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Neurotrophic factors as double-
edged swords in osteosarcoma:
drivers of tumour growth and
immune remodelling
Puzhou Lei and Lei Li*

Department of Orthopedics Surgery, Shengjing Hospital of China Medical University, Shenyang, China
Neurotrophic factors, once considered exclusive guardians of neuronal integrity,

are increasingly recognised as pivotal regulators of osteosarcoma biology. Their

paradoxical enhancement of malignant fitness and an immunosuppressive

microenvironment complicates therapy, with metastatic survival remaining

stubbornly low. Recent mechanistic studies reveal that ligand-dependent

NGF–TrkA, BDNF–TrkB and GDNF–RET circuits intersect with MEK/ERK, PI3K/

AKT and STAT3 pathways to ignite proliferation, invasion and metastatic spread.

Concurrently, neurotrophin signalling recalibrates macrophage polarity,

dampens cytotoxic T-cell function and orchestrates neural-immune feedback

loops that shield tumours from surveillance. Harnessing this duality demands an

integrative strategy. We synthesise tumour-intrinsic and extrinsic neurotrophic

axes, delineate neuro-immune crosstalk, and highlight interventions—TRK/RET

inhibitors, CSF1R blockade, b-adrenergic antagonists—aimed at converting this

liability into therapeutic leverage. By framing neurotrophic factors as double-

edged swords, this review provides a conceptual and practical roadmap for

exploiting their vulnerabilities to improve outcomes in osteosarcoma.
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1 Introduction

Osteosarcoma is the most prevalent primary malignant bone tumour in the paediatric

and adolescent population, with a global incidence of roughly 3–5 cases per million each

year and a sharp rise during periods of rapid skeletal growth (1–3). Despite multimodal

refinements, five-year survival remains ~60–70% (localised) and <30% (metastatic) (4–6).

This therapeutic plateau underscores the need for fresh biological insights that can guide

innovative treatment strategies.

Classically, the neurotrophin family—NGF, BDNF, NT−3, NT−4/5 and GDNF—

governs neuronal survival, axonal guidance and synaptic plasticity (7–9). These proteins

signal via high−affinity TrkA/B/C isoforms, the low−affinity p75NTR, and RET–GFRa co
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−receptor complexes (10, 11). Recent transcriptomic and proteomic

surveys of bone tumours have revealed that genes encoding both

neurotrophins and their cognate receptors are expressed beyond the

nervous system, prompting investigation into their oncological

relevance (12, 13).

Accumulating evidence indicates that neurotrophic signalling

has tumour-intrinsic consequences in osteosarcoma. HIF-1a drives

TrkB transcription in U2OS cells, indicating that the osteogenic

niche—defined by hypoxia, high extracellular calcium and constant

mechanical remodelling—favours neurotrophin responsiveness via

Ca2+-dependent CaMKIV/CREB and calcineurin–NFAT activity,

while load-sensing integrin–FAK–YAP/TAZ signalling further

primes TrkA/TrkB transcription under metabolic stress (14–16).

Furthermore, activation of the BDNF–TrkB axis has been correlated

with enhanced proliferation, resistance to apoptosis, and invasive

behaviour in multiple malignancies, and similar molecular

programmes have been described in experimental osteosarcoma

systems (17, 18).

Neurotrophic factors also exert profound effects on non-

malignant stromal and immune components. BDNF can skew

macrophage polarisation toward an immunoregulatory M2

phenotype and modulate cytokine production, changes that are

conducive to tumour immune evasion (19, 20). More broadly,

neurotrophin-mediated cross-talk between peripheral nerves and

immune cells has been implicated in shaping the inflammatory

milieu of several solid tumours, a concept that is increasingly

explored in bone sarcomas (21–23).

These observations highlight the context-dependent,

bifunctional behaviour of neurotrophic factors in osteosarcoma:

they can directly enhance malignant cell fitness while

simultaneously reprogramming the host immune landscape.

Deciphering this duality is therefore critical for the rational

deployment of targeted and immunomodulatory therapies. We

define tumour−intrinsic edges as neurotrophin actions within

cancer cells and tumour−extrinsic edges as effects on immune or

stromal cells; this review accordingly addresses (1) intrinsic drivers,

(2) extrinsic modulation, and (3) neuro−immune feedback. By

integrating these dimensions, we aim to identify therapeutic

vulnerabilities that may convert this biological liability into a

clinical opportunity. We searched PubMed and ClinicalTrials.gov

(2010-June 2025) using ‘osteosarcoma’, ‘neurotrophin/NGF/

BDNF/RET/Trk’, and ‘immunity’; English; prioritised primary OS

data then mechanistic studies in other tumours; excluded reviews/

abstract-only reports; key outcomes included pathway activity,

immune metrics, and clinical responses.

2 Tumour-intrinsic edge: neurotrophic
drivers of osteosarcoma growth,
survival and metastasis

Large-scale interrogation of TARGET-OS and tissue micro-arrays

shows osteosarcoma cells actively express neurotrophic ligands and

cognate receptors (24, 25). NGF–TrkA shows highest expression;

BDNF–TrkB and GDNF–GFRa/RET are variable, whereas NT−3/
Frontiers in Immunology 02
TrkC is low in osteosarcoma but prominent in other bone sarcomas,

hence our emphasis (26–28). Expression patterns correlate with

clinicopathological variables such as stage and metastatic propensity,

indicating biological rather than incidental relevance.

The NGF–TrkA axis exemplifies an autocrine–paracrine circuit

that reinforces malignant fitness. NGF stimulation in 143B and

MG-63 cells triggers rapid MEK/ERK phosphorylation followed by

transcriptional up-regulation of MMP-2, thereby accelerating

wound closure, Transwell invasion and experimental lung

colonisation (29, 30). Pharmacologic Trk blockade or MEK/ERK

silencing abrogates these effects in vitro and reduces metastatic

burden in orthotopic xenografts, underscoring pathway

druggability (31, 32). Mechanistically, NGF lowers miR-92a-1-5p,

lifting repression of MMP-2 and creating a feed-forward loop that

promotes extracellular-matrix remodelling (33, 34). Such findings

extend earlier observations that hypoxia inducible factors maintain

TrkA transcription under metabolic stress and suggest that NGF

signalling provides a selectable advantage in the poorly vascularised

bone niche.

Although expressed at lower levels, BDNF-TrkB signalling

confers distinct survival benefits. Epithelial models show TrkB-

driven anoikis resistance via PI3K/AKT; osteosarcoma evidence

remains preclinical, with similar signatures in cell lines and

xenografts (35, 36). Osteosarcoma cells appear to reuse this

programme: exogenous BDNF enhances clonogenicity, mitigates

chemotherapy-induced apoptosis and promotes a spindle-shaped,

vimentin-positive phenotype, features that collectively align with

heightened metastatic risk (37, 38). Down-stream, TrkB engages

PI3K/AKT, PLCg/PKC and, in nutrient-limited settings, STAT3,

integrating prosurvival and metabolic rewiring (39, 40). The

plasticity of this circuitry rationalises investigations combining

conventional cytotoxics with ATP-competitive TRK inhibitors or

AKT antagonists.

The GDNF–GFRa1–RET module adds another layer of

complexity. Osteosarcoma sub-clones with elevated GFRa1
expression demonstrate increased motility, drug tolerance and

mesenchymal marker expression; conversely, GFRa1 interference

restores chemosensitivity (41, 42). Soluble GFRa1, released by

adjacent Schwann cells, can activate RET in trans, linking

perineural niche signalling to malignant dissemination, a

phenomenon already recognised in pancreas and prostate cancer

(43, 44). RET activation funnels into the MAPK and JAK/STAT

cascades, converging on transcriptional regulators that control cell-

cycle progression and oxidative-stress resilience, characteristics

advantageous for survival in circulation and at secondary sites.

Genomic alterations further amplify neurotrophic signalling.

Oncogenic NTRK1/2/3 fusions—often retaining an active kinase

domain—are documented but rare in osteosarcoma cohorts. These

lesions confer exquisite sensitivity to first-line TRK inhibitors such

as larotrectinib and repotrectinib, mirroring tissue-agnostic

responses observed across solid malignancies (45, 46). The

occurrence of such fusions, together with ligand-dependent

activation described above, positions neurotrophin-RTK signalling

as a central vulnerability that can be exploited both genomically

and pharmacodynamically.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1666343
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lei and Li 10.3389/fimmu.2025.1666343
Taken together, NGF-TrkA, BDNF-TrkB and GDNF–RET

circuits endow osteosarcoma cells with proliferative, anti-

apoptotic and pro-metastatic properties. Convergence on MEK/

ERK, PI3K/AKT/mTOR and JAK/STAT modules offers multiple

pharmacological checkpoints, while the demonstrable efficacy of

TRK inhibitors in fusion-positive disease highlights the clinical

translational potential.
3 Tumour-extrinsic edge:
neurotrophic remodelling of the
osteosarcoma immune
microenvironment

The cellular and acellular constituents of the osteosarcoma milieu

are highly sensitive to neurotrophic cues that originate from malignant

cells, infiltrating nerves and, to a lesser extent, resident stromal

elements (47, 48). Single-cell deconvolution of primary tumours,

coupled with spatial omics, reveals TrkA/TrkB/RET programmes in

TAMs, dendritic and endothelial cells and maps their adjacency to

nerve fibres and malignant cells, indicating that the immune landscape

is intrinsically wired to perceive nerve-derived growth factors (49, 50).

Functionally, NGF released by osteosarcoma cells up-regulates ICAM-

1/VCAM-1 on circulating monocytes, accelerates extravasation, and

skews differentiation toward an M2 phenotype via TrkA–ERK

signalling (51, 52). BDNF–TrkB engagement on CD8+ T cells

(shown in other tumours) dampens effector cytokines and increases

PD-1 via PI3K/AKT-dependent re-programming; OS data are limited

(53, 54). GDNF signalling through the GFRa1/RET complex in

myeloid cells activates STAT3, enhances IL-10 secretion and impairs

antigen presentation, a constellation that favours immune escape (55,

56). These observations mirror broader oncological evidence that

neurotrophic factors orchestrate a permissive, low-immunogenic

niche by synchronising axonogenesis with immune suppression. The

principal mechanisms operative in osteosarcoma are summarised

in Table 1.

Neurotrophin-responsive immune cells constitute a feed-

forward circuit in which axonal infiltration, cytokine skewing and
Frontiers in Immunology 03
checkpoint induction converge to insulate osteosarcoma from

effective immunosurveillance. Because PD-1/PD-L1 monotherapy

yields <10% responses in relapsed osteosarcoma, interrupting this

circuit via TRK/RET inhibition or macrophage re-education may

unlock checkpoint synergy.
4 Bidirectional crosstalk: feedback
loops linking neurotrophic signalling
and immunity

Emerging evidence indicates that neurotrophins and immune

mediators in osteosarcoma engage in tightly inter-connected

positive feedback loops that reinforce both malignant cell fitness

and micro-environmental immune suppression (57, 58).

Osteosarcoma cells secrete NGF, BDNF and related cues that

attract peripheral nerves and condition infiltrating leukocytes;

reciprocally, cytokines and chemokines released by those stromal

elements amplify neurotrophic signalling, thereby establishing a

self-perpetuating circuit rather than a unidirectional pathway (59,

60). Dense axonal ingrowth driven by tumour-derived NGF has

been associated with increased PD-1 expression on local T

lymphocytes and a rise in M2-polarised macrophages, illustrating

how neuronal inputs synchronise with immune checkpoints to

maintain an immunosuppressive milieu.

As shown in Figure 1, cytokine induction of neurotrophins

represents a first tier of reciprocity. Interleukin−6 from Schwann

−like stromal cells or M2 macrophages activates STAT3, which

partners with phosphorylated TrkB at BDNF enhancers, forming a

feed−forward loop that amplifies neurotrophin output and tumour

aggressiveness (61, 62). Similar IL-1b and TNF-a inputs have been

reported to modulate NGF and BDNF levels in bone-associated

tumours, suggesting a broader principle whereby inflammatory

mediators act as upstream rheostats of neurotrophic output.

A second tier comprises neurotrophin-driven chemokine

gradients that reinforce immune cell influx. BDNF/TrkB

activation in solid tumours triggers JNK-dependent CCL2,

recruiting CCR2+ monocytes that become TAMs and secrete IL-
TABLE 1 Neurotrophic-factor–driven immunologic remodelling in the osteosarcoma microenvironment.

Neurotrophic
factor

Primary immune/
stromal target(s)

Cognate
receptor(s) on

target

Key downstream
signalling outcome

Immunological consequence

NGF
Circulating monocytes →

TAMs
TrkA/p75NTR

ERK-mediated VCAM-1/ICAM-1
induction; STAT6 activation

Enhanced M2 polarisation, IL-10 and TGF-
b release, phagocytosis dampening

BDNF
Effector T cells (CD8+,

CD4+)
TrkB

PI3K/AKT-driven PD-1 up-
regulation; reduced granzyme

transcription

Cytotoxic attenuation, promotion of T-cell
exhaustion

NT-3 Endothelial progenitors TrkC
MAPK activation, VEGF-A co-

secretion
Endothelial activation, pro-angiogenic loop
that indirectly limits immune infiltration

GDNF
Myeloid‐derived

suppressor cells/TAMs
GFRa1–RET complex

STAT3 phosphorylation; ROS
detoxification

Expansion of suppressive myeloid subsets
and antigen-presentation deficit

Pro-neuronal exosomes
(miR-21/miR-34a-rich)

Schwann-like stromal
cells

Endocytic uptake
(non-canonical)

Schwann-cell activation, axon
guidance molecule release

Physical nerve ingrowth that reinforces
neuro-immune signalling
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10, TGF-b and IL-6, sustaining TrkB phosphorylation; OS

validation is pending (63, 64). Psychological stress elevates

norepinephrine/epinephrine that engage b2-adrenergic receptors

(ADRB2) on tumour and immune cells, raising cAMP to activate

PKA and Epac→Rap1/JNK: PKA-phospho-CREB transactivates

BDNF promoter IV, while JNK/AP-1 and STAT3 signalling

increase CD274 (PD-L1) transcription; ADRB2 blockade (e.g.,

propranolol) reverses these changes and attenuates CCL2-

mediated myeloid influx.

Macrophage‐derived NGF adds an additional layer of

amplification. In the osteogenic bone niche, tumour-conditioned

macrophages and osteoclast precursors can synthesise NGF, which

in turn enhances ICAM-1-mediated monocyte adhesion and

supports further macrophage infiltration (65, 66). The ensuing

rise in local NGF concentration potentiates TrkA signalling in

both malignant cells and nerve terminals, escalating axonal

density and reinforcing macrophage tropism in a feed-

forward manner.

Extracellular vesicles act as mobile amplifiers within these

circuits. Osteosarcoma-derived exosomes enriched in miR-21 and

miR-34a—often accompanied by miR-181a/miR-222/miR-146a—

activate Schwann cells (via ERK–c-Jun) to secrete guidance cues

and proNGF/GFRa1, stimulating neurite extension; in immune

cells, exosomal miR-21 targets PTEN/PDCD4 and miR-146a

modulates TRAF6–NF-kB to skew TAMs toward suppressive

states, while Schwann-cell CCL2/CXCL5 recruits CCR2+ myeloid

populations that stabilise the neuro-immune niche (67, 68). These

multilayered feedback loops integrate neuronal, immune and

malignant compartments into a cohesive signalling circuit that

simultaneously accelerates osteosarcoma progression and

dampens effective antitumour immunity. Therapeutic disruption

of any single node—such as b-adrenergic blockade, Trk or RET

inhibition, STAT3 antagonism, or CCL2/CCR2 axis interference—
Frontiers in Immunology 04
may therefore propagate inhibitory effects throughout the entire

network, offering a rationale for combinatorial strategies that target

both neurotrophic and immunological facets of the disease.

5 Harnessing neurotrophic duality:
integrative therapies targeting tumour
growth and immune remodelling

Pharmacological blockade of neurotrophin receptors now

constitutes the most direct strategy to exploit the tumour-intrinsic

arm of the NGF–TrkA/BDNF–TrkB axis while simultaneously

attenuating the immunoregulatory feedback loops described above

(69, 70). Larotrectinib, an ATP-competitive inhibitor with nanomolar

affinity for all Trk isoforms, curtailed orthotopic osteosarcoma

expansion and abolished experimental lung metastases in a murine

model driven by NGF over-expression, an effect accompanied by

reduced MEK/ERK activity and restoration of miR-92a-1-5p levels

(71, 72). Although approvals are fusion-agnostic, ligand-dependent

OS may also benefit; this remains hypothesis-generating and should

be tested with pharmacodynamic readouts (e.g., p-TRK/RET) while

accounting for niche modifiers (hypoxia, Ca2+, YAP/TAZ) (73, 74).

RET-selective inhibitors such as selpercatinib have demonstrated

durable responses in solid tumours bearing RET rearrangements; pre-

screening of relapsed osteosarcoma for rarer NTRK or RET fusions

therefore represents a rational enrichment strategy for precision trials

that marry cytostatic and immunomodulatory endpoints.

Targeting neurotrophin-conditioned myeloid compartments is

equally critical. In vivo administration of the CSF1R inhibitor

pexidartinib (PLX3397) depleted M2-polarised macrophages,

increased intratumoural CD8+ T-cell density and suppressed both

primary tumour growth and pulmonary dissemination in

orthotopic and patient-derived xenografts of osteosarcoma (75, 76).
FIGURE 1

Neurotrophic factor-driven neuro-immune feed-forward loops in the osteosarcoma bone niche.
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CSF1R blockade de-phosphorylates ERK and flips ARG1+ M2

macrophages to iNOS+ M1 via STAT6 loss, restoring MHC-II,

CD86 and IL-12, enhancing cross-presentation to CD8+ T cells and

thereby potentiating PD-1/PD-L1 antibodies in addition to

reinforcing TRK inhibition through MAPK suppression and

increased phagocytosis (77, 78). Given that NGF and BDNF

transcription correlate positively with CSF1 expression in bulk

RNA-seq datasets, sequential or combined Trk/CSF1R inhibition

could interrupt two nodes of the same positive-feedback circuit and

warrants formal evaluation.

Stress-responsive b-adrenergic signalling represents a third

actionable layer linking neural inputs to immune suppression.

Non-selective b-blockade with propranolol reduced osteosarcoma

proliferation, impaired angiogenesis and potentiated low-dose

cisplatin in xenograft models. Beyond cytostasis, propranolol

enhanced T-cell infiltration and lowered myeloid-derived

suppressor cell burden in syngeneic soft-tissue sarcoma, thereby

amplifying the efficacy of anti-CTLA-4 therapy without additive

toxicity (79, 80). Because catecholamine release is heightened by

tumour-induced neo-innervation, b-adrenergic blockade may act

upstream of the neurotrophin–immune loop, providing a low-cost

adjunct to both kinase inhibition and checkpoint blockade.

These observations argue for multi-axis regimens (hypothesis-

generating) that attenuate neurotrophin receptors, re-educate

macrophages and dampen sympathetic inputs. Proposed sequence

(for testing): molecular screening; short-course TRK/RET

inhibition to debulk; add CSF1R blockade to shift macrophages;

consider b-blockade plus PD-1/PD-L1 for maintenance; monitor

neuropathy, hepatic AEs, QT, and paediatric growth-plate changes.

Pharmacodynamic read-outs—p-TRK/RET, M2/M1 ratios,

intratumoural catecholamines, IFN-g signatures—should guide

early-phase trial ordering and dosing. OS cohorts report low PD-

1/PD-L1 monotherapy responses, rare NTRK/RET fusions, and

ongoing OS-relevant trials testing TRK/RET inhibitors, CSF1R

agents, and b-blockers with immunotherapy. The availability of

paediatric-friendly formulations of larotrectinib and selpercatinib,

the manageable safety profile of propranolol, and emerging oral

CSF1R inhibitors create a realistic path toward combination

protocols that convert neurotrophic duality from a liability into a

therapeutic lever.

6 Translational outlook: targeting the
double-edged sword for therapeutic
gain

Understanding that neurotrophic factors can simultaneously

accelerate malignant growth and subvert antitumour immunity

places their signalling nodes among the most attractive, yet

challenging, translational targets in osteosarcoma. The first

prerequisite for clinical progress is molecular stratification that

distinguishes tumours driven by ligand-dependent NGF-TrkA,

BDNF-TrkB or GDNF–RET loops from those harbouring

activating rearrangements or kinase-domain point mutations.

Immunohistochemistry, RNA-seq–derived expression scores and
Frontiers in Immunology 05
DNA-based fusion panels are already feasible in routine pathology

and should be embedded prospectively in early-phase studies to

enrich for pharmacologically tractable subsets and to provide

correlative datasets l inking pathway dependence with

immunological contexture (60, 65).

Drug-development pipelines are advancing beyond first-

generation ATP-competitive inhibitors. Next−gen agents such as

selitrectinib and zurletrectinib remain active against xDFG and

solvent−front (G595R, G667C) TRK mutations while retaining

CNS penetration (72, 77). Parallel efforts are refining highly

selective RET inhibitors with favourable paediatric safety profiles

and negligible off-target VEGFR blockade, a characteristic that may

attenuate dose-limiting hypertension and thrombotic events often

observed with multikinase agents (41). Adaptive designs with real-

time PD (p-TRK/RET suppression, circulating neurotrophins,

TAM polarisation) are recommended.

Translational leverage will increase further when kinase

inhibition is combined with rational immunomodulation. CSF1R

blockade remodels macrophage composition, reduces IL-10/TGF-b
output and indirectly attenuates Trk-driven ERK activity in

malignant cells, providing a mechanistic basis for dual CSF1R–

TRK schedules (46). b-adrenergic antagonists diminish

catecholamine-induced BDNF up-regulation and enhance CD8+

T-cell infiltration, making them logical, low-toxicity partners for

neurotrophin-axis inhibitors or for anti-PD-1/PD-L1 antibodies

once target engagement has curtailed tumour-intrinsic growth

signals (18, 29). Because STAT3 integrates both neurotrophic and

cytokine cues, early introduction of selective STAT3 degraders

might suppress parallel survival pathways and blunt feedback re-

activation observed with single-agent kinase therapy (70). Selecting

the optimal sequence—kinase inhibition to debulk disease,

macrophage re-education to disarm immune suppression,

checkpoint blockade to sustain cytotoxic surveillance—will likely

require window-of-opportunity trials with paired biopsies and

multiplex spatial profiling.

Heterogeneity of neuro-immune coupling mandates preclinical

test systems that faithfully recapitulate bone, neural and immune

compartments. Three-dimensional tri-culture platforms and

biomimetic scaffolds permit interrogation of neurite outgrowth,

macrophage plasticity and T-cell trafficking under defined gradients

of NGF, BDNF and catecholamines (58). Integration of single-cell

and spatial transcriptomics from primary tumours and matched

patient-derived xenografts exposes micro-niches in which

neurotrophic signalling is dominant and predicts regional

variability in drug response (9, 48). Such datasets will be

invaluable for constructing computational models that nominate

combination regimens and identify early biomarkers of benefit

or resistance.

Toxicity management must evolve in parallel with therapeutic

complexity. Careful neuro−cognitive and growth−plate monitoring

is essential because paediatric TRK or RET inhibitor trials report

mostly grade−1/2 neuropathy, transient liver enzyme rise, weight

gain, physeal thickening and occasional hypertension—usually

reversible with dose adjustment (5, 26). Off-tumour macrophage

depletion, catecholamine withdrawal and cytokine shifts will
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necessitate longitudinal immune monitoring to pre-empt

opportunistic infections or auto-inflammatory sequelae.

These considerations delineate a roadmap in which precise

molecular selection, next-generation kinase inhibitors, and

context-specific immunomodulators converge to neutralise both

arms of the neurotrophic double-edged sword. Successful

implementation will hinge on integrative trial designs that capture

pharmacodynamic, immunological and functional imaging

endpoints, enabling rapid iteration toward durable, low-toxicity

control of osteosarcoma.
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