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Integrating bioinformatics and
molecular experiments to reveal
the critical role of the cellular
energy metabolism-related
marker PLA2G1B in COPD
epithelial cells
Jun Shi †, Zihan Wang †, Yafei Rao †, Danyang Li, Ying Luo,
Yue Zhang, Yuqiang Pei, Xiaoyan Gai* and Yongchang Sun*

Department of Respiratory and Critical Care Medicine, Research Center for Chronic Airway Diseases,
Peking University Third Hospital, Peking University Health Science Center, Beijing, China
Background: Chronic obstructive pulmonary disease (COPD) is a chronic

respiratory disease characterized by small airway lesions and persistent

airflow limitation. Recent studies have highlighted impaired cellular energy

metabolism (CEM) in COPD, although the underlying mechanisms remain

incompletely understood.

Material and methods: This research identified cell energy metabolism-related

differentially expressed genes (CEM-DEGs) by collecting CEM-associated

signatures from multiple public databases and integrating these markers with

data from the GEO database. Subsequently, five machine learning algorithms—

Boruta, Xgboost, GBM, SVM-RFE, and LASSO—were employed to screen for key

variables. Gene Set Enrichment Analysis (GSEA) and immune infiltration analysis

were then performed on these key CEM-DEGs. Finally, the results of the

bioinformatics analysis were verified by in vitro and in vivo experiments in

combination with the single-cell data analysis results.

Results: Bioinformatic analysis identified six critical markers (CYP1B1, CA3, AHRR,

MGAM, PNMT, and PLA2G1B) that regulated CEM in the progression of COPD,

from which a prognostic model was constructed using a nomogram with an area

under the curve (AUC) of 0.814. Functional enrichment analysis further

elucidated the intricate interplay between these CEM regulatory factors and

key biological processes, including inflammation, oxidative stress, and epithelial-

mesenchymal transition. Beyond that, both in vitro and in vivo experiments, along

with single-cell data analysis, have conclusively verified the specific

downregulation of PLA2G1B in epithelial cells derived from the COPD group.

Notably, the knockdown of PLA2G1B in epithelial cells triggered inflammation,

oxidative stress, and apoptosis.

Conclusions: This study identified six CEM-related biomarkers (CYP1B1, CA3,

AHRR, MGAM, PNMT, and PLA2G1B) in COPD and established a corresponding
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prognostic model. Furthermore, in vitro and in vivo experiments validated the

regulatory role of PLA2G1B in epithelial cell inflammation, oxidative stress, and

apoptosis, thereby elucidating the mechanism underlying CEM in COPD and

potentially uncovering novel therapeutic targets for drug development.
KEYWORDS

chronic obstructive pulmonary disease, cellular energy metabolism, machine learning,
PLA2G1B, single cell sequencing
1 Introduction

Chronic obstructive pulmonary disease (COPD) is a chronic

inflammatory airway disorder characterized by irreversible airflow

limitation, primarily associated with long-term cigarette smoking

and genetic predisposition. Currently, it is one of the top five age-

standardized causes of death worldwide, imposing a heavy burden

on healthcare and the economy (1, 2). The main pathophysiological

features of COPD include chronic inflammation, airway

remodeling, and emphysema, which can lead to clinical

manifestations such as dyspnea, cough and expectoration in

patients (3). The chronic inflammatory response of COPD

involves the participation of various inflammatory cells, including

immune cells (neutrophils, eosinophils, macrophages, T cells and

mast cells) and lung structural cells (epithelial cells, fibroblasts and

endothelial cells) (4). Exogenous stimuli and injuries induce

inflammatory cells to release a large number of inflammatory

factors and various proteases, triggering pulmonary inflammatory

responses and damaging lung structure. At the same time, the

chemokines released by these inflammatory cells recruit more

inflammatory cells from the blood circulation, further intensifying

the inflammatory response and leading to lung tissue damage,

destruction of alveolar structure, and airway remodeling (4, 5).

Recent studies have revealed significant abnormalities in

metabolic energy changes in the plasma and lung tissues of

patients with chronic obstructive pulmonary disease (COPD), as

these altered metabolic products are crucial risk factors that disrupt
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the normal energy supply in the body, suggesting that interventions

targeting these metabolic-related markers may emerge as a

promising new strategy for treating COPD (6–8). For example,

COPD patients showed abnormal changes in lipid metabolism,

especially in fatty acids and acylcarnitines, and these differentially

expressed lipid metabolites could be used to accurately diagnose the

occurrence of COPD (9). Ren et al. also revealed abnormal changes

in amino acid metabolism in the serum of individuals at the pre-

COPD stage (10). At the cellular level, the inhalation of cigarette

smoke stimulates airway epithelial cells, alveolar epithelial cells,

vascular endothelial cells, and alveolar macrophages within the

tissues. This disruption affects various aspects of cellular energy

metabolism (CEM), including lipid, glucose, and amino acid

metabolism, ultimately leading to a shortened cell lifespan and an

acceleration of disease progression (6, 11, 12). The latest research

indicated that alveolar macrophages communicated with distant

vascular endothelial cells by releasing ceramide-containing vesicles.

Inhibiting the expression of enzymes related to de novo ceramide

synthesis in alveolar macrophages effectively prevented the

destruction of the endothelial barrier, suggesting that the intrinsic

energy metabolism of cells may even affect distant cell

communication (13). Beyond that, previous studies have also

found that targeting pyruvate-citrate metabolism in airway basal

cells (14), GSH metabolism in airway epithelial cells (15), and

glycolysis in macrophages (16) are all effective therapeutic targets

for COPD. In summary, current research has discovered a close

association between COPD and CEM, but there is still a lack of

comprehensive understanding of the specific molecular

mechanisms underlying CEM disturbances in lung cells.

Our study aims to identify and validate biomarkers related to

CEM during the progression of COPD through bioinformatics

analysis combined with molecular biology experiments, thereby

providing new insights into the pathogenesis of COPD and new

strategies for its treatment. Figure 1 showed the workflow of this

study. By integrating the largest current COPD transcriptome

dataset, differentially expressed genes (DEGs) related to metabolic

dysregulation were identified. Next, five machine learning

algorithms were utilized to further identify and screen the key

variables, followed by the construction of a prognostic model based

on the screened variables. In addition, single-cell data analysis

confirmed the key role of phospholipase A2 group IB (PLA2G1B)
frontiersin.org
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in epithelial cells, and molecular biology experiments demonstrated

that knockdown of PLA2G1B aggravated inflammation, oxidative

stress, and apoptosis in epithelial cells.
2 Materials and methods

2.1 Bioinformatics analysis

2.1.1 Identification of CEM-related DEGs
The transcriptome sequencing datasets associated with COPD

(species: Homo sapiens, sample type: lung tissue) were retrieved

from the GEO database (https://www.ncbi.nlm.nih.gov/geo/).

Among these, two datasets with the largest sample sizes were

selected for further analysis: GSE47460 (17), which includes a

total of 328 samples (220 COPD cases and 108 normal controls),

and GSE57148 (18), which comprises 189 samples (98 COPD cases

and 91 normal controls) (Supplementary Table S1). Based on the R

platform (version 4.3.2) the “sva” package was used to further

eliminate the batch effect from the two datasets and merge them

into a comprehensive large-scale data matrix. Then, the “limma”

package was further used to identify COPD-related DEGs with |log2

fold change (FC)| > 0.5 and adjusted p-value (p.adj) < 0.05 as the

cutoff value (19). The identified DEGs were intersected with the

CEM-related signatures obtained from the Kyoto Encyclopedia of

Genes and Genomes (KEGG) database (https://www.genome.jp/

kegg/), MSigDB database (https://www.gsea-msigdb.org/gsea/

msigdb), and Reactome database (https://curator.reactome.org/).

The summary of the results identified the CEM-DEGs, which

were visualized using a Venn diagram and heatmap generated

with the “ggplot2” R package.
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2.1.2 Functional annotation and pathway
enrichment analysis of CEM-DEGs and protein-
protein interaction network construction

The CEM-DEGs-related PPI network was constructed using the

STRING database (https://cn.string-db.org/) and visualized via

Cytoscape software (version 3.9.0). The “clusterProfiler” R

package (20) was employed to perform Gene Ontology (GO)/

KEGG enrichment analysis on the CEM-DEGs. In the GO

enrichment analysis, three categories were included: biological

process (BP), cellular component (CC), and molecular function

(MF). The results of GO-BP enrichment analysis and KEGG

enrichment analysis (p.adj < 0.05) were finally visualized using

the “ggplot2” package.

2.1.3 Machine learning for screening key CEM-
DEGs

In this study, five machine learning methods—Boruta (“Boruta”

package) (21), SVM-RFE (“e1071” package and “caret” package)

(22, 23), LASSO (“glmnet” package) (24), GBM (“gbm” package)

(25), and Xgboost (“xgboost” package) (26)—were employed to

identify and filter the important features. Among these algorithms,

10-fold cross-validation was employed to assess the performance of

the machine learning models. The final results were ranked

according to the importance of the identified results. The

intersection of the top 10 ranked results of each algorithm was

selected as the key CEM-DEGs for subsequent analysis.

2.1.4 Predictive model construction
Firstly, based on the key CEM-DEGs identified through

machine learning, differences in expression levels across various

COPD GOLD grades were examined using the dataset GSE47460
FIGURE 1

The workflow diagram of this study showed.
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(1). Next, lung tissue samples, airway brush samples, induced

sputum samples, and peripheral blood samples were collected

from patients with chronic obstructive pulmonary disease

(COPD) for the construction of predictive models. The lung

tissue sample data were sourced from GSE47460 and GSE57148,

as elaborated above. Four transcriptome sequencing datasets were

incorporated for airway brush samples, namely GSE5058,

GSE10006, GSE11784, and GSE20257, encompassing a total of

109 samples (32 COPD samples and 77 control samples) (27–30).

The induced sputum sample data were obtained from GSE148004,

with a total of 16 samples (7 COPD samples and 9 control samples)

(31). The peripheral blood samples were derived from GSE112811,

consisting of 42 samples (20 COPD samples and 22 control

samples). The processing of these datasets followed the same

procedure as described in section 2.1.1 of the Methods. Specific

dataset information can be found in Supplementary Material 1;

Supplementary Table S1.

The COPD risk prediction model was constructed utilizing a

multivariate logistic regression approach. The model was visualized

using a nomogram and fitted using the “lrm” function from the

“rms” R package (https://cran.r-project.org/web/packages/rms/

index.html). The contribution of each gene to the model was

quantified through a Points scale, with the total score (Total

Points) mapped to the probability of COPD risk (ranging from

0.1 to 0.9) via weighted summation. The calibration accuracy of the

model was assessed using the Bootstrap method, with 500

resampling iterations (B = 500). Consistency between the

predicted probabilities and the actual observed probabilities was

calculated using the “calibrate” function. The calibration curve was

plotted utilizing the “ggplot2” package, where the diagonal line

represented the ideal state of calibration. Additionally, the area

under the curve (AUC) value of the model was computed using the

“pROC” package to evaluate the predictive capability of the gene

combination for the disease (32). Finally, the clinical net benefit of

the model was analyzed using the “rmda” package, establishing a

risk threshold range of 0 to 50% (33). The standardized net benefit

of the nomogram model was compared against the “intervention

all” (All) and “no intervention” (None) strategies through

curve comparison.

2.1.5 GSEA analysis and immune infiltration
analysis

In this study, GSEA enrichment analysis was performed by

loading R packages such as “clusterProfiler” and “org.Hs.eg.db”.

The correlation between the target genes and other genes was

evaluated using the Spearman correlation test, and the hallmark

gene set files (“h.all.v2024.1.Hs.entrez.gmt”) were utilized in

conjunction with the GSEA function for gene enrichment

analysis. The final results were visualized by plotting the

enrichment map of specific pathways using the “gseaplot2”

function. In addition, the results from multiple pathways were

compared and visualized to enhance the clarity and intuitiveness

of the analysis.
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The classification and quantification of immune cells in the

merged matrix were based on the expression profiles of 22 immune

cell types, which were calculated using the “CIBERSORT” package

(34). The final results were visualized as box plots. Then, the

relationships between key CEM-DEGs and immune cells were

evaluated using Pearson’s correlation analysis, and the resulting

data were presented in bubble plots.

2.1.6 Single-cell RNA sequencing analysis of key
CEM-DEGs and their involvement in cell-cell
communication

Raw expression matrices of lung tissue single-cell RNA-seq data

comprising 5 COPD and 3 non-COPD were sourced from the GEO

database under accession number GSE173896 (35). Among them,

12,692 single cells derived from non-COPD and 15569 single cells

derived from COPD. Then, the integrated raw data were processed

using the “Seurat” R package for cell type annotation and

subsequent downstream analysis (36). Initially, raw data were

filtered to retain genes expressed in more than 200 cells and

fewer than 5000 cells, while ensuring that mitochondrial gene

expression constituted less than 15% of the total expressed genes.

Following normalization, the data from the three grouped samples

were combined using the “FindVariableFeatures” function with the

“vst” method (nfeatures = 4000). The “IntegrateData” function was

then applied to mitigate batch effects and ensure data integrity. In

the meantime, the number of principal components in the

“RunPCA” function was set to 30. Dimensionality reduction was

performed using the “RunUMAP” function. Clustering of the

diverse cell groups was achieved through the “FindNeighbors”

and “FindClusters” functions, with the resolution parameter set

to one.

For each identified cluster, marker genes conserved across

genotypes were determined using the “FindMarkers” function.

The clusters were subsequently annotated into distinct cell types

by referencing established marker genes reported in previous

studies and the CellMarker 2.0 database (http://117.50.127.228/

CellMarker/), and the distribution of key CEM-DEGs across cell

types was visualized using FeaturePlot (37). Next, the relationship

between the key CEM-DEGs and various cell clusters was analyzed

using Pearson’s correlation test. Based on the expression levels of

key CEM-DEGs and the “AddModuleScore_UCell” function in the

“UCell” package (38), the cell energy scores related to key CEM-

DEGs were calculated. The final results were visualized as

featureplot and box plot respectively. It is worth noting that, to

further clarify the specific contributing factors of the Ucell score, in

this study, we also conducted subpopulation analysis and

annotation of epithelial cells and myeloid cells, and determined

the specific distribution of the Ucell score.

The calculation of DEGs for each cell cluster between the

control group and the COPD group in the single-cell dataset

relies on the “FindMarkers” function, with the screening criteria

for DEGs being |log2 fold change (FC)| > 0.5 and p.adj < 0.05. The

results were presented in the form of a volcano plot using the
frontiersin.org
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“scRNAtoolVis” package (https://github.com/junjunlab/

scRNAtoolVis). Then, the specific cells were reclassified into

high-expression and low-expression groups based on the median

expression level of the validated key CEM-DEGs, and DEGs

between the two groups was calculated for GO/KEGG

enrichment analysis.

To analyze intercellular communication, the “CellChat” R

package with default parameters was employed to infer potential

signaling interactions between cells using a predefined ligand-

receptor pair database (39). The cell communication model was

constructed using the “createCellChat” function, focusing

specifically on interactions between epithelial subtypes and other

cell types and highlighting the relationships between cells and the

specific ligand-receptor pairs involved in these interactions. The

results were visualized using circular plots, heatmaps, and bubble

charts to effectively convey the underlying patterns and relationships.
2.2 Biology experiment

2.2.1 COPD model in vivo
The experimental animal samples were derived from the COPD

mouse model previously established by our research group. Six-

week-old female C57BL/6 mice were exposed to cigarette smoke for

24 weeks (six days a week, twice a day, each exposure lasting 120

minutes; specific details of the smoke exposure are as follows: tar: 10

mg, nicotine: 0.8 mg, carbon monoxide: 11 mg), while the control

group mice were exposed to normal air. For specific information,

please refer to the previous study (40).
2.2.2 Cell culture and CSE-induced cell injury
model

The human bronchial epithelial cell line BEAS-2B, purchased

from Pricella Biotech Technology Co., Ltd. in Wuhan, China, was

cultured in high-glucose DMEM supplemented with 1% antibiotics

and 10% fetal bovine serum. The cultures were maintained in a

humidified environment at 37 °C with 5% CO2. Detailed cell culture

protocols can be found in previous studies (41).

The cigarette smoke extract (CSE) was utilized to stimulate the

human lung epithelial cell line BEAS-2B to construct a cell model.

Cells were harvested 24 hours post-treatment. CSE was prepared

following a previously reported method, with modifications (42).

Specifically, the smoke generated from the complete combustion of

five cigarettes was dissolved in 10 ml of DMEM culture medium.

Subsequently, the solution was filtered through a 0.22 mm filter, and

the optical density (OD) of the stock solution was adjusted to 4.0

using a spectrophotometer, yielding the CSE stock solution for

subsequent experiments.

2.2.3 Cell transfection
BEAS-2B cells were grown in T25 cell culture flasks until the

density reached approximately 90%, then subcultured into six-well

plates, with about 1.2×105 cells per well. After 24 hours, the cells

grew to about 60%-70%. According to the kit instructions, 250 ml of
Frontiers in Immunology 05
siRNA and lipofectamine RNAiMAX (Thermo Fisher Scientific,

USA) mixed solution was added to each well. After overnight

incubation of the siRNA-liposome complex with the cells, fresh

medium was added to continue culturing the cells. The obtained

gene knockdown cells were used for subsequent experiments.

2.2.4 Immunohistochemistry staining
The lung tissues of mice were fixed with 4% paraformaldehyde,

followed by dehydration, paraffin embedding, sectioning and

baking. The obtained tissue sections were dehydrated with xylene

and gradient ethanol (100%, 95%, 80%), and then immersed in

EDTA antigen retrieval solution for antigen retrieval (high heat for

6 minutes, low heat for 15 minutes). After that, the tissue sections

were successively subjected to endogenous peroxidase blocking

(treated with 3% H2O2 for 10 minutes), and blocking (incubated

with 5% BSA solution for 1 hour). After the treatment was

completed, the tissue sections were incubated with primary

antibody (PLA2G1B antibody (15843-1-AP, Proteintech) diluted

at 1/200 at 4 °C overnight), and then with secondary antibody (goat

anti-rabbit IgG polymer (ZSGB-BIO, China) for 30 minutes). The

DAB staining was observed under a microscope, and after the

staining was completed, the sections were stained with hematoxylin,

differentiated with alcohol hydrochloride, blued, and finally

immersed in gradient alcohol and xylene to complete the

immunohistochemistry. The immunohistochemistry sections were

observed and photographed under a microscope, and the positive

area was calculated by ImageJ.

2.2.5 Western blotting
After obtaining the mouse lung tissue, 20 mg of tissue were

weighed and cut into small pieces, then 200 ml of RIPA buffer was

added and the tissue was homogenized on a tissue homogenizer.

The homogenate was then incubated on ice for 10 minutes. For the

extraction of cell proteins, 100 ml of RIPA buffer was added to each

well of a six-well plate and incubated on ice for 10 minutes. The

protein lysates from the mouse lung tissue/cells were collected and

centrifuged at 4 °C (12,000 rpm for 10 minutes). The supernatant

was collected as the protein sample and could be used for

subsequent Western blotting experiments. The protein samples

were quantified using a BSA kit, and the loading amount of each

sample was adjusted to 20 mg and loaded into 12.5% SDS-PAGE gel

lanes for electrophoresis. The proteins were transferred onto PVDF

membranes and then subjected to blocking (5% BSA at room

temperature for 1 hour), overnight incubation with primary

antibodies at 4 °C, and 1-hour incubation with secondary

antibodies at room temperature. Finally, the PVDF membranes

were exposed using ECL ultra-sensitive luminescent solution. The

WB results were processed and quantified using ImageJ. Primary

antibodies used were as follows: rabbit anti-PLA2G1B (1/1000,

15843-1-AP, proteintech), rabbit anti-b-actin (1/10000, 81115-1-

RR, proteintech), rabbit anti-bax (1/1000, 50599-2-Ig, proteintech),

rabbit anti-bcl-2 (1/1000, T40056S, abmart), rabbit anti-caspase3

(1/1000, T40044S, abmart), rabbit anti-cleaved-caspase3 (1/1000,

TA7022M, abmart).
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2.2.6 Cell counting kit-8 assay
BEAS-2B cells were cultured in T25 flasks until they reached

90% confluence and then subcultured into 96-well plates at a

density of 5,000 cells per well. Following an overnight incubation,

the cells were grouped according to experimental requirements and

further incubated for 24 hours. Subsequently, 10 ml of CCK-8

reagent (Beyotime, China) was added to each well containing 100

ml of culture medium. The plates were incubated for an additional

hour in a CO2 incubator, and the OD value of each well was

measured at 450 nm using a microplate reader. Cell viability was

calculated based on the obtained OD values.

2.2.7 RNA extraction and quantitative reverse
transcription polymerase chain reaction

Lung tissue and Cells in different groups were subjected to RNA

extraction according to the manufacturer’s instructions (Fastagen,

China). Subsequently, 1 mg of total RNA was reverse transcribed

into cDNA following the kit protocol (Vazyme, China). RT-qPCR

was carried out using SYBR Green, and the thermal cycling

program was configured as specified in the kit instructions

(Vazyme, China). The relative mRNA expression levels were

determined using the 2−DDCt method, with ACTB serving as the

internal control. All primers were synthesized and provided by

Tsingke Biotechnology Company (Beijing, China), and the primer

sequences were available in Supplementary Table S2 of the

Supplementary Materials 1.

2.2.8 Cell proliferation level detection -Edu assay
The cells in different groups within the 6-well plate were treated

according to the protocol provided in the Edu kit (Beyotime,

China). Specifically, after adding the Edu solution to the wells

and incubating at 37 °C for 2 hours, the cells were gently washed

with PBS. Subsequently, the cells underwent fixation and

permeabilization sequentially as specified in the kit instructions.

Following this, the Click reaction solution was added, and the cells

were incubated for 30 minutes. Nuclear staining was then

performed using Hoechst 33342. Finally, the results were

visualized and imaged under a fluorescence microscope, and the

fluorescence intensity was quantitatively analyzed using

ImageJ software.

2.2.9 Reactive oxygen species detection
According to the ROS detection kit instructions (Beyotime,

China), the treated cells in the 6-well plates were incubated with the

DCFH-DA probe at a concentration of 10 mM for 20 minutes at 37 °

C. Subsequently, fluorescence images were captured using a

fluorescence microscope, and the corresponding fluorescence

intensity was quantified using ImageJ software.
2.3 Statistical analysis

Statistical analysis was performed using GraphPad Prism

(version 8.0), with data presented as mean ± standard deviation.

Differences between groups were assessed using one-way ANOVA
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and student’s t-test. Significance levels were indicated as follows:

* p < 0.05, ** p < 0.01, *** p < 0.001, and ns for not

statistically significant.
3 Results

3.1 Screening of the CEM-DEGs and
enrichment analysis

The datasets GSE57148 and GSE47460 were batch-corrected

and merged into a comprehensive dataset containing 517 samples

(Figures 2A-C). By analyzing the DEGs between the control group

and the COPD group, it was found that 13 CEM-DEGs were

significantly upregulated and seven CEM-DEGs were significantly

downregulated (Figures 2D-F; Supplementary Table S3). A PPI

network was constructed for the proteins related to these 20 CEM-

DEGs, and the results showed that PLA2G2A and PLA2G7 had the

highest combined score (Figure 2G; Supplementary Table S4).

Additionally, GO/KEGG enrichment analysis revealed that these

20 CEM-DEGs were mainly involved in regulating lipid metabolism

and amino acid metabolism, such as lipid catabolic process, alpha-

amino acid metabolic process, and fatty acid transport in the GO-

BP entries, and Ether lipid metabolism, Tryptophan metabolism,

and Linoleic acid metabolism in the KEGG enrichment results

(Figures 2H, I; Supplementary Table S5).
3.2 Machine learning identified the key
CEM-DEGs and the predictive model
construction

To determine which of the 20 CEM-DEGs are the main

regulatory genes, five machine learning algorithms were used in

this study to screen out the key variables in each model, and the

results of the five machine learning methods were summarized to

obtain six key CEM-DEGs (Supplementary Figures S1A-E;

Figure 3A). Based on the sample information obtained from

GSE47460 and the COPD grades according to the GOLD

guidelines (1), this study further analyzed the association between

these six key CEM-DEGs and COPD grades. The results showed

that the expression levels of cytochrome P450 family 1 subfamily B

member 1 (CYPIB1) and carbonic anhydrase 3 (CA3) significantly

increased with the increase of COPD classification. The expression

level of aryl hydrocarbon receptor repressor (AHRR) significantly

increased in GOLD I, II, and III, but there was no significant change

compared with the control group in GOLD IV; PLA2G1B and

phenylethanolamine N-Methyltransferase (PNMT) were

significantly downregulated in all four stages, but no correlation

with disease severity was observed; maltase-glucoamylase (MGAM)

was significantly increased only in GOLD IV, the most severe case

of COPD (Figures 3B-G). The ROC curve showed that the single-

gene diagnostic efficiency of these six key CEM-DEGs was low

(AUC < 0.8) (Figure 3H). Therefore, a nomogram model was

further constructed in this study for COPD risk prediction, and
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the total score of the six CEM-DEGs in the prediction model was

used to map the final risk probability, with PLA2G1B being the

main contributing marker (Figure 3I). Additionally, the p-value of

the Hosmer-Lemeshow (HL) test in the calibration curve was 0.382,

indicating no significant difference between the predicted and actual

values, and the error between the actual and predicted disease risks

was minimal (Figure 3J); the AUC value in the ROC curve was

0.814, indicating that the model had good discrimination ability

(Figure 3K); the DCA curve results showed that the net benefit of

this nomogram was higher than that of the positive and negative

controls, and its net benefit was higher than that of using any single

biomarker alone, thus demonstrating significant clinical

utility (Figure 3L).

To evaluate the broader clinical applicability of the identified

CEM-DEGs, this study further utilized transcriptome sequencing

datasets from airway brush, induced sputum, and peripheral blood

samples of COPD patients to construct and validate predictive

models. In the model derived from airway brush samples, CA3 was

the primary contributing factor, yielding an AUC of 0.793 with
Frontiers in Immunology 07
good predictive performance (HL test p = 0.324) (Figures 4A–D).

For the induced sputum-based model, AHRR emerged as the

dominant predictor, achieving a perfect AUC of 1.0, indicating

excellent predictive accuracy (HL test p = 1.0) (Figures 4E–H). In

the peripheral blood-derived model, MGAM was the main

contributor, with an AUC of 0.789, also demonstrating strong

predictive capability (HL test p = 0.418) (Figures 4I–L). These

findings collectively suggest that the six CEM-DEGs exhibit robust

diagnostic and predictive potential for chronic obstructive

pulmonary disease across multiple sample types and

biological contexts.
3.3 Potential functions of six key CEM-
DEGs and associated immune cells

Based on public databases, this study collated and collected the

basic information of six key CEM-DEGs. For details, please refer to

Supplementary Table S6 in the Supplementary Material 1. When
FIGURE 2

Screening of the CEM-DEGs and enrichment analysis. (A) Introduction to dataset information. (B, C) PCA analysis results of data distribution before
and after batch removal and merging of the dataset. (D) Volcano plot of DEGs between the control group and the COPD group. (E) Venn diagram
showing that among the 123 DEGs, there were 13 upregulated CEM-DEGs and seven downregulated CEM-DEGs. (F) The relative expression levels of
20 CEM-DEGs are shown in a bar chart (**p < 0.01, ***p < 0.001). (G) PPI network showing the interaction relationships among the 20 CEM-DEGs.
(H, I) GO/KEGG enrichment results of the 20 CEM-DEGs, presenting the top five enrichment analysis results.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1666195
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shi et al. 10.3389/fimmu.2025.1666195
performing GSEA enrichment analysis on the six key CEM-DEGs

to identify their associated functions, the results indicated that all

these genes were involved in regulating inflammatory responses

(Figures 5A-F, Supplementary Table S7). Except for AHRR, the

other five genes (CYP1B1, CA3, PLA2G1B,MGAM, PNMT) were all

involved in regulating the TNFA signaling pathway, among which

CYP1B1 and MGAM were also involved in the IL6-JAK-STAT3

pathway. The enrichment results of AHRR were mainly related to

various metabolic pathways, such as fatty acid metabolism and

cholesterol homeostasis (Figure 5C, Supplementary Table S7).

Additionally, it is worth noting that these genes were also closely

associated with epithelial-mesenchymal transition and oxidative

phosphorylation pathways, collectively indicating that these genes

play a significant role in the crosstalk between metabolism,

inflammatory responses, and oxidative stress. Immune infiltration

analysis was conducted on the merged dataset, and the results

showed that the most abundant cell type was macrophages,

followed by T cells (Figure 5G). Further correlation analysis

revealed a close association between six key CEM-DEGs and

immune regulation, especially MGAM, which had the highest

correlation with neutrophils (R = 0.72, p < 0.05) (Figure 5H).
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3.4 Analysis of the expression level of six
key CEM-DEGs based on single-cell data

In this single-cell sequencing dataset, cell types were labeled by

different markers (For T cells, the gene markers included CD3D,

CD2 and CD69; B cells were identified by CD19, CD79A and

CD79B; NK cells expressed NKG7 and GNLY; myeloid cells were

distinguished by the presence of CD14, LYZ and CST3; while

endothelial cells exhibited expression of CD34 and PECAM1.

Additionally, fibroblast cells were marked by MME, DCN and

FGF7; mast cells by GATA2, KIT and MS4A2; and epithelial cells

by EPCAM, SFTPA1 and CAPS), and a total of 8 types of cells were

identified, including epithelial cells, endothelial cells, myeloid cells,

T cells, NK cells, fibroblasts, B cells and mast cells(Figures 6A, B)

(43, 44). By analyzing the expression levels and cell distribution of

six key CEM-DEGs, the results showed that CYP1B1 was most

highly correlated with myeloid cells, CA3 with fibroblasts, PLA2G1B

with epithelial cells, MGAM with NK cells, PNMT with endothelial

cells, while AHRR had no high correlation with the above eight

types of cells (Figures 6C, D). Furthermore, a cell energy score was

constructed based on these six key CEM-DEGs. The results showed
FIGURE 3

Machine learning identified the key CEM-DEGs and the nomogram model construction. (A) Venn plot of the intersection of the screening results
of five machine learning algorithms. (B-G) The relative expression levels of six key CEM-DEGs in different GOLD grades (*p < 0.05, **p < 0.01,
***p < 0.001, and “ns” represented not significant). (H) ROC curve of the diagnostic efficiency for six key CEM-DEGs. (I) The nomogram model
construction. (J) Calibration curve of the constructed predictive model. (K) ROC curve of the diagnostic efficiency for nomogram model. (L) Evaluate
the clinical utility of predictive models using the DCA decision curve.
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that there was a significant difference in the cell energy score

between the COPD group and the control group, indicating that

there were certain cell energy metabolism alterations in the COPD

group (Figure 6E, Supplementary Table S8). Notably, the highest

cell energy score was found in the epithelial cells of the control

group, and the most significant difference was observed in the

COPD group (Figure 6F).

Given the elevated cellular energy scores observed in both

epithelial cell and myeloid cell populations, along with the

substantial heterogeneity within these cell populations, we carried

out subsequent subpopulation analyses. Initially, in the case of

epithelial cells, based on distinct markers, the epithelial cells were

classified into subpopulations, namely alveolar type I epithelial cells

(AGER+), alveolar type II epithelial cells (SFTPA1+), goblet cells

(SCGB1A1+), ciliated cells (TPPP3+), and basal cells (KRT17+)

(Figures 7A, B). Cellular energy score analysis revealed that the

alveolar type II (ATII) cells were the predominantly affected cell

population. Specifically, the scores of ATII cells were significantly

lower in the chronic obstructive pulmonary disease (COPD) group

compared to the control group (Figures 7C, D). Regarding myeloid
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cells, they could be primarily divided into three groups: the

monocyte population (FCN1+VCAN+), the dendritic cell

population (RGS1+FCER1A+), and the alveolar macrophages

population (MARCO+APOC1+) (Figures 7E, F). Among these,

monocytes were the main high-scoring cell population.

Intriguingly, in contrast to epithelial cells, the scores of

monocytes were higher in the COPD group than in the control

group (Figures 7G, H).
3.5 The influence of the expression level of
PLA2G1B on the function of epithelial cells
and cell communication

By obtaining the DEGs of different cell types between the

control group and the COPD group, the results showed that

among the six key CEM-DEGs, PLA2G1B was significantly

downregulated in the epithelial cell category of the COPD group,

which was consistent with the previous transcriptome results

(Figure 8A, Supplementary Table S9). Based on this, the epithelial
FIGURE 4

Construct COPD-related nomogram in different samples. (A-D) constructed COPD prediction models based on sequencing data from airway
brushings in datasets GSE5058, GSE10006, GSE11784, and GSE20257, where (A) represents the nomogram, (B) the calibration curve, (C) the ROC
curve, and (D) the DCA curve. (E-H) present COPD prediction models derived from induced sputum samples (GSE148004) using six CEM-DEGs,
with (E) as the nomogram, (F) the calibration curve, (G) the ROC curve, and (H) the DCA curve. (I-L) show COPD prediction models developed from
peripheral blood samples (GSE112811) using the same six CEM-DEGs, where (I) denotes the nomogram, (J) the calibration curve, (K) the ROC curve,
and (L) the DCA curve.
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cells in the single-cell data were divided into PLA2G1Bhigh epithelial

cells group and PLA2G1Blow epithelial cells group for subsequent

phenotypic and cell communication analyses (Figure 8B). After re-

grouping the epithelial cells, it could be seen that the number of

PLA2G1Blow epithelial cells in the COPD group was significantly

increased compared with the control group (p < 0.05) (Figure 8B).

By identifying the DEGs between the PLA2G1Bhigh epithelial cells

and PLA2G1Blow epithelial cells and conducting functional analysis,

it was found that these genes were involved in regulating lipid

metabolism, inflammatory response, apoptosis, oxidative stress,

phagosome pathway, PPAR pathway and peroxisome pathway,

etc (Figures 8C-D; Supplementary Tables S10-11). In addition,

the cell communication analysis revealed that PLA2G1Bhigh/low

epithelial cells have a closer relationship with myeloid cells and T

cells, with a greater number of cell communications and a higher

proportion of weight (Figures 8E-F). For different signaling

pathways, PLA2G1Blow epithelial cells received more signals from

SEMA4, CD6, TWEAK, CLDN, and CEACAM, and the main

outgoing signals were CLDN, CEACAM, and ARGN (Figures 8G-

H). More specifically, the differences in receptor-ligand pairs exist

in the cell communication between PLA2G1Bhigh and PLA2G1Blow
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epithelial cells with B cells, myeloid cells, NK cells, and T

cells (Figure 8I).
3.6 PLA2G1B was down-regulated in COPD
models and participated in the regulation
of inflammation, oxidative stress and cell
death

To further validate the results of bioinformatics analysis,

COPD-related animal and cell models were constructed in this

study. As PLA2G1B has made a significant contribution to the

predictive model of COPD and has been verified in single-cell

sequencing data, the subsequent experiments mainly focus on

exploring the mechanisms related to PLA2G1B. Firstly, in the

mouse model, compared with the control group, the expression

level of PLA2G1B in the lung tissue of COPD mice models

established by cigarette smoke inhalation for 6 months was

significantly downregulated, including both protein and mRNA

levels. Notably, immunohistochemical results showed that

PLA2G1B was significantly downregulated in the airway epithelial
FIGURE 5

Analysis of the potential functions and immune cell correlations of six key CEM-DEGs. (A-F) GSEA analysis of the potential functions of six key
CEM-DEGs (The overall upward peaks in the figure (enrichment score greater than 0) indicate activation, while the overall downward peaks
(enrichment score less than 0) indicate inhibition). (G) Immune infiltration analysis of the composition of 22 types of immune cells in the merged
dataset (***p < 0.001). (H) The correlation analysis results between six CEM-DEGs and 22 types of immune cells are shown. Only the results with a
p-value less than 0.05 are displayed in the bubble chart.
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cells of COPD mice, which was consistent with the single-cell

analysis results (Figures 9A-C). Additionally, in the in vitro

experiment, compared with the control group, when the epithelial

cell line BEAS-2B was stimulated with CSE (5%), the protein and

mRNA levels of PLA2G1B were also significantly downregulated

(Figures 9B, D).

Given that cell death, inflammatory responses, and oxidative

stress represent key pathophysiological mechanisms involved in the

progression of COPD, and considering that the aforementioned

analysis suggested a potential role of PLA2G1B in influencing these

phenotypes, this study employed siRNA transfection to knock

down PLA2G1B expression in epithelial cells in order to

investigate its association with cell death, inflammatory responses,

and oxidative stress (Figure 9E). The results showed that the

knockdown of PLA2G1B led to an increase in the transcriptional

levels of inflammatory-related factors (IL-1b, IL-6) in BEAS-2B

cells (Figures 9F, G). At the same time, the knockdown of PLA2G1B

led to a decrease in cell viability, mainly manifested as a decline in

proliferation ability. When Edu was used to label proliferating cells,

the results showed that the number of proliferating cells in the
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PLA2G1B knockdown group was significantly lower than that in

the control group (Figures 9H-J). In addition, when conducting

functional enrichment analysis related to PLA2G1B, it was found

that PLA2G1B regulated the ROS pathway and apoptosis

(Figure 9C). Therefore, in this study, the intracellular ROS level

was detected using the DCFH-DA probe, and the apoptotic signal

was identified by detecting the protein levels of classic apoptotic

pathway markers (BCL2/BAX, Cleaved-caspase3/caspase3). The

results showed that the knockdown of PLA2G1B led to a

significant increase in intracellular ROS levels and was

accompanied by the activation of the apoptotic pathway (BCL2/

BAX significantly decreased, Cleaved-caspase3/caspase3

significantly increased) (Figures 9K, L).
4 Discussion

As a kind of chronic respiratory disease, COPD has a high

incidence and mortality in the world population, which seriously

affects the life and health of middle-aged and elderly people (45).
FIGURE 6

Analysis of six key CEM-DEGs based on single-cell transcriptome datasets. (A) The distribution and proportion of different cell types in the control
group and the COPD group. (B) The distribution of marker expression among different cell types in bubble chart. (C) The relative expression levels of
six key CEM-DEGs in different cell types. (D) The correlation results between six key CEM-DEGs and different cell types (Only results with p < 0.05
are presented). (E) The UCell cell energy score constructed based on 6 key CEM-DEGs in UMAP plot. (F) Analysis of the differences in cell energy
scores among different cell types in different groups (ns p > 0.05 (not statistically significant), * p < 0.05, ** p < 0.01, *** p < 0.001).
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However, the exact mechanism of COPD occurrence is not yet fully

understood, especially the molecular mechanism of CEM.

Integrating bioinformatics analysis to explore valuable markers

and potential therapeutic targets related to CEM disorders will be

beneficial for the early diagnosis and drug development of precision

treatment of COPD in the future.

In this study, the two largest COPD transcriptome sequencing

datasets were integrated for bioinformatics analysis. Multiple

machine learning algorithms were used to identify six key CEM-

DEGs (including CYP1B1, CA3, AHRR, MGAM, PNMT, and

PLA2G1B) from numerous DEGs. The nomogram model and

ROC curve were employed to evaluate the diagnostic and

predictive capabilities of these genes for COPD. It is worth noting

that through the analysis of the predictive effects of these six CEM-

DEGs on COPD in different sample types, their advantages in

diagnosing COPD have been further confirmed. Besides lung tissue,

they are also applicable to more convenient sample types such as

peripheral blood, induced sputum, and airway brushings. The

GSEA analysis results indicated that these genes were mainly

involved in lipid metabolism, inflammation, oxidative
Frontiers in Immunology 12
phosphorylation, and epithelial-mesenchymal transition,

suggesting that the outcome of metabolic dysregulation might be

associated with the induction of cellular inflammatory responses,

oxidative stress, and airway remodeling. Additionally, recent studies

have reported that regulating mitochondrial metabolism and de

novo NAD synthesis in macrophages could exacerbate

inflammatory responses and oxidative stress, and stimulating lipid

metabolism in lung epithelial cells could increase oxidative stress

and disrupt redox homeostasis. Overall, these findings highlighted

the intricate crosstalk between CEM, inflammatory responses, and

oxidative stress in lung diseases (11, 16, 46, 47).

Among the six CEM-DEGs, CYP1B1 regulates fatty acid and

steroid hormone metabolism by encoding the cytochrome P450

enzyme superfamily and serves as a therapeutic target for ocular

diseases and various tumors (48–50). Toxicological study found

that exposure to particulate matter could lead to a significant

increase in the expression level of CYP1B1 in epithelial cells (51),

which was consistent with the results of this study. In our study,

CYP1B1 was mainly upregulated in COPD, especially closely

related to myeloid cells and involved in the occurrence of
FIGURE 7

Subpopulation analysis of epithelial cells and myeloid cells based on cell energy score. (A) The UMAP plot illustrates the distribution of
subpopulations among the extracted epithelial cells. (B) The bubble chart displays the marker genes specific to each epithelial cell subpopulation.
(C–D) The distribution of UCell scores across different epithelial cell subpopulations and statistical comparisons between groups are shown. (E) The
UMAP plot depicts the subpopulation structure of the isolated macrophages. (F) The bubble chart presents the characteristic markers for distinct
macrophage subtypes. (G–H) The UCell score distribution among macrophage subgroups and the results of intergroup statistical analyses are
displayed (ns p > 0.05 (not statistically significant), *** p < 0.001).
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inflammatory responses. Specifically, it participates in the IL-6-

JAK-STAT3 signaling and TNF signaling. CAH3, encoded by the

CA3 gene, primarily catalyzes carbon dioxide metabolism within

cells. Multi-omics studies have revealed its involvement in the

regulation of muscle function and its significant diagnostic value

for diseases such as muscle atrophy, hypertrophic cardiomyopathy,

and non-alcoholic steatohepatitis (52–54). In this study, it was

found that CA3 was highly expressed in patients with moderate to

severe COPD, closely associated with the activation of interferon

signaling, and was predominantly expressed in fibroblasts in the

lungs. AHRR is recognized as a biomarker closely linked to

smoking, which significantly increases AHRR methylation levels,

thereby impacting cell growth and differentiation, while its

regulatory mechanisms in immunity remain largely unexplored

(55, 56). In this study, we found that AHRR expression was

upregulated in the lung tissues of COPD patients, and GSEA

analysis indicated that AHRR’s regulation of cell growth and

differentiation may be associated with its influence on the KRAS

pathway, as well as MYC and E2F signaling. Intriguingly, AHRR
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could interact with CP1B1 via the Ah receptor pathway, influencing

oxidative stress and mediating toxic responses (57). MGAM

regulates glucose metabolism by encoding the protein MGA,

thereby influencing the digestive and absorptive processes in the

human body. Moreover, multiple studies have revealed its

diagnostic significance in various diseases through bioinformatics

analysis, including bronchopulmonary dysplasia (58), pain-

depression comorbidity (59), intervertebral disc degeneration

(60), and stroke (61). In this study, we found that MGAM was

significantly elevated in severe COPD, not only affecting biological

processes such as inflammation and oxidative stress, but also

participating in the regulation of apoptosis and DNA repair,

thereby influencing the survival of cells. The PNMT protein is a

key enzyme that catalyzes the conversion of norepinephrine to

epinephrine. It was regulated by glucocorticoids, hypoxia, and the

cAMP signaling pathway, and was associated with the occurrence of

mood disorders and neuroendocrine tumors (62–64). Furthermore,

PNMT could also be involved in neuroendocrine tumors through

epigenetic mechanisms (65), highlighting its potential as a
FIGURE 8

Single-cell level analysis of the phenotypic function and cell communication of PLA2G1B. (A) DEGs between the control group and COPD group of
different cell types in volcano plot. (B) The distribution and proportion of PLA2G1Bhigh epithelial cells and PLA2G1Blow epithelial cells. (C, D) GO/
KEGG enrichment analysis of DEG between PLA2G1Bhigh epithelial cells and PLA2G1Blow epithelial cells. (E-F) Network Diagram Analysis: Cell
Communication Results [(E) Number of Communications, (F) Communication Weight]. (G, H) Heatmap showing the relative intensity of each
signaling pathway network in each cell type cluster. [(G) plot showing the incoming signal patterns, and (H) plot showing the outgoing signal
patterns.] (I) Dot plot showing the receptor pairings for signal transduction between PLA2G1Bhigh epithelial cells and PLA2G1Blow epithelial cells and
other cell types, respectively.
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therapeutic target for diseases associated with adrenergic signaling

dysregulation. In lung tissue, this study revealed that the low

expression of PNMT might be closely related to the inflammation

associated with COPD, regulating cell proliferation and

transformation, etc.

The phospholipase A2 (PLA2) family includes multiple

subtypes such as PLA2G1, PLA2G2, PLA2G4, PLA2G6, PLA2G7,
Frontiers in Immunology 14
and PLA2G16, which exert various biological functions by

hydrolyzing the sn-2 position of glycerophospholipids to release

fatty acids and lysophospholipids (66). Among them, PLA2G1B was

involved in the progression of various diseases, including tumors,

ulcerative colitis, and rheumatoid arthritis, etc (67–69). Notably,

PLA2G1B, as a double-edged sword, played opposite roles in

different diseases, but the specific molecular mechanism remained
FIGURE 9

Down-regulated PLA2G1B is involved in regulating inflammation, proliferation, oxidation and apoptosis of epithelial cells. (A) Immunohistochemical
detection of PLA2G1B expression levels in mouse lung tissue (n=3), showing both 10x basic images and 20x magnified images respectively.
(B-D) The protein and mRNA expression levels of PLA2G1B in mouse lung tissues (n=3) and BEAS cells, detected by western blotting and qPCR.
(E) qPCR for detecting the knockdown efficiency of siRNA on the expression level of PLA2G1B in BEAS-2B cell. (F-G) The influence of PLA2G1B
knockdown on the transcriptional levels of inflammatory factors IL-1b and IL-6. (H-I) The CCK8 assay was used for detecting cell activity and
measuring the OD values of cells at different time points. (J) Detecting cell proliferation ability, in which Azide-488 was used to label the intracellular
Edu level and Hoechst was used to label the cell nucleus. (K) The intracellular ROS level was detected by labeling intracellular ROS with DCFH-DA.
(L) The results of western blotting of the protein levels of apoptosis-related markers (BCL2, BAX, Cleaved-caspase3, caspase3) in cells. (Data are
shown as mean ± SD (n = 3), *p < 0.05, **p < 0.01, ***p < 0.001).
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unclear. In this study, bioinformatics analysis revealed that

PLA2G1B was significantly downregulated during the progression

of COPD, particularly in the epithelial cell category. The results

were also verified in animal and cell models (with significant

downregulation at both the transcriptional and protein levels),

indicating its association with poor prognosis. Similar to the

findings of this study, Guan et al. also identified, through

bioinformatics analysis, that low expression levels of PLA2G1B in

tumors were significantly associated with reduced survival rates

(68). Further enrichment analysis related to the function of

PLA2G1B revealed that PLA2G1B not only regulated

inflammation, oxidation, and lipid metabolism but also

part ic ipated in the regulat ion of apoptosis and cel l

communication. Some of these results were verified in the cell

experiments of this study. In addition, in this study, it was found

that the epithelial cells with low/high expression of PLA2G1B

mainly interacted with myeloid cells. Particularly, the activation

of complement signals in epithelial cells with low expression of

PLA2G1B was significantly lower than that in epithelial cells with

high expression of PLA2G1B, indicating that it could be involved in

immune regulation. In summary, this study elucidated the specific

role of PLA2G1B in COPD and its regulatory influence on epithelial

cell inflammation, oxidative stress, and apoptosis. These findings

expand the current understanding of PLA2G1B mechanisms and its

involvement in the pathophysiological processes of COPD,

suggesting that targeted overexpression of PLA2G1B in epithelial

ce l l s may hold therapeut i c po ten t ia l in mi t i ga t ing

COPD progression.

It was worth noting that this study still had certain limitations

that need to be improved in future research. Firstly, the data mining

and analysis in this study were conducted using public databases,

and the results obtained only remain at the initial theoretical stage,

lacking the validation of the predictive results of the related

biomarkers’ prognostic models through clinical trials. In addition,

future studies should collect BALF samples from COPD patients to

enable a more comprehensive and in-depth investigation into the

molecular function of PLA2G1B. Secondly, this study only focused

on the impact of gene alterations on functional phenotypes and did

not further explore the differential changes in related metabolites.

Knockdown/overexpression of PLA2G1B at the animal level and

collection of lung tissue samples for metabolomics research may

provide new insights into the pathogenesis of COPD. In the future,

it is possible to explore related small molecule agonist drugs to

further expand the treatment options for COPD.
5 Conclusions

In this study, through comprehensive analysis of multiple

datasets, six key CEM-DEGs (CYP1B1, CA3, AHRR, MGAM,

PNMT, PLA2G1B) were identified, which can be used to

construct a COPD prediction model. Furthermore, we confirmed

that the downregulated PLA2G1B in COPD is associated with the
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biological processes of inflammation, oxidative stress, and apoptosis

in epithelial cells. Overall, this study provided new insights into the

molecular mechanism of COPD from the perspective of CEM and

offered new strategies for the diagnosis and treatment of COPD.
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