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Epilepsy, as a chronic neurological disorder marked by recurrent seizures, is

closely linked to neuroinflammation and immune dysregulation. Exosomes,

extracellular vesicles with potent immunomodulatory properties, have

emerged as key players in mitigating epilepsy-associated inflammation by

targeting glial activation and balancing pro- and anti-inflammatory cytokine

release. Their ability to cross the blood-brain barrier (BBB) enables targeted

delivery of anti-inflammatory cargo, such as miRNAs and proteins, offering

promise for diagnosing and treating drug-resistant epilepsy. This review

highlights exosomes’ dual role as biomarkers of inflammatory pathways and

therapeutic vehicles for immune modulation. By suppressing neuroinflammation

and restoring neuronal homeostasis, exosome-based strategies may

revolutionize epilepsy management, though clinical translation requires further

optimization of isolation and engineering techniques.
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1 Introduction

Epilepsy is a chronic neurological disorder characterized by transient brain dysfunction

caused by recurrent, sudden, and excessive hypersynchronous discharges of cortical

neurons (1). Accumulating evidence implicates localized neuroinflammation within

specific regions of the central nervous system (CNS) as a hallmark pathological feature

(2). During seizures, glutamate receptor overactivation, oxidative stress, and elevated pro-

inflammatory cytokines disrupt the integrity of the blood–brain barrier (BBB), which

facilitates both central and peripheral immune cell infiltration, thereby intensifying seizure

susceptibility (3). Among emerging regulatory elements, exosomes have garnered attention

for their anti-inflammatory capacity (4, 5). Through suppressing glial cell activation,

modulating immune responses, and dampening neuronal excitability, exosomes hold

promise in attenuating seizure initiation. Their intrinsic lipid bilayer and capacity to
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cross the BBB further underscore their translational potential as

therapeutic delivery platforms in epilepsy (6).

Despite advances in diagnostics and pharmacotherapy, up to

25% of cases are misdiagnosed (7), and nearly 30% of patients suffer

from drug-refractory epilepsy (DRE) (8), reflecting an urgent need

for alternative interventions. Although seizure control is achieved in

approximately 70% of individuals via monotherapy or polytherapy,

the remainder often progresses to DRE, which markedly elevates

disease burden and mortality (9). Notably, compromised BBB

function has been closely linked to antiepileptic drug resistance

(10), and enhancing drug penetration across the BBB may

significantly improve therapeutic efficacy (11). With growing

recognition of their therapeutic and diagnostic utility, cs have

become a focal point in epilepsy research (12). This review

outlines the roles of exosomes in modulating epilepsy-associated

neuroinflammation, highlights their mechanistic involvement in

seizure suppression, and evaluates their utility in overcoming drug

resistance, offering a conceptual framework for next-generation

epilepsy management.
2 Overview of exosomes

Exosomes are nanoscale extracellular vesicles (EVs), typically 50 –

150 nm in diameter, that encapsulate a rich cargo of nucleic acids,

proteins, and lipids (13, 14). They are secreted by virtually all cell types

and are detectable in a variety of biological fluids, including blood,

urine, and cerebrospinal fluid (15, 16). Far from being inert cellular

byproducts, exosomes have emerged as dynamic mediators of

intercellular communication, orchestrating diverse physiological and

pathological responses to environmental cues (17). In the CNS,

exosomes have gained increasing attention for their multifaceted

roles in neurodevelopment, synaptic plasticity, and immune

surveillance (18). Their pathological relevance is underscored by

mounting evidence implicating them in the onset and progression of

various neurological diseases (19). For example, microglia-derived

exosomal miR-124-3p has been shown to exert neuroprotective

effects by targeting the Rela/ApoE signaling axis, thereby mitigating

neuronal damage and neuroinflammation (20). This axis is critical, as

RELA (p65), a subunit of NF-kB, modulates inflammatory gene

expression, while ApoE is involved in lipid transport and neural

repair. In major depressive disorder (MDD), Kuwano et al. (21)

identified exosomes enriched with IL - 34 and the tetraspanin CD81

as potential diagnostic biomarkers. IL - 34 is known to promote

microglial survival and neurogenesis, suggesting that exosomal IL -

34/CD81 signatures may reflect active neuroinflammatory or

neurotrophic processes in MDD. Exosomes also function as vectors

for therapeutic repair. In a rat model of focal cerebral ischemia,

systemically administered exosomes were shown to localize to the

ischemic brain, where they fuse with recipient cells, deliver functional

biomolecules, and promote neuroregeneration (22). Mechanistically,

this may involve the modulation of PI3K/AKT and MAPK signaling

cascades, which are central to cell survival and axonal remodeling (23).

Moreover, exosomes exhibit anti-inflammatory potential in perinatal

brain injury by suppressing pro-inflammatory cytokine production and
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fostering a reparative microenvironment through the delivery of anti-

inflammatory miRNAs and immunomodulatory proteins such as

TGF-b (24). Emerging studies also suggest that exosomes derived

from brain-metastatic cancer cells can precondition the brain

microenvironment to support tumor growth (25). Together, these

studies underscore the dualistic nature of exosomes in the CNS, as

both mediators of repair and drivers of pathology, highlighting their

potential as diagnostic biomarkers and therapeutic targets across a

broad spectrum of neurological conditions.
3 Exosomes in epilepsy-associated
neuroinflammation

3.1 Astrocytes and exosomes

Glial cell activation is a hallmark of neuroinflammatory responses

in epilepsy (26). Astrocyte proliferation is often more persistent than

microglial activation, contributing to more sustained inflammatory

damage (27, 28). Astrocytes perform diverse roles, including

neuroprotection, neurotransmitter regulation, extracellular ion

buffering, synaptic signaling, and maintenance of the BBB (29).

Upon CNS injury, reactive astrocytosis occurs, accompanied by

glutamate excitotoxicity, altered gap junctions, and mitochondrial

dysfunction. Mesenchymal stem cell (MSC)-derived exosomes

alleviate pilocarpine-induced epilepsy in mice by reducing

expression of glial fibrillary acidic protein (GFAP) and complement

component 3 (C3) in bilateral hippocampi, dampening IL - 1b and

TNF-a secretion, and mitigating intracellular Ca²+ influx (30). These

changes were associated with improved spatial learning and memory,

indicating a restoration of astrocytic function and mitochondrial

homeostasis. The underlying mechanism involves the modulation

of the Nrf2/NF-kB signaling axis, where Nrf2 suppresses oxidative

stress-induced inflammation, while NF-kB promotes glial

proliferation and cytokine release (31). Exosomes appear to

upregulate Nrf2 nuclear translocation while inhibiting NF-kB
activity, thus attenuating reactive astrocyte activation (30).

In particular, MSC-derived exosomes suppress the formation of

neurotoxic A1 astrocytes, induced by pro-inflammatory cytokines

such as IL - 1a, TNF-a, and C1q, by downregulating C3, a key

molecular marker of the A1 phenotype (32). Inhibition of the C3-

C3aR signaling axis by exosomal miRNAs and proteins attenuates

synaptotoxic effects and neuronal death (33). Moreover, exosomes

modulate STAT3 phosphorylation, a pathway implicated in A2

astrocyte differentiation and neuroprotection, thus promoting a

phenotypic shift toward anti-inflammatory, pro-repair states

(34–36). Targeting reactive astrocytes, particularly the neurotoxic

A1 phenotype, offers a promising therapeutic strategy in epilepsy

(37). A1 astrocytes, which are induced during inflammation,

disrupt synapses and exhibit neurotoxicity (38, 39). Exosomes not

only suppress proliferation of A1 astrocytes but may also promote

their phenotypic reversion to non-reactive states via Nrf2-NF-kB
signaling (40). In addition to molecular inhibition of A1 activation,

exosomes restore cellular metabolism by improving mitochondrial

membrane potential and reducing ROS, thereby promoting
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phenotypic reversion to homeostatic astrocytes (41). Furthermore,

MSC-derived exosomes restore mitochondrial membrane potential,

reduce Ca²+ influx, and reverse abnormal calcium signaling in

hippocampal astrocytes (42–44). Compared to MSCs, their

exosomes—containing anti-inflammatory mRNA, miRNA, and

proteins, exhibit lower immunogenicity, greater stability, and ease

of storage, making them ideal vectors for targeted drug delivery to

astrocytes within the hippocampus (45).
3.2 Microglia and exosomes

The degree of microglial activation is positively correlated with the

duration and severity of epilepsy (46). As key immune cells in the brain,

microglia orchestrate inflammatory responses, which are implicated in

neurodegeneration, hippocampal inflammation, and BBB disruption

following status epilepticus (SE) (47). Long et al. (45) showed that A1-

type MSC-derived exosomes administered after SE reduce

neurodegeneration, dampen hippocampal inflammation, and

preserve neurogenesis and cognitive function. Elevated glutamate

levels and persistent neuroinflammation following SE are major

contributors to excitotoxicity and neuronal apoptosis (48, 49).

Moreover, GABAergic inhibition is suppressed during seizures,

disrupting the excitatory-inhibitory balance. Exosomes help restore

this balance by directly protecting GABAergic neurons through

multiple mechanisms, including suppression of microglial activation

and modulation of cytokine profiles (50, 51). Specifically, exosomes

downregulate pro-inflammatory cytokines such as TNF-a and MCP -

1 while upregulating IL - 10, an anti-inflammatory cytokine that

promotes neuronal survival (52, 53). This shift in the cytokine milieu

reduces oxidative stress, attenuates neuroinflammation, and limits

excitotoxic injury to GABAergic interneurons, which are essential for

seizure containment (54, 55). While resting microglia aid in debris

clearance and neuroprotection, their hyperactivation leads to the

release of pro-inflammatory and cytotoxic agents that drive neuronal

loss (56). In SEmice, A1 exosomes attenuated microglial activation and

suppressed pro-inflammatory cytokines (TNF-a, MCP - 1) while

enhancing anti-inflammatory mediators (IL - 10, IL - 6). These

changes were associated with the preservation of GABAergic

neurons, reduced apoptotic markers, and improved synaptic integrity

(45). Inflammatory oxidative stress in the hippocampus exacerbates

cognitive deficits and memory loss via ROS-induced synaptic

dysregulation (57, 58). Thus, A1 exosomes, by maintaining GABA-

glutamate homeostasis, suppressing microglial overactivation, and

preserving interneurons, attenuate SE-induced neurodegeneration

and prevent progression to chronic epilepsy (45).
3.3 Oligodendrocytes and exosomes

Oligodendrocytes serve as the principal myelinating cells

within the central nervous system (CNS), playing an indispensable

role in maintaining neuronal conductivity and structural integrity

(59). In pathological contexts characterized by demyelination,

oligodendrocyte viability is compromised, particularly due to
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inflammation-induced apoptosis, which severely impairs the

capacity for remyelination and functional recovery (60). Notably,

demyelinating lesions are frequently observed in individuals with

epilepsy, a phenomenon that may arise from disrupted autonomic

regulation and altered neuronal-glial dynamics (61). Low-dose

interferon-g (IFN-g) stimulation of dendritic cells induces the

secretion of exosomes enriched with remyelination-associated

microRNAs, including miR-219, miR-335, and miR-494-3p

(62–64). These exosomes exhibited preferential tropism for

oligodendrocytes, followed sequentially by uptake in microglia and

astrocytes, suggesting a degree of cell-specific targeting that holds

translational relevance for therapeutic interventions in demyelinating

diseases (65, 66). Mechanistically, dendritic cell–derived exosomes

have been shown to modulate the expression of pivotal

oligodendrocyte lineage regulators, including NeuroD1, PDGFRa,
and ELOVL7, predominantly via miR-219-mediated gene regulation

(67). Continued exploration of these exosome–oligodendrocyte

interactions may yield novel strategies for enhancing remyelination

in epilepsy and related demyelinating diseases.
3.4 Exosomes and the immune response

The immune system exerts a pivotal influence on the onset and

progression of epilepsy (68). Inflammatory responses represent

transient manifestations of immune activation, encompassing both

pro- and anti-inflammatory mediators. Infiltrating immune cells

release cytokines such as TNF-a and IL - 18, thereby amplifying

neuroinflammation (69); conversely, anti-inflammatory cytokines like

IL - 10 contribute to the resolution of the immune response (70).

Under physiological conditions, the blood–brain barrier (BBB)

maintains neural immune privilege by restricting peripheral immune

cell infiltration. However, during inflammation, endothelial

dysfunction compromises BBB integrity and enhances its

permeability, subsequently lowering neuronal firing thresholds and

heightening seizure susceptibility. While moderate inflammation

may facilitate central nervous system repair and synaptic remodeling,

sustained or dysregulated immune activation promotes epileptogenesis.

The convergence of BBB disruption and increased neuronal

excitability constitutes a fundamental axis in the pathophysiology of

epilepsy. Exosomes actively participate in immune regulation

through mechanisms such as antigen presentation (71), immune

suppression (72), immune surveillance (73), and intercellular

signaling. For instance, MSC-derived exosomes upregulate IL - 10

and other immunosuppressive molecules, thereby promoting Tregs

proliferation and conferring potent immunomodulatory effects.
4 Exosomes and their cargo as
potential biomarkers in epilepsy

Exosomes derived from various cell types encapsulate proteins,

mRNAs, and miRNAs (74), reflecting the diverse and complex

nature of their molecular cargo. This heterogeneity forms the

foundation for their utility as biomarkers in epilepsy (75).
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Notably, the dysregulation of specific miRNAs is closely associated

with epileptogenesis. For instance, miR-23b-3p, a critical regulator

of neuronal excitability, is markedly reduced in epilepsy, and its loss

can precipitate fatal seizures (76). Alterations in circulating

exosomal miRNAs have been observed in patients with epilepsy.

Emerging evidence from serum miRNA profiling has revealed

marked dysregulation of circulating microRNAs in individuals

with epilepsy compared to healthy controls. Notably, several

miRNAs, including miR-27a-3p, miR-181a-5p, miR-134, miR-

221, miR-155, and miR-146—are significantly upregulated,

whereas others such as miR-132, miR-125a-5p, and miR-34c-5p

exhibit reduced expression levels (77). Besides, miR-106b-5p

demonstrated a sensitivity of 80% and specificity of 81%,

suggesting strong potential as a novel diagnostic biomarker.

Beyond circulating miRNAs, exosomal dynamics have also

garnered attention as pathophysiological hallmarks of

epileptogenesis. Batool et al. (78) reported that elevated levels of

exosomal secretion persisted in epileptic mice two weeks after status

epilepticus (SE), suggesting a sustained involvement of exosomes in

the chronic phase of epilepsy.
5 Exosomes in epilepsy therapy

5.1 Exosomes suppress neuroinflammation

Inflammation serves both as an initiator and a consequence of

epileptic seizures, forming a self-perpetuating loop that amplifies

seizure frequency and severity. Seizure activity induces excessive

glutamate receptor activation, oxidative stress, and elevated levels of

pro-inflammatory cytokines, all of which compromise the integrity of

the BBB. Mounting evidence implicates exosomes as key modulators

of neuroinflammatory processes. These vesicles mitigate glial

activation, modulate immune signaling, suppress neuronal

hyperexcitability, selectively interact with neuronal targets, and

limit neuronal loss (79). Notably, exosomes derived from

epileptogenic tubers in tuberous sclerosis complex were investigated

using small RNA sequencing, revealing microRNAs enriched within

these vesicles that are capable of activating toll-like receptors TLR7/8

(80). This activation initiated a neuroinflammatory cascade,

substantially upregulating pro-inflammatory cytokines and

heightening seizure susceptibility, thereby identifying a novel

therapeutic target for drug-resistant epilepsy associated with

tuberous sclerosis (80). Intravenous administration of astrocyte-

derived exosomes has been shown to attenuate microglial

activation in epileptic rats by suppressing the JAK2/STAT3

signaling pathway, thereby mitigating neuroinflammation and

neuronal apoptosis and contributing to effective seizure control

(81–83). In a separate study, mesenchymal stem cell (MSC)-derived

exosomes delivered via intracerebroventricular injection in

pilocarpine-induced status epilepticus (SE) mice promoted

astrocyte proliferation and alleviated neuroinflammatory responses,

resulting in improved cognitive performance. Consistently, bone

marrow MSC-derived exosomes were reported to rapidly

accumulate in the hippocampus following muscarine-induced SE,
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highlighting their capacity for targeted delivery to affected brain

regions (45). The treatment preserved glutamatergic and

GABAergic neurons, alleviated hippocampal inflammation, and

ameliorated SE-induced cognitive impairments. Collectively, these

findings illustrate the multifaceted therapeutic potential of exosomes

in epilepsy through neuroinflammatory modulation and cognitive

restoration, offering promising avenues for drug-resistant

epilepsy (Figure 1).
5.2 Neuroprotective functions of exosomes

MSC-derived exosomes serve as pivotal mediators of neural repair

in epilepsy, exerting their effects through four principal mechanisms:

first, directly enhancing the survival and differentiation of damaged

neurons; second, indirectly attenuating glial activation, thereby

mitigating neuroinflammation and oxidative stress while promoting

neurovascular regeneration; third, restoring systemic metabolic

homeostasis; and fourth, modulating immune responses via the

secretion of cytokines and the presentation of distinctive membrane-

associated molecules (84). Exosomes derived from bone marrowMSCs

have been shown to confer robust neuroprotection in epilepsy models.

One study (85) reported that these exosomes significantly alleviated

neuronal loss in the dentate gyrus and CA1 regions of the

hippocampus in mice with status epilepticus. Supporting these

findings, intranasal administration of MSC-derived exosomes

enabled effective hippocampal targeting, reduced brain injury,

preserved neurogenesis, and sustained cognitive performance (86).

Importantly, this approach also suppressed pro-inflammatory

cytokine-induced iNOS expression, thereby mitigating neuronal

damage. Complementarily, systemic injection of microglia-derived

exosomes in a transient middle cerebral artery occlusion model

reduced brain atrophy, improved neuronal function, promoted

oligodendrocyte regeneration, and ameliorated white matter injury

(87). These therapeutic effects were mediated through intercellular

signaling pathways that modulate inflammation and coordinate

immune responses to facilitate neural repair. Collectively, this body

of evidence underscores the multifaceted neuroprotective roles of

MSC-derived exosomes and illuminates their translational potential

for epilepsy therapy.
5.3 Exosomes as drug delivery vehicles in
epilepsy therapy

Current epilepsy management primarily relies on antiepileptic

drugs (AEDs) such as phenytoin, carbamazepine, and valproate.

Despite the availability of approximately 30 AEDs targeting diverse

molecular mechanisms, clinical challenges persist, including drug

resistance (88) and adverse effects (89). Nearly one-third of patients

remain refractory to current therapies. One critical barrier in AED

efficacy is the BBB. Exosomes, owing to their dual capacity to

participate in neuroimmune communication and traverse the BBB

via receptor-mediated endocytosis or fusion, hold significant

promise for targeted CNS drug delivery. Moreover, exosomes can
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bypass the P-glycoprotein efflux system, enabling stable and

sustained drug delivery across the BBB (90). Exosomes serve as

versatile vectors for delivering proteins, small and large molecules,

and nucleic acids (91). Their intrinsic targeting capability, driven by

membrane proteins and glycan structures that recognize specific

receptors on recipient cells, enables precise delivery. Additionally,

exosomes can protect therapeutic agents from enzymatic

degradation and ensure efficient BBB penetration and tissue-

specific accumulation. Various engineering techniques such as

surface modification, transfection, electroporation, ultrasound,

extrusion, and freeze–thaw cycles have been developed to

enhance drug encapsulation and delivery.

Previous studies have predominantly focused on the role of

endogenous exosomal miRNAs in modulating neuroinflammation

in epilepsy (30, 45). Although clinical studies using exosomes as drug

carriers for epilepsy remain lacking, advances from other

neurodegenerative disorders offer instructive parallels. For example,

Haney et al. (92) successfully delivered catalase-loaded exosomes

intranasally, achieving significant CNS accumulation and

neuroprotection in murine models without provoking immune

rejection. Curcumin, known for its antioxidant, anti-inflammatory,

lipid-lowering, and anti-aggregatory effects (93), suffers from poor

bioavailability due to low absorption and rapid metabolism. Kalani

et al. (94) encapsulated curcumin into embryonic stem cell–derived

exosomes, enhancing its bioavailability and reducing glial fibrillary

acidic protein expression, thereby limiting astrogliosis. Dad et al. (95)

proposed an innovative strategy for treating post-epileptic depression

by transfecting miR-219 and miR-338 into synthetic polyvalent

antibodies and utilizing exosomes as carriers. This approach

effectively suppressed immune responses while promoting axonal
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regeneration and remyelination in the injured CNS. Extending this

concept, researchers proposed loading therapeutic mRNA, miRNA,

and proteins into exosomes to enhance their capacity to traverse the

blood–brain barrier, thereby offering adjunctive benefits in the

aftermath of status epilepticus by reducing seizure burden (96).

Moreover, brain-derived exosomes carrying acid sphingomyelinase

(ASM) or functional miRNAs have been shown to modulate

neuronal excitability through targeted regulation of gene expression

and signaling pathways (97), providing a conceptual framework for

precision-targeted epilepsy interventions. In summary, exosomes

represent a powerful drug delivery platform for addressing drug-

resistant epilepsy. Their ability to traverse the BBB and deliver

therapeutic agents directly to target tissues underscores their

potential to transform epilepsy treatment paradigms.
6 Conclusion

In summary, exosomes represent a transformative avenue for

epilepsy diagnosis and therapy, leveraging their innate ability to

modulate neuroinflammation, cross the BBB, and deliver bioactive

cargo. By suppressing glial activation, regulating immune responses,

and serving as biomarkers or drug carriers, exosomes address

critical gaps in managing drug-resistant epilepsy. Specifically,

exosomal miRNAs such as miR-124, miR-219, and miR-146a

have demonstrated significant promise in experimental models

due to their ability to suppress neuroinflammation, promote

remyelination, and modulate microglial and astrocytic activity.

These molecules merit further investigation as potential

therapeutic candidates.
FIGURE 1

Roles of exosomes in epilepsy.
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Nonetheless, several key engineering and translational hurdles

remain. These include the development of scalable and reproducible

exosome isolation techniques, standardization of cargo loading

methods, real-time tracking of in vivo distribution, and improving

cell-type-specific targeting to minimize off-target effects. Future

research must prioritize mechanistic validation of exosomal

miRNAs/proteins, optimization of delivery systems, and rigorous

clinical trials to harness their full potential. Addressing these

challenges will be essential to position exosome-based strategies

as a cornerstone of precision medicine in epilepsy and related

neuroinflammatory disorders.
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