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Arteriosclerosis obliterans (ASO) is a chronic vascular disease characterized by

narrowing or occlusion of the vascular lumen. Its pathogenesis is complex and

closely associated with lipid metabolism disorders and chronic inflammation.

Although notable progress has been made in the treatment of ASO, it still remains

a cause of surgical limb loss globally. In recent years, immune checkpoints have been

identified as critical regulators of the immune microenvironment that play a

significant role in ASO. Furthermore, immune checkpoints can affect lipid

metabolism by regulating the metabolic pathways of immune cells, thereby

indirectly modulating lipid metabolic processes, such as lipid absorption, transport,

and degradation, which are crucial in the development and progression of

atherosclerosis. Here, we summarized and discussed progress in studies related to

lipid metabolism and immune checkpoints during ASO, and highlighted how

immune checkpoints regulate lipid metabolism to affect ASO. Further exploration

of the interactions between lipid metabolism regulators and immune checkpoints

may uncover novel potential therapeutic targets for ASO management.
KEYWORDS

arteriosclerosis obliterans, lipid metabolism, immune checkpoints, vascular
inflammatory responses, endothelial function
1 Introduction

Arteriosclerosis obliterans (ASO) is a chronic occlusive vascular disease caused by

atherosclerosis, mainly affecting the arteries of the lower extremities (1). Due to the

progression of atherosclerosis within an arterial lumen, accumulation of atherosclerotic

plaques leads to narrowing or even occlusion of the arterial lumen, which further triggers a

series of symptoms and signs in the affected limb such as ulcers, gangrene, and even

amputation (2, 3). Notable progress has been made in ASO treatment, including surgical
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techniques, endovascular interventions, and pharmacological

treatments. However, restenosis usually relapses within 1 – 2

years after therapy, and ASO remains a cause of surgical limb loss

globally (4, 5). Moreover, most patients with early-stage ASOs

exhibit no obvious clinical symptoms, leading to delayed

treatment. Therefore, early diagnostic markers and new

therapeutic approaches for ASO are needed.

Dysregulation of lipid metabolism is a key factor in the

pathophysiology of ASO because it promotes lipid deposition,

triggers inflammatory responses, and impairs endothelial

function. Collectively, these processes drive the development and

progression of atherosclerosis (6, 7). Immune checkpoints, the key

regulatory molecules of immune activation, can influence plaque

formation and vascular function by regulating lipid metabolism and

inflammation, and are potentially involved in the occurrence and

development of ASO (8–10).

This review summarized the general diagnosis and pathological

changes in ASO, and highlighted how immune checkpoints regulate

lipid metabolism to cause ASO. By integrating the latest study

progress on immune checkpoints and lipid metabolism regulation,

novel immune-metabolic combination therapies may be explored to

achieve a precise ASO treatment.
2 Arteriosclerosis obliterans

ASO is a subtype of peripheral artery disease with increasing

global incidence (11, 12). Given its profound impact on patients’

quality of life, early detection, effective prevention, and timely

intervention are of paramount importance (13, 14). The diagnosis

and treatment of ASO are closely related to atherosclerotic plaques

(15, 16). The primary treatment goal is to identify and eliminate

arterial plaques, alleviate symptoms, improve quality of life, and

reduce the risk of amputation.
Abbreviations: ASO, arteriosclerosis obliterans; LDL, low-density lipoproteins;

ox-LDL, oxidized LDL; VSMCs, vascular smooth muscle cells; NF-kB, nuclear

factor kappa-B; ECs, endothelial cells; SREBPs, sterol regulatory element-binding

proteins; AMPK, AMP-activated protein kinase; LXR, liver X receptors; ATP,

adenosine triphosphate; ACC, acetyl-CoA carboxylase; FAO, fatty acid oxidation;

ABC, ATP-binding cassette; mTORC1, mammalian target of rapamycin complex

1; DCs, dendritic cells; IL - 6, interleukin-6; TNF-a, tumor necrosis factor-a;

IFN-g , interferon g; FAT, fatty acid transport; CPT - 1, carnitine

palmitoyltransferase-1; Akt, protein kinase B; HDL, high-density lipoprotein;

FABP4, fatty acid binding protein 4; SR-BI, scavenger receptor class B type I; GPx,

glutathione peroxidase; SOD, superoxide dismutase; FASN, fatty acid synthase;

PI3K, phosphatidylinositol-3-kinase; PD - 1, programmed cell death protein -1;

CTLA - 4, cytotoxic T lymphocyte associated protein 4; Tim-3, T cell

immunoglobulin and mucin-domain containing-3; MHC, major

histocompatibility complex; APCs, antigen-presenting cells; TCR, T-cell

receptor; Tregs, regulatory T cells; PD-L1, programmed death ligand-1; Th1,

T-helper type 1; Gal-9, galectin-9; TGF-b, transforming growth factor b;

HMGCR, 3-hydroxy-3-methylglutaryl-coenzyme A reductase; CEH, cholesterol

ester hydrolase; PPAR, peroxisome proliferator–activated receptors.
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2.1 Pathology of arteriosclerosis obliterans

Formation of arterial plaques and subsequent vascular

narrowing play crucial roles in ASO development (17). The

accumulation of atherosclerotic material, coupled with secondary

thrombosis and vascular endothelial dysfunction, contributes to the

thickening of the intima in lower extremity arteries. This results in

the narrowing of arterial lumen and complete occlusion in severe

cases (18). These changes lead to a range of clinical manifestations

and symptoms in affected limbs. The disruption of lipid metabolism

plays an important role in the earliest lesions in ASO (19). The core

mechanism involves lipid deposition and chain reactions. Low-

density lipoproteins (LDL) penetrate the intima through vascular

endothelial cells and undergo local oxidation to form oxidized LDL

(ox-LDL). Ox-LDL induces monocytes to adhere to endothelial

cells, migrates into the intima, and transforms into macrophages

(20, 21). After engulfing ox-LDL, macrophages form foam cells that

promote arterial plaques (22). Lipid deposition triggers local

inflammatory responses, stimulating the activation of surrounding

vascular smooth muscle cells (VSMCs) and fibroblasts (23).

Continuous secretion of inflammatory mediators is understood to

be a self-amplifying inflammatory cascade that ultimately promotes

an unstable plaque phenotype, plaque erosion and rupture, and the

formation of occlusive arterial thrombi that restrict blood flow and

cause critical tissue ischemia (24–26).
2.2 High-risk factors of arteriosclerosis
obliterans

Many risk factors, including smoking, age, sex, genetics,

diabetes, hypertension, and hyperlipidemia, can lead to ASO, and

these factors are often associated with lipid metabolism disorders

and inflammation (17, 27).

Smoking is a significant risk factor for vascular diseases,

especially those affecting lipids and cytokines, which contribute to

vascular damage and ASO. Smokers may have higher

concentrations of serum total cholesterol and LDL than non-

smokers, increasing their risk of atherosclerosis and coronary

artery disease (28, 29). Nicotine and its primary metabolite,

cotinine, activate nuclear factor kappa-B (NF-kB) transcription

factor, thereby driving tissue factor expression in endothelial cells

(ECs) and VSMCs (30).

With aging, vascular walls gradually lose their elasticity and

endothelial cell function deteriorates, leading to a reduced capacity

for vascular repair following injury (31, 32). Aging is accompanied

by chronic inflammation and alterations in lipid metabolism, which

further accelerate arteriosclerosis progression (33, 34). Hypertension,

hyperlipidemia, and diabetes can also disrupt lipid metabolism

and trigger inflammation, all of which are high-risk factors for ASO

(35–38). Genetic conditions, such as familial hypercholesterolemia or

familial mixed hyperlipidemia, directly affect lipid metabolism

pathways, leading to LDL accumulation (39, 40).

Therefore, smoking cessation is critical for the prevention and

treatment of ASO. Attention should also be paid to regulating lipid
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metabolism, such as adopting a healthy diet, controlling blood lipid

concentrations, and using lipid-lowering medications (e.g., statins),

as part of a comprehensive approach. Moreover, the inflammation

triggered by various factors cannot be ignored in ASO.
2.3 Lipid metabolism and arteriosclerosis
obliterans

Lipid metabolism refers to the entire process of digestion,

absorption, transportation, synthesis, breakdown, and utilization

of lipid substances in the body (41). Lipid metabolism affects arterial

plaques and vascular function through lipid accumulation, fatty

acid metabolism, cholesterol transport, and inflammation, thereby

contributing to ASO development (42, 43). For example, LDL

accumulation in a vessel wall, which is converted into foam cells,

and the effect of fatty acids on phenotypic changes in macrophages

can exacerbate ASO (44, 45). Additionally, lipid metabolic products,

such as oxidized cholesterol derivatives, can activate inflammatory

pathways and damage vascular endothelium (46). By activating

receptors (such as CD36) on macrophages and VSMCs, ox-LDL

triggers an inflammatory response that leads to the progression of

atherosclerotic plaques (47, 48). Numerous molecules, such as sterol

regulatory element-binding proteins (SREBPs), adenosine

monophosphate-activated protein kinase (AMPK), and liver X

receptors (LXR) may play pivotal roles in these processes (49–51).

Here, we focused on lipid metabolism-related molecules that

contribute to ASO.
2.3.1 Sterol regulatory element-binding proteins
SREBPs are a class of transcription factors that play key roles in

lipid metabolism, cholesterol synthesis, and fatty acid synthesis

(50). SREBP - 1 regulates the transcription of acetyl-CoA

carboxylase (ACC) and fatty acid synthase (FASN) genes to

promote lipogenesis, which relies on protein kinase B (Akt)/

mammalian target of rapamycin complex 1 (mTORC1) signaling

(52, 53). SREBP - 2 overactivation enhance cholesterol synthesis

and LDL uptake, leading to hypercholesterolemia (54). SREBP - 2

can directly bind to protein phosphatase 2A or be activated by

molecules, such as Erb-B2 receptor tyrosine kinase 4, thereby

promoting LDL uptake (55, 56). The SREBP - 2 signaling

pathway could be interfered with by histone deacetylase inhibitors

(such as butyrate), resulting in a cholesterol-lowering effect (57).

Additionally, SREBP - 1c contributes to fatty acid synthesis and

lipid accumulation, which exacerbates lipotoxicity and vascular

inflammation, and accelerates plaque development (58). In

addition to lipid accumulation, cholesterol synthesis also

contributes to vascular inflammation, including NOD-like

receptor protein 3 inflammasome activation, oxidative stress, and

endothelial dysfunction, all of which are key events in

atherosclerosis (59, 60). This implies that SREBPs regulate

cholesterol metabolism to affect vascular function, further

affecting ASO.
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2.3.2 Adenosine monophosphate-activated
protein kinase

AMPK is a heterotrimeric complex that is activated under

conditions of energy stress such as decrease intracellular

adenosine triphosphate (ATP) concentrations (61, 62). It reduces

lipid accumulation and inflammation by regulating metabolic

balance (63). AMPK phosphorylates and inhibits ACC, a key

enzyme in fatty acid synthesis that promotes fatty acid oxidation

(FAO) (64, 65). Lepropre et al. demonstrated that the AMPK-ACC

signaling pathway modulates platelet phospholipid content, thereby

regulating arachidonic acid production (62). This process affects

thromboxane generation and granule release during platelet

activation, ultimately playing a critical role in the regulation of

thrombosis formation (66). AMPK also promotes FAO by relieving

the inhibitory effect on CPT1A (67). Moreover, AMPK plays a

pivotal role in regulating cholesterol concentrations by upregulating

ATP-binding cassette (ABC) transporters (e.g., ABCA1 and

ABCG1), downregulating the expression of cholesterol synthesis

gene 3-hydroxy-3-methylglutaryl-coenzyme A reductase

(HMGCR), inhibiting SREBP - 1, suppressing the mTORC1

pathway, and mitigating plaque formation (68–71). AMPK

activation not only modulates lipid metabolism to mitigate

arterial plaque formation but also effectively reduces vascular

inflammation. Studies have shown that AMPK activation can

suppress the release of pro-inflammatory cytokines, such as

interleukin-6 (IL - 6) and tumor necrosis factor-a (TNF-a),
which contribute significantly to plaque instability (72, 73). Thus,

AMPK reduces foam cell formation, plaque instability, and vascular

inflammation, making it a promising therapeutic target for ASO.

2.3.3 Peroxisome proliferator-activated receptors
PPARs are ligand-activated transcription factors belonging to

the nuclear receptor superfamily. They regulate the transcription of

target genes by forming dimers and binding to specific DNA

regions, thereby participating in various physiological processes.

There are three main subtypes of PPARs: PPAR-a, PPAR-g, and
PPAR-d/b (74).

PPARa’s central function in FAO is to regulate downstream

genes, promoting the uptake and activation of long-chain fatty acids

(75). Activated PPAR-a bound to the retinoid X receptor to form a

heterodimer, which initiates the transcription of target genes such

as fatty acid transport (FAT) and carnitine palmitoyltransferase-1

(CPT-1), thereby reducing lipid accumulation (67, 76). Moreover,

PPARa could upregulate lipoprotein lipase and inhibit

apolipoprotein C-III expression, thereby reducing triglyceride

concentrations in blood (67, 77). In addition to breaking down

triglycerides, PPAR-a agonist like LY518674 might promote high-

density lipoprotein (HDL) production and reverse cholesterol

transport, effectively clearing cholesterol from the vascular walls

(78–80). Cholesterol efflux is promoted by the activation of ABCA1

and scavenger receptor class B type I (SR-BI). Notably, a study

revealed that SR-BI regulates transcription factor EB expression by

enhancing PPAR-a activation (81). This finding identifies SR-BI as

a potential new therapeutic target for atherosclerosis (81).
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PPAR-g depends on phosphatidylinositol-3-kinase (PI3K)/Akt/

mTOR signal regulation as a key regulator of adipocyte

differentiation (82). It promotes the uptake and storage of free

fatty acids in adipocytes by inducing the expression of genes, such as

fatty acid-binding protein 4 (FABP4), thereby reducing the

concentration of fatty acids in the bloodstream (83). PPAR-g
upregulates the expression of antioxidant-related genes, such as

glutathione peroxidase (GPx) and superoxide dismutase (SOD),

thereby reducing ox-LDL production (84). PPAR-g might reduce

vascular endothelial damage through a reduction of oxidative stress

responses (85). At the same time, PPAR-g decreases ox-LDL uptake

by macrophages in vascular walls (86).

PPAR-d/b activates key downstream genes, such as CPT-1 and

acyl-CoA oxidase 1 through ligand binding, thereby promoting b-
oxidation (87). Additionally, PPAR-d/b regulates the expression of

FASN and FABP, which were involved in fat synthesis and storage,

thereby reducing fat accumulation (67, 88). Furthermore, PPAR-d/
b facilitates lipolysis by activating genes such as adipose triglyceride

lipase (89).

PPARs not only regulates lipid metabolism but also play a

crucial role in inhibiting inflammation. PPAR-a suppresses the

transcription of inflammatory genes by interfering with the NF-kB
signaling pathway (90). It also downregulates chemokines and

intercellular adhesion molecule-1, thereby reducing monocyte

infiltration into the arterial wall (91). PPAR-g regulates

macrophage phenotypes, thereby promoting transition from pro-

inflammatory M1 to anti-inflammatory M2 (92). PPAR-d/b might

inhibit the expression of chemokines, such as chemokine ligand 2

and CXC-chemokine ligand-8, reducing the accumulation of

inflammatory cells in local tissues (93, 94). In contrast, PPAR-d/b
activates antioxidant genes like heme oxygenase-1 and quinone

oxidoreductase-1, enhancing cellular antioxidant defense (95).

Furthermore, PPAR-d/b modulates the production of pro-

inflammatory factors (such as vascular cell adhesion molecule-1)

in ECs, thereby alleviating inflammatory response in a vascular wall

(96). Thus, PPARs have broad application prospects in the

prevention and treatment of ASO, as they regulate lipid

metabolism, reduce inflammatory responses, and improve

vascular function.

2.3.4 Liver X receptors
LXR is a nuclear receptor transcription factor that exists as two

main subtypes: LXRa and LXRb (51). It serves as a critical regulator

of lipid metabolism, cholesterol transport, and anti-inflammatory

responses by modulating target gene expression. LXR promotes the

efflux of cholesterol from macrophages and foam cells to HDL by

activating the downstream genes ABCA1 and ABCG1, thereby

reducing intracellular cholesterol accumulation (97). LXRa can be

upregulated by PPARg to promote ABCA1 expression and enhance

cholesterol efflux (97). Kim et al. found that LXR activation can

inhibit toll-like receptor signaling and reduce the expression of

inflammatory genes by inducing changes in membrane lipid

composition mediated by ABCA1 (98). Additionally, LXR could
Frontiers in Immunology 04
activate the cholesterol 7 alpha-hydroxylase gene, thereby

promoting cholesterol conversion to bile acids and accelerating

cholesterol clearance (99). Moreover, LXR plays a role in

upregulating SREBP - 1c expression, interaction with AMPK, and

collaboration with PPAR-g to regulate lipid metabolism, further

contributing to lipid regulation (100). Therefore, as a crucial factor

in lipid metabolism that influences ASO, in-depth studies on the

bidirectional regulatory effects of LXR on lipid metabolism and

inflammatory responses is essential.
3 Immune checkpoints and
arteriosclerosis obliterans

Immune checkpoints are molecules that regulate immune

responses. In most cases, they prevent immune system

overactivation, thereby protecting normal cells and healthy tissues

from harm (101). Common immune checkpoints include

programmed cell death protein 1 (PD - 1), cytotoxic T lymphocyte-

associated protein 4 (CTLA - 4), T cell immunoglobulin and mucin-

domain containing-3 (Tim-3), etc. These checkpoints play various roles

in immune cell activation, differentiation, and immune tolerance

(102, 103). Atherosclerosis is closely associated with immune system

dysregulation, particularly during endothelial injury, inflammation,

and immune cell infiltration (104, 105). Inflammation serves as a

core driver of atherosclerosis, connecting traditional risk factors

(such as LDL and hypertension) with alterations in vascular wall

biology (106). The immune system promotes plaque formation by

initiating an inflammatory response (107). By modulating immune cell

function and either promoting or inhibiting anti-inflammatory

responses, immune checkpoints may influence the critical stages of

atherosclerosis, thus playing vital roles in ASO development (Figure 1).
3.1 Immune checkpoints and immune
responses in arteriosclerosis obliterans

After macrophages and dendritic cells (DCs) phagocytose ox-

LDL, antigens are presented via major histocompatibility complex

(MHC) molecules on the surfaces of antigen-presenting cells

(APCs). Subsequently, MHC binding to T-cell receptor (TCR)

activates signaling pathways such as rat sarcoma, PI3K, and

PKCq, thereby initiating T cell activation (108–110). However,

full activation of T cells requires co-stimulatory signals such as

the interaction between CD28 on the T cell surface and CD80/CD86

ligands on the surface of APCs (111).

CTLA-4 is a structural homolog of CD28 and is primarily

expressed in activated T cells and regulatory T cells (Tregs). CTLA -

4 binds to CD80/CD86 on the APC surface with high affinity,

thereby directly competitively blocking CD28 signaling and

inhibiting TCR signal transduction (112). Studies have shown

that the overexpression of CTLA - 4 significantly reduces the area

of atherosclerotic lesions and decreases the infiltration of
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macrophages and CD4+ T cells within plaques via mechanisms

involving the inhibition of CD4+ T cell proliferation,

downregulation of CD80/CD86 expression, and suppression of T

cell activation (113). In contrast, CTLA - 4 inhibition promotes

CD4+ T cell differentiation to T-helper type 1 (Th1) cells, ultimately

exacerbating atherosclerosis (114). Furthermore, CTLA - 4 is a key

molecule through which Tregs exert their immunosuppressive

functions (115). CTLA - 4 expression on Tregs enhances their

immunosuppressive effects by inhibiting the activation of effector T

cells and reducing inflammatory responses (116). Tekguc et al.

found that Treg-expressing CTLA - 4 depleted CD80/CD86 and

released free programmed death ligand-1(PD-L1) on APCs,

exerting dual suppressive effects on T-cell immune responses (117).

PD-1 is an inhibitory co-receptor broadly expressed on the

surface of activated T cells. Upon binding to its ligand PD-L1/PD-

L2, PD - 1 delivers a negative regulatory signal to the cell. In the

atherosclerotic environment, PD - 1 suppresses excessive T cell
Frontiers in Immunology 05
activation and limited Th1 differentiation, thereby reducing the

release of pro-inflammatory cytokines such as interferon g (IFN-g)
and TNF-a (9). A study revealed that in PD - 1 agonist-treated

mice, atherogenic IFN-g-producing splenic CD4+T cells and

cytotoxic CD8+T cells were reduced, while atheroprotective IL -

10-producing CD4+T cells were increased. Additionally, the levels

of regulatory B cells, B1 cells, and atheroprotective circulating ox-

LDL-specific IgM were significantly elevated (118). In PD - 1 and

LDL receptor-deficient mice, predominant activation of pro-

inflammatory T cel ls leads to dysl ipidemia, vascular

inflammation, and atherosclerosis (119).

Tim-3 is an inhibitory receptor expressed on activated T cells,

Tregs, macrophages, and DCs, and its primary ligand is galectin-9

(Gal-9) (120). Tim-3 signaling directly induces the apoptosis of pro-

inflammatory T cells (such as Th1 cells) (121). It can also regulate

inflammatory response by inhibiting NF-kB activation (122).

Therefore, the Tim-3 pathway suppresses immune inflammatory
FIGURE 1

Immune checkpoints regulate immune responses to influence vascular inflammation and plaque stability. Pathogenic factors, such as ox-LDL,
induce activation of DCs, characterized by upregulation of (A) MHC II molecules and costimulatory markers (CD80/CD86). These activated dendritic
cells engage T-cell receptors, initiating downstream signaling pathways including RAS, PI3K, and PKCq. Subsequently, (B) IFN-g secretion by T cells
promotes M1 macrophage polarization. M1-derived (C) pro-inflammatory cytokines directly compromise vascular endothelial integrity, exacerbating
vascular inflammation and destabilizing plaques. Under inflammatory conditions, (D, E) DCs or VECs express ligands for immune checkpoint
molecules, such as PD-L1 and Gal-9, which bind to immune checkpoint molecules on T cells (with CTLA4 competitively inhibiting CD80/CD86
binding to CD28), thereby suppressing the signaling pathways associated with T cell activation. Moreover, (F, G) CTLA - 4 expressed on Tregs
depleted CD80/CD86 and released free PD-L1. (H) The Gal-9 secreted by Tregs interacts with Tim-3 receptors on macrophages, driving the
polarization of macrophages toward the M2 phenotype. Subsequently, (I) M2 macrophages secrete anti-inflammatory mediators that inhibit
inflammation and enhance the stability of atherosclerotic plaques. PI3K, phosphatidylinositol-3-kinase; DCs, dendritic cells; PD - 1, programmed cell
death protein -1; CTLA - 4, cytotoxic T lymphocyte associated protein 4; Tim-3, T cell immunoglobulin and mucin-domain containing-3; MHC,
major histocompatibility complex; TCR, T-cell receptor; Tregs, regulatory T cells; PD-L1, programmed death ligand-1; Gal-9, galectin-9; TGF-b,
transforming growth factor b; ox-LDL, oxidized LDL; NF-kB, nuclear factor kappa-B; ECs, endothelial cells; RAS, rat sarcoma; Akt, protein kinase B;
AP - 1, activator protein 1; ERK, extracellular signal-regulated kinase; NFAT, nuclear factor of activated T cells; TNF-a, tumor necrosis factor-a; IFN-g,
interferon g; IL, interleukin.
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responses and exerts atheroprotective effects. Animal experiments

demonstrated that administration of anti-Tim-3 antibodies

significantly increased the area of lipid streaks and mature

plaques, accompanied by an increase in macrophages and CD4+

T cells, while the proportion of Treg cells decrease (123). Moreover,

our study group found that, at an early stage of atherosclerosis, the

proportion of PD - 1+ Tim-3+ CD8+ T cells increased in peripheral

or arterial blood of patients. Dual blockade of these two immune

checkpoints had led to elevated TNF-a and IFN-g levels, along with
decreased IL - 10 and IL - 4 levels (124). At the higher stage of

atherosclerosis, the proportion of PD - 1+ Tim-3+ CD4+ T cells was

higher in peripheral or arterial blood of patients. Furthermore,

simultaneous blockade of the Tim-3 and PD - 1 signaling pathways

exacerbates the pro-atherogenic Th1 response in lower extremity

ASO (125). Moreover, Tim-3 signaling drives macrophages toward

an anti-inflammatory phenotype. In a glioma study, Gal-9 was

shown to activate Tim-3 and its downstream pathways to promote

M2 macrophage polarization. Enhanced Tim-3 expression predicts

poor prognosis in patients with cancer Conversely, blocking Tim-3

signaling inhibits M2 polarization of macrophages and suppresses

tumor growth (126). In the transforming growth factor b (TGF-b)-
activated tumor microenvironment, Tim-3 expression was

significantly correlated with M2 macrophage polarization. In vitro

experiments confirmed that TGF-b induced Tim-3 expression in

monocytes and M2 macrophages (127). In the context of

atherosclerosis, the relationship between Tim-3 and macrophage

polarization remains unknown. However, the specific mechanisms

by which Tim-3 regulates macrophage inflammatory responses and

plaque formation require further exploration.

PD-L1 is expressed in ECs and detected in atherosclerotic

plaques. Blocking PD-L1 signaling resulted in a marked increase

in IFN-g+ CD8+ T cells within plaques, promoting inflammation

and worsening atherosclerotic burden (128). Additionally, ECs

produce and secrete Gal-9, and plasma Gal-9 levels are elevated

in patients with peripheral arterial disease. However, in high-fat

diet–fed mice, genetic deletion of Gal-9 led to a significant increase

in atherosclerotic plaque formation (129). Although the expression

of these EC-derived ligands is upregulated in atherosclerosis, their

participation in protecting endothelial cell function and the specific

mechanisms remain to be elucidated.

Notably, an increasing number of studies have shown that

immune checkpoint inhibitors can precipitate atherosclerotic

cardiovascular events (130, 131). For example, preclinical studies

have suggested that immune checkpoint inhibitors may exacerbate

inflammatory responses in atherosclerosis and promote plaque

progression, whereas retrospective studies have further confirmed

that immune checkpoint inhibitors could increase the risk of

atherosclerotic vascular events (132). Clinical and imaging studies

have shown that treatment with immune checkpoint inhibitors is

associated with an increased risk of atherosclerotic cardiovascular

disease (133). This further confirms the protective role of

checkpoint molecules in atherosclerosis and suggests that close

attention should be paid to ASO development when using

these inhibitors.
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4 Immune checkpoints in lipid
metabolism regulation during
arteriosclerosis obliterans

Immune checkpoints affect lipid metabolism by regulating the

metabolic pathways of immune cells (47). The activation,

differentiation, and functions of immune cells are critically

dependent on the dynamic homeostasis of lipid metabolism

(134). In immune cells, Tim-3, PD - 1, and CTLA - 4

collaboratively inhibit the glycolytic pathway and enhance PPAR/

AMPK-dependent FAO, and also reduce lipid biosynthesis by

suppressing PI3K/Akt/mTORC1 signaling (135–137). These

regulations may drive T cells and macrophages to favor lipids as

their energy source, thereby lowering lipid accumulation within

arterial plaques. For example, Tim-3 inhibition has been shown to

increase plaque area in mice fed with high-fat diet (123). Here, we

discussed how immune checkpoints regulate lipid metabolism and

affect ASO from specific immune checkpoint molecules

(Table 1, Figure 2).
4.1 PD - 1/PD-L1

PD-1 is an important regulator of the immune system and

essential for regulating lipid metabolism. Upon PD-L1 binding to

PD - 1 and subsequent activation, T cells are unable to carry out

glycolysis and amino acid metabolism normally, yet endogenous

FAO is enhanced as PD - 1 upregulates the lipases CPT1A and

ATGL, thereby promoting endogenous lipolysis and FAO (135).

Moreover, PD - 1 exerts metabolic regulatory effects on

macrophages. Recent studies have shown that PD - 1 signaling

markedly inhibits glycolysis and phagocytic activity in tumor-

associated macrophages (138). These metabolic changes may

cause macrophages to preferentially use lipids as an energy

source, thereby reducing lipid accumulation in arterial plaques

and slowing the progression of atherosclerosis. However, the

precise mechanism through which PD - 1 regulates lipid

metabolism requires further investigation. We hypothesized that a

similar mechanism might operate in ASO to reduce plaque

formation. Additionally, patients treated with PD - 1/PD-L1

inhibitors for tumors exhibit an increased risk of cardiovascular

events, including the aggravation of atherosclerotic occlusive

disease (139). Thus, the PD - 1/PD-L1 axis offers a new

perspective for ASO treatment. Furthermore, caution should be

exercised when using PD - 1 inhibitors in cancer patients with

coexisting ASO.
4.2 CTLA - 4

Studies have indicated that CTLA - 4 inhibits glucose uptake in

Treg cells; however, unlike PD - 1, it does not significantly enhance

FAO in T cells (135). In other words, CTLA - 4 primarily maintains
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T cells in a metabolically suppressed or homeostatic state rather

than actively triggering lipid metabolic pathways. Moreover, in a

tumor microenvironment, the CTLA - 4 signaling pathway can

affect blood lipid concentrations by regulating enzymes related to

fatty acid synthesis (such as FASN) and genes associated with

cholesterol metabolism such as HMGCR (140, 141). In mice

subjected to antibody-mediated CTLA - 4 blockade, cholesterol

synthesis and LDL uptake significantly increased, exacerbating

atherosclerotic lesions (142). Although multiple lines of evidence

have shown that CTLA - 4 is closely associated with lipid

metabolism and plays a role in slowing atherosclerosis, further

studies are needed to investigate how CTLA - 4 maintains T cell

homeostasis to reduce plaque formation during ASO.
4.3 Tim-3

Experiments showed that in Tim-3-overexpressing Jurkat T cell

lines, glucose uptake, lactate production, and glucose transporter-1

concentrations were downregulated, whereas Tim-3 knockout

exhibited opposite effects (143). This indicates that Tim-3

signaling suppresses glycolysis in T cells, potentially driving T

cells to rely more on FAO for energy production. Moreover, Tim-

3 also influences lipid metabolism in macrophages. CD36 and SR-A

are primarily responsible for the uptake of lipoprotein-derived

cholesterol by macrophages, and are predominantly expressed in

M1 macrophages (144). Tim-3 may inhibit M1 polarization,

thereby downregulating the expression of CD36 and SRA. Thus,
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Tim-3 may reduce ox-LDL uptake, decrease foam cell formation,

and slow ASO progression. However, studies also found that in

human monocyte-derived macrophages, Tim-3 overexpression

suppresses miR-155-induced cholesterol ester hydrolase (CEH)

expression. Furthermore, miR-155 normally promotes

macrophage cholesterol efflux and reduces cholesterol ester

accumulation by upregulating CEH expression, thereby inhibiting

foam cell formation and atherosclerosis development (145). This

implies that Tim-3 accelerates atherosclerosis progression by

inhibiting the miR-155-CEH axis. Thus, in-depth studies of the

regulatory mechanisms of Tim-3 may provide new directions and

targets for ASO treatment.
5 Conclusion and prospects

ASO is a complex chronic vascular disease characterized by

disruption of lipid metabolism and chronic inflammation. Lipid

accumulation, foam cell formation, and inflammatory responses are

critical in ASO development, while immune checkpoints, such as

PD - 1, CTLA - 4, and Tim-3, serve as key regulatory elements in the

interplay between lipid metabolism and immune activity. These

immune checkpoints may affect the metabolic and inflammatory

environments of ASOs, thereby influencing lipid uptake, FAO,

cholesterol efflux, and macrophage polarization. Therefore,

immune checkpoint molecules are potential biomarkers for early

ASO diagnosis. Drugs targeting immune checkpoints could be

developed to delay ASO progression and prevent postoperative
TABLE 1 Functional interaction of the major immune checkpoints and lipid metabolism during arteriosclerosis obliterans.

Immune checkpoints and
their ligands

Roles in lipid metabolic effects and ASO Author

PD-1/PD-L1

Decrease glycolysis and amino acid metabolism in CD4+T cells while significantly enhance FAO Patsoukis et al. (135)

Activates the PI3K/Akt pathway, downregulates FASN, and inhibits fatty acid biosynthesis Soltani et al. (137)

Inhibit glycolysis and phagocytic activity of macrophages, making macrophages to preferentially
use lipids as an energy source

Gordon et al. (138)

Reduce T cell-mediated inflammation and decrease plaque area and increases atheroprotective
circulating ox-LDL-specific IgM levels

Grievink et al. (118)

Tim-3/Galectin-9

Suppresses glycolysis in T cells, thereby driving T cells to rely more on FAO for
energy production

Lee et al. (143)

Inhibit M1 polarization and downregulate CD36 and SR-A expression of macrophages, thereby
reducing the uptake of ox-LDL

Yu et al. (144)

Plays a negative regulatory role in atherosclerosis, and decrease plaque formation. Foks et al. (123)

Regulates the inflammatory response in ASO by inhibiting NF-kB activation Lian et al. (122)

CTLA-4/CD80/86

Inhibits T cell glycolysis Patsoukis et al. (135)

Reduce enzymes related to fatty acid synthesis such as FASN Zhang et al. (140)

Reduce genes associated with cholesterol metabolism such as HMGCR Pokhrel et al. (141)

Inhibition of CTLA - 4 signaling accelerates atherosclerosis development by NF-kB-mediated Th1-
biased immune response

Zhao et al. (114)

Reduce atherosclerotic lesion formation and plaque accumulation of macrophage and T cells Matsumoto et al. (113)
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recurrence. Further exploration of the interactions between lipid

metabolism regulators (such as AMPK, PPARs, and LXR) and

immune checkpoints may reveal novel pathways and potential

therapeutic targets for ASO management.

Although immune checkpoint inhibitors can enhance immune

responses to tumors by blocking checkpoints and have become a

breakthrough in cancer therapy (146), studies on immune
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checkpoint inhibitors have demonstrated their potential effect on

cardiovascular diseases, including heart failure and arteriosclerosis

(125, 147). Many studies have reported adverse events related to

atherosclerosis caused by immune checkpoint inhibitors (130, 148).

Therefore, enhanced monitoring of ASO and cardiovascular risk in

patients undergoing immune checkpoint inhibitor therapy

is recommended.
FIGURE 2

Immune checkpoints regulate lipid metabolism to cause ASO. After binding to its ligand, immune checkpoint molecules cause downregulation of
the PI3K/Akt/mTOR signaling pathway, (A) thereby upregulating of PPAR-g and its downstream gene like SOD, leads to a reduction in ox-LDL
concentrations, (B) leading to a reduction in SREBP concentrations and subsequent downregulation of its downstream target genes, such as FASN
and ACC, ultimately resulting in decreased lipogenesis. Following the inhibition of the PI3K/Akt/mTOR signaling pathway, (C) the metabolic profile
shifts toward the predominant FAO and activates the AMPK pathway. Once activated, (D) AMPK induces HMGCR downregulation, resulting in
decreased cholesterol synthesis. Moreover, (E) AMPK upregulates ABCA1 and its related targets, thereby increasing cholesterol efflux, and
simultaneously (F) upregulates CPT1A, which further enhances FAO and promotes lipolysis. Collectively, these effects lead to reduced lipid
accumulation in the endothelial cells and blood vessels, thereby mitigating ASO. ox-LDL, oxidized LDL; SREBPs, sterol regulatory element-binding
proteins; AMPK, AMP-activated protein kinase; ACC, acetyl-CoA carboxylase; FAO, fatty acid oxidation; ABC, ATP-binding cassette; mTOR,
mammalian target of rapamycin; FAT, fatty acid transport; CPT - 1, carnitine palmitoyltransferase-1; FABP4, fatty acid binding protein 4; SR-BI,
scavenger receptor class B type I; GPx, glutathione peroxidase; SOD, superoxide dismutase; FASN, fatty acid synthase; PI3K, phosphatidylinositol-3-
kinase; PD - 1, programmed cell death protein -1; CTLA - 4, cytotoxic T lymphocyte associated protein 4; Tim-3, T cell immunoglobulin and mucin-
domain containing-3; HMGCR, 3-hydroxy-3-methylglutaryl-coenzyme A reductase; CEH, cholesterol ester hydrolase; PPAR, peroxisome
proliferator–activated receptors.
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