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Severity-dependent IgG epitope
profiling in COVID-19 reveals
differential recognition of
pathogen-derived antigens
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Isabella Siuffi Bergamasco3, Fabio da Ressureição Sgnotto3,
André Luis Lacerda Bachi3, Maria Notomi Sato1

and Jefferson Russo Victor1,2,3*

1Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of
São Paulo, São Paulo, Brazil, 2School of Medicine, Santo Amaro University (UNISA), São Paulo, Brazil,
3Post Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo, Brazil
Background: The contribution of antibody-mediated responses to COVID - 19

outcomes remains unclear, particularly regarding cross-reactivity with unrelated

pathogens. While co-infections are known to influence disease progression, the

broader landscape of IgG reactivity during SARS-CoV-2 infection has not been

systematically explored.

Methods: We employed a high-density peptide microarray containing 4,344

linear epitopes from 37 viruses, 27 bacteria, 17 parasites, and 8 fungi to

characterize serum IgG repertoires from individuals with moderate (n = 39) or

severe (n = 40) COVID - 19. Controls included pre-pandemic healthy donors and

a pooled intravenous immunoglobulin (IVIg) formulation. Data analysis included

intensity ranking, epitope mapping, and comparative analysis of mean signal

intensities for each epitope between the COVID-Mod and COVID-Sev groups.

Results: COVID - 19 patients showed widespread IgG reactivity against diverse

pathogens, with patterns differing by disease severity. Severe cases displayed

broader and more intense reactivity, notably against hepatitis C virus (HCV),

SARS-CoV-1, influenza A, Mycobacterium tuberculosis, and Plasmodium

falciparum. Moderate cases showed preferential recognition of epitopes from

HTLV-I, Neisseria meningitidis, and Trypanosoma cruzi. These findings suggest

that SARS-CoV-2 infection modulates pre-existing humoral memory, possibly

through epitope spreading or immune reprogramming.

Conclusions: SARS-CoV-2 infection reshapes the IgG epitope repertoire in a

severity-dependent manner, extending to antigens from unrelated pathogens.

This phenomenon may reflect underlying immune dysregulation or idiotype-
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driven interactions. Comprehensive profiling of pathogen-related IgG responses

may reveal potential biomarkers of disease severity. This phenomenon may

inform future investigations aimed at improving personalized management

strategies for co-infected or immunocompromised patients.
KEYWORDS

COVID-19, IgG, antibody repertoire, peptide microarray, pathogen epitopes, immune
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Introduction

Since the onset of the COVID - 19 pandemic, caused by severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2), over

seven million people have died worldwide (Worldometer, 2024).

In recent years, substantial progress has been made in

understanding the epidemiology, pathogenesis, epigenetic

influences, hospital-based emergencies, advanced diagnostic

technologies, vaccination strategies, and experimental models

related to SARS-CoV-2 infection (1–5). However, comparatively

less attention has been given to its relationship with the humoral

immune response to other human pathogens.

COVID-19 frequently co-occurs with additional infections—

including bacterial, viral (especially influenza), fungal, mycobacterial

(notably tuberculosis), and latent viral reactivations. These co- and

super-infections are generally associated with poorer clinical outcomes,

including increased rates of intensive care unit admission, mechanical

ventilation, prolonged hospitalization, and higher mortality. Thus, early

identification through differential diagnosis and targeted therapeutic

interventions—particularly antimicrobial stewardship and combined

vaccination strategies—remains critical for optimal patientmanagement.

While some studies report that bacterial co-infection rates in

COVID - 19 are lower than those observed in previous influenza

pandemics (6), tuberculosis (TB) co-infection continues to pose a

major concern. TB–COVID-19 coinfection appears to exacerbate

clinical outcomes, with mortality rates remaining higher than those

associated with COVID - 19 alone, despite a gradual global decline

in TB-related deaths (7). Similarly, respiratory viral co-infections

may worsen disease severity and have important prognostic and

therapeutic implications (8). Overall, while the current literature

provides important insights into co-infections in COVID - 19

patients, many aspects remain insufficiently explored and warrant

further investigation (9).

The studies mentioned above are primarily based on the

identification of active infections during SARS-CoV-2 infection.

However, accurately assessing the full range of current and prior

infections in COVID - 19 patients remains technically challenging,

given the diversity of potential pathogens involved and the

limitations of available diagnostic tools.

The development of mild, moderate, or severe disease in the

context of SARS-CoV-2 infection is shaped by complex interactions
02
between genetic and environmental factors, with the immune

system playing a central role. Yet, interindividual differences in

immune responses and disease severity remain incompletely

understood. Among immune mechanisms, antibody responses—

especially the production of autoantibodies—have been increasingly

recognized as key modulators of the immunopathology observed

during acute infection and in post-COVID-19 syndromes (10–15).

Notably, some studies have demonstrated significant clinical

improvement in long-COVID patients following two cycles of

therapeutic apheresis (16). As a non-specific method for removing

circulating antibodies, apheresis led to reduced autoreactivity,

supporting the hypothesis that antibody-mediated mechanisms

contribute to persistent symptoms. However, the extent to which this

procedure affects the overall reactivity of antibodies against microbial

pathogens remains unclear. Studies about the complexity of the IgG

repertoire in humans, had been discusses as a possible way to uncover

neglected functions of antibodies that were not observed due to the

complexity and diversity of IgG idiotypes in humans.

Theoretical frameworks have increasingly emphasized that the

vast complexity and idiotypic diversity of the human IgG repertoire

may obscure fundamental antibody functions, which have remained

underappreciated due to the inherent heterogeneity of idiotype

expression and the methodological challenges involved in

disentangling their immunoregulatory effects (17–19).

In this study, we sought to comprehensively evaluate the anti-

pathogen IgG response in COVID - 19 patients, with a focus on

identifying differential recognition patterns in individuals with

moderate versus severe disease. To achieve this, we employed a

high-density peptide microarray comprising over 3,500 unique

epitopes derived from 37 viruses, 27 bacteria, 17 parasites, and 8

fungi known to infect humans. Our aim was to identify specific

pathogen-related IgG recognition patterns that may distinguish

between different clinical severities of COVID - 19.
Methods

Samples

Serum samples were obtained from the Central Laboratory

Division of the Clinical Hospital, Faculty of Medicine, University
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of São Paulo (São Paulo, Brazil). All samples were processed by

centrifugation to isolate serum and subsequently stored at –20 °C

until use.

Participants in the COVID - 19 groups were included based on

a confirmed diagnosis of SARS-CoV-2 infection through reverse

transcription-polymerase chain reaction (RT-PCR) testing.

Individuals over 75 years of age or those with a negative SARS-

CoV-2 RT-PCR result were excluded. The final cohort consisted of

79 COVID - 19 patients (39 males and 40 females), stratified into

clinical severity groups according to the World Health

Organization’s Clinical Management of COVID - 19: Living

Guideline (version published on August 18, 2023; WHO).

Patients who were hospitalized with radiological evidence of

pneumonia but did not meet criteria for severe or critical disease—

and who either received no oxygen therapy or required low-flow

oxygen via nasal cannula or face mask—were classified as having

moderate COVID - 19 (COVID-Mod; n = 39; mean age: 41.6 ± 6.0

years; 17 males, 22 females). Those requiring high-flow oxygen

therapy or non-invasive ventilation due to severe pneumonia were

assigned to the severe COVID - 19 group (COVID-Sev; n = 40;

mean age: 41.8 ± 6.0 years; 23 males, 17 females). Although mean

ages were comparable between groups, the sex distribution differed

slightly, which may influence immune response profiles. No

patients with critical COVID - 19 were enrolled in this study. All

COVID - 19 samples were collected between May and July 2020.

Detailed donor information is provided in Supplementary Table 1.

Two control groups were included in the study. The first

consisted of serum samples from 40 healthy, uninfected

individuals (N-exp HC; 17 males, 23 females; mean age: 28.5 ±

2.3 years), collected before the COVID - 19 pandemic (March–July

2019). The second control group comprised a commercially

available therapeutic formulation of pooled human IgG intended

for intravenous administration (intravenous immunoglobulin;

IVIg; Privigen®, CSL Behring), serving as an additional

benchmark for polyclonal IgG reactivity.
Infectious disease epitope microarray

IgG epitope profiling was performed using the PEPperCHIP®

Infectious Disease Epitope Microarray (PEPperPRINT GmbH,

Heidelberg, Germany), which includes 4,344 linear peptide

sequences representing epitopes from 53 viruses, 25 bacteria, 23

parasites, and 1 fungus known to infect humans. The full list of

evaluated pathogens, including their acronyms and microorganism

categories, is provided in Supplementary Table 2. All peptides

included on the array are registered in the Immune Epitope

Database and Analysis Resource (IEDB; www.iedb.org) and are

listed in detail in Supplementary Table 3.

As an initial quality control step, microarrays were incubated

with only the secondary and control antibodies to detect any

nonspecific binding to the immobilized peptides. This

background assessment ensured that subsequent sample readings

would not be confounded by inherent signal artifacts.
Frontiers in Immunology 03
Following quality assurance, human serum samples were

diluted at a 1:500 ratio—selected based on prior titration

experiments to optimize signal-to-noise ratios—and then applied

to the arrays under standardized incubation conditions.

After primary incubation, bound IgG was detected using a

fluorescently labeled secondary antibody. Fluorescent signals were

visualized and captured using the Innopsys InnoScan 710-IR

Microarray Scanner.

To monitor assay performance and slide integrity,

hemagglutinin (HA) control peptides positioned along the array

perimeter were probed with a dedicated control antibody. These

HA signals served as internal positive controls throughout the

scanning and analysis workflow.

Image analysis was based on 16-bit grayscale TIFF files, selected

for their superior dynamic range compared to 24-bit RGB files used

in visual outputs. Signal quantification was performed using an

automated pipeline that extracted raw, foreground, and background

fluorescence values. For each peptide, median foreground

intensities were averaged across technical duplicates. Intra-

duplicate variability was evaluated by calculating spot-to-

spot deviation.

To maintain data reliability, a maximum deviation threshold of

40% between duplicate spots was enforced. Data points exceeding

this variability threshold were excluded from downstream analyses

unless individually reviewed and manually classified as either

“Artifact” or “Valid.” Intra-slide reproducibility was evaluated by

calculating the coefficient of variation (CV%) among technical

replicates. Spots with CV > 30% were excluded unless classified as

‘Valid’ based on predefined intensity uniformity and shape criteria.

Corrected median intensities were ranked in descending order

to identify the most strongly reactive peptide targets for each sample

group. Additionally, spatial signal distribution plots were generated

by mapping mean signal intensities from the top-left to bottom-

right of the microarray surface, allowing for global assessment of

signal uniformity and signal-to-noise ratios.

Final data interpretation incorporated multiple layers of

analysis, including quantitative signal ranking, peptide

annotation, linear epitope mapping, and visual inspection of

microarray scans, to identify dominant IgG-reactive epitopes

within each serum group. The results are expressed in arbitrary

units (A.U.), calculated as the ratio between the signal obtained

from two microarrays: one incubated with only the secondary

antibody (background control), and the other with both the

sample and the secondary antibody.

To identify epitopes with potentially specific IgG recognition,

we applied a threshold defined as the mean signal intensity of the

healthy control group plus three standard deviations (mean + 3SD),

in accordance with established proteomics standards (20). This

stringent cutoff was combined with a minimum signal ratio >2

relative to the comparison group to enhance specificity in

identifying pathogens with differential epitope recognition

profiles. To further assess the degree of differential IgG reactivity

between the COVID-Mod and COVID-Sev groups, group-wise

signal intensities were compared using the Mann–Whitney U test
frontiersin.org
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followed by Benjamini-Hochberg false discovery rate (FDR)

correction, with statistical significance defined as q < 0.05. All p-

values and FDR-adjusted q-values for each pathogen are provided

in Supplementary Table 4.
Results

COVID-19 patients produce differential
patterns of viral epitope recognition

All serum samples were initially assessed for IgG reactivity

against 4,344 linear epitopes derived from viral, bacterial, parasitic,

and fungal pathogens. As a validation step, we first examined IgG

responses to 19 SARS-CoV-2–specific epitopes to confirm expected

recognition patterns across groups. As illustrated in Figure 1, both

COVID-Mod and COVID-Sev patients displayed strong reactivity

toward 10 epitopes, while no significant reactivity was observed in

the control groups (N-exp HC and IVIg), confirming the specificity

of the assay.

Following the confirmation of SARS-CoV-2 epitope reactivity,

we next examined IgG responses to epitopes from additional viral

pathogens. Distinct recognition patterns emerged between the

COVID-Mod and COVID-Sev groups (Figure 2A). The Andes

virus exhibited eight reactive epitopes, evenly distributed between

the two groups. A single epitope from Borna disease virus was

uniquely recognized in the COVID-Sev group. Coxsackievirus

showed six group-specific epitopes, with three recognized in each

group. Dengue virus 2 elicited 25 reactive epitopes—13 specific to

COVID-Mod and 12 to COVID-Sev. Hepatitis B virus displayed 10

reactive epitopes, with four unique to COVID-Mod and six to

COVID-Sev.

Hepatitis C virus elicited the highest number of reactive

epitopes, totaling 219—87 restricted to COVID-Mod and 132 to

COVID-Sev. This differential profile was statistically significant,

with several epitopes meeting the FDR-adjusted threshold (q < 0.05)

(Figure 2B). Similarly, for Hepatitis E virus, 12 epitopes were

reactive—four exclusive to COVID-Mod and eight to COVID-

Sev. HIV - 1 yielded 13 reactive epitopes, five and eight specific to

COVID-Mod and COVID-Sev, respectively. HTLV-I showed 14

reactive epitopes, with 11 recognized in COVID-Mod and three in

COVID-Sev, a pattern confirmed by statistical analyses (FDR q <

0.05; Figure 2B). HTLV-II had nine reactive epitopes—four unique

to COVID-Mod and five to COVID-Sev.

The human respiratory syncytial virus was represented by seven

reactive epitopes, with four and three specific to COVID-Mod and

COVID-Sev, respectively. Influenza A virus displayed 16 epitopes—

five in COVID-Mod and 11 in COVID-Sev. Japanese encephalitis

virus was recognized by a single epitope in the COVID-Sev group.

Measles morbillivirus elicited 17 reactive epitopes—seven restricted

to COVID-Mod and ten to COVID-Sev. Puumala virus showed 15

epitopes, with five recognized exclusively by COVID-Mod and ten

by COVID-Sev. Lastly, SARS-CoV-1 had 111 reactive epitopes—51

in COVID-Mod and 60 in COVID-Sev. This difference was also

supported by statistical analysis (FDR q < 0.05; Figure 2B).
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FIGURE 1

IgG targeting of SARS-CoV-2 epitopes across distinct donor groups.
This figure presents data obtained from Infectious Disease Epitope
Microarray profiling using serum or purified IgG from four groups: 40
healthy individuals unexposed to SARS-CoV-2 (N-exp HCs), pooled
intravenous immunoglobulin (IVIg) derived from thousands of donors,
39 patients with moderate COVID - 19 (COVID-Mod), and 40 patients
with severe COVID - 19 (COVID-Sev). Heatmaps display IgG reactivity
across the full panel of SARS-CoV-2 epitopes. The source proteins of
the SARS-CoV-2 epitopes are indicated along the left side of the
heatmap, from top to bottom: membrane glycoprotein, nucleocapsid
phosphoprotein, nucleoprotein, and spike glycoprotein. Results are
expressed in arbitrary units (A.U.), calculated as the ratio between
sample reactivity and background reactivity for each evaluated epitope.
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FIGURE 2

IgG targeting of viral epitopes across distinct donor groups. Data were obtained using the Infectious Disease Epitope Microarray to profile serum or
purified IgG from four groups: 40 healthy individuals unexposed to SARS-CoV-2 (N-exp HCs), pooled intravenous immunoglobulin (IVIg) derived
from thousands of donors, 39 patients with moderate COVID - 19 (COVID-Mod), and 40 patients with severe COVID - 19 (COVID-Sev). (A)
Heatmaps depict IgG reactivity against selected viral epitopes showing differential recognition between the COVID-Mod and COVID-Sev groups. The
pathogen name is indicated above each heatmap. Within each heatmap, epitopes are ranked by recognition intensity, with those most strongly
recognized by IgG from the COVID-Sev group positioned at the top, followed by those preferentially targeted by the COVID-Mod group. Asterisks
indicate statistically significant differences between the two groups based on false discovery rate (FDR)-adjusted p-values (*q < 0.05). (B) Box-and-
whisker plots present detailed IgG reactivity data for all viral epitopes meeting statistical significance (*q < 0.05) in differentiating the COVID-Mod
and COVID-Sev groups. Plots show the median, interquartile range, and individual signal intensities for each epitope. Reactivity is expressed in
arbitrary units (A.U.), calculated as the ratio of sample reactivity to background reactivity for each evaluated epitope.
Frontiers in Immunology frontiersin.org05
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Collectively, these findings reveal broad and heterogeneous IgG

reactivity toward viral epitopes in COVID - 19 patients, with clear

distinctions between moderate and severe disease. These differential

patterns suggest that SARS-CoV-2 infection may shape the humoral

immune landscape and promote cross-reactivity to unrelated

viral antigens.
COVID-19 patients produce differential
patterns of bacterial epitope recognition

We further extended our analysis to bacterial epitopes and

observed distinct IgG reactivity patterns between the COVID-Mod

and COVID-Sev groups (Figure 3A). Bordetella pertussis displayed

nine differentially recognized epitopes, with four specific to

COVID-Mod and five to COVID-Sev. Single epitopes from

Borrelia garinii and Burkholderia pseudomallei were exclusively

recognized in the COVID-Sev group. Borreliella burgdorferi

elicited 22 reactive epitopes—seven in COVID-Mod and 15 in

COVID-Sev—a differential profile confirmed by FDR-adjusted

statistical analysis (q < 0.05; Figure 3B).

Ehrlichia chaffeensis exhibited six differentially recognized

epitopes, evenly distributed between the groups. Epitopes from

Enterococcus faecium and Salmonella enterica were recognized

only in the COVID-Sev group (one and two epitopes,

respectively). Helicobacter pylori generated four reactive epitopes,

with two identified in each group.

Mycobacterium tuberculosis emerged as the most extensively

recognized bacterium, with 83 differentially reactive epitopes—38 in

COVID-Mod and 45 in COVID-Sev. This severity-associated

pattern was statistically significant (FDR q < 0.05; Figure 3B).

Additional epitopes were uniquely recognized in the COVID-Sev

group from Mycoplasma pneumoniae (two epitopes), Streptococcus

mutans (one epitope), and Yersinia enterocolitica (one epitope),

while Streptococcus oralis was represented by a single COVID-

Mod–specific epitope.

Other species with multiple reactive epitopes included Neisseria

meningitidis (11 epitopes: seven in COVID-Mod, four in COVID-

Sev), Orientia tsutsugamushi (22 epitopes: 16 in COVID-Mod, six

in COVID-Sev), and Porphyromonas gingivalis (18 epitopes: eight

in COVID-Mod, ten in COVID-Sev).

Staphylococcus aureus displayed 14 reactive epitopes—two

specific to COVID-Mod and 12 to COVID-Sev—confirmed as

statistically significant (FDR q < 0.05; Figure 3B). Similarly,

Streptococcus pyogenes had five epitopes recognized exclusively in

the COVID-Sev group, with the differential profile supported by

FDR-adjusted significance (q < 0.05; Figure 3B). Finally, Treponema

pallidum showed 30 reactive epitopes, including 13 unique to

COVID-Mod and 17 to COVID-Sev.

These data underscore the complexity of bacterial epitope

recognition in COVID - 19, with substantial differences in IgG

responses between disease severities. The observed heterogeneity

may reflect the modulation of immune recognition pathways

triggered by SARS-CoV-2 infection.
Frontiers in Immunology 06
COVID-19 patients produce differential
patterns of parasite and fungus epitope
recognition

Finally, we assessed IgG reactivity to parasitic and fungal epitopes

and again observed group-specific differences. Among parasites

(Figure 4A), Entamoeba histolytica presented three epitopes

recognized exclusively by the COVID-Sev group. Gnathostoma

binucleatum showed four reactive epitopes—one specific to COVID-

Mod and three to COVID-Sev. Leishmania braziliensis and Leishmania

donovani each had one epitope uniquely recognized by COVID-Mod,

while Leishmania aethiopica had three epitopes recognized only by

COVID-Sev. Leishmania infantum had two reactive epitopes, one in

each COVID group.

Leptospira interrogans exhibited two differentially recognized

epitopes—one per group. Necator americanus displayed six reactive

epitopes, four exclusive to COVID-Mod and two to COVID-Sev. A

single epitope from Onchocerca volvulus was recognized only by

COVID-Sev. Plasmodium falciparum showed the highest parasite-

related reactivity with 46 epitopes—18 unique to COVID-Mod and

28 to COVID-Sev. Plasmodium vivax had 18 differentially

recognized epitopes, with ten specific to COVID-Mod and eight

to COVID-Sev. Schistosoma japonicum had one epitope recognized

only in COVID-Sev, while Schistosoma mansoni displayed three

epitopes—two in COVID-Mod and one in COVID-Sev. Taenia

crassiceps yielded one COVID-Sev–specific epitope, and Taenia

solium had five—one specific to COVID-Mod and four to

COVID-Sev. Toxoplasma gondii exhibited 34 reactive epitopes,

with 19 recognized only in COVID-Mod and 15 in COVID-Sev.

Trypanosoma cruzi showed 26 epitopes with a balanced distribution

—13 per group. Two epitopes from Wuchereria bancrofti were

uniquely recognized by COVID-Mod patients. While we observed

several differential profiles in IgG recognition of parasitic epitopes,

none reached statistical significance according to FDR-adjusted p-

values (q < 0.05).

For fungal pathogens (Figure 4B), differential IgG recognition

was observed only for Candida albicans, which exhibited two reactive

epitopes—one uniquely recognized by each COVID group; however,

these differences did not reach statistical significance.

Together, these results highlight distinct IgG recognition

patterns against parasite and fungal epitopes in COVID - 19

patients. The observed group-specific responses may reflect

differential immune imprinting shaped by disease severity and

prior pathogen exposure.
Discussion

Our comprehensive IgG epitope profiling across 4,344

pathogen-derived linear peptides demonstrates that SARS-CoV-2

infection induces widespread, severity-dependent alterations in

humoral immune responses. These changes shape antibody

recognition not just of SARS-CoV-2 epitopes but also of diverse

viral, bacterial, parasitic, and fungal antigens, offering a potential
frontiersin.org
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new perspective on immune system reprogramming after

COVID - 19.

Initially, some technically relevant aspects of the assay used in

this study warrant consideration. When testing serum samples

against individual epitopes, the resulting data cannot be directly

interpreted as evidence of active or past infection. As demonstrated

in the analysis of SARS-CoV-2 epitopes, samples from COVID-
Frontiers in Immunology 07
Mod and COVID-Sev individuals exhibited stronger and more

abundant epitope recognition compared to those from non-

exposed individuals and the therapeutic IVIg formulation.

However, this pattern of recognition cannot be generalized to

other epitopes or pathogens assessed in the study. Furthermore,

in our results, we only present epitopes that showed differential

recognition between the COVID groups, which are the primary
FIGURE 3

IgG targeting of bacterial epitopes across distinct donor groups. Data were obtained using the Infectious Disease Epitope Microarray to profile serum
or purified IgG from four groups: 40 healthy individuals unexposed to SARS-CoV-2 (N-exp HCs), pooled intravenous immunoglobulin (IVIg) derived
from thousands of donors, 39 patients with moderate COVID - 19 (COVID-Mod), and 40 patients with severe COVID - 19 (COVID-Sev). (A)
Heatmaps show IgG reactivity against selected bacterial epitopes exhibiting differential recognition between the COVID-Mod and COVID-Sev
groups. The name of each evaluated pathogen is indicated above its corresponding heatmap. Within each heatmap, epitopes are ranked by
recognition intensity, with those most strongly recognized by IgG from the COVID-Sev group positioned at the top, followed by those preferentially
targeted by the COVID-Mod group. *FDR-adjusted p-values (q < 0.05) indicate statistically significant differences between the COVID-Mod and
COVID-Sev groups. (B) Detailed IgG reactivity data for the statistically significant (q < 0.05) viral epitopes differentiating the COVID-Mod and COVID-
Sev groups. Box-and-whisker plots show the median, interquartile range, and individual signal intensities for each epitope. Results are expressed in
arbitrary units (A.U.), calculated as the ratio between sample reactivity and background reactivity for each evaluated epitope.
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FIGURE 4

IgG targeting of parasite and fungus epitopes across distinct donor groups. Data were obtained using the Infectious Disease Epitope Microarray to
profile serum or purified IgG from four groups: 40 healthy individuals unexposed to SARS-CoV-2 (N-exp HCs), pooled intravenous immunoglobulin
(IVIg) derived from thousands of donors, 39 patients with moderate COVID - 19 (COVID-Mod), and 40 patients with severe COVID - 19 (COVID-
Sev). (A) Heatmaps show IgG reactivity against selected parasite epitopes, and (B) heatmaps show IgG reactivity against selected fungus epitopes,
both exhibiting differential recognition between the COVID-Mod and COVID-Sev groups. The name of each evaluated pathogen is indicated above
its corresponding heatmap. Within each heatmap, epitopes are ranked by recognition intensity, with those most strongly recognized by IgG from the
COVID-Sev group positioned at the top, followed by those preferentially targeted by the COVID-Mod group. Results are expressed in arbitrary units
(A.U.), calculated as the ratio between sample reactivity and background reactivity for each evaluated epitope.
Frontiers in Immunology frontiersin.org08

https://doi.org/10.3389/fimmu.2025.1668223
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


do Nascimento et al. 10.3389/fimmu.2025.1668223
focus of our analysis. It is therefore possible that additional epitopes

were recognized by the control groups but not by the COVID

groups, and these were not included in the current display.

We observed pronounced cross-reactive humoral responses

against non–SARS-CoV-2 viruses, notably hepatitis C, SARS-

CoV-1, influenza A, dengue, and HTLV, with the strongest

responses in patients with severe disease. This may aligns with

emerging literature on cross-reactivity and “heterologous

immunity,” where immune memory induced by one pathogen

influences responses to another (21, 22).

Shrock et al. and Song et al. demonstrated that broader IgG

responses and cross-reactivity with conserved spike epitopes are

associated with severe COVID - 19, suggesting a combination of

pre-existing immunity and de novo antibody generation, potentially

driven by antigenic mimicry or epitope spreading (22, 23).

Mechanistically, heterologous antibody responses may arise via

molecular mimicry, where structural similarities between

pathogen antigens—even from bacteria—trigger cross-reactive

immune activation (24). Busse et al. demonstrated in vitro that

sensitization with bacterial peptides homologous to SARS-CoV-2

induces cross-reactive T cell immunity (25). Our observation of IgG

reactivity to peptides from commensals such as M. tuberculosis, S.

aureus, and P. gingivalis suggests humoral extensions of this

heterologous response. Echoing this, emerging data indicate that

microbiome-derived peptides can shape early SARS-CoV-2

immune responses (26).

Differential epitope recognition between moderate and severe

COVID - 19 cases, especially forHCV andM. tuberculosis, indicates

that severe infection may be associated with more extensive

antibody spreading or activation. This is consistent with reports

that severe disease induces epitope breadth expansion due to

systemic inflammation and dysregulated B cell responses (27).

Such dysregulated responses have also been implicated in

autoantibody development in COVID - 19 (28, 29), and our

results suggest possible collateral reactivity to microbial and self-

antigens. While antibody-dependent enhancement (ADE)

remains rare in COVID - 19 (30), identification of cross-reactive

epitopes warrants functional investigation for neutralizing versus

pathogenic roles.

Beyond observational patterns, growing evidence indicates that

the IgG repertoire may play an active immunoregulatory role.

Qualitative differences in IgG extend beyond antigen specificity

and can directly influence immune cell function. Several studies

have shown that polyclonal IgG molecules are capable of

modulating activation thresholds, cytokine secretion profiles, and

the phenotypic differentiation of both T and B cells—independently

of classical Fc receptor engagement—in diverse pathological

contexts, including allergies (31–36), atopic dermatitis (37–40),

and viral infections (41, 42). Furthermore, in an innovative

approach, Nahm et al. demonstrated that the in vivo

administration of polyclonal IgG obtained from patients with

atopic dermatitis can exert immunomodulatory effects on

peripheral T cells, leading to clinical improvement in these

patients (43–47). Together, these in vitro and in vivo observations

—although not obtained in the specific context of viral infection—
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suggest that distinct sets of IgG idiotypes can effectively modulate

immune responses, with potential clinical implications. In the

present study, we observed marked differences in IgG recognition

of several epitopes. This differential reactivity profile is likely

associated with distinct sets of IgG idiotypes between moderate

and severe COVID - 19 cases. Although our analysis did not assess

these variations longitudinally, we propose that, at the time of each

clinical manifestation, the specific IgG idiotype repertoire present in

moderate or severe COVID - 19 could theoretically involve

immunomodulatory effects on self-immunity.

Recent proteomic analyses have demonstrated that IgG

preparations from individuals with varying degrees of SARS-

CoV-2 disease severity can elicit distinct patterns of interaction

with multiple human tissues and diverse peripheral blood cell types

(15, 48).

Mechanistic studies have also demonstrated that IgG from

individuals with varying degrees of SARS-CoV-2 disease severity

can function as a modulatory molecule, influencing the activity of

peripheral mucosal-associated invariant T (MAIT) cells (49). These

findings support the hypothesis that the SARS-CoV-2–induced

shifts in the IgG repertoire we observed—particularly in patients

with severe disease—may not only reflect downstream immune

activation but may also contribute actively to shaping immune

responses through direct modulation of lymphocyte function.

Clinically, severity-associated epitope signatures may serve as a

basis for the development of future biomarkers. For example,

elevated recognition of hepatitis C or SARS-CoV-1 peptides in

severe patients may reflect broader B cell activation or predisposing

immune dysregulation. Epitope-based seroprofiling could serve as a

tool to stratify patients and inform prognosis.

Our study has several limitations. First, we did not evaluate the

functional properties of the identified antibodies—such as their

neutralizing capacity or Fc-mediated effector functions—which are

essential for determining clinical relevance. Second, comprehensive

clinical histories of the participants, including prior infections,

vaccination status, and sex- and age-related immune variables,

were not fully documented. These factors may act as potential

confounders and should be carefully considered in future

stratified analyses.

Third, the cross-sectional study design limits temporal

interpretation; it remains unclear whether the observed epitope

reactivities predated or resulted from SARS-CoV-2 infection.

Finally, the absence of an independent validation cohort restricts

the generalizability of our findings; future studies should address

this by including longitudinal sampling and external validation

across diverse populations.

Despite these limitations, our findings offer important insights.

They underscore the complexity of post-COVID immune landscapes

and may suggest potential roles for epitope spreading and molecular

mimicry in modulating humoral responses. These observations may

inform novel strategies for biomarker development, vaccine design,

and patient stratification. A deeper understanding of how SARS-

CoV-2 infection reshapes the IgG repertoire—including cross-

reactivity to antigens from unrelated pathogens—may theoretically

contribute to future pandemic preparedness and the management of
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post-infectious syndromes. Although preliminary, the severity-

associated epitope signatures described here may ultimately support

personalized immunomonitoring approaches for co-infected or

immunocompromised individuals, pending further validation.
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