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Integrating bioinformatics and
molecular experiments to reveal
the critical role of the cellular
energy metabolism-related
marker PLA2G1B in COPD
epithelial cells

Jun Shi', Zihan Wang', Yafei Rao', Danyang Li, Ying Luo,
Yue Zhang, Yugiang Pei, Xiaoyan Gai* and Yongchang Sun*

Department of Respiratory and Critical Care Medicine, Research Center for Chronic Airway Diseases,
Peking University Third Hospital, Peking University Health Science Center, Beijing, China

Background: Chronic obstructive pulmonary disease (COPD) is a chronic
respiratory disease characterized by small airway lesions and persistent
airflow limitation. Recent studies have highlighted impaired cellular energy
metabolism (CEM) in COPD, although the underlying mechanisms remain
incompletely understood.

Material and methods: This research identified cell energy metabolism-related
differentially expressed genes (CEM-DEGs) by collecting CEM-associated
signatures from multiple public databases and integrating these markers with
data from the GEO database. Subsequently, five machine learning algorithms—
Boruta, Xgboost, GBM, SVM-RFE, and LASSO—were employed to screen for key
variables. Gene Set Enrichment Analysis (GSEA) and immune infiltration analysis
were then performed on these key CEM-DEGs. Finally, the results of the
bioinformatics analysis were verified by in vitro and in vivo experiments in
combination with the single-cell data analysis results.

Results: Bioinformatic analysis identified six critical markers (CYP1B1, CA3, AHRR,
MGAM, PNMT, and PLA2G1B) that regulated CEM in the progression of COPD,
from which a prognostic model was constructed using a nomogram with an area
under the curve (AUC) of 0.814. Functional enrichment analysis further
elucidated the intricate interplay between these CEM regulatory factors and
key biological processes, including inflammation, oxidative stress, and epithelial-
mesenchymal transition. Beyond that, both in vitro and in vivo experiments, along
with single-cell data analysis, have conclusively verified the specific
downregulation of PLA2GI1B in epithelial cells derived from the COPD group.
Notably, the knockdown of PLA2G1B in epithelial cells triggered inflammation,
oxidative stress, and apoptosis.

Conclusions: This study identified six CEM-related biomarkers (CYP1B1, CA3,
AHRR, MGAM, PNMT, and PLA2G1B) in COPD and established a corresponding
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prognostic model. Furthermore, in vitro and in vivo experiments validated the
regulatory role of PLA2G1B in epithelial cell inflammation, oxidative stress, and
apoptosis, thereby elucidating the mechanism underlying CEM in COPD and
potentially uncovering novel therapeutic targets for drug development.

chronic obstructive pulmonary disease, cellular energy metabolism, machine learning,
PLA2G1B, single cell sequencing

1 Introduction

Chronic obstructive pulmonary disease (COPD) is a chronic
inflammatory airway disorder characterized by irreversible airflow
limitation, primarily associated with long-term cigarette smoking
and genetic predisposition. Currently, it is one of the top five age-
standardized causes of death worldwide, imposing a heavy burden
on healthcare and the economy (1, 2). The main pathophysiological
features of COPD include chronic inflammation, airway
remodeling, and emphysema, which can lead to clinical
manifestations such as dyspnea, cough and expectoration in
patients (3). The chronic inflammatory response of COPD
involves the participation of various inflammatory cells, including
immune cells (neutrophils, eosinophils, macrophages, T cells and
mast cells) and lung structural cells (epithelial cells, fibroblasts and
endothelial cells) (4). Exogenous stimuli and injuries induce
inflammatory cells to release a large number of inflammatory
factors and various proteases, triggering pulmonary inflammatory
responses and damaging lung structure. At the same time, the
chemokines released by these inflammatory cells recruit more
inflammatory cells from the blood circulation, further intensifying
the inflammatory response and leading to lung tissue damage,
destruction of alveolar structure, and airway remodeling (4, 5).

Recent studies have revealed significant abnormalities in
metabolic energy changes in the plasma and lung tissues of
patients with chronic obstructive pulmonary disease (COPD), as
these altered metabolic products are crucial risk factors that disrupt

Abbreviations: COPD, chronic obstructive pulmonary disease; MR-DEGs,
metabolic dysregulation-related differentially expressed genes; GSEA, Gene Set
Enrichment Analysis; DEGs, differentially expressed genes; KEGG, Kyoto
Encyclopedia of Genes and Genomes; PPI, protein-protein interaction; GO,
Gene Ontology; BP, biological process; CC; cellular component; MF, molecular
function; AUC, area under the curve; CSE, cigarette smoke extract; OD, optical
density; CCKS8, Cell Counting Kit-8; RT-qPCR, quantitative reverse transcription
polymerase chain reaction; ROS, reactive oxygen species; PLA2, phospholipase
A2; PLA2GIB, phospholipase A2 group IB; CYPIBI, cytochrome P450 family 1
subfamily B member 1; CA3, carbonic anhydrase 3; AHRR, aryl hydrocarbon
receptor repressor; PNMT, phenylethanolamine N-Methyltransferase; MGAM,

maltase-glucoamylase.
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the normal energy supply in the body, suggesting that interventions
targeting these metabolic-related markers may emerge as a
promising new strategy for treating COPD (6-8). For example,
COPD patients showed abnormal changes in lipid metabolism,
especially in fatty acids and acylcarnitines, and these differentially
expressed lipid metabolites could be used to accurately diagnose the
occurrence of COPD (9). Ren et al. also revealed abnormal changes
in amino acid metabolism in the serum of individuals at the pre-
COPD stage (10). At the cellular level, the inhalation of cigarette
smoke stimulates airway epithelial cells, alveolar epithelial cells,
vascular endothelial cells, and alveolar macrophages within the
tissues. This disruption affects various aspects of cellular energy
metabolism (CEM), including lipid, glucose, and amino acid
metabolism, ultimately leading to a shortened cell lifespan and an
acceleration of disease progression (6, 11, 12). The latest research
indicated that alveolar macrophages communicated with distant
vascular endothelial cells by releasing ceramide-containing vesicles.
Inhibiting the expression of enzymes related to de novo ceramide
synthesis in alveolar macrophages effectively prevented the
destruction of the endothelial barrier, suggesting that the intrinsic
energy metabolism of cells may even affect distant cell
communication (13). Beyond that, previous studies have also
found that targeting pyruvate-citrate metabolism in airway basal
cells (14), GSH metabolism in airway epithelial cells (15), and
glycolysis in macrophages (16) are all effective therapeutic targets
for COPD. In summary, current research has discovered a close
association between COPD and CEM, but there is still a lack of
comprehensive understanding of the specific molecular
mechanisms underlying CEM disturbances in lung cells.

Our study aims to identify and validate biomarkers related to
CEM during the progression of COPD through bioinformatics
analysis combined with molecular biology experiments, thereby
providing new insights into the pathogenesis of COPD and new
strategies for its treatment. Figure 1 showed the workflow of this
study. By integrating the largest current COPD transcriptome
dataset, differentially expressed genes (DEGs) related to metabolic
dysregulation were identified. Next, five machine learning
algorithms were utilized to further identify and screen the key
variables, followed by the construction of a prognostic model based
on the screened variables. In addition, single-cell data analysis
confirmed the key role of phospholipase A2 group IB (PLA2G1B)

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1666195
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Shi et al.

10.3389/fimmu.2025.1666195

—)
Primary screen: CEM-DEGs @@.
= | GSE47460 ; " ® = =
Q CBR3 [ | 2 £ fat it
i =) . @ |
m BP =
GSE57148 BASEET L4 D
Merged matrix AAM signatures DEGs identification PPI network Enrichment analysis
Secondary screen-machine learning
w ((sw ][ ocBm |
Q
2 ( Lasso [ Bouta |
Xgboost Predictive model GESA analysis Immune infiltration
Single cell analysis and verification e e
© i GSE173896 . e [T
Q— —E: Cell annotation Ctrl COP D nnnnn "
2 7 apmy T 15 e
iy 7 | ;= tmi
=4 D 3 il colls L]
lung sample E MR-DEG verification  Cellchat analysis  Experiment verification
(—)
FIGURE 1

The workflow diagram of this study showed.

in epithelial cells, and molecular biology experiments demonstrated
that knockdown of PLA2G1B aggravated inflammation, oxidative
stress, and apoptosis in epithelial cells.

2 Materials and methods
2.1 Bioinformatics analysis

2.1.1 Identification of CEM-related DEGs

The transcriptome sequencing datasets associated with COPD
(species: Homo sapiens, sample type: lung tissue) were retrieved
from the GEO database (https://www.ncbi.nlm.nih.gov/geo/).
Among these, two datasets with the largest sample sizes were
selected for further analysis: GSE47460 (17), which includes a
total of 328 samples (220 COPD cases and 108 normal controls),
and GSE57148 (18), which comprises 189 samples (98 COPD cases
and 91 normal controls) (Supplementary Table S1). Based on the R
platform (version 4.3.2) the “sva” package was used to further
eliminate the batch effect from the two datasets and merge them
into a comprehensive large-scale data matrix. Then, the “limma”
package was further used to identify COPD-related DEGs with |log2
fold change (FC)| > 0.5 and adjusted p-value (p.adj) < 0.05 as the
cutoff value (19). The identified DEGs were intersected with the
CEM-related signatures obtained from the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database (https://www.genome.jp/
kegg/), MSigDB database (https://www.gsea-msigdb.org/gsea/
msigdb), and Reactome database (https://curator.reactome.org/).
The summary of the results identified the CEM-DEGs, which
were visualized using a Venn diagram and heatmap generated
with the “ggplot2” R package.
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2.1.2 Functional annotation and pathway
enrichment analysis of CEM-DEGs and protein-
protein interaction network construction

The CEM-DEGs-related PPI network was constructed using the
STRING database (https://cn.string-db.org/) and visualized via
Cytoscape software (version 3.9.0). The “clusterProfiler” R
package (20) was employed to perform Gene Ontology (GO)/
KEGG enrichment analysis on the CEM-DEGs. In the GO
enrichment analysis, three categories were included: biological
process (BP), cellular component (CC), and molecular function
(MF). The results of GO-BP enrichment analysis and KEGG
enrichment analysis (p.adj < 0.05) were finally visualized using
the “ggplot2” package.

2.1.3 Machine learning for screening key CEM-
DEGs

In this study, five machine learning methods—Boruta (“Boruta”
package) (21), SVM-RFE (“e1071” package and “caret” package)
(22, 23), LASSO (“glmnet” package) (24), GBM (“gbm” package)
(25), and Xgboost (“xgboost” package) (26)—were employed to
identify and filter the important features. Among these algorithms,
10-fold cross-validation was employed to assess the performance of
the machine learning models. The final results were ranked
according to the importance of the identified results. The
intersection of the top 10 ranked results of each algorithm was
selected as the key CEM-DEGs for subsequent analysis.

2.1.4 Predictive model construction

Firstly, based on the key CEM-DEGs identified through
machine learning, differences in expression levels across various
COPD GOLD grades were examined using the dataset GSE47460
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(1). Next, lung tissue samples, airway brush samples, induced
sputum samples, and peripheral blood samples were collected
from patients with chronic obstructive pulmonary disease
(COPD) for the construction of predictive models. The lung
tissue sample data were sourced from GSE47460 and GSE57148,
as elaborated above. Four transcriptome sequencing datasets were
incorporated for airway brush samples, namely GSE5058,
GSE10006, GSE11784, and GSE20257, encompassing a total of
109 samples (32 COPD samples and 77 control samples) (27-30).
The induced sputum sample data were obtained from GSE148004,
with a total of 16 samples (7 COPD samples and 9 control samples)
(31). The peripheral blood samples were derived from GSE112811,
consisting of 42 samples (20 COPD samples and 22 control
samples). The processing of these datasets followed the same
procedure as described in section 2.1.1 of the Methods. Specific
dataset information can be found in Supplementary Material 1;
Supplementary Table SI.

The COPD risk prediction model was constructed utilizing a
multivariate logistic regression approach. The model was visualized
using a nomogram and fitted using the “Irm” function from the
“rms” R package (https://cran.r-project.org/web/packages/rms/
index.html). The contribution of each gene to the model was
quantified through a Points scale, with the total score (Total
Points) mapped to the probability of COPD risk (ranging from
0.1 to 0.9) via weighted summation. The calibration accuracy of the
model was assessed using the Bootstrap method, with 500
resampling iterations (B = 500). Consistency between the
predicted probabilities and the actual observed probabilities was
calculated using the “calibrate” function. The calibration curve was
plotted utilizing the “ggplot2” package, where the diagonal line
represented the ideal state of calibration. Additionally, the area
under the curve (AUC) value of the model was computed using the
“pROC” package to evaluate the predictive capability of the gene
combination for the disease (32). Finally, the clinical net benefit of
the model was analyzed using the “rmda” package, establishing a
risk threshold range of 0 to 50% (33). The standardized net benefit
of the nomogram model was compared against the “intervention
all” (All) and “no intervention” (None) strategies through
curve comparison.

2.1.5 GSEA analysis and immune infiltration
analysis

In this study, GSEA enrichment analysis was performed by
loading R packages such as “clusterProfiler” and “org.Hs.eg.db”.
The correlation between the target genes and other genes was
evaluated using the Spearman correlation test, and the hallmark
gene set files (“h.all.v2024.1.Hs.entrez.gmt”) were utilized in
conjunction with the GSEA function for gene enrichment
analysis. The final results were visualized by plotting the
enrichment map of specific pathways using the “gseaplot2”
function. In addition, the results from multiple pathways were
compared and visualized to enhance the clarity and intuitiveness
of the analysis.
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The classification and quantification of immune cells in the
merged matrix were based on the expression profiles of 22 immune
cell types, which were calculated using the “CIBERSORT” package
(34). The final results were visualized as box plots. Then, the
relationships between key CEM-DEGs and immune cells were
evaluated using Pearson’s correlation analysis, and the resulting
data were presented in bubble plots.

2.1.6 Single-cell RNA sequencing analysis of key
CEM-DEGs and their involvement in cell-cell
communication

Raw expression matrices of lung tissue single-cell RNA-seq data
comprising 5 COPD and 3 non-COPD were sourced from the GEO
database under accession number GSE173896 (35). Among them,
12,692 single cells derived from non-COPD and 15569 single cells
derived from COPD. Then, the integrated raw data were processed
using the “Seurat” R package for cell type annotation and
subsequent downstream analysis (36). Initially, raw data were
filtered to retain genes expressed in more than 200 cells and
fewer than 5000 cells, while ensuring that mitochondrial gene
expression constituted less than 15% of the total expressed genes.
Following normalization, the data from the three grouped samples
were combined using the “FindVariableFeatures” function with the
“vst” method (nfeatures = 4000). The “IntegrateData” function was
then applied to mitigate batch effects and ensure data integrity. In
the meantime, the number of principal components in the
“RunPCA” function was set to 30. Dimensionality reduction was
performed using the “RunUMAP” function. Clustering of the
diverse cell groups was achieved through the “FindNeighbors”
and “FindClusters” functions, with the resolution parameter set
to one.

For each identified cluster, marker genes conserved across
genotypes were determined using the “FindMarkers” function.
The clusters were subsequently annotated into distinct cell types
by referencing established marker genes reported in previous
studies and the CellMarker 2.0 database (http://117.50.127.228/
CellMarker/), and the distribution of key CEM-DEGs across cell
types was visualized using FeaturePlot (37). Next, the relationship
between the key CEM-DEGs and various cell clusters was analyzed
using Pearson’s correlation test. Based on the expression levels of
key CEM-DEGs and the “AddModuleScore_UCell” function in the
“UCell” package (38), the cell energy scores related to key CEM-
DEGs were calculated. The final results were visualized as
featureplot and box plot respectively. It is worth noting that, to
further clarify the specific contributing factors of the Ucell score, in
this study, we also conducted subpopulation analysis and
annotation of epithelial cells and myeloid cells, and determined
the specific distribution of the Ucell score.

The calculation of DEGs for each cell cluster between the
control group and the COPD group in the single-cell dataset
relies on the “FindMarkers” function, with the screening criteria
for DEGs being |log2 fold change (FC)| > 0.5 and p.adj < 0.05. The
results were presented in the form of a volcano plot using the
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“scRNAtoolVis” package (https://github.com/junjunlab/
scRNAtoolVis). Then, the specific cells were reclassified into
high-expression and low-expression groups based on the median
expression level of the validated key CEM-DEGs, and DEGs
between the two groups was calculated for GO/KEGG
enrichment analysis.

To analyze intercellular communication, the “CellChat” R
package with default parameters was employed to infer potential
signaling interactions between cells using a predefined ligand-
receptor pair database (39). The cell communication model was
constructed using the “createCellChat” function, focusing
specifically on interactions between epithelial subtypes and other
cell types and highlighting the relationships between cells and the
specific ligand-receptor pairs involved in these interactions. The
results were visualized using circular plots, heatmaps, and bubble
charts to effectively convey the underlying patterns and relationships.

2.2 Biology experiment

2.2.1 COPD model in vivo

The experimental animal samples were derived from the COPD
mouse model previously established by our research group. Six-
week-old female C57BL/6 mice were exposed to cigarette smoke for
24 weeks (six days a week, twice a day, each exposure lasting 120
minutes; specific details of the smoke exposure are as follows: tar: 10
mg, nicotine: 0.8 mg, carbon monoxide: 11 mg), while the control
group mice were exposed to normal air. For specific information,
please refer to the previous study (40).

2.2.2 Cell culture and CSE-induced cell injury
model

The human bronchial epithelial cell line BEAS-2B, purchased
from Pricella Biotech Technology Co., Ltd. in Wuhan, China, was
cultured in high-glucose DMEM supplemented with 1% antibiotics
and 10% fetal bovine serum. The cultures were maintained in a
humidified environment at 37 °C with 5% CO,. Detailed cell culture
protocols can be found in previous studies (41).

The cigarette smoke extract (CSE) was utilized to stimulate the
human lung epithelial cell line BEAS-2B to construct a cell model.
Cells were harvested 24 hours post-treatment. CSE was prepared
following a previously reported method, with modifications (42).
Specifically, the smoke generated from the complete combustion of
five cigarettes was dissolved in 10 ml of DMEM culture medium.
Subsequently, the solution was filtered through a 0.22 pm filter, and
the optical density (OD) of the stock solution was adjusted to 4.0
using a spectrophotometer, yielding the CSE stock solution for
subsequent experiments.

2.2.3 Cell transfection

BEAS-2B cells were grown in T25 cell culture flasks until the
density reached approximately 90%, then subcultured into six-well
plates, with about 1.2x10° cells per well. After 24 hours, the cells
grew to about 60%-70%. According to the kit instructions, 250 ul of
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siRNA and lipofectamine RNAIMAX (Thermo Fisher Scientific,
USA) mixed solution was added to each well. After overnight
incubation of the siRNA-liposome complex with the cells, fresh
medium was added to continue culturing the cells. The obtained
gene knockdown cells were used for subsequent experiments.

2.2.4 Immunohistochemistry staining

The lung tissues of mice were fixed with 4% paraformaldehyde,
followed by dehydration, paraffin embedding, sectioning and
baking. The obtained tissue sections were dehydrated with xylene
and gradient ethanol (100%, 95%, 80%), and then immersed in
EDTA antigen retrieval solution for antigen retrieval (high heat for
6 minutes, low heat for 15 minutes). After that, the tissue sections
were successively subjected to endogenous peroxidase blocking
(treated with 3% H,O, for 10 minutes), and blocking (incubated
with 5% BSA solution for 1 hour). After the treatment was
completed, the tissue sections were incubated with primary
antibody (PLA2G1B antibody (15843-1-AP, Proteintech) diluted
at 1/200 at 4 °C overnight), and then with secondary antibody (goat
anti-rabbit IgG polymer (ZSGB-BIO, China) for 30 minutes). The
DAB staining was observed under a microscope, and after the
staining was completed, the sections were stained with hematoxylin,
differentiated with alcohol hydrochloride, blued, and finally
immersed in gradient alcohol and xylene to complete the
immunohistochemistry. The immunohistochemistry sections were
observed and photographed under a microscope, and the positive
area was calculated by Image].

2.2.5 Western blotting

After obtaining the mouse lung tissue, 20 mg of tissue were
weighed and cut into small pieces, then 200 ul of RIPA buffer was
added and the tissue was homogenized on a tissue homogenizer.
The homogenate was then incubated on ice for 10 minutes. For the
extraction of cell proteins, 100 pl of RIPA buffer was added to each
well of a six-well plate and incubated on ice for 10 minutes. The
protein lysates from the mouse lung tissue/cells were collected and
centrifuged at 4 °C (12,000 rpm for 10 minutes). The supernatant
was collected as the protein sample and could be used for
subsequent Western blotting experiments. The protein samples
were quantified using a BSA kit, and the loading amount of each
sample was adjusted to 20 ug and loaded into 12.5% SDS-PAGE gel
lanes for electrophoresis. The proteins were transferred onto PVDF
membranes and then subjected to blocking (5% BSA at room
temperature for 1 hour), overnight incubation with primary
antibodies at 4 °C, and 1-hour incubation with secondary
antibodies at room temperature. Finally, the PVDF membranes
were exposed using ECL ultra-sensitive luminescent solution. The
WB results were processed and quantified using Image]. Primary
antibodies used were as follows: rabbit anti-PLA2GIB (1/1000,
15843-1-AP, proteintech), rabbit anti-f-actin (1/10000, 81115-1-
RR, proteintech), rabbit anti-bax (1/1000, 50599-2-Ig, proteintech),
rabbit anti-bcl-2 (1/1000, T40056S, abmart), rabbit anti-caspase3
(1/1000, T40044S, abmart), rabbit anti-cleaved-caspase3 (1/1000,
TA7022M, abmart).
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2.2.6 Cell counting kit-8 assay

BEAS-2B cells were cultured in T25 flasks until they reached
90% confluence and then subcultured into 96-well plates at a
density of 5,000 cells per well. Following an overnight incubation,
the cells were grouped according to experimental requirements and
further incubated for 24 hours. Subsequently, 10 pl of CCK-8
reagent (Beyotime, China) was added to each well containing 100
ul of culture medium. The plates were incubated for an additional
hour in a CO, incubator, and the OD value of each well was
measured at 450 nm using a microplate reader. Cell viability was
calculated based on the obtained OD values.

2.2.7 RNA extraction and quantitative reverse
transcription polymerase chain reaction

Lung tissue and Cells in different groups were subjected to RNA
extraction according to the manufacturer’s instructions (Fastagen,
China). Subsequently, 1 ug of total RNA was reverse transcribed
into cDNA following the kit protocol (Vazyme, China). RT-qPCR
was carried out using SYBR Green, and the thermal cycling
program was configured as specified in the kit instructions
(Vazyme, China). The relative mRNA expression levels were
determined using the 2-AACt method, with ACTB serving as the
internal control. All primers were synthesized and provided by
Tsingke Biotechnology Company (Beijing, China), and the primer
sequences were available in Supplementary Table S2 of the
Supplementary Materials 1.

2.2.8 Cell proliferation level detection -Edu assay

The cells in different groups within the 6-well plate were treated
according to the protocol provided in the Edu kit (Beyotime,
China). Specifically, after adding the Edu solution to the wells
and incubating at 37 °C for 2 hours, the cells were gently washed
with PBS. Subsequently, the cells underwent fixation and
permeabilization sequentially as specified in the kit instructions.
Following this, the Click reaction solution was added, and the cells
were incubated for 30 minutes. Nuclear staining was then
performed using Hoechst 33342. Finally, the results were
visualized and imaged under a fluorescence microscope, and the
fluorescence intensity was quantitatively analyzed using
Image] software.

2.2.9 Reactive oxygen species detection

According to the ROS detection kit instructions (Beyotime,
China), the treated cells in the 6-well plates were incubated with the
DCFH-DA probe at a concentration of 10 uM for 20 minutes at 37 °
C. Subsequently, fluorescence images were captured using a
fluorescence microscope, and the corresponding fluorescence
intensity was quantified using Image]J software.

2.3 Statistical analysis

Statistical analysis was performed using GraphPad Prism
(version 8.0), with data presented as mean + standard deviation.
Differences between groups were assessed using one-way ANOVA
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and student’s t-test. Significance levels were indicated as follows:
*p < 0.05 ** p < 0.01, *** p < 0.001, and ns for not
statistically significant.

3 Results

3.1 Screening of the CEM-DEGs and
enrichment analysis

The datasets GSE57148 and GSE47460 were batch-corrected
and merged into a comprehensive dataset containing 517 samples
(Figures 2A-C). By analyzing the DEGs between the control group
and the COPD group, it was found that 13 CEM-DEGs were
significantly upregulated and seven CEM-DEGs were significantly
downregulated (Figures 2D-F; Supplementary Table S3). A PPI
network was constructed for the proteins related to these 20 CEM-
DEGs, and the results showed that PLA2G2A and PLA2G7 had the
highest combined score (Figure 2G; Supplementary Table S4).
Additionally, GO/KEGG enrichment analysis revealed that these
20 CEM-DEGs were mainly involved in regulating lipid metabolism
and amino acid metabolism, such as lipid catabolic process, alpha-
amino acid metabolic process, and fatty acid transport in the GO-
BP entries, and Ether lipid metabolism, Tryptophan metabolism,
and Linoleic acid metabolism in the KEGG enrichment results
(Figures 2H, I; Supplementary Table S5).

3.2 Machine learning identified the key
CEM-DEGs and the predictive model
construction

To determine which of the 20 CEM-DEGs are the main
regulatory genes, five machine learning algorithms were used in
this study to screen out the key variables in each model, and the
results of the five machine learning methods were summarized to
obtain six key CEM-DEGs (Supplementary Figures S1A-E;
Figure 3A). Based on the sample information obtained from
GSE47460 and the COPD grades according to the GOLD
guidelines (1), this study further analyzed the association between
these six key CEM-DEGs and COPD grades. The results showed
that the expression levels of cytochrome P450 family 1 subfamily B
member 1 (CYPIBI) and carbonic anhydrase 3 (CA3) significantly
increased with the increase of COPD classification. The expression
level of aryl hydrocarbon receptor repressor (AHRR) significantly
increased in GOLD I, II, and III, but there was no significant change
compared with the control group in GOLD IV; PLA2G1B and
phenylethanolamine N-Methyltransferase (PNMT) were
significantly downregulated in all four stages, but no correlation
with disease severity was observed; maltase-glucoamylase (MGAM)
was significantly increased only in GOLD IV, the most severe case
of COPD (Figures 3B-G). The ROC curve showed that the single-
gene diagnostic efficiency of these six key CEM-DEGs was low
(AUC < 0.8) (Figure 3H). Therefore, a nomogram model was
further constructed in this study for COPD risk prediction, and
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the total score of the six CEM-DEGs in the prediction model was
used to map the final risk probability, with PLA2GIB being the
main contributing marker (Figure 3I). Additionally, the p-value of
the Hosmer-Lemeshow (HL) test in the calibration curve was 0.382,
indicating no significant difference between the predicted and actual
values, and the error between the actual and predicted disease risks
was minimal (Figure 3]); the AUC value in the ROC curve was
0.814, indicating that the model had good discrimination ability
(Figure 3K); the DCA curve results showed that the net benefit of
this nomogram was higher than that of the positive and negative
controls, and its net benefit was higher than that of using any single
biomarker alone, thus demonstrating significant clinical
utility (Figure 3L).

To evaluate the broader clinical applicability of the identified
CEM-DEGs, this study further utilized transcriptome sequencing
datasets from airway brush, induced sputum, and peripheral blood
samples of COPD patients to construct and validate predictive
models. In the model derived from airway brush samples, CA3 was
the primary contributing factor, yielding an AUC of 0.793 with
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good predictive performance (HL test p = 0.324) (Figures 4A-D).
For the induced sputum-based model, AHRR emerged as the
dominant predictor, achieving a perfect AUC of 1.0, indicating
excellent predictive accuracy (HL test p = 1.0) (Figures 4E-H). In
the peripheral blood-derived model, MGAM was the main
contributor, with an AUC of 0.789, also demonstrating strong
predictive capability (HL test p = 0.418) (Figures 4I-L). These
findings collectively suggest that the six CEM-DEGs exhibit robust
diagnostic and predictive potential for chronic obstructive
pulmonary disease across multiple sample types and
biological contexts.

3.3 Potential functions of six key CEM-
DEGs and associated immune cells

Based on public databases, this study collated and collected the

basic information of six key CEM-DEGs. For details, please refer to
Supplementary Table S6 in the Supplementary Material 1. When
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performing GSEA enrichment analysis on the six key CEM-DEGs
to identify their associated functions, the results indicated that all
these genes were involved in regulating inflammatory responses
(Figures 5A-F, Supplementary Table S7). Except for AHRR, the
other five genes (CYP1BI, CA3, PLA2G1B, MGAM, PNMT) were all
involved in regulating the TNFA signaling pathway, among which
CYPIBI1 and MGAM were also involved in the IL6-JAK-STAT3
pathway. The enrichment results of AHRR were mainly related to
various metabolic pathways, such as fatty acid metabolism and
cholesterol homeostasis (Figure 5C, Supplementary Table S7).
Additionally, it is worth noting that these genes were also closely
associated with epithelial-mesenchymal transition and oxidative
phosphorylation pathways, collectively indicating that these genes
play a significant role in the crosstalk between metabolism,
inflammatory responses, and oxidative stress. Immune infiltration
analysis was conducted on the merged dataset, and the results
showed that the most abundant cell type was macrophages,
followed by T cells (Figure 5G). Further correlation analysis
revealed a close association between six key CEM-DEGs and
immune regulation, especially MGAM, which had the highest
correlation with neutrophils (R = 0.72, p < 0.05) (Figure 5H).
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3.4 Analysis of the expression level of six
key CEM-DEGs based on single-cell data

In this single-cell sequencing dataset, cell types were labeled by
different markers (For T cells, the gene markers included CD3D,
CD2 and CDG69; B cells were identified by CDI19, CD79A and
CD79B; NK cells expressed NKG7 and GNLY; myeloid cells were
distinguished by the presence of CDI4, LYZ and CST3; while
endothelial cells exhibited expression of CD34 and PECAMI.
Additionally, fibroblast cells were marked by MME, DCN and
FGF7; mast cells by GATA2, KIT and MS4A2; and epithelial cells
by EPCAM, SFTPA1 and CAPS), and a total of 8 types of cells were
identified, including epithelial cells, endothelial cells, myeloid cells,
T cells, NK cells, fibroblasts, B cells and mast cells(Figures 6A, B)
(43, 44). By analyzing the expression levels and cell distribution of
six key CEM-DEGs, the results showed that CYPIBI was most
highly correlated with myeloid cells, CA3 with fibroblasts, PLA2GIB
with epithelial cells, MGAM with NK cells, PNMT with endothelial
cells, while AHRR had no high correlation with the above eight
types of cells (Figures 6C, D). Furthermore, a cell energy score was
constructed based on these six key CEM-DEGs. The results showed
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brushings in datasets GSE5058, GSE10006, GSE11784, and GSE20257, where (A) represents the nomogram, (B) the calibration curve, (C) the ROC
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that there was a significant difference in the cell energy score
between the COPD group and the control group, indicating that
there were certain cell energy metabolism alterations in the COPD
group (Figure 6E, Supplementary Table S8). Notably, the highest
cell energy score was found in the epithelial cells of the control
group, and the most significant difference was observed in the
COPD group (Figure 6F).

Given the elevated cellular energy scores observed in both
epithelial cell and myeloid cell populations, along with the
substantial heterogeneity within these cell populations, we carried
out subsequent subpopulation analyses. Initially, in the case of
epithelial cells, based on distinct markers, the epithelial cells were
classified into subpopulations, namely alveolar type I epithelial cells
(AGER"), alveolar type II epithelial cells (SFTPA1"), goblet cells
(SCGB1A1"), ciliated cells (TPPP3"), and basal cells (KRT17")
(Figures 7A, B). Cellular energy score analysis revealed that the
alveolar type II (ATII) cells were the predominantly affected cell
population. Specifically, the scores of ATII cells were significantly
lower in the chronic obstructive pulmonary disease (COPD) group
compared to the control group (Figures 7C, D). Regarding myeloid
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cells, they could be primarily divided into three groups: the
monocyte population (FCN1"VCANT), the dendritic cell
population (RGS1"FCER1A"), and the alveolar macrophages
population (MARCO"APOCI1") (Figures 7E, F). Among these,
monocytes were the main high-scoring cell population.
Intriguingly, in contrast to epithelial cells, the scores of
monocytes were higher in the COPD group than in the control
group (Figures 7G, H).

3.5 The influence of the expression level of
PLA2G1B on the function of epithelial cells
and cell communication

By obtaining the DEGs of different cell types between the
control group and the COPD group, the results showed that
among the six key CEM-DEGs, PLA2GI1B was significantly
downregulated in the epithelial cell category of the COPD group,
which was consistent with the previous transcriptome results
(Figure 8A, Supplementary Table S9). Based on this, the epithelial
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FIGURE 5

Analysis of the potential functions and immune cell correlations of six key CEM-DEGs. (A-F) GSEA analysis of the potential functions of six key
CEM-DEGs (The overall upward peaks in the figure (enrichment score greater than 0) indicate activation, while the overall downward peaks
(enrichment score less than 0) indicate inhibition). (G) Immune infiltration analysis of the composition of 22 types of immune cells in the merged
dataset (***p < 0.001). (H) The correlation analysis results between six CEM-DEGs and 22 types of immune cells are shown. Only the results with a

p-value less than 0.05 are displayed in the bubble chart.

cells in the single-cell data were divided into PLA2G1B""

cells group and PLA2G1B"" epithelial cells group for subsequent

epithelial

phenotypic and cell communication analyses (Figure 8B). After re-
grouping the epithelial cells, it could be seen that the number of
PLA2G1B"" epithelial cells in the COPD group was significantly
increased compared with the control group (p < 0.05) (Figure 8B).
By identifying the DEGs between the PLA2GIB™" epithelial cells
and PLA2GI1B"" epithelial cells and conducting functional analysis,
it was found that these genes were involved in regulating lipid
metabolism, inflammatory response, apoptosis, oxidative stress,
phagosome pathway, PPAR pathway and peroxisome pathway,
etc (Figures 8C-D; Supplementary Tables S10-11). In addition,
the cell communication analysis revealed that PLA2G1BM&'™
epithelial cells have a closer relationship with myeloid cells and T
cells, with a greater number of cell communications and a higher
proportion of weight (Figures 8E-F). For different signaling
pathways, PLA2GIB"™" epithelial cells received more signals from
SEMA4, CD6, TWEAK, CLDN, and CEACAM, and the main
outgoing signals were CLDN, CEACAM, and ARGN (Figures 8G-
H). More specifically, the differences in receptor-ligand pairs exist
in the cell communication between PLA2GI1B™¢" and PLA2G1B""
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epithelial cells with B cells, myeloid cells, NK cells, and T
cells (Figure 8I).

3.6 PLA2G1B was down-regulated in COPD
models and participated in the regulation
of inflammation, oxidative stress and cell
death

To further validate the results of bioinformatics analysis,
COPD-related animal and cell models were constructed in this
study. As PLA2GIB has made a significant contribution to the
predictive model of COPD and has been verified in single-cell
sequencing data, the subsequent experiments mainly focus on
exploring the mechanisms related to PLA2G1B. Firstly, in the
mouse model, compared with the control group, the expression
level of PLA2GIB in the lung tissue of COPD mice models
established by cigarette smoke inhalation for 6 months was
significantly downregulated, including both protein and mRNA
levels. Notably, immunohistochemical results showed that
PLA2GI1B was significantly downregulated in the airway epithelial
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Analysis of six key CEM-DEGs based on single-cell transcriptome datasets. (A) The distribution and proportion of different cell types in the control
group and the COPD group. (B) The distribution of marker expression among different cell types in bubble chart. (C) The relative expression levels of
six key CEM-DEGs in different cell types. (D) The correlation results between six key CEM-DEGs and different cell types (Only results with p < 0.05
are presented). (E) The UCell cell energy score constructed based on 6 key CEM-DEGs in UMAP plot. (F) Analysis of the differences in cell energy

scores among different cell types in different groups (ns p > 0.05 (not statistically significant), *

cells of COPD mice, which was consistent with the single-cell
analysis results (Figures 9A-C). Additionally, in the in vitro
experiment, compared with the control group, when the epithelial
cell line BEAS-2B was stimulated with CSE (5%), the protein and
mRNA levels of PLA2G1B were also significantly downregulated
(Figures 9B, D).

Given that cell death, inflammatory responses, and oxidative
stress represent key pathophysiological mechanisms involved in the
progression of COPD, and considering that the aforementioned
analysis suggested a potential role of PLA2G1B in influencing these
phenotypes, this study employed siRNA transfection to knock
down PLA2GI1B expression in epithelial cells in order to
investigate its association with cell death, inflammatory responses,
and oxidative stress (Figure 9E). The results showed that the
knockdown of PLA2G1B led to an increase in the transcriptional
levels of inflammatory-related factors (IL-1f, IL-6) in BEAS-2B
cells (Figures 9F, G). At the same time, the knockdown of PLA2G1B
led to a decrease in cell viability, mainly manifested as a decline in
proliferation ability. When Edu was used to label proliferating cells,
the results showed that the number of proliferating cells in the
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p < 0.05, ** p < 0.01, *** p < 0.001).

PLA2G1B knockdown group was significantly lower than that in
the control group (Figures 9H-]). In addition, when conducting
functional enrichment analysis related to PLA2G1B, it was found
that PLA2G1B regulated the ROS pathway and apoptosis
(Figure 9C). Therefore, in this study, the intracellular ROS level
was detected using the DCFH-DA probe, and the apoptotic signal
was identified by detecting the protein levels of classic apoptotic
pathway markers (BCL2/BAX, Cleaved-caspase3/caspase3). The
results showed that the knockdown of PLA2GI1B led to a
significant increase in intracellular ROS levels and was
accompanied by the activation of the apoptotic pathway (BCL2/
BAX significantly decreased, Cleaved-caspase3/caspase3
significantly increased) (Figures 9K, L).

4 Discussion

As a kind of chronic respiratory disease, COPD has a high
incidence and mortality in the world population, which seriously
affects the life and health of middle-aged and elderly people (45).
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FIGURE 7

Subpopulation analysis of epithelial cells and myeloid cells based on cell energy score. (A) The UMAP plot illustrates the distribution of
subpopulations among the extracted epithelial cells. (B) The bubble chart displays the marker genes specific to each epithelial cell subpopulation.
(C-D) The distribution of UCell scores across different epithelial cell subpopulations and statistical comparisons between groups are shown. (E) The
UMAP plot depicts the subpopulation structure of the isolated macrophages. (F) The bubble chart presents the characteristic markers for distinct
macrophage subtypes. (G—H) The UCell score distribution among macrophage subgroups and the results of intergroup statistical analyses are

displayed (ns p > 0.05 (not statistically significant), *** p < 0.001).

However, the exact mechanism of COPD occurrence is not yet fully
understood, especially the molecular mechanism of CEM.
Integrating bioinformatics analysis to explore valuable markers
and potential therapeutic targets related to CEM disorders will be
beneficial for the early diagnosis and drug development of precision
treatment of COPD in the future.

In this study, the two largest COPD transcriptome sequencing
datasets were integrated for bioinformatics analysis. Multiple
machine learning algorithms were used to identify six key CEM-
DEGs (including CYPIBI, CA3, AHRR, MGAM, PNMT, and
PLA2GIB) from numerous DEGs. The nomogram model and
ROC curve were employed to evaluate the diagnostic and
predictive capabilities of these genes for COPD. It is worth noting
that through the analysis of the predictive effects of these six CEM-
DEGs on COPD in different sample types, their advantages in
diagnosing COPD have been further confirmed. Besides lung tissue,
they are also applicable to more convenient sample types such as
peripheral blood, induced sputum, and airway brushings. The
GSEA analysis results indicated that these genes were mainly
involved in lipid metabolism, inflammation, oxidative
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phosphorylation, and epithelial-mesenchymal transition,
suggesting that the outcome of metabolic dysregulation might be
associated with the induction of cellular inflammatory responses,
oxidative stress, and airway remodeling. Additionally, recent studies
have reported that regulating mitochondrial metabolism and de
novo NAD synthesis in macrophages could exacerbate
inflammatory responses and oxidative stress, and stimulating lipid
metabolism in lung epithelial cells could increase oxidative stress
and disrupt redox homeostasis. Overall, these findings highlighted
the intricate crosstalk between CEM, inflammatory responses, and
oxidative stress in lung diseases (11, 16, 46, 47).

Among the six CEM-DEGs, CYPIBI regulates fatty acid and
steroid hormone metabolism by encoding the cytochrome P450
enzyme superfamily and serves as a therapeutic target for ocular
diseases and various tumors (48-50). Toxicological study found
that exposure to particulate matter could lead to a significant
increase in the expression level of CYP1BI in epithelial cells (51),
which was consistent with the results of this study. In our study,
CYP1B1 was mainly upregulated in COPD, especially closely
related to myeloid cells and involved in the occurrence of
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FIGURE 8

Single-cell level analysis of the phenotypic function and cell communication of PLA2G1B. (A) DEGs between the control group and COPD group of
different cell types in volcano plot. (B) The distribution and proportion of PLA2G1B"" epithelial cells and PLA2G1B'"°" epithelial cells. (C, D) GO/
KEGG enrichment analysis of DEG between PLA2GIB™" epithelial cells and PLA2G1B'" epithelial cells. (E-F) Network Diagram Analysis: Cell
Communication Results [(E) Number of Communications, (F) Communication Weight]. (G, H) Heatmap showing the relative intensity of each
signaling pathway network in each cell type cluster. [(G) plot showing the incoming signal patterns, and (H) plot showing the outgoing signal
patterns.] (1) Dot plot showing the receptor pairings for signal transduction between PLA2G1B"9" epithelial cells and PLA2G1B'°" epithelial cells and

other cell types, respectively.

inflammatory responses. Specifically, it participates in the IL-6-
JAK-STATS3 signaling and TNF signaling. CAH3, encoded by the
CA3 gene, primarily catalyzes carbon dioxide metabolism within
cells. Multi-omics studies have revealed its involvement in the
regulation of muscle function and its significant diagnostic value
for diseases such as muscle atrophy, hypertrophic cardiomyopathy,
and non-alcoholic steatohepatitis (52-54). In this study, it was
found that CA3 was highly expressed in patients with moderate to
severe COPD, closely associated with the activation of interferon
signaling, and was predominantly expressed in fibroblasts in the
lungs. AHRR is recognized as a biomarker closely linked to
smoking, which significantly increases AHRR methylation levels,
thereby impacting cell growth and differentiation, while its
regulatory mechanisms in immunity remain largely unexplored
(55, 56). In this study, we found that AHRR expression was
upregulated in the lung tissues of COPD patients, and GSEA
analysis indicated that AHRR’s regulation of cell growth and
differentiation may be associated with its influence on the KRAS
pathway, as well as MYC and E2F signaling. Intriguingly, AHRR
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could interact with CP1B1 via the Ah receptor pathway, influencing
oxidative stress and mediating toxic responses (57). MGAM
regulates glucose metabolism by encoding the protein MGA,
thereby influencing the digestive and absorptive processes in the
human body. Moreover, multiple studies have revealed its
diagnostic significance in various diseases through bioinformatics
analysis, including bronchopulmonary dysplasia (58), pain-
depression comorbidity (59), intervertebral disc degeneration
(60), and stroke (61). In this study, we found that MGAM was
significantly elevated in severe COPD, not only affecting biological
processes such as inflammation and oxidative stress, but also
participating in the regulation of apoptosis and DNA repair,
thereby influencing the survival of cells. The PNMT protein is a
key enzyme that catalyzes the conversion of norepinephrine to
epinephrine. It was regulated by glucocorticoids, hypoxia, and the
cAMP signaling pathway, and was associated with the occurrence of
mood disorders and neuroendocrine tumors (62-64). Furthermore,
PNMT could also be involved in neuroendocrine tumors through
epigenetic mechanisms (65), highlighting its potential as a
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FIGURE 9

Down-regulated PLA2G1B is involved in regulating inflammation, proliferation, oxidation and apoptosis of epithelial cells. (A) Immunohistochemical
detection of PLA2G1B expression levels in mouse lung tissue (n=3), showing both 10x basic images and 20x magnified images respectively.

(B-D) The protein and mRNA expression levels of PLA2G1B in mouse lung tissues (n=3) and BEAS cells, detected by western blotting and gPCR

(E) gPCR for detecting the knockdown efficiency of siRNA on the expression level of PLA2G1B in BEAS-2B cell. (F-G) The influence of PLA2G1B
knockdown on the transcriptional levels of inflammatory factors IL-18 and IL-6. (H-I) The CCK8 assay was used for detecting cell activity and
measuring the OD values of cells at different time points. (J) Detecting cell proliferation ability, in which Azide-488 was used to label the intracellular
Edu level and Hoechst was used to label the cell nucleus. (K) The intracellular ROS level was detected by labeling intracellular ROS with DCFH-DA
(L) The results of western blotting of the protein levels of apoptosis-related markers (BCL2, BAX, Cleaved-caspase3, caspase3) in cells. (Data are

shown as mean + SD (n = 3), *p < 0.05, **p < 0.01, ***p < 0.001).

therapeutic target for diseases associated with adrenergic signaling
dysregulation. In lung tissue, this study revealed that the low
expression of PNMT might be closely related to the inflammation
associated with COPD, regulating cell proliferation and
transformation, etc.

The phospholipase A2 (PLA2) family includes multiple
subtypes such as PLA2G1, PLA2G2, PLA2G4, PLA2G6, PLA2G7,
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and PLA2G16, which exert various biological functions by
hydrolyzing the sn-2 position of glycerophospholipids to release
fatty acids and lysophospholipids (66). Among them, PLA2G1B was
involved in the progression of various diseases, including tumors,
ulcerative colitis, and rheumatoid arthritis, etc (67-69). Notably,
PLA2GIB, as a double-edged sword, played opposite roles in
different diseases, but the specific molecular mechanism remained
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unclear. In this study, bioinformatics analysis revealed that
PLA2GI1B was significantly downregulated during the progression
of COPD, particularly in the epithelial cell category. The results
were also verified in animal and cell models (with significant
downregulation at both the transcriptional and protein levels),
indicating its association with poor prognosis. Similar to the
findings of this study, Guan et al. also identified, through
bioinformatics analysis, that low expression levels of PLA2GIB in
tumors were significantly associated with reduced survival rates
(68). Further enrichment analysis related to the function of
PLA2G1B revealed that PLA2G1B not only regulated
inflammation, oxidation, and lipid metabolism but also
participated in the regulation of apoptosis and cell
communication. Some of these results were verified in the cell
experiments of this study. In addition, in this study, it was found
that the epithelial cells with low/high expression of PLA2G1B
mainly interacted with myeloid cells. Particularly, the activation
of complement signals in epithelial cells with low expression of
PLA2GIB was significantly lower than that in epithelial cells with
high expression of PLA2G1B, indicating that it could be involved in
immune regulation. In summary, this study elucidated the specific
role of PLA2G1B in COPD and its regulatory influence on epithelial
cell inflammation, oxidative stress, and apoptosis. These findings
expand the current understanding of PLA2G1B mechanisms and its
involvement in the pathophysiological processes of COPD,
suggesting that targeted overexpression of PLA2GIB in epithelial
cells may hold therapeutic potential in mitigating
COPD progression.

It was worth noting that this study still had certain limitations
that need to be improved in future research. Firstly, the data mining
and analysis in this study were conducted using public databases,
and the results obtained only remain at the initial theoretical stage,
lacking the validation of the predictive results of the related
biomarkers’ prognostic models through clinical trials. In addition,
future studies should collect BALF samples from COPD patients to
enable a more comprehensive and in-depth investigation into the
molecular function of PLA2G1B. Secondly, this study only focused
on the impact of gene alterations on functional phenotypes and did
not further explore the differential changes in related metabolites.
Knockdown/overexpression of PLA2G1B at the animal level and
collection of lung tissue samples for metabolomics research may
provide new insights into the pathogenesis of COPD. In the future,
it is possible to explore related small molecule agonist drugs to
further expand the treatment options for COPD.

5 Conclusions

In this study, through comprehensive analysis of multiple
datasets, six key CEM-DEGs (CYPIBI, CA3, AHRR, MGAM,
PNMT, PLA2GIB) were identified, which can be used to
construct a COPD prediction model. Furthermore, we confirmed
that the downregulated PLA2GIB in COPD is associated with the
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biological processes of inflammation, oxidative stress, and apoptosis
in epithelial cells. Overall, this study provided new insights into the
molecular mechanism of COPD from the perspective of CEM and
offered new strategies for the diagnosis and treatment of COPD.
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