 mL RNase-free water, and

0.8 mL primers (forward and reverse). The reaction was performed

on a Lightcycler 480 System with the following conditions: 95 °C for

3 s, followed by 40 cycles of denaturation at 95 °C for 5 s and

extension at 60 °C for 30 s. Each sample was tested in triplicate, and

the difference in Ct values (fluorescence threshold cycle number)

was less than 0.5. The relative expression level of ISG15 was

analyzed using the 2-DDCt method. The primer sequences used

were as follows: ISG15 forward primer: 5’-CGCAGATCA

CCCAGAAGATCG-3’, reverse primer: 5’-TTCGTCGCATTT

GTCCACCA-3 ‘; GAPDH forward primer: 5’-CCACGGCTG

CTTCCAGCTCC-3’, reverse primer: 5’-GGACTCCATGC

CCAGGAAGGAA-3 ‘.
2.3 Statistical analysis

Cell distribution comparisons between two groups were

performed using the unpaired two-tailed Wilcoxon rank-sum test.

Comparisons of gene expression or gene features between two

groups were performed using the unpaired two-tailed Student’s t-

test. Non-normally distributed quantitative data were presented as

median and percentiles [M(P25, P75)], and group comparisons

were performed using the Mann-Whitney U test. Statistical analyses
Frontiers in Immunology 04
and data presentation were performed using R and Python. A p-

value of <0.05 was considered statistically significant.
3 Results

3.1 Analysis of cell types and differential
genes in peripheral blood single cells of
pSS and HC groups

A total of 65,670 cells were captured, with 34,221 from the pSS

group and 31,449 from the HC group (Supplement table1).

Unsupervised clustering of all cells identified 20 clusters

(Supplementary Figure S1A), which were subsequently annotated

as eight major cell types based on canonical marker gene expression

(Supplementary Figure S5B): B cells, T cells, natural killer (NK)

cells, neutrophils, basophils, mononuclear phagocytes (MPs),

plasmacytoid dendritic cells (pDCs), and erythrocytes

(Figures 1A, B). Among the 2,938 captured B cells, unsupervised

of all cells identified 4 clusters (Supplementary Figure S1C). Based

on canonical marker gene expression,the results showed

(Supplementary Figure S1D): Cluster 1 and Cluster 3 were

identified as NaiveB (IGHD,IL4R,IGHM),Cluster 2 was classified

as Bmem(CD27,TNFRSF13B,ANXA2), and Cluster 4 was

determined to be PlasmaCells(JCHAIN,MZB1, IGHG1)

(Figure 1C). In comparison to the HC group, the pSS group

exhibited trends of increased median proportions in B cells

(4.40% vs 3.59%), MPs (11.53% vs 2.17%), NK cells (7.37% vs

4.29%), basophils (0.91% vs 0.49%), and pDCs (0.07% vs 0.06%).

Conversely, trends of decreased median proportions were observed

in T cells (24.87% vs 31.92%) and neutrophils (49.98% vs 58.47%)

(Figure 1D). Compared to the HC group, the pSS group exhibited

elevated median proportions of NaiveB (71.70% vs 67.65%) and

PlasmaCells (2.70% vs 0.67%), while the median proportion of

Bmem was reduced (25.61% vs 32.35%) (Figure 1E).The top 10

differentially expressed genes in B cells were IGHM, IGLC2,

MS4A1, IGHA1, IGLC3, IGHD, CD74, CD79A, IGHG1, and

BANK1 (Figure 1F). A heatmap of the top 10 upregulated genes

in each B cell subtype revealed that NaiveB expressed high levels of

TCL1A, IGHD, and FCER2, PlasmaCells showed high expression of

IGHA1, JCHAIN, and MZB1, while Bmem cells had elevated levels

of AIM2, LINC01781, and ITGB1 (Figure 1G).
3.2 Differential gene comparison and
functional enrichment analysis of B cell
subtypes in the pSS group

In this study, differentially expressed genes (DEGs) in the three

B cell subtypes (Bmem, NaiveB, and PlasmaCells) from patients

with pSS were analyzed using GO and KEGG pathway enrichment.

For the Bmem subtype, upregulated genes such as MX1, IFI44L,

ISG15, and STAT1 were primarily enriched in the Type I interferon

signaling pathway and immune response-related processes.
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Downregulated genes, including H1-10, FOSB, and JUN, were

mainly involved in ribosomal functions and mRNA binding

(Figure 2A). KEGG analysis showed that upregulated genes were

enriched in pathways such as "Proteasome," "Antigen processing

and presentation," and "Epstein-Barr virus infection" (Figure 2B),

while downregulated genes were associated with pathways like

"Ribosome," "COVID-19," and "IL-17 signaling pathway"

(Figure 2C).GO analysis revealed that upregulated genes were

enriched in "Type I interferon signaling pathway," "Regulation of

innate immune response," and "Viral response" at the biological

process (BP) level (Figure 2D), while downregulated genes were

enriched in "Ribosome" and "RNA binding" at the cellular

component (CC) and molecular function (MF) levels (Figure 2E).

In the NaiveB subtype, upregulated genes such as IFI44L,

ISG15, and STAT1 were associated with Type I interferon

responses and viral immune responses. The downregulated genes,

including RASAL2, FOSB, and KLF6, were enriched in translation

initiation and ribosomal processes (Supplementary Figure S2A).

KEGG analysis highlighted the enrichment of upregulated genes in

"Prion disease" "Oxidative phosphorylation" and "Antigen

processing and presentation" (Supplementary Figure S2B), while

downregulated genes were primarily enriched in "Ribosome"

"COVID-19" and "Th17 cell differentiation" pathways
Frontiers in Immunology 05
(Supplementary Figure S2C). GO analysis indicated that

upregulated genes in NaiveB cells were mainly enriched in

"Response to type I interferon" and "Response to virus" at the BP

level, "Phagosome" and "Mitochondrial inner membrane" at the CC

level, and "MHC class II protein complex binding" at the MF level

(Supplementary Figure S2D). Downregulated genes were enriched

in "Ribosome" and "RNA binding" at the CC and MF levels

(Supplementary Figure S2E).

For PlasmaCells, the upregulated genes such as ISG15, IFI6, and

STAT1 were linked to antigen processing, MHC class II binding,

and peroxidase activity. Downregulated genes like FRAT2,

SLC25A27, and DIP2B were associated with ribosomal functions

and translation initiation (Supplementary Figure S3A). KEGG

pathway analysis revealed that upregulated genes in PlasmaCells

were enriched in "Protein processing in the endoplasmic reticulum"

"Antigen processing and presentation" and "Parkinson's disease"

(Supplementary Figure S3B), while downregulated genes were

primarily associated with "Osteoclast differentiation" and

"Endocytosis" (Supplementary Figure S3C) .GO analysis showed

that upregulated genes were enriched in "Processing and

presentation of exogenous peptide antigens" at the BP level,

"Endoplasmic reticulum protein complex" at the CC level, and

"Molecular carrier activity" and "MHC class II protein complex
FIGURE 1

PBMC Cluster Types and Differential Genes in the pSS Group and HC Group. (A) UMAP plot of cell dimensionality reduction for the HC group; (B)
UMAP plot of cell dimensionality reduction for the pSS group; (C) UMAP plot of B cell dimensionality reduction; (D) Proportion of PBMC cell
composition; (E) Proportion of B cell composition; (F) Heatmap of top 10 differentially expressed genes in each PBMC cell cluster: yellow indicates
high expression, purple indicates low expression; (G) Heatmap of top 10 differentially expressed genes in B cell subsets.
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binding" at the MF level (Supplementary Figure S3D).

Downregulated genes were mainly involved in "Ribosome" and

"RNA binding" processes (Supplementary Figure S3E).
3.3 Transcription factor analysis of B cell
subtypes in the pSS group

Compared to the HC group, the transcription factors NR2F6

and IRF5 were significantly upregulated in Bmem cells in the pSS

group, while KLF4 and JUNB were significantly downregulated. In

NaiveB cells, the transcription factors STAT2, IRF9, THRB, and
Frontiers in Immunology 06
BATF3 were significantly upregulated, whereas TGIF2, KLF4, FOS,

BOCH2, and FOXO1 were significantly downregulated. In

PlasmaCells, the transcription factors AHR, ZFP64, ARID3A, and

XBP1 were significantly upregulated, while ELF2, FOXO1, and

POLR3G were significantly downregulated (Figure 3A).
3.4 Cell communication network analysis

The interactions between B cells and other cell types in the pSS

group were analyzed, including 30 ranked interaction pairs,

chemokine interaction pairs, immune checkpoint interaction
FIGURE 2

Inter-group Comparison and Functional Analysis of Differential Genes in the Bmem Subset. (A) Heatmap of top 20 differential gene expression
comparisons in the Bmem subset; (B) KEGG pathway analysis of upregulated genes in the Bmem subset of the pSS group; (C) KEGG pathway
analysis of downregulated genes in the Bmem subset of the pSS group; (D) GO term analysis of upregulated genes in the Bmem subset of the pSS
group; (E) GO term analysis of downregulated genes in the Bmem subset of the pSS group.
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pairs, growth factor interaction pairs, and cytokine interaction

pairs. The results showed that the interaction pairs between B

cells and MPs were the most numerous (Figures 3B–D). As ligands,

B cells primarily communicate through the following pairs:

LGALS9-HAVCR2, CXCL8-CXCR2, TNFSF10-TNFRSF10C,

TGFB1-TGFBR3, HLA-E-KLRC1, FAM3C-HLA-C, among others

(Supplementary Figure S4A-E). When B cells act as receptors, the

main communication occurs through pairs such as CD28-CD86,

CXCL8-CXCR2, TNFSF138-TNFRSF13C, TGFB1-TGFBR3, ARP-

CD74, COPA-CD74, etc. (Supplementary Figure S5A-E).
Frontiers in Immunology 07
3.5 Pseudo-time analysis of B cell subtypes
in the pSS and HC groups

Pseudotime trajectory analysis of B cell subtypes in the pSS

group (Figure 4A) revealed potential developmental relationships

among these subsets. The analysis identified 5 key cellular state

nodes and two main developmental branch paths. Naive B cells

were predominantly located at the starting point of the trajectory

and distributed along the initial segments of both branches. The

first branch path was primarily enriched with Naive B cells, while
FIGURE 3

Transcriptional Regulation and Cellular Communication in B Cell Subsets. (A) Heatmap of average transcription factor expression comparisons
between groups in B cell subsets; (B) Interaction pair count plot between two cell types: The outer ring represents cell types; the inner ring shows
red for ligands and blue for receptors; line clarity is positively correlated with the number of interaction pairs between the two cell types, with
clearer lines indicating more interactions; (C) Heatmap of ligand-receptor pair counts between two cell types in the pSS group: Darker colors
represent a higher number of interaction pairs between the two cell types; (D) Heatmap of ligand-receptor pair counts between two cell types in the
HC group.
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the second branch path indicated a progression toward effector B

cell differentiation, with Bmem cells enriched in intermediate states

along this branch (Figure 4B). Cell states along the pseudotime

trajectory were classified into 11 distinct states. State 9 was in the

early left branch, followed by State 8 before the branching point.

Transitional States 3–7, 10, and 11 clustered around the branch
Frontiers in Immunology 08
root. The long right branch was mainly State 1 at late pseudotime,

and State 2 appeared rarely at the end of the left branch (Figure 4C).

Comparison with the HC group showed that in the pSS group, the

number of Naive B cells was relatively reduced at the trajectory

starting point but significantly increased at the initial segment of the

second branch, which functions as the effector branch. PlasmaCells
FIGURE 4

Pseudo-temporal trajectory plots of B cell subpopulations. (A) Pseudo-temporal trajectory plot of B cell evolution; (B) Distribution characteristics of
each B cell subpopulation in the pseudo-temporal differentiation trajectory; (C) Distribution of different cell subpopulations in the pseudo-temporal
differentiation trajectory; (D) Distribution of pseudo-temporal trajectories of each B cell subpopulation across different groups; (E) Distribution of
major time points of B cell clusters in different groups (HC, pSS, and all_group combined) along pseudo-time; the y-axis represents pseudo-time
(from bottom to top), the x-axis shows the proportion of cell types at different time points, and different colors represent different cell types; The
width of each colored band reflects the proportion of the corresponding cell type at a given pseudotime position; (F) Gene expression changes
along pseudo-time; the x-axis represents pseudo-time, and the y-axis shows the gene expression levels.
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were localized at the terminus of the second branch in both the HC

and pSS groups (Figure 4D). In the HC group, naive B cells were

mainly at the origin and decreased over time. In pSS, fewer naive B

cells were present at the origin, showing a rise then decline. Memory

B cells localized to intermediate nodes in both groups, but were

more abundant at terminal nodes in pSS. Plasma cells were terminal

in both, with higher proportion in pSS. Integrated all_group data

showed dynamic changes: naive B cells increased then decreased,

memory B cells were mid-distributed with late presence, and plasma

cells were terminal (Figure 4E). Further analysis of marker gene

expression patterns along pseudotime classified them into 6 clusters

(Figure 4F): Early-stage clusters (1–2) included JUN, NFKBIA,

DUSP1, FOS (stress-responsive/MAPK, NF-kB) and FCER2,

IGHD, TCL1A (B cell activation/maturation), showing

progressive downregulation. Late-stage clusters (4–6) comprised

immunoglobulin/plasma cell genes (IGKV4-1, IGHG, IGHA, IGLC,

JCHAIN, XBP1, MZB1), B2M (MHC I), and ITGB1, HBB, HBA2

(adhesion/oxygen transport), all upregulated toward pseudotime

end. Cluster 3 (AC099560.1, RPS3A) remained low, indicating

suppression of ribosomal/metabolic programs. Overall, expression

shifted from early stress and immune activation to late antibody

production, antigen presentation, and structural remodeling.
3.6 BCR analysis

BCR data analysis of 6 samples from the pSS and HC groups

revealed that the clonal frequencies of all B-cell subsets in both

groups were predominantly single-clonotype-dominated . The

proportion of large-scale clones (clonotype frequency > 10) was

0% across all subsets. The proportion of medium-scale clones

(clonotype frequency > 1 and ≤ 10) was low in both groups

(Figure 5A). Both NaiveB and Bmem cells exhibited clonal

expansion in samples from both groups; however, neither their

single-clonotype frequencies nor medium-scale clonotype

frequencies showed statistically significant differences between the

two groups. In contrast, PlasmaCells displayed clonal expansion in

all pSS samples (predominantly single-clonotype), whereas in the

HC group, clonality was detected only in HC03 (Supplement table

2). Further analysis of BCR clonal diversity using the D50 diversity

index demonstrated no statistically significant differences between

the pSS and HC groups (p = 0.7) (Figure 5B).

Further analysis of the IGHV and IGHJ genes of B cells from the

pSS and HC groups showed that in the pSS group, the top 5 IGHV

gene segments with the highest clonotype usage frequencies were:

IGHV3-23, IGHV4-34, IGHV4-39, IGHV3-33, and IGHV4-59. In

the HC group, the top 5 IGHV gene segments were: IGHV3-33,

IGHV3-23, IGHV4-39, IGHV4-59, and IGHV1-69D. Compared to

the HC group, the frequency of IGHV4-34 usage was higher in the

pSS group (median = 9.3% vs 3.9%), although the difference did not

reach statistical significance (p = 0.100, Mann-Whitney U =

0.000) (Figure 5C).

In terms of IGHJ gene segments, both pSS and HC groups

showed relatively high usage of IGHJ3, IGHJ4, IGHJ5, and IGHJ6

(Figure 5D). Further analysis of the usage frequency of heavy chain
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variable region (V) genes between the two groups in each B cell

subtype showed that in the PlasmaCells subtype, the frequency of

IGHJ4 and IGHJ6 usage was higher in the pSS group compared to

the HC group, while the frequency of IGHJ1 and IGHJ5 usage was

lower (Figure 5E). The usage frequency of IGHV gene segments in

the IGHV1-3, IGHV1-69D, and IGHV2-7D subtypes was relatively

decreased in the pSS group. No significant changes in heavy chain V

region gene usage frequencies were observed in the Bmem and

NaiveB subtypes (Figure 5F).
3.7 qRT-PCR analysis

From the above data, it was found that in the B cell subtypes of

pSS patients, type I IFN-related genes such as ISG15, IFI44L, and

IFI44 were significantly upregulated. Both functional enrichment

and cell communication analyses suggested that the IFN pathway

may be involved in the pathogenesis of pSS. To further validate the

reliability of these results, the ISG15 gene was selected for qRT-PCR

verification. ISG15 was signifificantly overexpressed in the

peripheral blood of pSS patients (p < 0.0001) and in purifified B

cells (p = 0.0076) (Figure 6).
4 Discussion

pSS is a complex and heterogeneous disease, and its

pathogenesis remains unclear. RNA-seq technology retains the

transcriptional differences of different cells, providing a significant

advantage in identifying cell subtype characteristics and cell

interactions. In this study, we performed comprehensive

bioinformatics analysis of the transcriptome to study cell

clustering, gene differences, and related pathways in pSS. First, we

clustered a total of 65,670 cells from 6 samples of peripheral blood

from the pSS and HC groups. Compared to the HC group, the pSS

group exhibited an elevated median proportion of B cells,

suggesting that B cell activation might be related to the onset of

pSS. Subsequently, we annotated the B cell populations and

identified three B cell subtypes: Bmem, NaiveB, and PlasmaCells.

Additionally, the median proportions of both NaiveB and

PlasmaCells were higher in the pSS group. A comparison of

differential genes among the three B cell subtypes revealed that,

compared to the HC group, the upregulated genes in both Bmem

and NaiveB cells in the pSS group included ISG15, IFI44L, IFI44,

STAT1, IFI6, IFI3, IFIT3, and MX1. The upregulated genes

common to Bmem, NaiveB, and PlasmaCells in the pSS group

included ISG15, IFI6, and STAT1. These genes are mainly involved

in functions such as “encoding interferon-induced proteins,”

“encoding ISG15 ubiquitin-like modifiers,” and “encoding STAT1

signal transduction and transcription activation factor 1.”

Differential gene comparison showed that the upregulated genes

in all three B cell populations of the pSS group were involved in the

type I interferon response pathway. Luo S et al. found that type I

IFN stimulates monocyte differentiation and induces immature

dendritic cells to express chemokines and costimulatory
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molecules, promoting the onset of SLE (16). Cui Y et al. used single-

cell RNA-seq to explore the common molecular mechanisms

between SLE and primary pSS and found that IFN response and

ITGB2 signaling pathways play crucial roles in both diseases (17). It

is speculated that the type I interferon signaling pathway mediates B

cell involvement in the pathogenesis of pSS.

To further investigate the role of the type I IFN response in B

cells in pSS, GO and KEGG pathway enrichment analyses of

differential genes in B cell subpopulations showed that, compared
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to the HC group, the differentially upregulated genes in NaiveB and

Bmem cells in the pSS group were involved in the type I interferon

signaling pathway at the BP level. In this study, we observed

significant upregulation of interferon signaling pathway–related

genes (such as ISG15, IFI44L, and IFI44) in B cells from pSS

patients, along with marked increases in upstream transcription

factors (STAT2, IRF9, and IRF5). Previous studies have shown that

IFI44L is a type I IFN-stimulated gene, and its upregulation in pSS

patients has been observed (18). ISG15 is a ubiquitin-like protein
FIGURE 5

Comparison of BCR clonotype distribution and IGHV/IHJ gene usage in B cell subpopulations. (A) The number and proportion of different BCR
clonotypes between groups: Circle size represents the total number of clonotypes (Single represents a single clonotype; Medium represents
clonotypes with a frequency greater than 1 but less than or equal to 10; Large represents clonotypes with a frequency greater than 10). The colors
within the circle represent the proportion of clonotypes with different frequencies. (B) Inter-group comparison of BCR clonal diversity: Analyzed
using D50 diversity index. The D50 diversity index represents the number of clonotypes required to account for 50% of the total BCR repertoire;
lower values suggest reduced diversity; (C) Comparison of IGHV gene usage frequency in B cell clones between the two groups. (D) Comparison of
IGHJ gene usage frequency in B cell clones between the two groups. (E) IGHV gene usage frequency in B cell subpopulations of the HC group. (F)
IGHV gene usage frequency in B cell subpopulations of the pSS group.
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that, after activation by IFN-a and IFN-b, conjugates with

intracellular target proteins. Cui Y et al. found that ISG15

expression levels in the saliva and serum of pSS patients were

higher than those in controls and identified IFI44L and ISG15 as

common hub genes in both pSS and SLE (17). Given that ISG15 is a

key marker of IFN-I activation and can representatively reflect

pathway activity, we selected ISG15 for subsequent validation. To

further validate this, we performed qRT-PCR analysis of ISG15

expression in the peripheral blood of 22 pSS patients and 22 healthy

controls, showing that ISG15 expression was significantly higher in

the peripheral blood of pSS patients compared to the HC group. In

addition, we examined sorted B cells and found that ISG15

expression was also markedly elevated in B cells from pSS

patients. This suggests that B cells may be involved in the

pathogenesis of pSS through IFN-related genes such as ISG15.

Our study further performed transcription factor analysis of B

cell subpopulations. In Bmem cells, NR2F6 and IRF5 were

significantly upregulated. The nuclear receptor transcription

factor NR2F6 is a member of orphan nuclear receptors. Natascha

Hermann-Kleiter et al. have demonstrated that NR2F6 antagonizes

the ability of Th0 and Th17 CD4(+) T cells to induce IL-2 and IL-17

expression, suggesting that NR2F6 may be involved in the

pathogenesis of pSS (19). IRF5 is a regulator of type I IFN and

IFN-stimulated genes (ISGs). IFN induces STAT activation, which

in turn triggers ISG expression. STAT1, STAT2, and IRF9 amplify

the JAK-STAT signaling pathway to enhance the IFN response, and

the JAK-STAT pathway transduces intracellular signals for various

cytokines, which is crucial for the pathogenesis of autoimmune

diseases (20, 21). Ivashkiv LB et al. found that a common feature of

SLE patients is the increased expression of type I IFN, and IRF5

expression was significantly elevated in the peripheral blood

mononuclear cells of SLE patients (22). Su Song et al. found that

inhibiting IRF5 expression can prevent the onset and severity of

SLE. Our study showed that IRF5 is highly expressed in B cells,

suggesting that the increased expression of IRF5 in Bmem cells in
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the pSS group may be related to the disease's development (23).

KLF4 was significantly downregulated in Bmem cells. KLF4 is an

evolutionarily conserved zinc finger transcription factor that

regulates various cellular processes, such as cell growth,

proliferation, and differentiation. Tao H et al. found that KLF4

promotes dentinogenesis and odontoblast differentiation through

the regulation of TGF-b signaling and interaction with histone

acetylation (24). Some pSS patients exhibit extensive tooth loss and

multiple dental caries, suggesting that KLF4 might be involved in

the mechanisms of dental damage in pSS patients. Our study

showed that KLF4 is significantly downregulated in pSS, while it

is upregulated in the normal group. Thus, we speculate that the

downregulation of KLF4 in pSS may suppress dentin growth,

leading to tooth loss and caries in these patients.

In NaiveB cells, STAT2, IRF9, THRB, and BATF3 were

significantly upregulated. STAT is an essential transcription factor

in the type I IFN-mediated signaling pathway. STAT2 is defined as

an auxiliary factor that participates exclusively in type I IFN (IFN-a,
-b, -t, -w) signaling transduction; IFN signals through the JAK-

STAT pathway, activating the transcription of ISGs. STAT1-2

heterodimers bind to IRF9 to form the activated transcription

complex ISGF3. In PlasmaCells, AHR, ZFP64, ARID3A, and

XBP1 were significantly upregulated. These findings suggest that

multiple transcription factors in B cells participate in the

pathogenesis of pSS through the type I IFN-mediated

signaling pathway.

Pseudotime trajectory analysis of B cell populations revealed

that Naive B cells were predominantly localized at the starting point

of the developmental trajectory and distributed along the initial

segments of both branches, suggesting their role as the origin of B

cell differentiation. The first branch was primarily enriched with

Naive B cells, potentially representing a relatively quiescent or self-

maintaining state. The second branch delineated the classical

differentiation path from Naive B through Bmem to Plasma Cells.

Compared to the HC group, the pSS group exhibited a reduced
FIGURE 6

Comparison of ISG15 expression levels between the HC group and the pSS group.
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proportion of Naive B cells at the trajectory origin but a significant

increase at the initial segment of the second (effector) branch. This

uneven distribution implies that more Naïve B cells in pSS may be

primed to prematurely enter the effector differentiation path.

Collectively, the pseudotime analysis constructed a dynamic map

of B cell evolution in pSS, initiating from Naive B states and

diverging into two paths: (1) Naive B maintenance and (2)

effector. The pSS group was characterized by accelerated and

skewed entry of Naïve B cells into the effector path, highlighting a

dysregulated B cell maturation trajectory in pSS.

Notably, analysis of marker gene expression patterns along

pseudotime revealed dynamic transcriptional changes along the

trajectory. The early stage was enriched for stress-response and

immediate-early genes (JUN, FOS, NFKBIA) as well as B cell

activation–related genes (FCER2, IGHD, TCL1A), whose

expression gradually declined over pseudotime. In the

intermediate stage, ribosomal and metabolic genes (AC099560.1,

RPS3A) remained consistently low. The late stage showed marked

upregulation of immunoglobulin and plasma cell differentiation–

related genes (IGKV4-1, IGHG, IGHA, IGLC, JCHAIN, XBP1,

MZB1), antigen presentation–related genes (B2M), and adhesion

and oxygen transport–related genes (ITGB1, HBB, HBA2),

indicating a transcriptional profile associated with antibody

production and immune effector functions at the trajectory end.

These results suggest that cells in the early pseudotime phase are

dominated by stress and immune activation–related transcriptional

programs, which subsequently shift toward an immune effector–

related expression profile.

Cell communication analysis suggested that the number of

interactions between B cells and MPs cells was the highest. When

B cells acted as ligands in the pSS group, the cell communication

with MPs primarily occurred via TGF-b and TNF. TGF-b ligands

bind various TGF-b receptors, leading to the recruitment and

activation of SMAD family transcription factors that regulate

gene expression. These proteins can modulate the expression and

activation of interferon g and tumor necrosis factor a.
BCR analysis of peripheral blood B cells from the pSS and HC

groups revealed that both groups exhibited predominantly

monoclonal expansion across B cell subsets. While clonal

expansion was observed in Naive B and Bmem in both groups,

no statistically significant differences were detected between pSS

and HC. Notably, plasma cells showed clonal expansion in all pSS

samples but were detected in only one HC sample. The lack of

significant intergroup differences in BCR clonal diversity may be

attributed to the limited sample size (n=3 per group) and

substantial individual heterogeneity.

Further analysis of the IGHV and IGHJ genes showed that the

use of these genes had changed in the pSS group compared to the

HC group. Compared to the HC group, the median usage frequency

of IGHV4-34 was higher in pSS (median = 9.3% vs. 3.9%).

Arbuckle, Odendahl, and others found that the use of the IGHV4

family increased in peripheral blood B cells in SLE, particularly

IGHV4-34 (25, 26). Doorenspleet and others also found an

increased frequency of IGHV4-34 use in synovial B cells in early
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RA (27). In the peripheral blood plasmaCells subset of pSS patients,

the frequencies of IGHJ4 and IGHJ6 use were higher, while

frequencies of IGHV1-3, IGHV1-69D, and IGHV2-7D subtypes

were relatively lower. No significant changes were observed in the

heavy chain V region gene usage in NaiveB and Bmem

subpopulations. Primary immune thrombocytopenia (ITP) is a

disease caused by IgG antibodies against platelets. Studies

analyzing BCR libraries in ITP found B cell clones carrying

IGHV4-28/IGHJ4 in all ITP patients. There is a close

immunological connection between pSS and lymphoma, with the

risk of lymphoma significantly increased in long-term pSS patients

(28). Xuemin Xue and others found that in B cell lymphoma,

rearrangements of IGHV and IGHJ genes were present (29). These

studies indicate that abnormal use and rearrangements of IGHV

and IGHJ gene segments may contribute to autoimmune diseases

and lymphoma. We can also speculate that the rearrangement and

abnormal usage of IGHV and IGHJ genes in B cells in pSS patients

may contribute to the disease's onset and the development of pSS

to lymphoma.

However, this study has certain limitations. The scRNA-Seq

data were derived from PBMCs rather than purified B cells, which

may limit the resolution of transcriptional features within B cell

subpopulations. In addition, experimental validation focused on

downstream interferon-effector genes such as ISG15, but not on

upstream regulators. Future studies with purified B cell subsets and

functional assays will be needed to clarify the role of IFN-I signaling

in aberrant B cell activation in pSS.

In summary, this study used scRNA-Seq and chip data analysis

to reveal the key genes and related signaling pathways in B cells

involved in the pathogenesis of pSS. B cells participate in the

pathogenesis of pSS not only through the type I IFN signaling

pathway mediated by genes like ISG15, IFI44L, IFI44, STAT1, and

IFI6, but also through changes in BCR clonotypes, rearrangements,

and abnormal usage of IGHV-J genes.
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