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Background: Although neoadjuvant chemoimmunotherapy (NACI) is

increasingly applied in clinical settings, its therapeutic efficacy and prognostic

significance remain unclear. This study sought to establish a surface-enhanced

Raman spectroscopy (SERS)-based approach for assessing treatment efficacy

and predicting prognosis in patients with locally advanced gastric cancer (LAGC)

undergoing NACI. In addition, the utility of SERS for molecular and pathological

profiling was investigated.

Methods: This retrospective study enrolled 31 patients with LAGC treated with

anti-PD-1 inhibitors plus chemotherapy before gastrectomy (May 2018–

December 2022). A Raman score (RS) was established from SERS spectral

features to predict overall survival (OS). The area under the time-dependent

receiver operating characteristic curve (AUC), Cox proportional hazards

regression, and concordance index (C-index) were used to evaluate model

performance. A nomogram combining RS and ypTNM stage was constructed.

Kaplan-Meier analysis assessed the risk stratification capacity. Key spectral bands

were analyzed for biomarker identification, and machine learning (ML) models

were used for histopathological and molecular classification.

Results: A total of 3,670 spectra from 31 patients were analyzed. The RS, based

on Raman spectral features, achieved AUCs of 0.854 (1-year OS) and 0.920 (3-

year OS). Lower RS correlated with longer OS (p<0.05). RS served as an

independent prognostic factor in multivariable analysis. The nomogram

incorporating RS and ypTNM improved prediction for 3-year OS (AUC = 0.955)

while maintaining 1-year accuracy. Kaplan–Meier analysis confirmed effective

risk stratification (P = 0.01). Nine significant Raman bands were linked to

nucleotides, collagen, and proteins. ML models achieved >0.85 accuracy in

classifying microsatellite instability (MSI), combined positive score (CPS) of
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programmed cell death ligand-1 (PD-L1), and tumor regression grade (TRG)

based on SERS data.

Conclusions: This study demonstrates that label-free SERS can effectively

predict prognosis in NACI-treated LAGC patients and shows promise in

molecular and pathological profi l ing, supporting its potential for

clinical application.
KEYWORDS

gastric cancer, neoadjuvant therapy, chemoimmunotherapy, prognosis, Raman
spectroscopy
1 Introduction

Gastric cancer (GC) continues to pose a significant global health

burden, being the fifth most frequently diagnosed malignancy and

the fifth leading cause of cancer-related death worldwide (1).

Surgery remains the primary and most effective treatment for

localized GC. However, even after radical resection, patients with

advanced GC continue to experience poor outcomes, with 5-year

overall survival (OS) rates generally below 50% (2). Consequently,

neoadjuvant therapy is increasingly used to improve resection rates

and prolong survival in patients with locally advanced gastric

cancer (LAGC).

Preoperative neoadjuvant chemotherapy has demonstrated the

capacity to diminish tumor staging, increase R0 resection rates, and

boost overall survival, hence endorsing its incorporation into

treatment guidelines for LAGC (3, 4). However, the pathological

complete response (pCR) rate achieved by chemotherapy alone

remains unsatisfactory (5). Various studies have shown that

chemotherapy and immunotherapy have a strong synergistic

effect (6–8). Neoadjuvant chemoimmunotherapy (NACI) has

increasingly been implemented into clinical practice. However, its

therapeutic effect and long-term prognostic value remain uncertain
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(9–11). Therefore, there is a significant need for precise evaluation

of the treatment efficacy and prognosis of GC patients after

receiving NACI.

Responses to neoadjuvant therapies have been evaluated from

multiple perspectives. The RECIST criteria are widely used for

evaluating therapy response based on imaging techniques (12). The

existing standards were inadequate for assessing immunotherapy

response, leading to the development of new criteria such as

irRECIST and iRECIST for improved evaluation of responses to

immunotherapeutic interventions (13, 14). However, these

evaluations predominantly concentrate on alterations in tumor size,

frequently neglecting the changes in the tumor microenvironment

post-treatment. Furthermore, they are intricate for implementation in

clinical practice. The efficacy of neoadjuvant immunotherapy can be

assessed at the pathological level using pCR, major pathological

response (MPR), and tumor regression grade (TRG) (15, 16).

However, their clinical utility is constrained by the complexity of the

detection procedures, as well as the spatial and temporal heterogeneity

within tumors (17). The post-neoadjuvant staging system (ypTNM/

ypStage) assesses the true extent of disease at surgery and helps predict

postoperative survival in GC patients who received preoperative

therapy (18). However, the clinical outcome may differ markedly

among patients with the same ypStage due to its highly

heterogeneous nature (19). Furthermore, although ypStage indicates

the extent of tumor infiltration and invasion, it does not provide

information on molecular markers unless integrated with additional

diagnostic and laboratory techniques such as immunohistochemistry

(IHC), flow cytometric analysis, next-generation sequencing and

polymerase chain reaction (20, 21), which are time-consuming,

labor-intensive, and expensive. Thus, there is a persistent necessity to

establish a more precise, simple, and comprehensive approach for

clinically assessing the treatment efficacy and predicting the prognosis

of GC treated with NACI.

Raman spectroscopy is a non-destructive, label-free technique

that identifies molecule vibrational modes by analyzing inelastically

scattered light, hence offering comprehensive molecular

fingerprints of samples (22, 23). The enhancement factors of

SERS are generally in the range of 104–106, and values as high as

108–1014 have been documented under certain conditions (24–26).
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SERS has been extensively used in many cancers, facilitating the

ultrasensitive detection of diverse biomolecular targets, including

nucleic acids (DNA, RNA), proteins, metabolites, and extracellular

vesicles (27, 28). Recent studies have demonstrated the utility of

label-free SERS in cancer diagnosis and tumor biomarker analysis.

For instance, Gao et al. combined label-free SERS with a CNN

model, achieving rapid and accurate diagnosis of thyroid cancer

(23). Chen et al. proposed a novel multitask deep learning

framework, ASFN, which integrates label-free SERS with deep

learning to enable high-precision detection and quantitative

analysis of subtle tumor biomarkers within complex matrices

(29). Liu et al. developed a machine learning-assisted SERS

requiring minimal blood, delivering stable and accurate

classification for rapid, reliable early lung-cancer detection and

monitoring (30) . However , these invest igat ions have

predominantly focused on blood or puncture fluids, with little

research addressing tissue sections. The formalin-fixed paraffin-

embedded (FFPE) GC tissues retain comprehensive information on

tumor characteristics and treatment-induced alterations, thereby

serving as ideal specimens for SERS analysis. As previously
Frontiers in Immunology 03
reported, Raman spectroscopy has been validated as a method for

predicting the prognosis of GC through the detection of tissue

sections (31). However, the potential of SERS in analyzing

postoperative pathological tissues following NACI warrants

further investigation.

This study aimed to develop a simple, effective, and

comprehensive approach for assessment of therapeutic

effectiveness and prognostic prediction of NACI in LAGC using

SERS features derived from 31 patients. Furthermore, we

investigated the biological relevance of the SERS spectral features

and explored its potential for classifying histopathological and

molecular characteristics.
2 Materials and methods

2.1 Patients

The study design is illustrated in Figure 1. This retrospective

analysis encompassed 31 patients with LAGC who received anti-
FIGURE 1

Workflow of SERS for prognosis and subgroup analysis of LAGC patients. SERS spectra were collected from GC tissues and fed into in-house
developed algorithms for the construction of a prognosis prediction model. Based on the nomogram model, these sample spectra were divided into
high-risk and low-risk groups. Then, the differential spectral features between the groups were analyzed. Additionally, ML classification models were
established to differentiate among various pathological subtypes of GC tissues.
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PD-1 drugs in conjunction with chemotherapy before gastrectomy

from May 2018 to December 2022 at Ruijin Hospital, Shanghai,

China. All enrolled patients fulfilled these inclusion criteria: (1)

pathologically confirmed gastric adenocarcinoma; (2) diagnosed as

cT3-4aN1-3M0 or cT4bN0-3M0. The exclusion criteria were (1)

suffering synchronous other malignant neoplasms, (2) receipt of

other anti-tumor treatments before the combination therapy, (3)

less than two cycles of NACI, and (4) unavailable or incomplete

postoperative FFPE tissue sections. A patient selection flowchart is

shown in Figure 2. Demographic and clinicopathological data were

retrieved from medical records, including age, sex, the ypTNM

stage, MSI status, PD-L1 status, TRG, and follow-up data of 1-year

and 3-year OS (Table 1). Ethical approvals were obtained from the

Ruijin Hospital Ethics Committee, and informed consent was

exempted given the retrospective nature of the study.
2.2 Label-free SERS measurement

The pretreatment of tissue sections and the synthesis of SERS

nanoparticles are elaborated in Supplementary Material. The SERS

spectra were acquired using a fiber optic spectrometer (NOVA2S

high sensitivity spectrometer, Ideaoptics, China) equipped with a 20×

objective lens and a 1200 lines/mm grating. The excitation

wavelength was 633 nm, and each SERS spectrum was acquired
Frontiers in Immunology 04
with a one-second integration time. The measured wavenumbers

spanned from 600 to 1800 cm−1 with a spectral resolution of above 1

cm-1. Three separate scanning zones (central and peripheral regions

along a meridian) were systematically analyzed for each tissue region

attached with silver nanoparticles (Ag NPs) to mitigate evaporation-

induced coffee ring artifacts and measurement variability. We

collected approximately 120 spectra for each sample, with a 10 μm

step size. A total of 3,670 Raman spectra were ultimately acquired.

The preprocessing processes for spectral data are outlined in the

supplementary data, and the average spectrum is illustrated in

Supplementary Figure S1. Representative spectra of each

preprocessing step are shown in Supplementary Figure S2.
2.3 Raman spectral feature extraction

To tackle the high-dimensionality problem inherent in Raman

spectroscopy data, Partial Least Squares Regression (PLSR) was

utilized for dimensionality reduction to identify outcome-associated

significant spectral features. Five-fold cross-validation was

performed to determine the optimal number of Raman spectral

features. Finally, two Raman spectral features were selected, and the

Raman score (RS) was constructed based on the Cox regression

coefficients of each Raman spectral feature. A detailed explanation

of the construction of RS has been supplemented in the supporting
FIGURE 2

Flowcharts of the patient recruitment process.
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information. The selected features for the construction of RS are

detailed in Supplementary Table S1 and Supplementary Figure S7.
2.4 Nomogram construction

The prognostic value of the RS and clinicopathological factors

was assessed using univariate Cox regression. Significant variables

(p < 0.05) were then entered into multivariate analysis. Hazard

ratios were presented alongside their respective 95% confidence

intervals (CIs), with statistical significance established at a p-value <

0.05. Based on the results of the above analysis, selected variables

were integrated into the nomogram to predict the probability of 1-

year and 3-year OS rates in LAGC patients following NACI

combined with gastrectomy.
2.5 Performance evaluation

Time-dependent receiver operating characteristic (ROC) curve

analysis was employed to evaluate the prognostic effectiveness of the

RS and clinical characteristics. The predictive performance of the

RS and clinical factors was evaluated by comparing the area under

the time-dependent receiver operating characteristic curves (AUCs)

for 1-year and 3-year OS. Harrell’s concordance index (C-index)

was used to assess improvements in the predictive accuracy of the

prognostic nomogram. Calibration curves were utilized to evaluate

the alignment between expected probabilities and actual outcomes

of the nomogram. Patients were grouped into high- and low-risk

categories using the median nomogram score as the cutoff. The
Frontiers in Immunology 05
Kaplan-Meier analysis, together with the log-rank test, was utilized

to evaluate OS among the designated risk categories, thereby

establishing the prognostic relevance of the nomogram.
2.6 Statistical analysis

Prominent Raman spectral bands distinguishing high-risk from

low-risk groups were preliminarily identified by one-way analysis of

variance (one-way ANOVA), accompanied by an assessment of

effect size (h²). Subsequently, neighboring peaks were consolidated
utilizing the DBSCAN (Density-Based Spatial Clustering of

Applications with Noise) algorithm, and intergroup variations

were confirmed through Tukey’s HSD test. Peak intensity

differences were determined using localized peak extraction,

normality assessment (Shapiro-Wilk, a=0.05), and suitable

statistical analyses (t-test or Mann–Whitney U test), subsequently

accompanied by Bonferroni-corrected violin plots for significance

visualization. All statistical analyses were performed using Python

version 3.8.1 (www.python.org) and R version 3.6.1 (www.r-

project.org). Unless otherwise specified, all tests were two-sided,

with a significance threshold of P < 0.05.
3 Results

3.1 Clinicopathological and Raman
characteristics

The study cohort comprised 31 subjects (23 males [74.2%], 8

females [25.8%]) with a median age of 61 years (range 23-75). Based

on the ypTNM staging criteria, the cohort was distributed as

follows: stage I (n=5, 16.1%), stage II (n=10, 32.3%), stage III

(n=8, 25.8%), and stage IV (n=8, 25.8%). Baseline information for

all 31 patients is summarized in Table 1. Two Raman spectral

features, PLS1 and PLS2, were identified and used to formulate the

RS, which was calculated as a weighted combination based on Cox

regression coefficients. The Cox proportional hazards regression

model was utilized to evaluate these factors and identify potential

independent predictors of OS.
3.2 Prognostic analysis by label-free SERS

As shown in Table 2, univariate analysis identified only the RS

(HR = 2.718; 95% CI: 1.516–4.872; P < 0.001) and ypTNM

classification (HR = 8.204; 95% CI: 1.020–65.983; P = 0.048) as

significant predictors of overall survival. HR quantifies the

effectiveness of treatment (32). An HR exceeding 1 denotes

poorer overall survival, whereas patients with lower risk scores

generally show improved survival outcomes. Although the HR for

ypTNM classification was 8.204, with a broad 95% confidence

interval (95% CI, 1.020–65.983), suggesting some uncertainty in

the estimate, the lower bound still exceeds 1, indicating statistical

significance. Moreover, the calculated C-index of 0.699 (0.550–
TABLE 1 The demographics and clinicopathological information of 31
patients.

Variable Classification Statistical data

Age (year) 61(23-75)

Gender male 23

female 8

Staging I 5

II 10

III 8

IV 8

MSI status MSI-H/MMR deficient 6

MSS/MMR proficient 25

PD-L1(CPS) ≥5 19

<5 8

Unknown 4

TRG 0-1 7

2-3 24

OS (month) 36.5(6.1-82.8)
CPS, combined positive score.
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0.847) reflects a fair discriminative ability for survival prediction,

supporting ypTNM classification as a key prognostic factor. In the

multivariate analysis (Table 3), we compare the RS with the ypTNM

classification. The results indicate that the RS is an independent

prognostic factor of OS (HR = 2.415; 95% CI: 1.337–4.363; P =

0.003), whereas ypTNM classification shows no significant

association (HR = 3.291; 95% CI: 0.366–29.601; P = 0.288).

Given the therapeutic relevance of the ypTNM classification as

published by the AJCC (18), we integrated both RS and ypTNM

classification to develop a nomogram for predicting OS in LAGC

patients undergoing NACI, as illustrated in Figure 3A. The

nomogram correlates the cumulative score from all prognostic

indicators with the anticipated survival probability, where

elevated scores signify a diminished chance of patient survival.

Figure 3A illustrates the points allocated for the RS and ypTNM

methods, which are automatically determined by the algorithm

based on effect size: RS receives 100 points, while the ypTNM

classification is assigned only 18 points, signifying that RS plays a

predominant role in the predictive analysis.
3.3 Performance and validation of
prognostic model

The nomogram exhibited strong discriminative capability,

achieving a C-index of 0.888 (95% CI: 0.799-0.977), as presented

in Table 3. We constructed ROC curves to further examine the

discriminative performance of our model. Figure 3B illustrates that

the 1-year ROC curves indicate the RS prediction model (AUC =

0.854) outperforms the ypTNM class model (AUC = 0.669). The

integration of RS with the ypTNM category (AUC = 0.854) does not

yield any enhancements, suggesting that the RS approach is

sufficiently effective alone. In the 3-year ROC curves (Figure 3C),

the RS model demonstrates superior performance (AUC = 0.920)

compared to the ypTNM class (AUC = 0.723), while the combined
Frontiers in Immunology 06
model achieves the highest results (AUC = 0.955), suggesting that

the ypTNM class also enhances predictive accuracy. The calibration

curves of the nomogram in Figure 3D for OS demonstrated strong

concordance between the estimated and actual observations. The

results demonstrate that the nomogram can provide individualized

survival predictions for LAGC patients undergoing NACI. The RS

method shows potential as an innovative clinical tool for enhancing

prognostic prediction.

Using the median nomogram score as a cutoff, patients were

divided into high-risk and low-risk cohorts. The median OS for the

high-risk cohort was 2.57 years (range: 0.75–5.83), whereas for the

low-risk cohort, it was 3.49 years (range: 0.53–6.90). The survival

differences between high-risk and low-risk groups were assessed

using Kaplan–Meier analysis, subsequently followed by a log-rank

test to evaluate statistical significance (Figure 3E). The observed

difference in survival distributions demonstrated statistical

significance (P = 0.01), underscoring the prognostic relevance of

the risk stratification.
3.4 Illustration of significant differential
Raman bands

We calculated the average Raman spectra for the high-risk and

low-risk groups, respectively (Figure 4A). Although the mean

spectra show distinct differences between the two groups, the

averaging process may obscure spectral variations present at

different locations within individual samples. Therefore, we

further analyzed the most significant differential bands between

the two groups. Nine significantly different bands were ultimately

detected (Figure 4B). The effect size (h²) reflects the magnitude of

the actual difference in spectral intensities between the two groups.

Based on the ranking of effect sizes, the differential Raman spectra

were ordered as follows: 825 cm-1, 1406 cm-1, 1559 cm-1, 783 cm-1,

1228 cm-1, 1658 cm-1, 1452 cm-1, 1011 cm-1, and 1044 cm-1. To

further validate these findings, we tested the statistical differences in

peak intensities at the characteristic wavenumbers and displayed

the outcomes as violin plots (Figures 5A–I). SERS is intrinsically

surface-specific, with the recorded spectra reflecting molecules

adsorbed on plasmonic nanostructures (33, 34). In this study, we

conducted a comparative rather than quantitative analysis. Under

strictly matched acquisition and preprocessing conditions,

between-group differences in SERS intensities indirectly reflect

variations in the surface-accessible molecular fingerprints of the

tissue sections. The violin plots clearly reveal significant intensity

differences in the nine Raman bands between the high-risk and low-

risk groups. The primary SERS bands and their corresponding

biochemical attributions are detailed in Table 4. As shown in the

violin plots, the Raman peaks at 1044 cm−1, 1406 cm−1, and 1658

cm−1, linked with collagen, were elevated in the high-risk group

compared to the low-risk group, signifying increased collagen

content (1044 cm−1 pertains to proline, 1406 cm−1 relates to the

bending modes of methyl groups, and 1658 cm−1 corresponds to

Amide I). The intensity of the Raman peaks at 1228 cm−1, 1452

cm−1, and 1011 cm−1, associated with proteins, showed a marked
TABLE 2 Univariate analysis of variables associated with overall survival.

Variable
Univariable

P Value C-index (95% CI)
HR(95%CI)

Age 1.144(0.305-4.293) 0.842 0.488(0.312-0.664)

Gender 2.946(0.368-23.609) 0.309 0.563(0.413-0.713)

ypTNM class 8.204(1.020-65.983) 0.048 0.699(0.550-0.847)

RS 2.718(1.516-4.872) <0.001 0.874(0.774-0.973)
TABLE 3 Multivariate analysis of variables associated with overall
survival.

Variable
Multivariable

P value C-index
HR (95%CI)

ypTNM class 3.291(0.366-29.601) 0.288 0.888(0.799-0.977)

RS 2.415(1.337-4.363) 0.003
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increase in the high-risk group relative to the low-risk group (1228

cm−1 corresponds to Amide III, 1452 cm−1 pertains to d(CH2)

(CH3), and 1011 cm−1 is linked to phenylalanine). In contrast, the

Raman signal at 1559 cm−1 associated with Tryptophan exhibited a

notable decrease in the high-risk group versus the low-risk group. It

suggested a potential disparity in protein structure between the two

groups, even post-neoadjuvant treatment.
Frontiers in Immunology 07
3.5 Classification of histopathological and
molecular subtypes by SERS spectra

To further examine the effectiveness of SERS in differentiating

various histopathological and molecular features of LAGC after

NACI, we performed subgroup analyses based on MSI status, PD-

L1 status, and TRG. The enrolled patients were categorized into
FIGURE 3

Construction of a prognosis prediction model. (A) Nomogram for 1-year and 3-year OS based on the RS and ypTNM. (B) 1-year ROC curves of the
RS, ypTNM, and their combined model. (C) 3-year ROC curves of the RS, ypTNM, and their combined model. (D) Calibration curves of the
nomogram in terms of agreement between predicted and observed 1-year and 3-year OS. (E) Kaplan-Meier survival analysis of OS in the high-risk
and low-risk groups.
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subgroups: MSI-H and MSS (3670 spectra), PD-L1 (CPS≥5) and

PD-L1 (CPS<5) (3015 spectra), and TRG 0–1 and TRG 2-3 (3670

spectra). We assessed the diagnostic performance of four machine

learning models: Principal Component Analysis–Linear

Discriminant Analysis (PCA-LDA), Random Forest (RF), Support

Vector Machine (SVM), and Convolutional Neural Network

(CNN). The construction process of these models is elaborated in

Supplementary Material. In the MSI-H and MSS subgroups, RF and

CNN achieved high accuracies of 0.9183 and 0.9128, respectively,

while SVM and PCA-LDA achieved accuracies of 0.8978 and

0.8624, respectively. In the PD-L1 (CPS≥5) and PD-L1 (CPS<5)

subgroups, RF and CNN also achieved high accuracies of 0.9083

and 0.9104, respectively, while SVM and PCA-LDA achieved

accuracies of 0.8905 and 0.8624, respectively. In the TRG 0–1 and

TRG 2–3 subgroups, the CNN model achieved the highest accuracy

of 0.8719; the accuracy of RF and SVM followed closely at 0.8692,

while PCA-LDA had the lowest accuracy, still reaching 0.8188. ROC

curve analysis for MSI subgroups showed AUC values of 0.92

(PCA-LDA), 0.97 (RF), 0.96 (SVM), and 0.97 (CNN). AUC

values approaching 1 indicate superior algorithm performance.

This verifies that within the MSI status subgroup, all four models

demonstrated strong classification efficacy. In the PD-L1 status

subgroups, AUCs of 0.89, 0.95, 0.94, and 0.95 were achieved by the

PCA-LDA, RF, SVM, and CNN models, respectively. Except for the

marginally lower performance of PCA-LDA, RF, SVM, and CNN all

showed notably better classification performance for the MSI status

subgroup. ROC analysis of the TRG subgroups yielded AUC values

of 0.77 (PCA-LDA), 0.88 (RF), 0.88 (SVM), and 0.88 (CNN). RF,

SVM, and CNN models demonstrated equivalent classification

performance, whereas PCA-LDA remained inferior to the other

three models. The performance metrics for the four classification

models across subgroups are summarized in Table 5, including

accuracy, sensitivity, specificity, and AUC. The ROC curves and

confusion matrices are depicted in Supplementary Figures S3-6.
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In this study, we established a predictive model for LAGC

patients receiving NACI by integrating the PLSR approach with

SERS and clinical ypTNM staging, resulting in accurate survival

outcome predictions. We effectively categorized the patients into

high-risk and low-risk cohorts and examined the disparities in

molecular signatures of biological constituents between the two

groups. We further employed four different machine learning

models to classify the histopathological and biomolecular features

of LAGC based on SERS spectral characteristics, each with an

accuracy over 0.85.

Our research demonstrates that label-free SERS can accurately

predict the prognosis of LAGC patients receiving NACI. We

innovatively retrieved Raman spectral features to develop a

Raman score for nomogram construction, achieving AUCs of

0.854 and 0.920 for 1-year and 3-year survival, respectively,

surpassing the ypTNM stage, which had AUCs of 0.669 and 0.723

for 1-year and 3-year survival, respectively. Their integrated model

attained an AUC of 0.854 for 1-year survival, matching that of the

RS alone, suggesting that the ypTNM staging did not enhance the

combined model. For 3-year survival, the combined model attained

an AUC of 0.955, indicating that while the ypTNM staging offered

supplementary value, the RS remained the principal factor

influencing the efficacy of the nomogram model. Previous studies

have also extensively investigated various biomarkers to predict

immunotherapy response and prognosis in GC, such as PD-L1

expression (35), tumor mutational burden (36), MSI status (37),

Epstein-Barr virus infection (38), circulating tumor DNA (ctDNA)

(35), gut microbiota (38), Peripheral Blood Biomarkers (38), Gene

Expression Profile (38) and radiomics-derived signatures (39).

Nonetheless, these biomarkers offer merely a unidimensional view

of the tumor, overlooking the diverse and dynamic alterations

induced by NACI. In contrast, SERS enables the detection of
FIGURE 4

Analysis of the differential spectral features between the high-risk and low-risk groups. (A) Averaged SERS spectra with standard deviations of high-
risk group and low-risk group samples, as well as the averaged difference spectrum (high–low). Standard deviation values are shown in shadow. (B)
The top 9 significant differential bands sorted by effect size h².
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molecular-level chemical bond information within tissues, offering

insights into both composition and metabolic activity. Its simplicity

and rapid operation, combined with the capacity to extract multiple

dimensions of tumor-related information in a single scan, render it
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a superior alternative to conventional histopathology to a

certain degree.

Our study highlights that label-free SERS can sensitively detect

subtle biochemical remodeling in GC tissues following NACI,
FIGURE 5

The comparison of Raman peak intensities for each of the significant Raman bands. (A-I) present comparisons of Raman peaks at 825 cm-1, 1406
cm-1, 1559cm-1, 783cm-1, 1228cm-1, 1658cm-1, 1452cm-1, 1011cm-1,1044cm-1, respectively. * P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001.
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especially in signals related to nucleotides and collagen. The

molecular alterations, which have been minimally investigated in

previous research, highlight the distinctive diagnostic significance of

SERS beyond traditional evaluation techniques. A comparative

examination of the Raman spectra of high-risk and low-risk

groups was done, finding considerable differences, especially in

bands associated with nucleotide metabolites, collagen, and

proteins. These data indicate distinct biochemical profiles and

protein conformations between the two groups. The augmented

intensity of nucleotide-associated Raman bands in the high-risk

group indicates enhanced nucleic acid metabolism, potentially

reflecting greater proliferative activity following neoadjuvant

therapy. Furthermore, changes in collagen-associated bands may
Frontiers in Immunology 10
signify extracellular matrix remodeling, a vital element affecting

tumor invasiveness and treatment efficacy.

We found that peaks at 783 cm−1 and 825 cm−1 were

significantly elevated in the high-risk group following

neoadjuvant therapy compared to the low-risk group, indicating a

higher relative contribution of nucleic-acid related bands in the

high-risk group. Previous studies have indicated that a decrease in

ctDNA levels during immunotherapy frequently forecasts positive

treatment responses and extended OS (40–42). The unfavorable

survival outcome in the high-risk group may suggest a greater

tumor load and ctDNA burden. We also noted that Raman peaks at

1406 cm-1, 1044 cm−1 and 1658 cm−1 associated with collagen, were

elevated in the high-risk group compared to the low-risk group. The

extracellular matrix (ECM) significantly impacts tumor

development and immune evasion in GC. The overexpression of

components like collagen, laminin, and fibronectin results in

heightened matrix stiffness, impeding T-cell penetration and

disrupting integrin signaling (43). Additionally, the ECM

sequesters immunosuppressive molecules like TGF-b (44).

Cancer-associated fibroblasts further remodel the ECM by

depositing matrix proteins and enhancing collagen cross-linking,

reinforcing an immunosuppressive microenvironment (45).

Therefore, we speculate that enhanced collagen related SERS

intensities in the high-risk group indicate a denser or stiffer

extracellular matrix that may impair the penetration and efficacy

of immunotherapeutic agents, thereby contributing to poorer

prognostic outcomes. These findings underscore the potential role

of collagen-mediated matrix remodeling as a critical barrier to

effective immunotherapy in GC.

Furthermore, our study also classified the histopathological and

molecular characteristics of LAGC in SERS based on four different

machine learning models: PCA-LDA, RF, SVM and CNN. In the

PD-L1 and MSI status subgroups, all four models achieved an

accuracy of more than 0.85, with AUCs surpassing 0.89. In the TRG

subgroup, all four models achieved an accuracy of more than 0.8,

with AUCs surpassing 0.77. While the sensitivity of these models

for classifying TRG was not satisfactory, we speculate that this is

due to sample imbalance, which may have caused a partial loss of

positive identification rate during the machine learning process.
TABLE 4 Characteristic Raman bands between high-risk and low-risk groups, and their assignment to biochemical components.

Peak center (cm−1) Feature(cm−1) Assignment Main molecules P value

1044 1043 Proline Collagen (51) p<0.01

1011 1004 Phenylalanine Protein, collagen (51) p<0.001

1452 1449 d(CH2)(CH3) Protein, lipid (52) p<0.0001

1658 1655 Amide I Collagen, protein (51) p<0.0001

1228 1224 Amide III (b sheet structure) Protein (51) p<0.0001

783 782 DNA Nucleic acid (51) p<0.0001

1559 1555 Tryptophan Protein (53) p<0.001

1406 1401 Bending modes of methyl groups Collagen (51) p<0.0001

825 826 O-P-O stretch DNA Nucleic acid (51) p<0.0001
TABLE 5 Performance comparison of four ML models across subgroups
(accuracy, sensitivity, specificity, and AUC).

Subgroup Accuracy Sensitivity Specificity AUC

MSI Status

PCA-LDA 0.8624 0.9525 0.6346 0.92

RF 0.9183 0.9848 0.7500 0.97

SVM 0.8978 0.9829 0.6827 0.96

CNN 0.9128 0.9525 0.8125 0.97

PD-L1 (CPS)

PCA-LDA 0.8624 0.9816 0.5536 0.89

RF 0.9038 0.9885 0.6845 0.95

SVM 0.8905 0.9908 0.6310 0.94

CNN 0.9104 0.9793 0.7321 0.95

TRG

PCA-LDA 0.8188 0.2789 0.9540 0.77

RF 0.8692 0.3741 0.9932 0.88

SVM 0.8692 0.3673 0.9949 0.88

CNN 0.8719 0.6122 0.9370 0.88
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Prior research on Raman spectroscopy in GC has predominantly

concentrated on oncological diagnostics (46–49). This study

focused on variables such as PD-L1, MSI, and TRG, which past

research has shown as major prognostic factors (36, 50). The

diagnosis of these indications predominantly depends on

pathological staining and IHC, which are both time-consuming

and labor-intensive processes. This work shows that spectral data

from a single SERS scan may effectively classify and diagnose

various histopathological and biomolecular markers using

conventional machine learning techniques.

Although our study yielded promising results, its small sample

size and single-center design limit the generalizability of the

findings. Future studies with larger, multicenter cohorts are

warranted to further validate these results. The retrospective

aspect of this investigation presents inherent limitations.

Furthermore, the continued advancement of the SERS-

based tissue measurement platform is crucial for accurate

prognosis prediction and biomarker identification in LAGC

patients undergoing NACI, thus facilitating more informed

precision medicine.
5 Conclusion

This study demonstrates not only the ability of label-free SERS

to precisely predict prognosis in LAGC following NACI, but also

the potential of SERS in biomolecular and histopathological

analysis. SERS provides efficient and comprehensive analytical

capabilities. Beyond GC, the adaptability of this technique can

also be applied to other diseases, highlighting its extensive

translational potential.
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Forero I, Castañón E, et al. Paradigms on immunotherapy combinations with
chemotherapy. Cancer Discov. (2021) 11:1353–67. doi: 10.1158/2159-8290.CD-20-1312

8. Wang C, Thudium KB, Han M, Wang X-T, Huang H, Feingersh D, et al. In vitro
characterization of the anti-PD-1 antibody nivolumab, BMS-936558, and in vivo
toxicology in non-human primates. Cancer Immunol Res. (2014) 2:846–56.
doi: 10.1158/2326-6066.CIR-14-0040

9. Yuan S-Q, Nie R-C, Jin Y, Liang C-C, Li Y-F, Jian R, et al. Perioperative
toripalimab and chemotherapy in locally advanced gastric or gastro-esophageal
junction cancer: a randomized phase 2 trial. Nat Med. (2024) 30:552–9. doi: 10.1038/
s41591-023-02721-w

10. Liu X, Ma B, Zhao L. Neoadjuvant chemoimmunotherapy in locally advanced
gastric or gastroesophageal junction adenocarcinoma. Front Oncol. (2024) 14:1342162.
doi: 10.3389/fonc.2024.1342162

11. Xu H, Li T, Shao G, Wang W, He Z, Xu J, et al. Evaluation of neoadjuvant
immunotherapy plus chemotherapy in Chinese surgically resectable gastric cancer: a
pilot study by meta-analysis. Front Immunol. (2023) 14:1193614. doi: 10.3389/
fimmu.2023.1193614

12. Schwartz LH, Litière S, de VE, Ford R, Gwyther S, Mandrekar S, et al. RECIST
1.1—Update and clarification: From the RECIST committee. Eur J Cancer. (2016)
62:132–7. doi: 10.1016/j.ejca.2016.03.081

13. Pignon J-C, Jegede O, Shukla SA, Braun DA, Horak CE, Wind-Rotolo M, et al.
irRECIST for the evaluation of candidate biomarkers of response to nivolumab in metastatic
clear cell renal cell carcinoma: analysis of a phase II prospective clinical trial. Clin Cancer Res
Off J Am Assoc Cancer Res. (2019) 25:2174–84. doi: 10.1158/1078-0432.CCR-18-3206

14. Seymour L, Bogaerts J, Perrone A, Ford R, Schwartz LH, Mandrekar S, et al.
iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics.
Lancet Oncol. (2017) 18:e143–52. doi: 10.1016/S1470-2045(17)30074-8

15. Li S, Yu W, Xie F, Luo H, Liu Z, Lv W, et al. Neoadjuvant therapy with immune
checkpoint blockade, antiangiogenesis, and chemotherapy for locally advanced gastric
cancer. Nat Commun. (2023) 14:8. doi: 10.1038/s41467-022-35431-x

16. Lin J-X, Tang Y-H, Zheng H-L, Ye K, Cai J-C, Cai L-S, et al. Neoadjuvant
camrelizumab and apatinib combined with chemotherapy versus chemotherapy alone
for locally advanced gastric cancer: a multicenter randomized phase 2 trial. Nat
Commun. (2024) 15:41. doi: 10.1038/s41467-023-44309-5
17. Jia Q, Wang A, Yuan Y, Zhu B, Long H. Heterogeneity of the tumor immune
microenvironment and its clinical relevance. Exp Hematol Oncol. (2022) 11:24.
doi: 10.1186/s40164-022-00277-y

18. Ajani JA, In H, Sano T, Gaspar LE, Erasmus JJ, Tang LH, et al. Stomach. In:
Amin MB, Greene FL, Edge SB, editors. AJCC Cancer Staging Manual Eighth edition,
corrected at 3rd printing. AJCC, American Joint Committee on Cancer, Chicago, IL,
USA (2017). p. 203–20. doi: 10.1007/978-3-319-40618-3_17

19. Wong SS, Kim K-M, Ting JC, Yu K, Fu J, Liu S, et al. Genomic landscape and
genetic heterogeneity in gastric adenocarcinoma revealed by whole-genome
sequencing. Nat Commun. (2014) 5:5477. doi: 10.1038/ncomms6477

20. Alsina M, Villacampa G, de Andrea C, Vivancos A, Ponz-Sarvise M, Arrazubi V,
et al. A Phase II Study of Perioperative Avelumab plus Chemotherapy for Patients with
Resectable Gastric Cancer or Gastroesophageal Junction Cancer – The MONEO Study.
Clin Cancer Res. (2025) 31:2890–2898. doi: 10.1158/1078-0432.CCR-25-0369

21. Lobato-Delgado B, Priego-Torres B, Sanchez-Morillo D. Combining molecular,
imaging, and clinical data analysis for predicting cancer prognosis. Cancers. (2022)
14:3215. doi: 10.3390/cancers14133215

22. Huang L, Sun H, Sun L, Shi K, Chen Y, Ren X, et al. Rapid, label-free
histopathological diagnosis of liver cancer based on Raman spectroscopy and deep
learning. Nat Commun. (2023) 14:48. doi: 10.1038/s41467-022-35696-2

23. Gao L, Wu S, Wongwasuratthakul P, Chen Z, Cai W, Li Q, et al. Label-free
surface-enhanced raman spectroscopy with machine learning for the diagnosis of
thyroid cancer by using fine-needle aspiration liquid samples. Biosensors. (2024)
14:372. doi: 10.3390/bios14080372

24. Laurence TA, Braun GB, Reich NO, Moskovits M. Robust SERS enhancement
factor statistics using rotational correlation spectroscopy. Nano Lett. (2012) 12:2912–7.
doi: 10.1021/nl3005447

25. Yi J, You E-M, Hu R, Wu D-Y, Liu G-K, Yang Z-L, et al. Surface-enhanced
Raman spectroscopy: a half-century historical perspective. Chem Soc Rev. (2025)
54:1453–551. doi: 10.1039/D4CS00883A

26. Le Ru EC, Blackie E, Meyer M, Etchegoin PG. Surface enhanced raman
scattering enhancement factors: A comprehensive study. J Phys Chem C. (2007)
111:13794–803. doi: 10.1021/jp0687908

27. Lin L, He H, Xue R, Zhang Y, Wang Z, Nie S, et al. Direct and quantitative
assessments of near-infrared light attenuation and spectroscopic detection depth in
biological tissues using surface-enhanced Raman scattering. Med-X. (2023) 1:9.
doi: 10.1007/s44258-023-00010-2

28. Lin LL, Alvarez-Puebla R, Liz-Marzán LM, Trau M, Wang J, Fabris L, et al.
Surface-enhanced raman spectroscopy for biomedical applications: recent advances
and future challenges. ACS Appl Mater Interfaces. (2025) 17:16287–379. doi: 10.1021/
acsami.4c17502

29. Chen J, Wu B, Huang Y, Wu Y, Weng S, Hong Y, et al. Attention scale fusion
network for qualitative and quantitative analysis of serum tumor biomarkers via label-
free surface-enhanced raman spectroscopy. Anal Chem. (2025) 97:18217–18226.
doi: 10.1021/acs.analchem.5c03263

30. Liu H-S, Ye K-W, Liu J, Jiang J-K, Jian Y-F, Chen D-M, et al. Lung cancer
diagnosis through extracellular vesicle analysis using label-free surface-enhanced
Raman spectroscopy coupled with machine learning. Theranostics. (2025) 15:7545–
66. doi: 10.7150/thno.110178

31. Wang W, Shi B, He C, Wu S, Zhu L, Jiang J, et al. Euclidean distance-based
Raman spectroscopy (EDRS) for the prognosis analysis of gastric cancer: A solution to
tumor heterogeneity. Spectrochim Acta A Mol Biomol Spectrosc. (2023) 288:122163.
doi: 10.1016/j.saa.2022.122163

32. Blagoev KB, Wilkerson J, Fojo T. Hazard ratios in cancer clinical trials—a
primer. Nat Rev Clin Oncol. (2012) 9:178–83. doi: 10.1038/nrclinonc.2011.217
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1666860/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1666860/full#supplementary-material
https://doi.org/10.3322/caac.21834
https://doi.org/10.3322/caac.21834
https://doi.org/10.1038/nrdp.2017.36
https://doi.org/10.1056/NEJMoa055531
https://doi.org/10.1200/JCO.2010.33.0597
https://doi.org/10.3389/fimmu.2025.1497004
https://doi.org/10.1016/j.oraloncology.2019.06.016
https://doi.org/10.1158/2159-8290.CD-20-1312
https://doi.org/10.1158/2326-6066.CIR-14-0040
https://doi.org/10.1038/s41591-023-02721-w
https://doi.org/10.1038/s41591-023-02721-w
https://doi.org/10.3389/fonc.2024.1342162
https://doi.org/10.3389/fimmu.2023.1193614
https://doi.org/10.3389/fimmu.2023.1193614
https://doi.org/10.1016/j.ejca.2016.03.081
https://doi.org/10.1158/1078-0432.CCR-18-3206
https://doi.org/10.1016/S1470-2045(17)30074-8
https://doi.org/10.1038/s41467-022-35431-x
https://doi.org/10.1038/s41467-023-44309-5
https://doi.org/10.1186/s40164-022-00277-y
https://doi.org/10.1007/978-3-319-40618-3_17
https://doi.org/10.1038/ncomms6477
https://doi.org/10.1158/1078-0432.CCR-25-0369
https://doi.org/10.3390/cancers14133215
https://doi.org/10.1038/s41467-022-35696-2
https://doi.org/10.3390/bios14080372
https://doi.org/10.1021/nl3005447
https://doi.org/10.1039/D4CS00883A
https://doi.org/10.1021/jp0687908
https://doi.org/10.1007/s44258-023-00010-2
https://doi.org/10.1021/acsami.4c17502
https://doi.org/10.1021/acsami.4c17502
https://doi.org/10.1021/acs.analchem.5c03263
https://doi.org/10.7150/thno.110178
https://doi.org/10.1016/j.saa.2022.122163
https://doi.org/10.1038/nrclinonc.2011.217
https://doi.org/10.3389/fimmu.2025.1666860
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1666860
33. Lin C, Li Y, Peng Y, Zhao S, Xu M, Zhang L, et al. Recent development of
surface-enhanced Raman scattering for biosensing. J Nanobiotechnol. (2023) 21:149.
doi: 10.1186/s12951-023-01890-7

34. Langer J, Jimenez De Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B,
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