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Cancer-associated fibroblasts (CAFs) are significant contributors to the

establishment of the immunosuppressive tumor microenvironment (TME) and

pose a significant challenge to the effectiveness of successful immunotherapy.

CAFs can secrete cytokines, chemokines, and extracellular matrix components;

inhibit the invasion of immune cells; promote regulatory cell populations; and

induce T cell exclusion phenotypes, thereby lowering the effectiveness of

immune checkpoint inhibitors (ICIs). With the development of the field of

nanotechnology, increasing studies have paid attention to employing nano-

strategies to specifically control and target CAFs. These nanoplatforms can

transport therapeutic cargos, e.g., CAF-toxic chemicals, signal regulators, or

phenotype-modifying agents, precisely to CAFs, respectively, lowering systemic

toxicity. Furthermore, the combination therapy of CAF-targeting nanoparticles

and immune checkpoint inhibitors had, in preclinical scenarios, the synergistic

effect of promoting T cell infiltration, antigen presentation, and cytotoxicity.

However, heterotypic CAF subpopulations, inconsistency of different cancer

models, inefficient cargo delivery, and translatability constraints in the clinic are

serious challenges. Development of multifunctional and stimulus-active

nanomedicine has great potential to overcome these challenges. Initial clinical

trials, including fibroblast activation protein (FAP)-targeted CAR-T cells and

antibody-drug conjugates, highlight the increasing translational potential of

CAF-targeted nano-immunotherapy. This review summarizes the current

progress in CAF-targeted nano-immunotherapy, emphasizing that a

comprehensive molecular understanding and thorough clinical validation are

essential for facilitating its clinical application in the treatment of

solid malignancies.
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1 Introduction

Immunotherapy has transformed cancer therapy, providing

durable tumour response and greatly enhancing survival in some

patients (1, 2). Nonetheless, it becomes ineffective as a result of the

immunosuppressive tumor immune microenvironment (TIME) as

well as complicated immune evasion methods, for various persons

(3–6). Immunosuppression by cytokine production, extracellular

matrix remodeling, and physical expulsion of immune cells by

CAFs, the most dominant stromal element of TIME (7, 8). CAFs

obstruct immune cell infiltration, inhibit T cell function, and enhance

the expression of immunological checkpoints, thereby diminishing

therapeutic responses and encouraging treatment resistance.

Targeting CAFs has consequently emerged as a possible technique

to enhance the efficacy of immune therapy. Targeting CAFs has thus

emerged as a promising strategy to augment immunotherapy efficacy

(9–12). Nanotechnology demonstrates advantages in targeting CAFs,

facilitating the accurate delivery and targeted modulation of CAFs to

enhance therapeutic drug accumulation and specificity within the

tumor microenvironment. Utilizing stimuli-responsive nanocarriers

enables the targeted release of drugs at disease sites, thereby reducing

off-target effects and strengthening the remodeling of the TIME,

ultimately improving therapy outcomes. This review highlights recent

progress in nanotechnology methods targeting CAFs, focusing on

their contributions to enhancing immunotherapy, overcoming

therapy resistance, and regulating the TME. Moreover, significant

potential and challenges are discussed to provide insights for future

translational research.
2 CAFs and their role in
immunotherapy resistance

2.1 Origin and heterogeneity of CAFs

CAFs are a highly diverse and heterogeneous group of cells with

complex and varied sources (Figure 1A). The majority of CAFs

originate from tissue-resident fibroblasts, but there are also some

CAFs arising from pericytes, mesenchymal stem cells, and other

precursors when tumor-derived signals are activated (13–15). This

cellular diversity endows CAFs with noticeable phenotypic and

functional heterogeneity, complicating their roles in tumor

progression and immune regulation. Classified by function, CAFs

can be divided into subtypes such as immunosuppressive CAFs

(iCAFs), matrix-generating CAFs (myCAFs), and antigen-

presenting CAFs (apCAFs) (16, 17). It is worth noting that CAFs

have phenotypic plasticity and can dynamically shift between states

induced by cues from TME, thus playing diverse roles in tumor

progression and immune modulation (18, 19).
2.2 CAF-Mediated Immune Suppression

CAFs contribute to immunosuppression in the TME by secreting

immunomodulatory cytokines, remodeling the extracellular matrix,
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and limiting immune cell infiltration (Figure 1B). CAFs actively

reshape the tumor immune microenvironment by secreting

immunomodulatory cytokines, including TGF-b, IL-6, and

CXCL12. These factors increase T cell exhaustion, promote the

expansion of regulatory T cells (Tregs), and reduce effector T cell

infiltration, collectively dampening antitumor immunity. In addition,

CAF-derived chemokines, including CCL2 and CXCL12, recruit

Tregs and myeloid-derived suppressor cells (MDSCs), thereby

reinforcing the immunosuppressive milieu (20, 21). Concurrently,

CAFs contribute to extracellular matrix (ECM) remodeling by

depositing collagen and fibronectin, thereby generating a dense

fibrotic barrier that physically restricts T cell access to tumor cores,

thereby facilitating immune evasion (22–24).

Among the heterogeneous CAF subpopulations, iCAFs, myCAFs,

and apCAFs contribute differently to the immunosuppressive tumor

microenvironment. iCAFs (inflammatory CAFs) are characterized by

high secretion of cytokines such as IL-6, CXCL12, and TGF-b, which
promote the recruitment of immunosuppressive cells like Tregs and

MDSCs, and inhibit effector T cell function. myCAFs (myofibroblastic

CAFs) primarily produce extracellular matrix components including

collagen and fibronectin, leading to physical exclusion of T cells from

the tumor core and contributing to desmoplasia. In contrast, apCAFs

(antigen-presenting CAFs) express MHC class II molecules and are

capable of presenting antigens to CD4+ T cells, but lack co-stimulatory

molecules, thereby inducing T cell anergy or tolerance rather than

activation. Together, these distinct subtypes synergize to construct an

immune-excluded, immunosuppressive microenvironment that

impairs effective antitumor immunity.
2.3 CAFs and therapy resistance

CAFs play a crucial role in mediating resistance to immune

checkpoint inhibitors, particularly PD-1/PD-L1 blockade. CAFs

enhance immunosuppressive signaling by producing TGF-b and

other suppressive cytokines, thereby suppressing T cell activation

and limiting their infiltration into tumor regions (25–28). CAFs have

been shown to upregulate PD-L1 expression on both tumor and

immune cells, thereby diminishing the efficacy of PD-1/PD-L1

blockade therapy (29, 30). As a result, tumors enriched with CAFs

tend to exhibit resistance to immune checkpoint inhibition.

Moreover, CAF-induced ECM reconstruction and cytokine release

result in a T-cell exclusion phenotype, in which effector T cells

localize at the tumor edge but are unable to penetrate the tumor

interior—a major contributor to immunotherapy failure (31).
3 Nanoparticle-based strategies for
CAF modulation

3.1 Nano-strategies for targeting CAFs

3.1.1 Overview and classification of
nanotechnology in CAF-targeted therapy

Nanotechnology has been created as a disruptive platform for

the modulation of the tumor microenvironment and targeted drug
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delivery. In CAF-targeted therapy, nanoparticles have numerous

advantages over traditional methods, including enhanced

bioavailability, elongated circulation time, stimulus-responsive

release, and spatial confinement within the fibrotic tumor stroma.

A variety of nanoplatforms (liposomes, micelles, dendrimers,

polymeric nanoparticles, and inorganic nanocarriers) have been

designed to deliver small molecules, nucleic acids, or

immunomodulatory agents. Active targeting has been applied on

these nanosystems through the surface modification by CAF-

specific ligands (e.g., FAP antibody, PDGFR-b-binding peptides),

which enable selective accumulation in CAF-rich regions.

Furthermore, stimulus-responsive nanocarriers (pH, redox

potential, or enzyme-activatable) enable on-demand release in the

tumor microenvironment. Nanotechnology is equally competent in
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offering combinatorial delivery of therapeutic agents (e.g., CAF-

modulators and immune checkpoint inhibitors) in a single carrier,

potentially elevating therapeutic synergy. Such attributes make

nanotechnology a multifaceted and effective tool in overcoming

CAFs’ biophysical and immunological barriers in solid tumors.

Nanoparticles, with sizes ranging from 1 to 100 nm, exhibit

unique physicochemical properties that differ markedly from those

of their bulk materials, which is mainly due to their high surface

area-to-volume ratio. Owing to their unique physicochemical

properties, these materials have been widespread used in fields

such as biomedicine, electronics, energy, and environmental science

(32, 33). Classification is typically based on composition, structure,

or intended function. The following are several commonly used

classification approaches.
FIGURE 1

(A) The origin, subtypes, and functions of CAFs in TME. (B) CAFs induce immunosuppressive TME through distinct mechanisms.
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Based on their composition, nanoparticles are generally divided

into three categories: organic, inorganic, and those derived from

biological cells (Figure 2A). The organic nanoparticles mainly

include micelles, albumin nanoparticles, liposomes, polymeric

nanoparticles, dendrimers, nanoemulsions, and nanogels.

Inorganic nanoparticles mainly include metal nanoparticles (e.g.,

Au NPs, Ag NPs), metal oxide nanoparticles (e.g., Fe3O4 NPs, TiO2

NPs), silica nanoparticles (e.g., SiO2 NPs), carbon-based

nanoparticles (e.g., carbon nanotubes, graphene, carbon quantum

dots), and two-dimensional (2D) nanosheets (e.g., transition metal

dichalcogenides such as XS2 and XSe2, and black phosphorus). Cell-

derived nanoparticles are primarily composed of membrane vesicles

originating from sources such as tumor cells, macrophages, red
Frontiers in Immunology 04
blood cells, and platelets, including exosomes secreted by animal or

plant cells.

Based on their structures, nanoparticles can be classified into four

types: zero-dimensional (0D), one-dimensional (1D), two-dimensional

(2D), and three-dimensional (3D). 0D nanoparticles include quantum

dots and nanodots. 1D nanoparticles include nanowires, nanorods, and

nanotubes. 2D nanoparticles consist of materials such as graphene,

MXenes, and black phosphorus nanosheets. 3D nanoparticles include

porous nanostructures, core-shell structures, and nanogels.

Nanoparticles can be divided into various types based on their

stimuli-responsive properties, such as pH-responsive, temperature-

responsive, light-responsive, reactive oxygen species (ROS)-

responsive, and enzyme-responsive nanoparticles.
FIGURE 2

(A) Classification of nanoparticles by their compositional components. (B) Passive and active targeting CAFs by nano-strategies. (C) Modulation of
CAFs by nanoparticles.
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3.1.2 Passive and active targeting of CAFs
Passive targeting of CAFs can be achieved with the aid of the

enhanced permeability and retention (EPR) effect, which supports

nanoparticles accumulating in tumor regions with hyperpermeable

vasculature (Figure 2B) (34, 35). Due to their abundant presence in

the tumor stroma, CAFs are more likely to encounter elevated

concentrations of nanoparticles compared to other stromal cells.

Such passive accumulation enables the possibility of regulating CAF

activity and preferential delivery of therapeutic agents to the TME

(36). However, the diverse and poor perfusion characteristics of the

tumor stroma can limit the permeation of nanoparticles, thereby

reducing delivery efficiency to CAFs and impairing therapeutic

efficacy (37, 38).

Active targeting of CAFs advances beyond the EPR effect by

introducing surface ligand modifications on nanoparticles to enhance

targeting ability and retention within the tumor stroma (Figure 2C)

(39, 40). As FAP, platelet-derived growth factor receptor b (PDGFRb),
and integrins are highly overexpressed on CAFs in various solid

tumors, making it a promising target for selective drug delivery (41).

Antibodies or peptide ligands with high affinity for these receptors can

be used to decorate nanoparticles, thereby achieving selective binding

to CAFs through EPR effects (42–44). This dual-targeting approach

enhances cellular uptake and therapeutic precision towards CAFs,

partially addressing the limitations of passive targeting delivery.

Nevertheless, challenges still exist due to the heterogeneity of CAFs

and side effects from possible off-target interactions with other stromal

or normal fibroblastic cells.
3.2 CAF depletion strategies

CAF depletion nano-strategies often involve the delivery of

cytotoxic agents or nucleic acid drugs (such as pDNA, siRNA,

mRNA) selectively targeting CAF-associated markers such as FAP

or alpha-smooth muscle actin (a-SMA) (45, 46). These strategies

enable the specific removal of CAFs or the knockdown of CAF genes,

thereby reducing their immunosuppressive effect and reshaping the

TME to facilitate immune infiltration. These targeted approaches

exert precise effects on CAFs, thus minimizing systemic toxicity and

optimizing therapeutic outcomes. However, the total depletion of

CAFs may pose potential risks due to their functional heterogeneity,

as specific CAF subtypes may either restrain or promote tumor

growth (47). Subtype-agnostic targeting strategies can disturb stromal

homeostasis, which may lead to augmented tumor invasiveness and

impaired therapeutic responses.
3.3 CAF-reprogramming approaches

CAF-reprogramming stra teg ies a im to trans form

immunosuppressive CAFs into dormant or tumor-suppressing

phenotypes by delivering agents such as TGF-b inhibitors,

Hedgehog pathway inhibitors, or epigenetic modulators (48–50).

Nano-strategies enable the site-specific and sustained delivery of

these regulators within the TME, boosting effectiveness while
Frontiers in Immunology 05
reducing systemic side effects (51–53). This strategy offers a

prospective approach to deplete CAFs by maintaining beneficial

functions of stroma and alleviating tumorigenic signaling.

Nano-drug delivery systems can convert CAFs to a quiescent

state by delivering modulatory molecules that inhibit their

activation pathways. For example, TGF-b pathway inhibitors or

microRNA-loaded drug delivery nano-systems restore a non-

activated, stromal-supportive phenotype by inhibiting pro-fibrotic

and immunosuppressive gene expression in CAFs (54–56). This

reprogramming strategy attenuates CAF-mediated immune

rejection and extracellular matrix (ECM) remodeling, thereby

creating a more supportive TME for immunotherapy.
3.4 ECM remodeling and barrier disruption

The newly emerged nano-strategies to degrade ECM, such as

collagenase-loaded nanoparticles, represent a potential approach to

remodel the fibrotic stroma formed by CAFs. These nano-strategies

contribute to the disruption of the physical barriers, which impede

T-cell infiltration and restrict diffusion of modulatory agents into

the tumor interior, by enzyme-mediated degradation of collagen

and other ECM compositions (57, 58). This ECM-modulating

approach can remarkably improve the efficacy of nano-

immunotherapies by increasing their exposure to tumor cells.

However, precise modulation is required to prevent exaggerated

ECM degradation, which could potentially facilitate tumor invasion

and metastatic progression (59).
3.5 Modulating CAFs-immune cell crosstalk

From the perspective of modulating CAF-immune cell crosstalk,

targeting CAF-secreted factors, such as CXCL12, has been shown to

alleviate T cell migration barriers and enhance immune cell

infiltration within tumors (60). Building on this approach, various

nano-delivery platforms have been developed to co-deliver CAF

inhibitors and immune checkpoint blockers (ICBs), enabling

synergistic effects through CAF reprogramming and immune

activation, thereby improving the overall efficacy of immunotherapy.
3.6 Synergistic effects with immunotherapy

Combining CAF-targeting nanoplatforms with ICIs has emerged

as a promising strategy to overcome the immunosuppressive

tumor microenvironment and enhance therapeutic efficacy (61). By

disrupting CAFs-mediated signaling, these nanoplatforms can enhance

antigen presentation by dendritic cells and promote the activation and

infiltration of cytotoxic T lymphocytes. In parallel, modulation of CAFs

activity leads to a reduction in immunosuppressive cell populations

such as myeloid-derived suppressor cells (MDSCs) and regulatory T

cells (Tregs), further relieving immune suppression. This synergistic

approach reprograms both the stromal and immune components of

the tumor microenvironment, paving the way for more durable and
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effective responses to ICIs (62, 63). Examples of combining CAF-

targeting nanoplatforms and immunotherapy are shown in Table 1.

Preclinical studies have demonstrated that combining CAF-

targeting strategies with ICIs significantly improves antitumor

responses by enhancing T cell infiltration and reducing stromal

barriers. For instance, blockade of the CXCL12/CXCR4 axis using

nanocarriers has been shown to sensitize tumors to anti-PD-1

therapy in murine models of pancreatic and breast cancer (64, 65).

Early-phase clinical trials are also exploring this synergy; one notable

example is the combination of CXCR4 inhibitors with ICIs in patients

with solid tumors, showing promising signs of improved immune

activation and partial responses (66, 67). These findings support the

translational potential of CAF-targeted approaches in amplifying the

therapeutic benefits of current immunotherapies.
4 Translational potential and current
challenges

Despite the promising synergistic outcomes of CAF-targeting

nano-strategies combined with immunotherapy in preclinical

settings, several translational challenges remain. First, significant

disparities exist between murine models and human tumors,

particularly in terms of CAF composition, immune cell profiles,

and stromal architecture, which may lead to inconsistent

therapeutic responses (77, 78). The intrinsic heterogeneity of
Frontiers in Immunology 06
CAFs further complicates effective targeting, as diverse CAF

subpopulations (e.g., iCAFs, myCAFs, apCAFs) may play

opposing roles in tumor progression and immune modulation (79).

Moreover, nanocarrier systems encounter biological barriers in

vivo, including limited tumor penetration, off-target distribution,

potential immunogenicity, and suboptimal pharmacokinetics.

Ensuring the efficient and safe delivery of therapeutic agents to

CAF-rich tumor sites remains a major hurdle (80). From a

translational perspective, regulatory challenges and scalability

issues further impede the clinical adoption of CAF-targeted

nanomedicines. Concerns regarding long-term toxicity,

manufacturing reproducibility, and quality control must be

addressed to enable industrialization (81).

Nevertheless, several clinical trials are underway to evaluate

CAF-targeted therapies in combination with immune checkpoint

b lockade . Notab ly , FAP-targe ted nanopar t i c l e s and

radiopharmaceuticals are currently being tested in solid tumors,

providing early evidence of safety and potential immune

modulation (82, 83). These trials mark an encouraging step

toward validating CAF-targeted nano-strategies in the clinic.
5 Conclusion and outlook

CAFs play a central role in shaping the immunosuppressive tumor

microenvironment and driving resistance to immunotherapy.

Targeting CAFs has thus emerged as a promising strategy to
TABLE 1 Representative nano-platforms of combined targeting CAFs and immunotherapy.

Nanoparticles
CAFs targeting

methods
Combating

CAF strategies
Immunotherapeutics Tumor models Reference

lipid nanoparticles (LNPs) FAP-2286
Blocking both glycolysis and
mitochondrial respiration

in CAFs
aPD-1

Orthotopic RM-1
tumor model

(68)

Micelles
fibronectin-targeting
peptide Fmoc-K
(PpIX)-CREKA

ECM remodeling and
CAFs reprogramming

aPD-L1
Subcutaneous 4T1

tumor model
(69)

Tumor cell-derived
extracellular vesicles

No
Reprogram CAFs and
reduces the tumor ECM

YM101
Subcutaneous H22

tumor model
(70)

CAF and cancer cell membrane
coated mesoporous silica NP

Homotypic
targeting CAFs

Reprogram abnormal VB3
metabolism in CAFs

CAF and cancer
cell membrane

Subcutaneous 4T1
tumor model

(71)

Dendrimers
Passive targeting of

EPR effect
ECM degradation by ECM-

specific enzymes
aPD-L1

Subcutaneous 4T1 and
MDA-MB-231
tumor models

(72)

Nanocomplexes Aminoethyl anisamide
Genetically engineering CAFs

into APCs

HSP70-initiated plasmids,
including CD86 and PD-

L1 trap

Orthotopic high-
fibrotic 4T1 breast

tumor model
(73)

Micelles
Passive targeting of

the EPR effect

Anti-fibrotics relieve the
immunosuppressive function

of CAFs.
aPD-1 and aCTLA-4

Orthotopic 4T1 and
E0771 breast
tumor model

(74)

Tumor cell-derived
extracellular vesicles

Passive targeting of
the EPR effect

Regulate intratumoral CAFs
and reduce tumor ECM

aPD-1 and TGF-b
inhibitor SB431542

Subcutaneous
xenograft KYSE30

tumor model
(75)

Nanoliposome EpCAM-targeting
Repolarize CAFs into
quiescent fibroblasts

aPD-1
LLC subcutaneous

tumor model
(76)
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overcome the limitations of current immunotherapeutic approaches.

In recent years, nanotechnology-based platforms have demonstrated

outstanding potential in modulating CAFs’ functions, offering precise

delivery, controlled release, and multifunctional integration to reshape

immune dynamics and enhance therapeutic responses. Particularly

when combined with ICIs. These nano-strategies can simultaneously

suppress CAF activity, promote T cell infiltration, and boost immune

activation, leading to synergistic antitumor effects. However, the

intrinsic heterogeneity and plasticity of CAFs pose significant

challenges to targeted therapy, while issues associated with the in

vivo delivery efficiency, biosafety, and immunogenicity of nanocarriers

remain unresolved. Moving forward, deeper mechanistic insights into

CAF-immune interactions and subtype-specific functions are urgently

needed, along with the development of standardized translational and

clinical evaluation frameworks. With continued innovation, CAF-

targeted nano-immunotherapies hold great promise as customizable

and translatable platforms, potentially transforming the treatment

landscape for solid tumors.
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