
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Zhiming Lin,
Third Affiliated Hospital of Sun Yat-sen
University, China

REVIEWED BY

Shui Lian Yu,
The Second Affiliated Hospital of Guangzhou
Medical University, China
Yukai Wang,
Shantou Central Hospital, China

*CORRESPONDENCE

Hai Wang

13826353566@163.com

Jichun Yan

yjc99436@163.com

†These authors have contributed equally to
this work

RECEIVED 14 July 2025
ACCEPTED 14 August 2025

PUBLISHED 02 September 2025

CITATION

Huang W, Lin R, Zeng X, Wang H and Yan J
(2025) Decoding paraneoplastic neuromyelitis
optica: a multi-omics investigation of
tumor-driven T and B cell dynamics.
Front. Immunol. 16:1665688.
doi: 10.3389/fimmu.2025.1665688

COPYRIGHT

© 2025 Huang, Lin, Zeng, Wang and Yan. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Review

PUBLISHED 02 September 2025

DOI 10.3389/fimmu.2025.1665688
Decoding paraneoplastic
neuromyelitis optica:
a multi-omics investigation
of tumor-driven T and
B cell dynamics
Wenjing Huang1†, Ruyu Lin2†, Xianyi Zeng3, Hai Wang4*

and Jichun Yan5*

1The First People’s Hospital of Qinzhou, Qinzhou, China, 2Clinical Medicine, Fujian Medical University,
Fujian, China, 3China Unicom Digital Intelligence Medical Technology Co., Ltd., Guangzhou, China,
4Rheumatology and Immunology Department, Yue Bei People’s Hospital, Shaoguan, China, 5Ganzhou
City People’s Hospital, Jiangxi, Guangzhou, China
A significant subset of Neuromyelitis Optica Spectrum Disorder (NMOSD) cases

occurs as a paraneoplastic syndrome, where an underlying tumor triggers a

devastating autoimmune attack against the central nervous system. This

autoimmune response is driven by pathogenic aquaporin-4 autoantibodies

(AQP4-IgG), likely initiated by the tumor’s expression of AQP4 in a phenomenon

of molecular mimicry. Understanding the precise immune mechanisms that link a

patient’s cancer to their neurological disease is critical for early diagnosis of the

occult malignancy and for improved patient outcomes. This review explores how

multi-omics technologies are revolutionizing the investigation of T and B cell

functional dynamics in this specific context, offering unprecedented resolution

into the pathogenesis of paraneoplastic NMOSD. The application of integrated

multi-omics—including genomics, epigenomics, transcriptomics (particularly

single-cell RNA-seq), proteomics, and metabolomics—provides a holistic

framework to dissect the specific immune response directed against both the

tumor and the CNS. Transcriptomics, notably scRNA-seq, can deconstruct the

heterogeneity of tumor-infiltrating and circulating T and B cells to identify the

pathogenic subsets responsible for the autoimmune pathology. Proteomics can

aid in identifying tumor-specific biomarkers, while metabolomics offers insights

into the metabolic vulnerabilities of the autoreactive immune cells. Multi-omics

analyses reveal the cellular andmolecular cascade of the paraneoplastic response.

High-throughput T-cell receptor (TCR) and B-cell receptor (BCR) sequencing

provides direct evidence of oligoclonal expansions, identifying the specific T and B

cell clones that likely recognize shared AQP4 epitopes on both the cancer cells and

CNS astrocytes. These expanded B cells show hallmarks of a mature, antigen-

driven response, including class-switching and affinity maturation of the

pathogenic AQP4-IgG. Furthermore, analyses of T cell dynamics reveal a pro-

inflammatory environment, with functional impairment of regulatory T cells (Tregs)

and a skewed balance towards Th17 and Th1 cells, which is likely initiated by the

tumor and perpetuated in the CNS via critical T-B cell interactions, such as the IFN-

I → B-cell → IL-6 → pathogenic Th17 axis. Despite these insights, substantial

challenges remain in translating these findings into clinical practice. A key hurdle is

using multi-omics to develop a reliable molecular signature that can distinguish
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paraneoplastic from idiopathic NMOSD at diagnosis, thereby streamlining cancer

screening for high-risk patients. Advanced computational tools, including AI and

machine learning, are needed to integrate the immense volume of data and

identify the subtle differences. Future research must prioritize the analysis of

longitudinal samples (before and after tumor treatment) and the functional

validation of the identified pathogenic pathways. In conclusion, multi-omics is

profoundly enhancing our understanding of how tumors can initiate and sustain a

specific, targeted autoimmune response in paraneoplastic NMOSD. This deep

mechanistic investigation not only promises to improve diagnostics and

personalized therapies for these complex patients but also serves as a powerful

model for understanding other paraneoplastic syndromes, ultimately bridging the

fields of oncology and neuroimmunology.
KEYWORDS

Neuromyelitis optica spectrum disorder (NMO-SD), paraneoplastic syndrome,
aquaporin-4 autoantibodies, pathogenesis, multi-omics technologies
1 Introduction

Neuromyelitis Optica (NMO), also known as Devic’s disease, is

a severe autoimmune inflammatory disorder of the central nervous

system (CNS) primarily affecting the optic nerves and spinal cord

(1–3). Historically, it was conceptualized in the late 19th century by

Eugène Devic and Fernand Gault as “neuro-myélite optique aiguë,”

and long considered a severe variant of multiple sclerosis (MS) (4).

However, the past two decades have brought a paradigm shift,

establishing NMOSD as a distinct clinical, pathological, and

immunological entity driven by astrocytopathy, a stark contrast to

the primary demyelinating pathology of MS (5, 6). The cardinal

clinical manifestations of NMOSD include attacks of acute optic

neuritis (ON), which can be bilateral and lead to profound vision

loss, and longitudinally extensive transverse myelitis (LETM),

typically spanning three or more vertebral segments and resulting

in severe motor, sensory, and autonomic dysfunction (7–9). The

disease follows a relapsing course in over 90% of patients, with each

attack contributing to cumulative, often irreversible, neurological

disability (10).

The global prevalence of NMOSD is estimated to range from 0.5

to 10 cases per 100,000 individuals, with notable variations across

different geographical regions and ethnic populations (11). Within

this broader context, paraneoplastic neuromyelitis optica spectrum

disorder (pNMOSD) constitutes a small but critical fraction. The

reported frequency of pNMOSD among patients with AQP4-IgG-

positive NMOSD varies considerably in the literature. Large,

systematic cohort studies report frequencies in the range of 1.1%

to 6.2% (12). For instance, one study of 371 patients with AQP4-

IgG-positive NMOSD identified a probable paraneoplastic context

in only 1.1% of cases (12), while another analysis of 156 patients

found a rate of 3.2% (13). In contrast, reviews that include
02
collections of case series often cite a much wider and higher

range, from 3% to 25% (14).

Distinguishing pNMOSD from its idiopathic form (iNMOSD)

is a critical clinical challenge, with several features pointing toward

an underlying malignancy. Demographically, pNMOSD presents at

an older age (median >50 years) and affects more males than

iNMOSD (12, 15). Clinically, it is more likely to manifest with

longitudinally extensive transverse myelitis (LETM) or area

postrema syndrome rather than isolated optic neuritis (12, 13).

The condition is most commonly associated with adenocarcinomas,

particularly of the lung and breast, though other cancers are also

reported (12, 16, 17).

The watershed moment in understanding NMOSD occurred in

2004 with Lennon and colleagues’ discovery of a highly specific

serum autoantibody, NMO-IgG, at the Mayo Clinic (18). A year

later, this antibody was identified as targeting aquaporin-4 (AQP4),

the most abundant water channel protein in the CNS (19). AQP4 is

densely concentrated on astrocytic foot processes at the blood-brain

barrier (BBB), the glia limitans, and in subependymal regions,

aligning precisely with the sites of pathological damage in

NMOSD (20, 21); it is also highly expressed on astrocytes (9).

AQP4-IgG autoantibodies, detectable in up to 80-90% of patients

using modern cell-based assays, are now recognized as the principal

drivers of pathogenesis (22, 23). Predominantly of the complement-

fixing IgG1 subclass, AQP4-IgG mediates astrocyte destruction

through two primary mechanisms: complement-dependent

cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity

(ADCC), culminating in a cascade of inflammation, secondary

oligodendrocyte loss, demyelination, and neuronal injury (24–26).

The central pathogenic role of AQP4-IgG has been irrefutably

demonstrated in numerous in vitro and in vivo animal models

(27, 28). For pNMOSD, a “two-hit”model is proposed to explain its
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development. The first hit involves a tumor ectopically

expressing the AQP4 protein, which breaks immune tolerance

and leads to the production of pathogenic AQP4-IgG (29). The

second hit is an event that compromises the blood-brain barrier

(BBB), such as tumor-induced production of other antibodies,

allowing the AQP4-IgG to enter the central nervous system and

cause disease, which also explains cases where the tumor itself is

AQP4-negative (29, 30).

The discovery of AQP4-IgG not only provided a specific

biomarker but also led to a reclassification of the field. A subset

of patients with clinical features of NMOSD, who are seronegative

for AQP4-IgG, were subsequently found to harbor autoantibodies

against myelin oligodendrocyte glycoprotein (MOG), a protein

expressed on the surface of oligodendrocytes and the outermost

layer of the myelin sheath (31, 32). This led to the definition of

MOG antibody-associated disease (MOGAD) as a separate entity

with distinct demographic, clinical, imaging, and pathological

features, despite some clinical overlap with NMOSD (33, 34).

Given the potential for severe disability with each NMOSD

relapse, early and accurate diagnosis based on the 2015

international consensus criteria, followed by prompt initiation of

targeted immunotherapy, is paramount for mitigating long-term

neurological damage (8, 35). However, current therapies, while

effective at reducing relapse frequency, are not curative, do not
Frontiers in Immunology 03
fully halt disability progression, and necessitate long-term

immunosuppression with attendant risks (36–38).

The immunopathogenesis of NMOSD is now understood as a

complex, multi-cellular process orchestrated by the adaptive

immune system, with autoreactive T and B lymphocytes as the

central protagonists (39–41). B cells are unequivocally critical,

serving not only as precursors to the pathogenic AQP4-IgG-

secreting plasma cells but also contributing significantly to CNS

inflammation through potent antigen presentation, pro-

inflammatory cytokine production (e.g., IL-6), and the formation

of ectopic lymphoid-like structures within the CNS meninges (42,

43). Lymphocytes, particularly CD4+ T helper cells, are

indispensable collaborators in this process, providing the

necessary signals for B cell activation, affinity maturation, class-

switching to pathogenic IgG1, and differentiation into memory B

cells and long-lived plasma cells (44–46). Beyond this helper

function, specific T cell subsets actively participate in the

inflammatory milieu. For instance, activated T cells expressing

CD69 and CD40L are elevated during acute phases, and pro-

inflammatory T helper 17 (Th17) cells and IFN-g-producing Th1

cells are consistently enriched in NMOSD patients (Figure 1), with

their levels correlating directly with disease severity (47–49).

The intricate molecular and cellular cascades underlying this

autoimmune process cannot be fully resolved by traditional single-
FIGURE 1

Schematic depicts the possible pathogenesis in patients with AQP4-IgG+ pNMOSD.
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modality investigative techniques. Such methods, like bulk RNA-

sequencing or flow cytometry with limited markers, typically offer a

restricted view of biological processes, often masking crucial cell-

type-specific information by averaging signals across heterogeneous

cell populations (47, 50). This limitation is particularly pronounced

in NMOSD, where the distinct immunopathology necessitates a

more granular and integrated analytical approach. Adopting such

an approach is essential for advancing beyond broad

immunomodulation towards precision medicine (51).

Multi-omics approaches, which integrate high-throughput data

from distinct biological strata—including genomics (DNA),

epigenomics (epigenetic modifications), transcriptomics (RNA),

proteomics (proteins), and metabolomics (metabolites)—offer a

powerful and holistic framework to dissect the complexity of

NMOSD (52–54). This integrated systems immunology approach

facilitates the analysis of genetic predispositions, molecular

perturbations, and biochemical profiles across different biological

layers, revealing complex, non-linear interrelationships and offering

deeper insights into disease mechanisms (55, 56). The application of

multi-omics, particularly at the single-cell level, is poised to accelerate

the discovery of robust biomarkers for diagnosis and prognosis,

identify novel and highly specific therapeutic targets, and ultimately

personalize treatment strategies for patients with NMOSD (57). By

providing comprehensive molecular and cellular atlases of the disease

state, multi-omics holds the potential to identify actionable signatures

that can predict disease progression, stratify patients based on their

underlying immunopathology, and monitor therapeutic responses

(58). This capability could enable a shift from a reactive treatment

paradigm to a proactive, personalized approach aimed at minimizing

disability by optimizing therapeutic choices based on individual

molecular profiles (59, 60).
2 Fundamentals of multi-omics in
immunology

The application of multi-omics technologies represents a

fundamental shift in biomedical research, moving from a
Frontiers in Immunology 04
reductionist, single-molecule focus to a holistic, systems-level

view of biology. This is particularly transformative in

immunology, where complexity arises from the interaction of

diverse cell types, intricate signaling networks, and dynamic

responses to stimuli (Table 1) (61).

Genomics in NMOSD aims to identify genetic variants that

confer susceptibility. Genome-wide association studies (GWAS)

have been pivotal, confirming that the strongest genetic risk

factor resides within the major histocompatibility complex

(MHC) class II region on chromosome 6 (62, 63). Specific alleles,

such as HLA-DRB1 03:01* and HLA-DPB1 05:01*, have been

strongly associated with AQP4-IgG-seropositive NMOSD in

various populations. These MHC molecules are critical for

presenting antigenic peptides to CD4+ T cells, providing a direct

genetic link to the T-cell-dependent autoimmune response (64, 65).

Non-MHC loci have also been implicated, including genes involved

in immune regulation and cytokine signaling, such as CCR6, a

chemokine receptor expressed on Th17 cells, and genes in the IL-12

signaling pathway (66, 67). More recent studies have explored the

role of rare variants and somatic mutations in immune cells,

suggesting that genetic risk likely combines common and rare

variants that perturb immune homeostasis (63).

Epigenomics investigates heritable modifications that regulate

gene expression without altering the DNA sequence itself. These

include DNA methylation, histone modifications, and non-coding

RNAs (68, 69). In autoimmunity, epigenetic dysregulation can lead

to the inappropriate expression of self-antigens or pro-

inflammatory genes (70). Studies have shown global DNA

hypomethylation in T cells, which may contribute to their

hyperactive state (71). Locus-specific analyses have identified

altered methylation patterns in the promoter regions of key

immune genes, such as IFNG (encoding IFN-g) and FOXP3 (the

master regulator of regulatory T cells), providing a potential

mechanism for the Th1 skewing and Treg dysfunction observed

in the disease (72, 73). Single-cell technologies like scATAC-seq

(single-cell assay for transposase-accessible chromatin sequencing)

are beginning to map the regulatory landscape of individual

immune cells, revealing how chromatin accessibility shapes the
TABLE 1 Overview of multi-omics technologies and their applications in NMO research.

Omics technology Data type Key information provided
Examples of applications in
NMO research

Genomics DNA
Genetic variants, mutations,
chromosomal alterations

GWAS studies identifying risk loci, Association with mCAs

Transcriptomics RNA Gene expression levels, RNA isoforms
Identifying DEGs in T and B cell subsets, Revealing cell
type-specific immune regulation, Profiling antibody genes

Proteomics Proteins
Protein expression levels,
modifications, interactions

Identifying potential biomarkers in CSF and serum,
Understanding signaling pathways

Metabolomics Metabolites Small molecule profiles, metabolic pathways
Identifying metabolic signatures, Exploring treatment
effects on metabolism

Single-Cell Sequencing
DNA, RNA, protein at
single-cell resolution

Cellular heterogeneity, rare cell populations
Revealing T and B cell subsets, Identifying disease-specific
cell populations

Spatial Transcriptomics
RNA expression with
spatial context

Location and gene expression within tissue Analyzing T cell distribution in CNS lesions
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gene expression programs of pathogenic cell subsets in

NMOSD (74).

Transcriptomics, the study of the complete set of RNA

transcripts, provides insights into gene regulation. The advent of

single-cell RNA sequencing (scRNA-seq) has been particularly

revolutionary for immunology (75). By profi l ing the

transcriptome of thousands of individual cells simultaneously,

scRNA-seq allows for the deconstruction of complex tissues like

peripheral blood or CSF into their constituent cell types and states

with unprecedented resolution (76). Single-cell RNA sequencing

(scRNA-seq) has been particularly valuable for revealing cell-type-

specific immune regulation, uncovering the heterogeneity and

functional diversity of T cells, and profiling B cell transcriptomes

to understand antibody production (47, 77). In NMOSD, scRNA-

seq has been used to create high-resolution atlases of peripheral

immune cells, revealing the expansion of specific cytotoxic CD8+ T-

cell subsets, identifying unique transcriptional signatures in pro-

inflammatory monocytes, and characterizing the gene expression

programs of antibody-secreting B cells (47, 78). This technology

moves beyond simple cell counting to define the functional state of

each cell, identifying key transcription factors, signaling pathways,

and cytokine profiles that are dysregulated in disease. Recent

advancements have significantly enhanced the resolution of omics

technologies, particularly with the emergence of single-cell and

spatial approaches. While scRNA-seq offers high cellular resolution,

it requires cell dissociation, resulting in the loss of spatial

information (79). Spatial transcriptomics (ST) addresses this by

mapping gene expression profiles while preserving their location

within intact tissue sections. Techniques such as Visium and

MERFISH (multiplexed error-robust fluorescence in situ

hybridization) are crucial for understanding cellular organization

and the tissue microenvironment in NMOSD (80). Spatial

transcriptomics enables the mapping of gene expression within

the tissue context, providing critical information about the spatial

organization of immune cells in NMO lesions. This technology has

been used to analyze the distribution of T cells in CNS lesions,

offering crucial context for their pathological role (81).

Proteomics, the large-scale study of proteins and their

interactions, provides crucial information not available from

genomics or transcriptomics, as protein levels often correlate

poorly with mRNA levels due to post-transcriptional,

translational, and post-translational regulation (82). Proteomic

analyses have been instrumental in identifying potential

biomarkers in cerebrospinal fluid (CSF) and serum, and in

elucidating signaling pathways involved in NMO pathogenesis

(56, 58). In NMOSD, proteomic analyses of CSF have been

instrumental in the search for biomarkers of inflammation and

tissue damage. Unbiased mass spectrometry-based approaches have

identified panels of proteins that differentiate NMOSD from MS

and healthy controls, including elevated levels of glial fibrillary

acidic protein (GFAP), a specific marker of astrocyte injury, and

other proteins related to complement activation and innate

immunity (83–85). Complementing these, Imaging Mass
Frontiers in Immunology 05
Cytometry (IMC) is a proteomic-based spatial technology that

quantifies dozens of protein targets at subcellular resolution,

providing detailed insights into cell types, their states, and their

spatial distribution (86, 87). More advanced techniques like

Imaging Mass Cytometry (IMC) or Co-detection by indexing

(CODEX) allow for highly multiplexed protein imaging in tissue

sections, enabling the study of the cellular composition and spatial

organization of the NMOSD lesion microenvironment at

subcellular resolution (88).

Metabolomics is the comprehensive analysis of small molecule

metabolites in a biological sample, providing a functional readout of

cellular physiology (89). Immune cells undergo profound metabolic

reprogramming upon activation to meet the bioenergetic and

biosynthetic demands of proliferation and effector function (90).

Metabolomic studies in NMOSD have identified distinct metabolic

signatures in the serum and CSF, characterized by alterations in

lipid metabolism, amino acid pathways, and energy metabolism (49,

91). These changes may not only reflect CNS tissue damage but also

highlight metabolic vulnerabilities of pathogenic immune cells,

suggesting that targeting immunometabolism could be a novel

therapeutic strategy (92).

Data Integration and Computational Challenges. The true

power of multi-omics stems from integrating these disparate data

types to construct a comprehensive, multi-layered model of the

disease (93). This is achieved through various computational

strategies, from conceptual integration based on existing

knowledge to advanced machine learning (ML) and artificial

intelligence (AI) models (94). These integrative methods are

designed to capture complex interactions between biological

layers that are obscured when analyzing data in isolation (95).

Technologies that facilitate multimodal data integration from the

same single cells, such as CITE-seq (Cellular Indexing of

Transcriptomes and Epitopes by sequencing), significantly

enhance cel l type class ificat ion and provide a more

comprehensive view of cellular function. Similarly, integrating

scRNA-seq with T-cell receptor (scTCR-seq) or B-cell receptor

(scBCR-seq) sequencing offers unparalleled insights into immune

repertoire diversity and clonal dynamics (96). The analysis of

longitudinal multi-omics data is also crucial for understanding

disease progression and monitoring therapeutic responses.

The volume, dimensionality, and heterogeneity of multi-omics

datasets present significant computational challenges that can

overwhelm traditional statistical methods (97). This “curse of

dimensionality” can lead to data sparsity and hinder accurate

inference. AI and ML approaches are emerging as essential tools

to overcome these limitations by enabling robust data integration,

pattern recognition, and predictive modeling. These approaches are

essential for tasks such as dimensionality reduction, batch effect

correction, identifying co-regulated modules of genes and proteins,

and building predictive models that can link molecular signatures to

clinical outcomes (98). As these technologies mature, AI-driven

analysis will become indispensable for extracting clinically

meaningful insights from the vast sea of multi-omics data.
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3 Decoding T cell dynamics in NMO
through multi-omics

T cells are central orchestrators of the adaptive immune

response, and their dysregulation is a cornerstone of NMOSD

pathogenesis. Multi-omics technologies have enabled a far more

nuanced understanding of their roles beyond simple classification

as “helper” or “killer” cells.
3.1 T cell heterogeneity and subsets

Single-cell RNA sequencing (scRNA-seq) has significantly

advanced the understanding of T cell heterogeneity in NMOSD.

Studies have identified distinct T cell populations based on their

gene expression profiles, including Naïve CD4+ and CD8+ T cells,

Memory CD4+ and CD8+ T cells, Effector Memory CD8+ T cells,

Cytotoxic CD8+ T cells, Exhausted CD8+ T cells, CD4-CD8-

double-negative T cells, and Mucosal-associated invariant T

(MAIT) cells (47, 99).

In NMOSD patients, the proportion of total T cells in peripheral

blood mononuclear cells (PBMCs) is decreased compared to

healthy controls. This reduction is primarily attributed to a

decrease in CD4+ T cells, whereas the proportion of CD8+ T

cells within the T cell population is notably increased. This shift

suggests a specific immune dysregulation rather than a general T

cell deficiency. MAIT cells, which possess cytotoxic and pro-

inflammatory functions, show a significant proportional increase

in NMOSD patients following steroid therapy (47).

Regulatory T cells (Tregs), characterized by the expression of

the transcription factor FOXP3, are essential “brakes” of the

immune system, maintaining self-tolerance by suppressing the

activation and proliferation of autoreactive lymphocytes (100). A

consistent finding in NMOSD is that Tregs are both numerically

deficient and functionally impaired, particularly during disease

relapses (101, 102). Evidence from mouse models highlights their

importance; Treg depletion exacerbates astrocyte loss and

demyelination, while adoptive transfer of Tregs attenuates brain

damage (102). This Treg dysfunction, potentially driven by

epigenetic modifications at the FOXP3 locus or a pro-

inflammatory cytokine milieu that inhibits their suppressive

capacity, is considered a key checkpoint failure that permits the

development of autoimmunity (103).

T helper (Th) cells are master regulators of the adaptive

immune response. In NMOSD, the balance between different Th

subsets is skewed towards a pro-inflammatory phenotype. Th17

cells, characterized by the production of IL-17A, IL-17F, and IL-22,

are potent inducers of tissue inflammation and are consistently

found at elevated levels in the blood and CSF of NMOSD patients

(43, 48, 104). IL-17 acts on endothelial cells of the BBB to disrupt

tight junctions and promotes the recruitment of other inflammatory

cells, such as neutrophils, into the CNS (105). Multi-omics studies

have elucidated the signaling pathways driving Th17 differentiation

in NMOSD, highlighting a critical role for IL-6, which is produced

by B cells and innate immune cells in response to stimuli like type I
Frontiers in Immunology 06
interferons (43, 106). This establishes a pathogenic feedback loop

where B cells fuel the differentiation of Th17 cells, which in turn

promote CNS inflammation (106). Th1 cells, which produce IFN-g,
also contribute to the inflammatory environment, and a particularly

pathogenic subset known as Th17.1 (or ex-Th17) cells, which co-

express markers of both Th1 and Th17 lineages (e.g., produce both

IFN-g and IL-17), has been identified as being highly enriched in

NMOSD (107).

T follicular helper (Tfh) cells, found in secondary lymphoid

organs, are specialized providers of help to B cells. Their interaction

with B cells, mediated through molecules like CD40L, ICOS, and

the cytokine IL-21, is essential for germinal center formation,

affinity maturation, and the generation of long-lived plasma cells

and memory B cells (108). Tfh cells are expanded in the circulation

of NMOSD patients, and their numbers correlate with AQP4-IgG

titers, underscoring their critical role in driving the pathogenic

humoral response (109).
3.2 T Cell receptor repertoire analysis

Each T cell expresses a unique T-cell receptor (TCR) that

recognizes a specific peptide-MHC complex. The collective

diversity of all TCRs in an individual constitutes the TCR

repertoire. High-throughput TCR sequencing (TCR-seq) has

provided profound insights into the T-cell response in NMOSD.

Compared to healthy individuals, NMOSD patients exhibit a

significantly contracted and less diverse TCR$\beta$ repertoire,

characterized by prominent oligoclonal expansions (110). This

indicates that a limited number of T-cell clones are undergoing

massive antigen-driven proliferation in response to specific

epitopes. These expanded clones are found within pathogenic

effector memory and cytotoxic T-cell subsets, and their frequency

can decrease following effective therapy, suggesting they could serve

as a dynamic biomarker of disease activity (47).

A leading hypothesis for the initiation of autoimmunity is

molecular mimicry, where a foreign peptide from an infectious

agent shares sufficient structural similarity with a self-peptide to

trigger a cross-reactive T-cell response. Integrated TCR-seq and

functional studies have provided compelling evidence for this

mechanism in NMOSD. Evidence linking Cytomegalovirus

(CMV) infection to AQP4-IgG+ NMOSD has been derived from

integrated TCR/BCR repertoire analysis and functional validation

(110). This work suggests a specific mechanism for disease

initiation. A T-cell antigenic epitope of CMV was found to be

identical to a sequence within AQP4, and its corresponding CDR3

sequence closely resembled an NMOSD-TCR sequence (110).

Shared core peptides that partially overlap with Clostridium

perfringens epitopes, previously reported to cross-react with

AQP4, have also been identified, suggesting a broader mechanism

of microbial molecular mimicry (44, 110).

Transcriptomic analyses reinforce this link by showing

upregulated genes related to viral infection and innate immune

pathways in NMOSD patients. Gene Set Enrichment Analysis

(GSEA) further demonstrates significant activation of interferon-
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related and T-cell receptor signaling pathways. Functionally, in

vitro experiments show that CD4+ T cells from untreated AQP4-

IgG+ NMOSD patients are significantly activated upon stimulation

with CMV peptide pools, a response not observed in healthy

controls. Genetic factors, such as specific HLA genes (HLA-DPB1

05:01* and HLA-DRB1 03:01*), appear to influence susceptibility,

suggesting that CMV infection may be a necessary but not sufficient

trigger for the disease. These findings highlight a plausible pathway

for disease initiation where environmental triggers (microbial

infections) and genetic susceptibility (HLA type) converge to

activate autoreactive T cells that provide help to AQP4-specific B

cells (110).
4 Decoding B cell functional dynamics
in NMOSD

The central role of B cells in NMOSD is undisputed, cemented

by the pathogenicity of AQP4-IgG and the profound efficacy of B-

cell-depleting therapies. Multi-omics has moved the field beyond

this general understanding to a detailed dissection of the B-cell

subsets and molecular pathways involved.
4.1 B Cell heterogeneity and differentiation

The B-cell lineage is a continuum of developmental stages, from

naïve B cells to highly specialized antibody-secreting cells (ASCs).

scRNA-seq has mapped this landscape in NMOSD, revealing

significant shifts in the B-cell compartment (78, 111). Compared

to healthy controls, NMOSD patients exhibit an increased

proportion of IgG+ plasma cells, IgA+ plasma cells, total plasma

cells, and memory B cells, indicative of a robust humoral immune

response (47, 112). The frequency of these plasmablasts often

correlates with disease activity and AQP4-IgG titers, and they are

considered a major source of the pathogenic antibodies during

relapses (113).

Beyond ASCs, multi-omics has highlighted the importance of

other B-cell subsets. Memory B cells, which persist after an initial

immune response and can rapidly differentiate into ASCs upon re-

exposure to antigen, are expanded and transcriptionally primed for

activation in NMOSD patients (111). These cells likely represent a

persistent reservoir of autoimmunity that contributes to relapses.

Furthermore, studies have identified an expansion of so-called

“atypical” B cells, including double-negative B cells and age-

associated B cells (ABCs) (114, 115). These subsets have been

implicated in other systemic autoimmune diseases and are

characterized by the expression of transcription factors like T-bet,

a pro-inflammatory phenotype, and a lower threshold for

activation, potentially contributing to the cycle of inflammation

in NMOSD.

The remarkable efficacy of therapies targeting the B-cell surface

protein CD20 (rituximab, ocrelizumab) or CD19 (inebilizumab) has
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revolutionized NMOSD management (36, 116, 117). Multi-omics

studies are helping to elucidate their precise mechanisms of action.

By depleting circulating B cells, these therapies remove not only the

precursors of AQP4-IgG-secreting plasmablasts but also a critical

population of antigen-presenting cells required to sustain the

autoreactive T-cell response, and a key source of pro-

inflammatory cytokines like IL-6 (43, 118). This multifaceted

impact likely explains their high efficacy.
4.2 B cell receptor repertoire and antibody
production

Single-cell BCR sequencing (scBCR-seq) has revealed critical

insights into antibody production in NMOSD. Oligoclonal

expansions of BCRs are consistently observed, particularly after

therapy, indicating a focused and persistent antigen-driven response.

scBCR-seq data show increased proportions of immunoglobulin heavy

chain gamma (IGHG) and alpha (IGHA) in NMOSD patients,

signifying a class switch towards IgG and IgA production. Clonal

BCRs observed after steroid treatment consist primarily of IgA and IgG

subtypes, with widespread clonal expansion observed across naïve B,

plasma, and memory B cell compartments (77).

The pathogenic autoantibody in NMOSD, AQP4-IgG, exhibits

consistently greater binding affinity to the M23 isoform of AQP4

compared to the M1 isoform. This differential binding is attributed

to the assembly of the M23 isoform into orthogonal arrays of

particles (OAPs). Experiments with varying M1:M23 ratios and

OAP-disrupting mutants of M23 have confirmed this conclusion.

Furthermore, purified Fab fragments of NMO-IgG showed similar

binding patterns, indicating that structural changes in the AQP4

epitope upon array assembly, not bivalent cross-linking, are

responsible for the greater binding affinity (119). Analysis of these

BCR sequences shows high rates of somatic hypermutation,

particularly in the complementarity-determining regions (CDRs)

that form the antigen-binding site. This is the molecular signature

of an affinity-matured, T-cell-dependent immune response,

consistent with the high-affinity binding of AQP4-IgG to its

target (48, 120). These studies also confirm a strong bias towards

the use of IgG1 and IgA isotypes within the expanded clones, the

very isotypes known to be pathogenic or enriched in NMOSD (88).

B cells also function as professional antigen-presenting cells

(APCs), further stimulating T cell activation. The interaction

between B cells and T cells is a critical aspect of the adaptive

immune response in NMOSD. For instance, IFN-I stimulates B cells

to produce IL-6, which then drives pathogenic Th17 differentiation.

The efficacy of B cell-depleting therapies, such as anti-CD20

(rituximab) and anti-CD19 (inebilizumab) monoclonal

antibodies, in reducing relapses underscores the pathogenic role

of B cells (111). The observation that IL-6 and IL-17 levels are lower

in patients on anti-CD20 therapy suggests a link between B cell

depletion and the reduction of pro-inflammatory cytokines,

providing a molecular basis for the therapeutic benefit.
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5 Integrative analysis of T and B cell
interactions in NMO

While individual omics platforms provide powerful insights, the

greatest potential for discovery lies in their integration. An

integrated systems immunology approach allows for the

construction of a more complete and dynamic model of NMOSD

pathogenesis, connecting genetic risk factors to cellular

dysregulation and clinical outcomes.
5.1 Connecting the dots across biological
layers

Computational tools designed for multi-omics integration are

beginning to link findings across different data types. For example,

by integrating genomic data (HLA risk alleles) with TCR-seq data,

researchers can predict which specific self- or microbial peptides are

likely to be presented by those risk alleles to drive the expansion of

pathogenic T-cell clones (65). Similarly, integrating transcriptomic

data from T cells with metabolomic data from the same patients can

reveal how the pro-inflammatory gene expression programs of

Th17 cells are fueled by specific metabolic pathways, such as

aerobic glycolysis (92, 121). Identifying and targeting these

metabolic dependencies offers a novel therapeutic strategy.
5.2 Inferring cell-cell communication
networks

A key application of single-cell transcriptomics is the inference

of intercellular communication networks. By analyzing the

expression of ligand-receptor pairs across all cell types in a

sample, computational tools like CellChat or NicheNet can

construct a map of the signaling interactions that shape the

immune response (122). In NMOSD, this approach has been used

to model the critical cross-talk between Tfh cells and B cells,

identifying IL-21 and CD40L as key signals driving B-cell

differentiation (109). It can also reveal how astrocytes and

microglia, the resident cells of the CNS, respond to infiltrating

immune cells and, in turn, produce chemokines and cytokines that

amplify the inflammatory cascade (83, 123). These communication

maps provide a rich source of potential therapeutic targets aimed at

disrupting these pathogenic cellular conversations.

From Discovery to Clinical Utility. The ultimate goal of multi-

omics research is to improve patient care. This requires translating

complex datasets into clinically actionable tools. A major focus is on

biomarker development. The high dimensionality of omics data

provides fertile ground for discovering novel diagnostic, prognostic,

and predictive biomarkers (124). For example, a specific signature of

clonally expanded TCRs in the blood could serve as a highly sensitive

biomarker of impending relapse. A proteomic or metabolomic

signature could predict which patients are likely to respond to a

specific therapy, enabling the development of companion diagnostics

for personalized treatment selection (58, 90). While many candidate
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markers have been identified, the path to clinical validation is long

and requires large, prospective, longitudinal patient cohorts.

Currently, fluid biomarkers like serum GFAP and neurofilament

light chain (NfL), which reflect astrocyte and neuronal injury,

respectively, are the most advanced and are being incorporated into

clinical trials as measures of disease activity and treatment response

(125, 126).
6 Discussion

The integration of multi-omics technologies has propelled our

understanding of NMOSD into the high-resolution world of single-

cell and spatial dynamics. While these approaches have illuminated

pathogenic mechanisms in idiopathic disease, their most critical

application may lie in dissecting paraneoplastic NMOSD, where an

underlying tumor initiates the autoimmune cascade. In this context,

the interactions of T and B cells are not random; they are a direct

response to tumor-expressed antigens like AQP4. The journey from

complex biological data to tangible clinical benefit requires solving

the profound challenge of diagnosing and managing a disease that

bridges oncology and neurology. This discussion will address the

clinical shortcomings in managing paraneoplastic NMO, outline

the immediate clinical applications of recent findings in this specific

context, and explore the future prospects for translating this

research into transformative care for these complex patients.
6.1 Medical shortcomings and unanswered
questions in paraneoplastic NMO

Despite technological advances, the paraneoplastic nature of

some NMOSD cases presents fundamental clinical challenges that

multi-omics has only just begun to address.

The Overarching Diagnostic Dilemma: Idiopathic vs.

Paraneoplastic: The most critical shortcoming is the inability to

reliably distinguish idiopathic from paraneoplastic NMOSD at

disease onset. While AQP4-IgG is a superb diagnostic marker for

NMOSD, its presence reveals nothing about the trigger (127).

Clinicians are left to rely on demographic risk factors and extensive

screening to search for an occult malignancy. Multi-omics has

uncovered thousands of molecular changes, but has not yet

consolidated these findings into a clinically validated biomarker

panel that can calculate a “paraneoplastic risk score,” leaving a

crucial diagnostic and prognostic gap (46). For example, the concept

of using high-throughput sequencing of T-cell receptors (TCR) and B-

cell receptors (BCR) to diagnose pNMOSD is immunologically elegant.

The technique allows for the identification of clonally expanded

populations of lymphocytes from peripheral blood or CSF (110). In a

paraneoplastic context, such an expansion could theoretically represent

the specific lymphocyte clones that are reacting to the tumor antigen

(e.g., AQP4), thereby providing a molecular fingerprint of the

paraneoplastic response (110). However, the time required to

perform TCR/BCR sequencing and bioinformatic analysis is

substantial. Commercial and academic laboratories typically report
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turnaround times of 14 days or longer. At this time a clinical report

stating “TCRb chain clonal expansion of unknown significance”

provides no immediately actionable information for the treating

neurologist, we still have a long way to go.

Limitations of Current Therapies for a Tumor-Driven Disease:

Existing NMOSD treatments—B-cell depletion, complement

inhibition, or IL-6 receptor blockade—are designed to suppress

the autoimmune response but are fundamentally inadequate for

paraneoplastic cases as they do not address the root cause: the

tumor (110). This approach is akin to managing the smoke while

ignoring the fire. Multi-omics reveals the immense heterogeneity of

the anti-AQP4 response, but the challenge is no longer just

suppressing it; it’s understanding how to stop the tumor from

continuously stimulating it. The ultimate goal for these patients is

not merely to re-establish immune tolerance, but to achieve this by

finding and eliminating the malignancy that first broke it (42).

Bridging the Gap Between Data and Pathophysiology: While we

can now generate vast multi-omics datasets, translating these into a

coherent understanding of disease triggers remains a major hurdle.

For instance, though studies have proposed a link between CMV

infection and NMOSD via molecular mimicry, the precise events that

initiate loss of tolerance in only a fraction of infected individuals are

unknown (110). The lack of integrated, longitudinal data—tracking

patients from the emergence of the tumor, through the onset of

neurological symptoms, to post-cancer treatment—makes it

exceedingly difficult to pinpoint the exact immunological factors

that conspire to initiate paraneoplastic NMOSD.
6.2 Immediate clinical applications in the
paraneoplastic context

While significant questions remain, multi-omics research is

paving the way for clinical applications that could revolutionize

the management of patients with suspected or confirmed

paraneoplastic NMO.

Precision Biomarkers for Cancer Detection: The detailed

cellular and molecular signatures of NMOSD can be repurposed

as a “liquid biopsy” for an underlying malignancy. Specific TCR or

BCR clonotypes that expand in response to tumor-expressed AQP4

could be developed into highly sensitive assays not just for

monitoring NMOSD activity, but for detecting an occult cancer

and monitoring its eradication following therapy. Proteomic or

metabolomic profiles that differ between idiopathic and

paraneoplastic cases could form the basis of companion

diagnostics to trigger immediate and targeted cancer screening,

personalizing the diagnostic workup (48). Although the clinical

value of these methods is still limited, we can try to explore a

combination of methods as a paraneoplastic risk score which

could include:
Fron
A. Clinical Parameters: Weighted points for age at onset (e.g.,

more points for age >60 than >50), male sex, and specific

clinical phenotypes (e.g., higher weight for area postrema

syndrome than for LETM).
tiers in Immunology 09
B. Serological Markers: Points for AQP4-IgG titer (with the

hypothesis that higher titers may reflect a more robust

antigenic stimulus), the co-presence of other “high-risk”

paraneoplastic antibodies (e.g., ANNA-1, CRMP5)

identified via a comprehensive panel, and the presence of

newly identified antibodies implicated in pathogenesis (110).

C. Damage Biomarkers: A hypothesis to be tested is whether

exceptionally high initial levels of serum GFAP or NfL

might correlate with a more aggressive underlying tumor

driving a more violent initial autoimmune attack.

D. Genetic Factors: As data becomes available, the inclusion

of specific HLA types known to be associated with

autoimmunity could add another layer of risk assessment.
Identification of Novel Therapeutic Targets: Multi-omics

analyses have moved beyond implicating entire cell populations

to pinpointing specific molecules and pathways as potential drug

targets. The identification of the IFN-I → B-cell → IL-6 →

pathogenic Th17 axis provides several nodes for targeted

intervention beyond IL-6 itself (106).

The management of pNMOSD is fundamentally different from

that of iNMOSD and requires tight collaboration between

neurologists and oncologists. The central therapeutic principle

must be that oncologic therapy is the definitive neurologic

therapy. Successful treatment of the underlying malignancy—

whether by surgical resection, chemotherapy, or radiation—

frequently leads to stabilization of the neurological disease, a

reduction in relapse rates, and, in some documented cases, a

decrease in or complete seroreversion of AQP4-IgG titers (13).

Conversely, relying on immunosuppression alone while the tumor

remains untreated is often insufficient, with patients continuing to

experience relapses and neurological decline (16). The identification

of an AQP4-expressing tumor in a patient with NMOSD is a critical

finding that should be treated as a therapeutic emergency. The

immediate priority is to control the acute CNS inflammation and

prevent further irreversible damage. This is achieved with standard

acute NMOSD therapies. As soon as the patient is medically stable,

definitive tumor-directed therapy should be pursued with urgency.

In the future, understanding how tumor cells present AQP4 and

interact with immune cells could enable the development of next-

generation therapies that block the initial priming of autoreactive

lymphocytes, potentially preventing the neurological syndrome

entirely without requiring broad immunosuppression.
6.3 Future prospects and research
directions

Realizing the full potential of multi-omics in paraneoplastic

NMOSD will require a concerted effort to investigate both sides of

the disease—the tumor and the brain.

Integration of Spatial Data from both Tumor and CNS: The

future lies in comparing the spatial dynamics of the immune

response in two distinct locations: the primary tumor and the

CNS lesions. Spatial transcriptomics can map the interactions
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between AQP4-expressing cancer cells and immune cells, and

compare that “immune synapse” to the one causing astrocyte

damage in the brain. Combining this with longitudinal profiling

of blood and CSF from large patient cohorts will be essential for

building a complete, dynamic model of the disease (128).

Functional Validation in Paraneoplastic-Specific Models:

Computational findings must be validated in advanced preclinical

models that recapitulate the entire disease process. This requires the

development of humanized mouse models that both bear an AQP4-

expressing human tumor and are susceptible to developing the

subsequent neurological autoimmune disease. Such models are

crucial for testing therapies aimed at the tumor and observing the

downstream effects on neuroinflammation, thereby de-risking new

therapeutic strategies (129).

AI-Powered Clinical Decision Support for Dual-Disease

Management: The complexity of paraneoplastic NMO necessitates

the use of AI for true clinical integration. Future decision support

tools should integrate a patient’s multi-omic profile, their HLA type,

their clinical data, and tumor genomics to provide a real-time, data-

driven “paraneoplastic probability score.” Such a tool could guide

clinicians on when to initiate cancer screening, which organs to

focus on, and how to select therapies that address both the

oncologic and neurologic aspects of the disease. The primary

obstacle to developing such a model is the acquisition of a

suitable dataset. Given the rarity and clinical heterogeneity of

pNMOSD, this would necessitate a large-scale, international

collaboration to assemble a curated, multi-modal database.54 The

required data modalities would include Structured Clinical Data,

Imaging Data, Serology Data and Omics Data (130). The low

prevalence of pNMOSD means that any single-center dataset

would be too small and prone to overfitting (131). A necessary

strategy to overcome this would be federated learning, a technique

where the model is trained across multiple institutions on local data

without the need to share the raw, sensitive patient information,

thus preserving privacy while building a more robust and

generalizable model.

In conclusion, the continued application of multi-omics to

NMOSD provides a powerful roadmap for solving the unique

clinical challenges posed by its paraneoplastic variant. By focusing

on the tumor as the origin of the autoimmune cascade, we can

translate discoveries into validated clinical applications that bridge

the gap between oncology and neurology, moving closer to an era of

preventative and personalized medicine for patients with this

devastating condition.
7 Conclusion

The application of multi-omics technologies has been

transformative, moving our understanding of NMOSD beyond a

general autoimmune disease to a specific model for dissecting

paraneoplastic neurology. By revealing the functional dynamics of

T and B cells, these tools allow us to piece together the
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devastating central nervous system pathology.

The key findings provide a detailed mechanistic narrative. The

clonal expansions of specific T and B cell subsets are no longer

abstract markers of autoimmunity; they represent the specific

cellular response likely mounted against aquaporin-4 (AQP4)

expressed on an occult tumor. The observed increases in

pathogenic plasma and memory B cells detail the production line

for the AQP4-IgG antibodies that bridge these two diseases.

Furthermore, the elucidation of complex signaling pathways, such

as the IFN-I → B-cell → IL-6 → Th17 axis, reveals the precise

communication network through which the anti-tumor response

fosters a pro-inflammatory environment that is catastrophic for the

CNS. The evidence for molecular mimicry, as seen with viral

triggers like CMV, provides a foundational principle that is

directly applicable to understanding how a tumor can similarly

initiate this loss of self-tolerance.

Despite these advances, translating this knowledge into clinical

benefit presents challenges unique to the paraneoplastic context.

The primary hurdle is to harness the immense volume of multi-

omics data with sophisticated AI and machine learning models to

create a definitive molecular signature that can distinguish

paraneoplastic from idiopathic NMOSD at diagnosis. This would

be a practice-changing tool, enabling the early detection of rare,

tumor-reactive immune cells and triggering a targeted cancer search

long before the malignancy becomes clinically apparent.

Ultimately, the continued integration of multi-omics data holds

the promise of revolutionizing patient care at the intersection of

oncology and neurology. A comprehensive strategy that links the

molecular profile of a patient’s tumor with their circulating immune

signature and neurological status is essential. This approach will be

critical for developing dual-purpose diagnostic biomarkers,

identifying novel therapies that can interrupt the tumor-driven

autoimmune cascade at its source, and realizing a new standard of

personalized medicine. By doing so, we can aim not only to mitigate

the severe disability of NMOSD but to cure it by diagnosing and

treating the underlying cancer that fuels its fire.
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13. Sepúlveda M, Sola-Valls N, Escudero D, Rojc B, Barón M, Hernández-
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