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Retinoblastoma (RB) immunotherapy represents a paradigm shift in managing

this aggressive pediatric eye cancer, overcoming limitations of conventional

therapies. Recent breakthroughs reveal how circular RNAs (circRNAs) critically

modulate the tumor-immune microenvironment: oncogenic circRNAs promote

immune evasion by upregulating PD-L1 and suppressing T cell activity, while

tumor-suppressive circRNAs such as circMKLN1 enhance antigen presentation

and cytotoxic responses. The convergence of circRNA biology with

immunotherapy has yielded innovative strategies, including circRNA-targeted

immune checkpoint blockade to reverse T cell exhaustion, circRNA-engineered

CAR-T cells with improved tumor homing and persistence, and circRNA-based

oncolytic viruses that stimulate immunogenic cell death. Notably, exosomal

circRNAs serve dual roles as both immune modulators and minimally invasive

biomarkers for predicting immunotherapy response. While preclinical studies

demonstrate remarkable synergy between circRNA inhibition and PD-1/CTLA-4

blockade in RB models, clinical translation requires optimization of delivery

systems and combinatorial regimens. This review summarizes the latest

evidence positioning circRNAs as central regulators of anti-tumor immunity

and provides a strategic roadmap for the integration of circRNA-based

approaches in precision immunotherapy for RB.
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1 Introduction

Retinoblastoma (RB) is the most prevalent intraocular

malignancy in children (1). It poses a severe threat to both vision

and survival in infants and young children. Current therapeutic

strategies, including chemotherapy, enucleation, laser

photocoagulation, and cryotherapy, have improved outcomes but

remain limited by non-specific toxicity, treatment resistance, and

metastatic relapse (2, 3). To address these limitations,

immunotherapy has emerged as a transformative approach in RB

treatment, capable of enhancing tumor specificity, reducing

systemic toxicity, and preventing recurrence through durable

immune activation (3). Recent studies highlight the critical role of

immune evasion in RB progression, with tumors often

overexpressing PD-L1 and exhibiting T cell exhaustion signatures

(4, 5). These findings have spurred interest in checkpoint inhibitors,

CAR-T cells, and other immunomodulatory strategies tailored to

RB (6).

In parallel, circular RNAs (circRNAs), a class of covalently

closed-loop non-coding RNAs, have gained attention for their

regulatory roles in tumor biology, including epigenetic control,

cell proliferation, metastasis, and chemoresistance (7, 8). Notably,

circRNAs influence immune responses by modulating antigen

presentation, cytokine signaling, and immune checkpoint

expression (9, 10). However, the immunological roles of

circRNAs in RB remain underexplored. This review provides a

comprehensive summary of the recent advances in circRNA

research and immunotherapeutic strategies in the context of

retinoblastoma, with the aim of highlighting novel insights into

molecular mechanisms and translational application.
2 The regulatory role of circRNAs in
RB progression

2.1 Overview of circular RNAs

Circular RNAs (circRNAs) are covalently closed-loop, non-

coding RNAs that are widely expressed across diverse organisms.

They primarily arise through back-splicing of precursor transcripts

(11). This circular structure renders them resistant to exonuclease

degradation, ensuring remarkable stability and prolonged half-lives,

with approximately 80% localized in the cytoplasm (12). CircRNAs

can be classified into intronic, exonic (ecircRNAs), and exon-intron

forms, with ecircRNAs being the most prevalent (13, 14).

Functionally, circRNAs act as microRNA (miRNA) sponges,

sequestering miRNAs via the competing endogenous RNA

(ceRNA) mechanism to modulate mRNA expression (15).

Additionally, they interact with RNA-binding proteins, regulating

RNA stability, transcription, and splicing, while also forming

complexes with other RNAs that influence epigenetic and

transcriptional processes (16, 17). Recent findings suggest that

certain circRNAs possess coding potential, producing functional

peptides (18). CircRNAs are increasingly recognized as pivotal

regulators in tumorigenesis. For instance, circZNF566 promotes
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hepatocellular carcinoma progression by sponging miR-4738-3p,

while circ-0052112 enhances breast cancer metastasis through

targeting miR-125a-5p (19, 20). In RB, circRNAs play significant

roles in oncogenesis, diagnosis, therapy response, and prognosis,

positioning them as promising biomarkers and therapeutic

targets (21).
2.2 Oncogenic circRNAs

2.2.1 circ-0000527 and circ-0000034
circ-0000527, also known as circ-FAM158A, is the sole circular

RNA transcribed from the FAM158A gene and is notably

overexpressed in RB (22). Functional investigations have

demonstrated that silencing circ-0000527 inhibits RB cell

proliferation, migration, invasion, angiogenesis, and induces

apoptosis (22–24). Mechanistically, circ-0000527 functions as a

molecular sponge for miR-646, leading to the upregulation of

LRP6 and BCL-2. These molecules promote tumor progression

via Wnt/b-catenin signaling and inhibit apoptosis, respectively (25,

26). Furthermore, circ-0000527 regulates the miR-27a-3p/HDAC

axis, decreasing PI3K and AKT phosphorylation, which enhances

epithelial–mesenchymal transition (EMT), drug resistance, and

angiogenesis (27). Besides, circ-0000527 reduces caspase activity

through the miR-98-5p/XIAP axis, further suppressing apoptosis

(22). As a competing endogenous RNA (ceRNA) for miR-138-5p, it

upregulates SLC7A5, facilitating amino acid uptake to satisfy the

metabolic demands of tumor cells (24). These diverse mechanisms

underscore circ-0000527 as a key oncogenic regulator in RB.

circ-0000034, also referred to as circ-001787 or circDHDDS, is

derived from the DHDDS gene, mutations in which are linked to

retinitis pigmentosa (28, 29). circ-0000034 has been shown to

enhance RB cell viability, migration, invasion, autophagy, and

EMT. Knockdown of circ-0000034 results in G0/G1 cell cycle

arrest and induces apoptosis in RB cells (30, 31). To date, miR-

361-3p is the only confirmed target of circ-0000034 in RB, acting as

a tumor suppressor (32). As a ceRNA for miR-361-3p, circ-0000034

modulates downstream targets, including WNT3A and STX17 (31).

By sponging miR-361-3p, circ-0000034 upregulates WNT3A,

thereby promoting oncogenesis (29). Additionally, ADAM19, a

disintegrin and metalloprotease involved in cell adhesion and

proteolysis, is a downstream target of miR-361-3p, enhancing RB

cell migration and invasiveness (28).
2.2.2 circ-0075804
circ-0075804, a circular RNA originating from the E2F3 gene

located on chromosome 6, plays a pivotal role in the regulation of

cell cycle-associated genes through its direct interaction with the RB

protein (33). E2F3, as a transcription factor, regulates critical genes

involved in the cell cycle and cellular proliferation, and its activity is

tightly controlled by RB binding. In RB tissues and cell lines, an

upregulation of circ-0075804 has been shown to promote cellular

proliferation and malignant transformation, while simultaneously

inhibiting apoptosis, a hallmark of cancer progression (34, 35). This

effect is thought to be mediated by circ-0075804’s interaction with
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heterogeneous nuclear ribonucleoproteins, which stabilizes E2F3

mRNA, thereby enhancing its activity and contributing to

oncogenic processes (35). ROCK1, a serine/threonine kinase of

the AGC family encoded at 18q11.1, regulates various cellular

processes, including proliferation, differentiation, adhesion, and

cytoskeletal remodeling (36). circ-0075804 activates the ROCK1

pathway via miR-204-5p inhibition, thereby contributing to RB

progression (36). Additionally, circ-0075804 serves as a sponge for

miR-138-5p, which modulates the 3’-untranslated region (UTR) of

the PEG10 gene. This interaction promotes tumor growth,

underscoring its involvement in RB pathogenesis (37). Notably,

circ-0075804 also targets miR-1287-5p, thereby upregulating

LIMS1, a cytoskeletal scaffold protein that enhances cellular

invasiveness and contributes to RB metastasis (38). These findings

highlight circ-0075804 as a multifaceted regulator, influencing

several key pathways in the progression and metastasis of RB.

2.2.3 Other oncogenic circRNAs
In addition to the aforementioned circRNAs, several others

have emerged as significant players in the pathogenesis of RB. These

include circRNF20, circ-ODC1, circ-0099198, circROBO1, and

circ-0000989, all of which have been implicated in RB

tumorigenesis (39, 40). PAX6 is indispensable for retinal and

ocular development; its dysregulation has been linked to

congenital aniridia, anterior segment dysgenesis, glaucoma, and

RB (41). Notably, circRNF20 has been shown to promote RB

progression by directly targeting the tumor-suppressive miR-132-

3p, thereby indirectly upregulating PAX6 expression, which further

contributes to tumorigenesis (39). Moreover, both the long non-

coding RNA ZFPM2-AS1 and miR-130a-3p are involved in

regulating RB development and chemoresistance, with a

particular focus on their interaction with PAX6 (42, 43). The role

of circ-ODC1 in RB progression is also of particular interest, as it

encodes ODC1, a rate-limiting enzyme in polyamine biosynthesis,

which has been recognized as an oncogene in a range of

malignancies (44). Du et al. demonstrated that circ-ODC1 fosters

RB progression by sponging miR-422a, resulting in the activation of

SKP2 (40). SKP2 participates in ubiquitination, autophagy, cell

cycle regulation, and signal transduction. Inhibiting SKP2

sensitizes non-small cell lung cancer and osteosarcoma cells to

cisplatin both in vitro and in vivo, potentially overcoming drug

resistance (45). Furthermore, circ-0099198 promotes the

proliferation and metastasis of Y79 and SO-RB50 cells by

regulating the miR-1287/LRP6 axis, accelerating cell cycle

progression (46).
2.3 Tumor-suppressive circRNAs

2.3.1 circMKLN1
circMKLN1, a circular RNA derived from the MKLN1 gene, plays

a critical role in the autophagic processes underlying diabetic

retinopathy, where it has been shown to promote neovascularization

(47). MKLN1 encodes a muscle protein that is pivotal in cell

proliferation by mediating cytoskeletal organization and cellular
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motility (48). Notably, the upregulation of circMKLN1 facilitates its

interaction with miR-425-5p, thereby regulating the expression of

PDCD4, a key tumor suppressor and a downstream target of RB

signaling (49). circMKLN1 promoted CDK8 expression through

sponge adsorption of miR-26a/b, which regulates EMT (50).

Notably, silencing of PDCD4 markedly attenuates the tumor-

suppressive effects of circMKLN1 (49). Beyond these effects, PDCD4

constrains AP-1–dependent transcription and cap-dependent

translation. Thus, the circMKLN1–miR-425-5p–PDCD4 axis

plausibly couples transcriptional restraint (c-MYC programs) with

suppression of invasion (MMP9, vimentin) and maintenance of

epithelial identity (E-cadherin) (49, 51). Functionally, this positions

circMKLN1 to counter EMT andmetastatic competence while limiting

proliferative signaling, providing a mechanistic counterweight to

oncogenic circRNAs that amplify Wnt/b-catenin or PI3K/AKT

activity (52).

2.3.2 circ-0001649
circ-0001649, a transcriptional product derived from the DNA

repair gene SHPRH, as a tumor suppressor by negatively regulating

tumorigenesis via the Wnt/b-catenin signaling pathway (53). This

circRNA has been linked to several malignancies, including

prostate, gastric, and hepatic cancers (54). circ-0001649 exerts its

antitumor effects by inhibiting the AKT/mTOR pathway—a pivotal

signaling axis that governs cellular processes such as proliferation,

apoptosis, angiogenesis, and glucose metabolism in cancer cells.

Both in vitro and in vivo studies have shown that overexpression of

circ-0001649 results in reduced expression of AKT and mTOR,

accompanied by diminished RB cell viability, inhibition of

proliferation, and promotion of apoptosis (55). Furthermore, the

PI3K/AKT/mTOR signaling pathway promotes forward regulation

that stabilizes b-catenin and facilitates EMT. Inhibition of this

pathway by circ-0001649 thus provides dual antitumor effects:

attenuating anabolic growth processes while simultaneously

suppressing b-catenin-mediated transcriptional activity (56, 57).

In RB, where cell-cycle regulation intersects at the RB/E2F node,

attenuation of the AKT/mTOR pathway by circ-0001649 is

proposed to diminish cyclin-CDK activity, thereby reinforcing

G1-phase arrest and sensitizing tumor cells to cytotoxic stress (58).

2.3.3 circ-0093996 and circCUL2
circ-0093996 is derived from the TET1 gene which functions as

a pivotal tumor suppressor gene (59). The overexpression of circ-

0093996 induces G0/G1 cell cycle arrest in Y79 and WERI-RB1

cells, effectively halting the progression of the cell cycle. This

regulatory effect is mediated through the sequestration of miR-

492 and miR-494-3p, which leads to the downregulation of key

oncogenes, including b-catenin and c-MYC, while simultaneously

upregulating GSK-3 (60, 61). GSK-3, a highly conserved serine/

threonine kinase, inhibits b-catenin activity and prevents its

cytoplasmic accumulation, thereby suppressing Wnt/b-catenin
signaling. Ultimately, this cascade inhibits the proliferation,

migration, and invasiveness of RB cells (61). circCUL2 arises

from the back-splicing of CUL2 mRNA, which encodes an E3

ubiquitin ligase, and is involved in cell cycle regulation (62). E2F2, a
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member of the E2F transcription factor family, is an RB-regulated

transcription factor that governs cell invasion and proliferation

during cancer progression and erythroid maturation. circCUL2 acts

as a ceRNA for miR-214-5p, thereby modulating the expression of

E2F2 (62). In RB cells, circCUL2 is upregulated and indirectly

represses E2F2 expression, resulting in inhibition of tumor

angiogenesis and attenuation of RB cell proliferation and

migration (63).
2.4 circRNAs in RB drug resistance

Drug resistance in RB involves complex molecular mechanisms,

including circRNA-mediated regulation of oncogenic pathways.

circ-0000527, circ-0000034, and circ-0093996 promote

chemoresistance via the Wnt/b-catenin axis, while circODC1 and

circRNF20 suppress resistance by targeting SKP2 and PAX6,

respectively. In vivo, silencing circ-0000034 reduced RB tumor

volume and weight, likely through downregulation of stemness

markers CD133 and SOX2 (29). Mechanistically, circ-0000034

enhances autophagy by binding STX17, fac i l i ta t ing

autophagosome–lysosome fusion. Depletion of circ-0000034 in

Y79 and WERI-Rb1 cells leads to a marked reduction in the

expression of LC3-II/LC3-I and Beclin-1, which impairs

autophagic flux and diminishes drug resistance (31, 47). These

findings suggest that circ-0000034–induced autophagy contributes

to RB chemoresistance (64). Therefore, strategies targeting

circRNAs may present a promising therapeutic approach to

overcoming drug resistance and improving the prognosis of

RB patients.
3 Prospects of circRNAs in the
diagnosis and treatment of RB

3.1 circRNAs as potential diagnostic
biomarkers for RB

Current clinical diagnosis of RB relies heavily on imaging

techniques such as MRI, CT, and B-scan ultrasonography (65).

However, the intraocular location of RB hinders tissue biopsy, and

the young age of patients limits diagnostic compliance and accuracy

(66). To overcome these challenges, non-invasive strategies like

liquid biopsies based on molecular biomarkers have gained interest

(67). circRNAs, characterized by high stability and tissue specificity,

have emerged as promising diagnostic candidates. Lyu et al. (68)

identified 550 downregulated circRNAs in RB tissues via RNA

sequencing, with circ-0093996 most significantly reduced.

Additional studies have reported differential expression of

circRNAs such as circ-0000034, circ-0075804, circ-0000527, circ-

0000989, and circ-0001649 in RB tumor tissues (34, 55, 69),

suggesting their diagnostic potential. Nonetheless, most studies

have focused on tumor samples and primary cell lines, limiting

clinical translation. Recently, exosomal circRNAs have attracted

attention due to their stability and presence in biofluids, enabling
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minimally invasive detection and real-time disease monitoring (70,

71). An et al. (39) demonstrated that serum-derived exosomes from

RB patients contained elevated levels of circRNF20, especially in

advanced TNM stages. Functionally, these exosomes enhanced

viability and proliferation of RB cell lines, indicating that

exosomal circRNF20 may contribute to RB progression and serve

as a non-invasive biomarker.
3.2 circRNAs as therapeutic targets and
prognostic biomarkers in RB

circRNAs have emerged as potential biomarkers in RB (72).

Elevated levels of oncogenic circRNAs—such as circ-0119412,

circRNF20, and circ-0000034—are associated with higher TNM

stage, optic nerve invasion, and poor survival outcomes (28, 73). In

contrast, reduced expression of tumor-suppressive circRNAs such

as circ-0001649 predicts more aggressive disease, whereas

circMKLN1 overexpression correlates with favorable prognosis

(74, 75). Functional studies highlight the therapeutic relevance of

circRNAs. Knockdown of circRNF20 via shRNA in RB cells

reduced proliferation and colony formation by 50%, and

xenograft models confirmed tumor volume reductions of similar

magnitude (39). Likewise, circMKLN1 overexpression in Y79 and

WERI-RB1 cells suppressed colony formation by over 60% and

significantly reduced tumor burden in vivo (49). Additional

circRNAs, including circ-0000034, circ-0075804, circ-ODC1, circ-

0099198, and circ-0007534, exert growth-suppressive effects upon

silencing, while overexpression of circ-0093996 yields similar

outcomes. CircRNAs may also influence drug response. For

instance, circ-0007534 overexpression diminishes the antitumor

efficacy of osthole, reversing its inhibitory effects on cell viability

and colony formation (76). Collectively, these findings underscore

the dual role of circRNAs as both biomarkers and therapeutic

targets, offering promising avenues to overcome chemoresistance

and improve RB treatment outcomes (Figure 1).
4 Advances in immunotherapy

Recent advances in immunotherapy have transformed the

therapeutic landscape of RB, offering strategies that harness and

redirect immune responses against tumor cells. Immune checkpoint

inhibitors (ICIs), such as PD-1, PD-L1, and CTLA-4 blockers, restore

cytotoxic T cell–mediated surveillance by disrupting inhibitory signals

within the tumor microenvironment (TME), and have shown

promising efficacy in RB, where PD-L1 is upregulated and co-

expression of PD-1/CTLA-4 correlates with poor prognosis (77, 78).

Adoptive cell therapy (ACT), including tumor-infiltrating lymphocyte

(TIL) and CAR-T approaches, enables personalized administration of

antitumor lymphocytes (79). CAR-T cells targeting CD171 and GD2

effectively eliminate primary and metastatic RB cells and mitigate

chemotherapy-associated toxicity (80, 81). Parallelly, inhibitors of

cyclin-dependent kinases 4/6 (CDK4/6) such as palbociclib,

ribociclib, and abemaciclib suppress Rb phosphorylation and cell
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cycle progression, while concurrently enhancing antitumor immunity

by increasing antigen presentation and suppressing regulatory T cell

(Treg) proliferation (82, 83). TFF1-overexpressing RB cells exhibit

CDK6 downregulation, and exogenous TFF1 impairs the viability

of RB cell lines, supporting the clinical utility of CDK4/6 inhibitors

(84, 85). Anti-angiogenic therapy targeting VEGF, which is

overexpressed in poorly differentiated RB, limits neovascularization

and immunosuppression in the TME. Bevacizumab, an anti-VEGF

monoclonal antibody, has shown efficacy in RB xenograft models,

further validating VEGF as a viable target (86). Oncolytic viruses

(OVs), particularly engineered adenoviruses, selectively replicate within

and lyse tumor cells while stimulating systemic immune responses.

Intra-tumoral delivery enhances local efficacy and minimizes systemic

toxicity (87). Mouse models of RB treated with replication-competent

and -deficient adenoviruses have demonstrated potent antitumor

effects and synergism with chemo- or radiotherapy (88). Moreover,

therapeutic cancer vaccines, especially DNA-based platforms,

reawaken suppressed immunity by expanding tumor-reactive T cell

pools. DNA vaccines offer multivalent, HLA-independent responses,
Frontiers in Immunology 05
favorable safety, and scalability (89). Racotumomab, an anti-idiotype

vaccine targeting NeuGcGM3, has elicited strong immune responses in

RB patients in clinical trials (90, 91).

Recent studies have begun to elucidate how circRNAs shape

the immunological landscape of RB. Oncogenic circRNAs such

as circ-0136666 and circ-0000512 promote immune escape by

upregulating PD-L1 expression, either directly or via modulation of

Wnt/b-catenin and ROCK1 pathways, which are known to suppress

antigen presentation and impair CD8+ T cell cytotoxicity (92, 93).

Conversely, tumor-suppressive circRNAs like circMKLN1 enhance

anti-tumor immunity by upregulating PDCD4, a key regulator of

antigen processing and presentation, thereby facilitating CD8+ T cell

activation (49). Furthermore, circMKLN1 overexpression has been

shown to elevate E-cadherin levels and reduce c-MYC and MMP9

expression, collectively fostering a TME more conducive to T cell

infiltration and activation (52). Exosomal circRNAs such as circ-SPEF2

may also influence immune dynamics by promoting the expansion of

immunosuppressive cell subsets, including Tregs (94), though direct

evidence in RB remains limited. These findings highlight the dual roles
FIGURE 1

The regulatory role of circRNAs in retinoblastoma progression.
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of circRNAs as both intrinsic regulators of immune checkpoints and

extrinsic communicators via exosomal signaling, underscoring their

potential as targets for immunotherapy (95). Compared to

conventional therapies, immunotherapy provides superior specificity,

minimizes off-target toxicity, and potentially penetrates the blood–

retinal and blood–brain barriers (96, 97). As the immunobiology of RB

becomes clearer, and immune modulation strategies such as

checkpoint blockade, ACT, CDK4/6 inhibition, anti-VEGF therapy,

oncolytic virotherapy, and vaccination continue to evolve, these

immunotherapeutic advances offer a compelling framework for

improved RB management and expanded treatment paradigms (98).
5 Conclusion

Retinoblastoma therapy has entered a transformative era, driven by

advances in circRNA biology and immunotherapeutic innovation.

Circular RNAs (circRNAs), owing to their stability and tissue

specificity, have emerged as critical regulators of tumorigenesis,

chemoresistance, and metastatic progression. Moreover, their

potential for non-invasive diagnostics, particularly through exosomal

detection (circRNF20), offers new opportunities for early detection and

monitoring. In parallel, immunotherapies including checkpoint

inhibitors, CAR-T cells, and oncolytic viruses are overcoming the

limitations of traditional therapies by harnessing immune-mediated

tumor clearance and facilitating durable remission.

Despite these exciting developments, several knowledge gaps

remain before clinical translation. Key challenges include optimizing

in vivo delivery systems for circRNA-targeted therapeutics, identifying

tumor-specific circRNA targets with minimal off-target effects,

integrating circRNA modulation with immunotherapies to enhance

efficacy and reduce resistance, and establishing exosomal circRNAs as

biomarkers for treatment stratification and disease monitoring. Clinical

validation requires robust preclinical RBmodels that mimic the human

tumor microenvironment and prospective trials to assess safety,

specificity, and long-term outcomes. The synergy between circRNA

modulation and immune activation offers a strategy to overcome drug

resistance and metastatic relapse. As the molecular landscape of RB is

further understood, integrating circRNA diagnostics with precision

immunotherapy promises personalized, low-toxicity therapies. Future

efforts should focus on bridging preclinical findings to clinical

applications, improving survival and quality of life for pediatric

RB patients.
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Romero YA, Sánchez-Rojas I, Mazorra-Herrera Z, et al. Racotumomab in non-small
cell lung cancer as maintenance and second-line treatment. MEDICC Rev. (2021)
23:21–8. doi: 10.37757/MR2021.V23.N3.5

91. Cacciavillano W, Sampor C, Venier C, Gabri MR, de Dávila MT, Galluzzo ML,
et al. A phase I study of the anti-idiotype vaccine racotumomab in neuroblastoma and
other pediatric refractory Malignancies. Pediatr Blood Cancer. (2015) 62:2120–4.
doi: 10.1002/pbc.25631

92. Miao Z, Li J, Wang Y, Shi M, Gu X, Zhang X, et al. Hsa_circ_0136666 stimulates
gastric cancer progression and tumor immune escape by regulating the miR-375/
PRKDC Axis and PD-L1 phosphorylation. Mol Cancer. (2023) 22:205. doi: 10.1186/
s12943-023-01883-y

93. Dong LF, Chen FF, Fan YF, Zhang K, Chen HH. circ-0000512 inhibits PD-L1
ubiquitination through sponging miR-622/CMTM6 axis to promote triple-negative
breast cancer and immune escape. J Immunother Cancer. (2023) 11:e005461.
doi: 10.1136/jitc-2022-005461

94. Zhou J, Xu M, Chen Z, Huang L, Wu Z, Huang Z, et al. circ_SPEF2 regulates the
balance of treg cells by regulating miR-16-5p/BACH2 in lymphoma and participates in
the immune response. Tissue Eng Regener Med. (2023) 20:1145–59. doi: 10.1007/
s13770-023-00585-2

95. Xu YJ, Zhao JM, Gao C, Ni XF, Wang W, Hu WW, et al. Hsa_circ_0136666
activates Treg-mediated immune escape of colorectal cancer via miR-497/PD-L1
pathway. Cell Signal. (2021) 86:110095. doi: 10.1016/j.cellsig.2021.110095

96. Kulbay M, Tuli N, Mazza M, Jaffer A, Juntipwong S, Marcotte E, et al. Oncolytic
viruses and immunotherapy for the treatment of uveal melanoma and retinoblastoma:
the current landscape and novel advances. Biomedicines. (2025) 13:108. doi: 10.3390/
biomedicines13010108

97. Le Rhun E, Preusser M, Roth P, Reardon DA, van den Bent M, Wen P, et al.
Molecular targeted therapy of glioblastoma. Cancer Treat Rev. (2019) 80:101896.
doi: 10.1016/j.ctrv.2019.101896

98. Axelrod ML, Cook RS, Johnson DB, Balko JM. Biological consequences of MHC-
II expression by tumor cells in cancer. Clin Cancer Res. (2019) 25:2392–402.
doi: 10.1158/1078-0432.CCR-18-3200
frontiersin.org

https://doi.org/10.1016/j.biopha.2018.05.141
https://doi.org/10.3390/ph18020245
https://doi.org/10.1016/j.exer.2022.109340
https://doi.org/10.3390/ijms21145165
https://doi.org/10.1038/s41392-023-01537-x
https://doi.org/10.1038/s42003-025-07867-6
https://doi.org/10.1080/02713683.2020.1843685
https://doi.org/10.1007/978-981-15-1025-0_11
https://doi.org/10.1097/CAD.0000000000001190
https://doi.org/10.2174/1389557522666220905090732
https://doi.org/10.1007/s00234-024-03517-6
https://doi.org/10.1159/000524919
https://doi.org/10.1016/j.ajo.2023.11.020
https://doi.org/10.1016/j.exer.2019.03.017
https://doi.org/10.1002/cbf.3535
https://doi.org/10.1016/j.ajps.2022.100772
https://doi.org/10.1016/j.gendis.2022.10.020
https://doi.org/10.1007/s12094-023-03144-2
https://doi.org/10.1007/s12033-023-00660-y
https://doi.org/10.14670/HH-18-484
https://doi.org/10.1186/s13073-021-01009-3
https://doi.org/10.1080/13880209.2022.2032206
https://doi.org/10.1080/13880209.2022.2032206
https://doi.org/10.3389/fonc.2022.949193
https://doi.org/10.1136/jitc-2024-009474corr1
https://doi.org/10.3389/fimmu.2024.1499700
https://doi.org/10.1097/CAD.0000000000000346
https://doi.org/10.1111/cas.13648
https://doi.org/10.1038/s41388-019-0708-7
https://doi.org/10.3390/cancers15194828
https://doi.org/10.1007/s00418-012-1028-y
https://doi.org/10.1080/15384047.2017.1282019
https://doi.org/10.1038/s41467-022-32087-5
https://doi.org/10.3171/2020.11.FOCUS20853
https://doi.org/10.1016/j.drudis.2019.07.011
https://doi.org/10.37757/MR2021.V23.N3.5
https://doi.org/10.1002/pbc.25631
https://doi.org/10.1186/s12943-023-01883-y
https://doi.org/10.1186/s12943-023-01883-y
https://doi.org/10.1136/jitc-2022-005461
https://doi.org/10.1007/s13770-023-00585-2
https://doi.org/10.1007/s13770-023-00585-2
https://doi.org/10.1016/j.cellsig.2021.110095
https://doi.org/10.3390/biomedicines13010108
https://doi.org/10.3390/biomedicines13010108
https://doi.org/10.1016/j.ctrv.2019.101896
https://doi.org/10.1158/1078-0432.CCR-18-3200
https://doi.org/10.3389/fimmu.2025.1666606
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Circular RNAs and immunotherapy in retinoblastoma: emerging biomarkers and precision therapeutic strategies
	1 Introduction
	2 The regulatory role of circRNAs in RB progression
	2.1 Overview of circular RNAs
	2.2 Oncogenic circRNAs
	2.2.1 circ-0000527 and circ-0000034
	2.2.2 circ-0075804
	2.2.3 Other oncogenic circRNAs

	2.3 Tumor-suppressive circRNAs
	2.3.1 circMKLN1
	2.3.2 circ-0001649
	2.3.3 circ-0093996 and circCUL2

	2.4 circRNAs in RB drug resistance

	3 Prospects of circRNAs in the diagnosis and treatment of RB
	3.1 circRNAs as potential diagnostic biomarkers for RB
	3.2 circRNAs as therapeutic targets and prognostic biomarkers in RB

	4 Advances in immunotherapy
	5 Conclusion
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


