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Introduction: The emerging fungal pathogen Sporothrix brasiliensis has been

responsible for epidemic outbursts of sporotrichosis in Latin America, particularly

Brazil, in recent years. The higher aggressiveness of the infection and its zoonotic

nature are hallmarks of the pathogen, but the immunological markers of protection

are not fully characterized. The C-type lectin receptors – dectin-1 and dectin-2 –

drive key antifungal responses, and here we aimed to uncover their contribution

against S. brasiliensis in a murine model of disseminated sporotrichosis.

Methods:Wild-type, Dectin-1 and/or Dectin-2 knockout, and IL-17A/F knockout

C57BL/6J mice were challenged with S. brasiliensis in a model of systemic

infection. Animals were monitored for parameters as survival and body weight

loss. Immunological analyses as assessment of cytokines and immune cell

profiling were conducted in the livers.

Results: We showed that the receptors are essential for host survival, necessary

to limit the fungal dissemination, and that their main effector functions can be

related to shaping the T cell response, notably the cytotoxic CD8+ and Treg cell

populations, instead of a conventional TH17 profile. While we also observed a

contribution of IL-17 in the host defense, the cytokine is not involved in the

restriction of the fungal growth.

Discussion: Our results uncover dectin-1 and dectin-2 as novel determinants of

protection against S. brasiliensis, but their effector function is not linked to the

induction of IL-17 responses. Our fundings help to expand the understanding of

the pathophysiology of this infection.
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Introduction

Sporothrix brasiliensis is an emerging fungal pathogen

associated with epidemic outbreaks of a more aggressive form of

the mycosis sporotrichosis (1). Belonging to the Sporothrix schenckii

complex, Sporothrix spp. have always caused concern among the

scientific community (2). However, the higher severity of S.

brasiliensis infections linked to its strong epidemic potential has

put this pathogen in the spotlight in recent years (3). Currently, S.

brasiliensis has surpassed the other members of the S. schenckii

complex as the main causative agent of sporotrichosis in Brazil, and

unfortunately, it is spreading across several countries in Latin

America (4), with isolated cases already being reported in Europe

and North America (5).

Infections by Sporothrix spp. are primarily associated with

contact with contaminated soil, plants, or organic matter (hence,

the alias as the “gardener’s disease”) (6); however, for S. brasiliensis,

zoonotic sporotrichosis and animal-to-human transmissions have

been recognized as the main sources of contamination (1, 4). For

instance, the ability of S. brasiliensis to infect animals, particularly

stray cats, helps to explain its rapid dissemination and poses a great

challenge for control by public health measures (4, 7). In addition,

despite the subcutaneous nature of the mycosis, atypical (extra-

cutaneous) presentations with invasive commitment linked to S.

brasiliensis are more common and are on the rise (7, 8).

The higher virulence of S. brasiliensis is not fully understood and

cannot be traced to a single trait. The most important features

include: i) higher thermotolerance and thermodimorphic behavior

(whereas the mycelial form is considered saprophytic and the yeast

phase parasitic) (7)—but for S. brasiliensis, the zoonotic transmission

occurs directly by yeast inoculation; ii) the ability to form biofilms (9);

and iii) the production of enzymes, adhesion molecules, and melanin

(10). Nevertheless, the interaction of these attributes with the host

system is what determines the infection outcome.

From the host’s perspective, an even larger gap exists about the

immune response triggered against S. brasiliensis, and only in recent

years have some advances in addressing those questions been

observed. In this context, innate immunity is our first layer of

defense, and its operation requires pathogen detection mediated by

pattern recognition receptors (11). The prototypical innate

molecules Toll-like receptor 2 (TLR2) and TLR4 have been

shown to be important for host defense in murine models of S.

brasiliensis infection, mainly by regulating the effector function of

phagocytes and the inflammatory response, although their

deficiency did not compromise animal survival upon the fungal

challenge (12, 13). The complement protein C3 and the surface

molecule CD11b have also been shown to be important for the

interaction between S. brasiliensis and macrophages (14).

The main sensors involved in fungal recognition, however,

belong to the family of the C-type lectin receptors (CLRs).

Dectin-1 (CLEC7A in humans and Clec7a in mice) and dectin-2

(CLEC6A/Clec4n) are the most studied CLRs, and we and others

have reported their roles in the defense against a plethora of fungal
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pathogens (15–20). The induction of T helper 17 (TH17) responses

is considered their canonical, but not solely, effector function (21).

Independent groups have suggested a marginal contribution of

dectin-1 in the interaction between S. brasiliensis and phagocytes

(22, 23), but these findings are limited to in vitro settings. Thus, the

in vivo relevance of CLRs in anti-S. brasiliensis response is still an

open question. Here, we proposed to evaluate the relevance of

dectin-1/dectin-2 in the host response to S. brasiliensis in an

experimental model of disseminated disease. We observed that

the lack of these receptors severely compromised the ability to

resist the fungal challenge. Curiously, the defective antifungal

response in the absence of CLRs was not directly linked to an

interleukin 17 (IL-17) response, but rather to a dysbalanced profile

of cytotoxic CD8+ T cells and regulatory T cells (Tregs), which

could be the result of a poor ability to activate dendritic cells. Our

findings underscore dectin-1/dectin-2 as key determinants for an

efficient host defense against S. brasiliensis.
Materials and methods

Mice

Female mice in C57BL/6J genetic background deficient for

dectin-1 (Clec7a–/–), dectin-2 (Clec4n–/–), dectin-1/dectin-2

(Clec7a–/––Clec4n–/–), IL-17A/IL-17F (Il17a–/––Il17f–/–), and rag2

(Rag2–/–) were used in this study (15). C57BL/6J wild-type (WT)

mice were acquired from CLEA Japan (Tokyo, Japan) and co-

housed with the knockout animals for at least 1 week prior to the

experiments. All mice were maintained under specific pathogen-

free conditions with a gamma ray-sterilized diet and acidified tap

water (0.002 N HCl) ad libitum.

All experiments were conducted following the “Fundamental

Guidelines for Proper Conduct of Animal Experiments and Related

Activities in Academic Research Institutions under the Jurisdiction

of the Ministry of Education, Culture, Sports, Science, and

Technology” (Ministry of Education, Culture, Sports, Science and

Technology, Japan, 2006). The Institutional Animal Care and Use

Committee from Chiba University approved the protocols reported

in this paper under process number A7-198.
Fungal strain and inoculum preparation

The reference strain S. brasiliensis 5110 (Sporothrix brasiliensis

Marimon MYA-4823; American Type Culture Collection,

Manassas, VA, USA) was used throughout this study. The fungus

was maintained in brain heart infusion (BHI) agar (BD, Franklin

Lakes, NJ, USA) at 37°C with biweekly subcultures.

For inoculum preparation, the fungus was seeded in BHI agar

plates and incubated for 5 days at 37°C. Colonies were harvested and

washed in 0.1% Tween-80/PBS (phosphate-buffered saline) solution,

resuspended in saline solution (0.9% NaCl), and kept at 4°C until use.
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In vivo infections

For in vivo infections, the animals were inoculated through the

intravenous route (lateral caudal vein) with 5 × 106 yeast cells in 100 ml
of saline solution. Animal weight and survival were monitored daily

for up to 27 days post-infection (dpi).

Fungal burden analysis
On the indicated dpi, the animals were euthanized by cervical

dislocation, and the organs were perfused with ice-cold PBS before

surgical removal. After being weighed, the organs were macerated

in PBS through mesh sieves. Dilutions of the macerates were plated

on PDA plates (Eiken Chemical, Tokyo, Japan), incubated at 30°C

for 4 days, and the recovered colony-forming units (CFU) counted.

Fungal burden was expressed as CFU per gram of organ. The

macerates were centrifuged at 14,000 × g for 5 min, and the

supernatants were collected and stored at −80°C for cytokine

analysis (see below).

Histopathological analyses
On the indicated dpi, the livers were perfused with PBS and

fixed overnight in commercial formalin solution (Fujifilm Wako,

Osaka, Japan). Samples were embedded in paraffin, and sections

were stained with routine hematoxylin–eosin, Grocott ’s

methenamine silver, or Masson’s trichrome staining method.

Isolation of liver leukocytes and flow cytometry
analysis

Liver leukocytes were isolated from the sample macerates by

Percoll centrifugation as described by Prosser et al. (24). The

recovered cells were submitted to surface and intracellular

staining for flow cytometry evaluation. For cell permeabilization,

the commercial kits “Foxp3 Staining Buffer Set” (for CD4+ T-cell

evaluation) and “Fixation & Permeabilization Buffer Set” (CD8+ T

cells) (eBioscience, San Diego, CA, USA) were used according to the

manufacturer’s instructions. Data were acquired with a FACSVerse

flow cytometer (eight-color; BD, Franklin Lakes, NJ, USA) and

analyzed using FlowJo (v.10.7.1 for Mac OS X; BD, Franklin Lakes,

NJ, USA). The list of antibodies used for the analysis is provided in

Supplementary Table S1, and representative gating strategies are

shown in Supplementary Figure S1.
Bone marrow-derived dendritic cells and in
vitro infections

Bone marrow-derived dendritic cells (BMDCs) were generated

from bone marrow cells harvested from the femur and tibia of the

WT and Clec7a–/––Clec4n–/– mice by granulocyte–macrophage

colony-stimulating factor (GM-CSF) differentiation protocol as

previously described (15). On the day of the assay, 1 × 106

BMDCs were stimulated with freshly harvested S. brasiliensis

yeast cells (multiplicity of infection, 1:1) or 100 ng/ml of

lipopolysaccharide (LPS) (from Escherichia coli O111:B4; Sigma-
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Aldrich, St. Louis, MO, USA) for 24h at 37°C and 5% CO2. The

supernatants were harvested for cytokine measurements (see

below), and the cells were stained with antibodies (Supplementary

Table S1) for the flow cytometry analysis.
Cytokine measurements

Cytokines [except for IL-10 and transforming growth factor

beta (TGF-b)] were quantified using the BD Cytometric Bead Array

assay according to the manufacturer’s instructions. Data were

acquired using FACSVerse and analyzed with the FCAP Array

software (v.3.0.1; BD, Franklin Lakes, NJ, USA). The detection

limits were as follows: IL-1b = 1.9 pg/ml, IL-6 = 1.4 pg/ml, tumor

necrosis factor (TNF) = 2.8 pg/ml, interferon gamma (IFN-g) = 0.5

pg/ml, IL-4 = 0.3 pg/ml, IL-17A = 0.95 pg/ml, and IL-17F = 0.81

pg/ml.

The levels of IL-10 and TGF-b were quantified by sandwich

ELISA using commercially available kits (DuoSet™ ELISA

Development System, BioTechne/R&D Systems, Minneapolis,

MN, USA) according to the manufacturer’s instructions. The

adopted measurement range was 2,000–31.2 pg/ml.
Statistical analysis

Statistical analyses were performed using the software

GraphPad Prism (v.10 for OSX; GraphPad Inc., La Jolla, CA,

USA). Data were screened for the detection of outliers using the

ROUT method. The statistical test employed for each analysis, the

sample size, and the number of replicates in each experiment are

described in the figure legends. A p-value <0.05 was considered

statistically significant.
Results

Dectin-1/dectin-2 are essential for
protection against S. brasiliensis infection

Systemic sporotrichosis is the most studied experimental model

for investigating host–pathogen interactions and the immune

response (25). We established a model of disseminated disease by

administering S. brasiliensis yeast cells through the intravenous

route and analyzed the outcome of the infection among WT and

dectin-1 and/or dectin-2 knockout mice (Figure 1).

In agreement with our initial expectations, animals lacking

dectin-1/dectin-2 were remarkably susceptible to S. brasiliensis

infection (Figure 1). In addition to the enhanced mortality

observed in the Clec7a−/−–Clec4n−/− animals (Figure 1A), the

infection caused a more intense weight loss during the course of

the experiment compared with their WT counterparts (Figure 1B),

indicating a more aggressive disease in the absence of the receptors.

In line with this, the knockouts also presented higher fungal

burdens in the liver, spleen, lungs, and kidneys (measured at 14
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dpi), pointing to a systemic inability to restrain the pathogen

dissemination (Figure 1C).

Interestingly, when the individual contribution of each receptor

was analyzed using single knockout animals, dectin-1 appeared to play

the dominant role, while the lack of dectin-2 alone did not remarkably

alter the analyzed parameters (Figure 1). Nevertheless, it must be
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highlighted that the Clec7a−/− mice could not fully recapitulate the

double-knockout profile, as the Clec7a−/−–Clec4n−/− animals remained

the most sensitive group. This suggests that dectin-2 is still involved in

the protective response, but it may act by potentiating the functionality

of dectin-1. Thus, to better characterize the host mechanisms involved,

we followed the subsequent analyses with double-knockout animals.
FIGURE 1

Dectin-1 and dectin-2 are essential for resistance against Sporothrix brasiliensis infection. (A, B) Wild type (WT), Clec7a−/−, Clec4n−/−, and Clec7a−/−–
Clec4n−/− mice were infected intravenously with 5 × 106 yeast cells, and the survival (A) and body weight loss (B) were monitored for up to 27 days
post-infection (dpi). n = 16–20 mice per group, pooled from two independent experiments. (A) Survival curves compared by log-rank (Mantel–Cox)
test: ##p < 0.01 (vs. WT); ****p < 0.0001 (vs. Clec7a−/− and Clec4n−/−). (B) Body weight loss plots and area under the curve (AUC) bars shown as the
mean ± SEM. One-way ANOVA and Fisher’s least significant difference (LSD) posttest: **p < 0.001. (C) Fungal burden in the organs harvested at 14
dpi. Data shown as colony-forming units (CFU) per gram of organ. n = 7–9 mice per group, pooled from two independent experiments. Each dot
represents one mouse, and bars indicate the mean ± SEM. Kruskal–Wallis and Dunn’s posttest: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
(D) Micrographs of the liver sections stained with hematoxylin–eosin (HE, first row) or Grocott’s methenamine silver (second row) methods. Scale
bars represent 100 mm. Data representative of two (sham)–four (infected) mice per group from two independent experiments.
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These initial results indicate that dectin-1/dectin-2 are essential

players in the host defense against S. brasiliensis, required for fungal

restriction and maintenance of the host fitness.

Lack of dectin-1/dectin-2 does not enhance
tissue inflammation

The results from the fungal burden analysis pointed to the liver as

the most compromised organ (Figure 1C), and it was chosen as a

proxy for the response characterization. Initially, we confirmed the

fungal colonization in the livers by histopathological analysis

(Figure 1D). Interestingly, S. brasiliensis infection led to the

development of diffuse, granuloma-like inflammatory foci around

the fungal structures both in the WTs and the knockouts (Figure 1D,

top row). However, as expected, in the Clec7a−/−–Clec4n−/− mice, a

massive fungal burden could be detected, as observed in the silver
Frontiers in Immunology 05
staining images (Figure 1D, bottom row). Thus, we next measured

the levels of the cytokines classically involved in the inflammatory

response and host defense to fungal pathogens (26) (Figure 2).

Curiously, despite the massive fungal colonization, the

inflammatory cytokines were not proportionally augmented

(Figure 2A). While TNF and IL-6 were not altered by the lack of

dectin-1/dectin-2, lower levels of IL-1b were found in the

knockouts. Interestingly, with regard to the cytokines associated

with adaptive immunity, we found a predominance of the IL-17

response, particularly IL-17F, whose levels were compromised by

the deficiency of the receptors (Figure 2B). Concurrently, we did not

detect differences in the levels of the anti-inflammatory cytokines,

i.e., IL-10 and TGF-b (Figure 2C).

Thus, instead of an overt inflammation driven by an

unrestrained fungal growth, the lower levels of IL-1b and IL-17F
FIGURE 2

Cytokine profile in the liver macerates of Sporothrix brasiliensis-infected mice. Wild-type (WT) and Clec7a−/−–Clec4n−/− mice were infected
intravenously with 5 × 106 yeast cells, and livers were harvested at 14 days post-infection (dpi). (A) Levels of IL-1b, TNF, and IL-6. (B) Levels of IFN-g,
IL-4, IL-17A, and IL-17F. (C) Levels of IL-10 and TGF-b. Data shown as picograms of cytokine per gram of organ. n = 8 mice per group, pooled from
two independent experiments. Each dot represents one mouse, and bars indicate the mean ± SEM. Mann–Whitney U test: *p < 0.05.
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FIGURE 3

IL-17A/F promote resistance against Sporothrix brasiliensis infection, but do not alter fungal restriction. (A, B) Wild-type (WT), Clec7a−/−–Clec4n−/−,
and Il17a−/−–Il17f−/− mice were infected intravenously with 5 × 106 yeast cells, and the survival (A) and body weight (B) loss were monitored for up to
27 days post-infection (dpi). n = 18–20 mice per group, pooled from two independent experiments. (A) Survival curves compared by log-rank
(Mantel–Cox) test: ****p < 0.0001. (B) Body weight loss plots and area under the curve (AUC) bars shown as the mean ± SEM. One-way ANOVA and
Fisher’s least significant difference (LSD) posttest: **p < 0.001, ****p < 0.0001. (C) Fungal burden in the organs harvested at 18 dpi. Data shown as
colony-forming units (CFU) per gram of organ. n = 8 mice per group, pooled from two independent experiments. Each dot represents one mouse,
and bars indicate the mean ± SEM. Mann–Whitney U test: no significance detected. (D) Micrographs of the liver sections stained with hematoxylin–
eosin (HE, first row), Grocott’s methenamine silver (second row), or Masson’s trichrome (third row) method. Scale bars represent 100 mm. Data
representative of two (sham)–four (infected) mice per group from two independent experiments.
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would argue in favor of a hypothesis of dectin-1/dectin-2 promoting

protection against S. brasiliensis through the induction of a

prototypical type 3 (IL-17–driven) response, which is the

paradigmatic branch of the adaptive immunity linked to

resistance against fungal infections (27).

IL-17A/F are required for protection, but they do
not regulate the fungal containment

To validate the importance of IL-17 in our model, we challenged

the Il17a−/−–Il17f−/− mice with S. brasiliensis and compared their

infection outcome to those of the WT and Clec7a−/−–Clec4n−/− groups

(Figures 3A, B). As expected, IL-17 deficiency did compromise the

host defense, leading to higher mortality and weight loss compared

with the WT. Nonetheless, the Clec7a−/−–Clec4n−/− mice were still

more susceptible than their Il17a−/−–Il17f−/− counterparts, indicating

the involvement of additional mechanisms.

Astoundingly, despite the higher susceptibility of the IL-17

knockouts to the fungal challenge, the absence of the cytokines

did not affect the fungal burden in any of the assessed organs

(Figure 3C) as observed for dectin-1/dectin-2 deficiency

(Figure 1C). Rather than uncontrolled fungal dissemination, the

Il17a−/−–Il17f−/− mice were colonized to the same levels as the WTs.

To obtain further insight into this observation, we also

performed histopathological analysis of the livers from these

animals (Figure 3D). Intriguingly, in contrast to the diffuse

inflammatory foci observed, as shown in Figure 1D, deficiency in

IL-17 led to a disorganized tissue structure, characterized by

massive fibrosis, as revealed by Masson’s trichrome staining. It

should also be noted that these features were not accompanied by

widespread fungal growth, in agreement with the fungal burden

data (Figure 3C), unlike what was observed in animals deficient in

dectin-1/dectin-2 (Figure 1). These results suggest that the

maintenance of host fitness against S. brasiliensis does not

exclusively involve pathogen containment.

Dectin-1/dectin-2 do not shape the local T-
helper cell profile

The disconnection between dectin-1/dectin-2 and IL-17 in the

control of the fungal dissemination prompted us to re-evaluate whether

type 3 immunity is the major response induced by the CLRs.

Initially, we aimed to confirm the requirement of lymphocytes

for host resistance in our model by using animals knockout for Rag2

(15) and comparing their performance upon S. brasiliensis

challenge (Figures 4A, B). Indeed, the lack of lymphocytes

severely compromised the survival of the mice and led to a

marked weight loss during the experiment. More importantly,

their phenotype was virtually identical to Clec7a−/−–Clec4n−/−

mice, strongly implying that the lymphocyte response could be

the primary effector function of dectin-1/dectin-2.

Subsequently, we aimed to identify the dominant adaptive

response induced by S. brasiliensis. Firstly, we harvested

splenocytes from infected mice, re-stimulated them with the

pathogen yeast cells, and measured the hallmark cytokines in the

culture supernatants (Supplementary Figure S2). Interestingly, IFN-

g was the predominant cytokine observed, whereas IL-4, IL-17A,
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and IL-17F were barely detected. Furthermore, the levels of IFN-g
were compromised by the lack of dectin-1/dectin-2. These results

suggest that S. brasiliensis infection polarizes toward a type 1/TH1,

not type 3/TH17, profile and that the process is instructed by dectin-

1/dectin-2.

Thus, we next evaluated the profile of the CD4+ T-cell population

in the livers of the infected animals (Figures 4C, D), which revealed

no alterations in the population of total CD4+ T cells (Figure 4C).

Furthermore, we characterized the subpopulations of TH cells based

on the expression of the classical transcription factors, i.e., T-bet

(TH1), GATA3 (TH2), and RORgt (TH17) (28). In agreement with the

splenocyte results (Supplementary Figure S2), the major subset was

composed of TH1 cells, whereas the other subtypes were detected at

lower levels (Figure 4D). Unexpectedly, no changes in their

proportions were observed due to the lack of CLRs.

Therefore, even though dectin-1/dectin-2 might be needed to

shape the T-cell response in secondary lymphoid organs, such as the

spleen, this does not necessarily reflect in the cell profile at

peripheral organs.

Deficiency of dectin-1/dectin-2 favors an
immunosuppressed T-cell environment

The weak influence of dectin-1/dectin-2 over the TH-cell

population prompted us to investigate other branches of the T-

cell response, particularly CD8+ T cells and Tregs (Figures 4E–G).

Curiously, there was a pronounced influx of CD8+ T cells in the

knockout group (Figure 4E). However, these cells showed lower

levels of granzyme B (GzmB) compared with their WT counterparts

(Figure 4F). Therefore, despite the higher presence of CD8+

lymphocytes, they displayed a dampened cytotoxic profile in the

absence of dectin-1/dectin-2.

Remarkably, we could also detect a significant population of

Tregs that was further increased in the Clec7a−/−−Clec4n−/− mice

(Figure 4G). Together with the impaired presence of cytotoxic

CD8+ T cells, these results indicate that the lack of dectin-1/

dectin-2 favors an immunosuppressed environment that might be

less able to counter the fungal growth.

S. brasiliensis is a poor activator of dendritic cells
Our results indicate that dectin-1/dectin-2 are required for the

balance of the lymphocyte response against S. brasiliensis. However,

notwithstanding the profile of T cells that the receptors might

enforce, rather than working directly on lymphocytes, CLRs act by

shaping the profile of antigen-presenting cells, particularly dendritic

cells (28).

To conciliate our findings, we analyzed the response of BMDCs

stimulated with S. brasiliensis (Figure 5). Interestingly, we observed

that the pathogen is a very weak BMDC activator. In contrast to the

positive control LPS, S. brasiliensis triggered almost no cytokine

production (Figure 5A) or expression of the co-stimulatory

molecule CD86 (Figure 5B). We only observed a dectin-1/dectin-

2-dependent production of TNF (Figure 5A), suggesting that these

CLRs are still needed for a minimal level of cell activation.

The poor response of BMDCs could be indicative of a

polarization toward a tolerogenic profile (29), and dendritic cells
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FIGURE 4

The T-cell profile is affected by the lack of dectin-1/dectin-2. (A, B) Wild type (WT), Clec7a−/−–Clec4n−/−, and Rag2−/− mice were infected
intravenously with 5 × 106 yeast cells, and the survival (A) and body weight loss (B) were monitored for up to 27 days post-infection (dpi). n = 19–20
mice per group, pooled from two independent experiments. (A) Survival curves compared by log-rank (Mantel–Cox) test: ****p < 0.0001. (B) Body
weight loss plots and area under the curve (AUC) bars shown as the mean ± SEM. One-way ANOVA and Fisher’s least significant difference (LSD)
posttest: ****p < 0.0001. (C–G) T-cell profile in the livers of infected mice harvested at 14 dpi. Frequency and counts of the total CD4 T cells (C);
TH1, TH2, and TH17 cells (D); total CD8 T cells (E); granzyme B (GzmB)-expressing CD8 T cells (F); and regulatory T cells (Tregs) (G). n = 8 mice per
group, pooled from two independent experiments. Each dot represents one mouse, and bars indicate the mean ± SEM. Mann–Whitney U test:
*p < 0.05, ***p < 0.001.
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lacking dectin-1/dectin-2 show an even less activated phenotype

that might reflect in potentiation of Treg differentiation, leading to a

poorer cytotoxic environment that favors fungal proliferation.
Discussion

The world is witnessing a mounting rise in the cases of fungal

infections in recent years, partially driven by the emergence of

novel, more aggressive pathogens such as S. brasiliensis, Candida

auris (30), and Trichophyton indotineae (31). The understanding of

the immunology of these infections is an urgent requirement for

counteractions. Here, we showed that dectin-1 and dectin-2 are key

receptors for host resistance against S. brasiliensis, but the infection

itself displays features of dampened inflammation, which can

sustain the chronic evolution of the disease.

The poor activation of BMDCs argues in favor of this

hypothesis. In agreement with our data, human dendritic cells

and granulocytes were also shown to be less responsive to S.

brasiliensis stimulation (22, 23), while human macrophages were

more sensitive (23). Interestingly, most of the immunogenicity of S.

brasiliensis is suggested to be carried by extracellular vesicles

secreted by the fungus instead of the fungal cell per se (32, 33).

Antigen masking could be a possible strategy to escaping host

detection, as S. brasiliensis has been shown to have a thicker cell wall

with less antigen exposure (34, 35). Along this line, while Garcıá-

Carnero et al. reported low S. brasiliensis-driven cytokine responses

by human peripheral blood mononuclear cells (PBMCs) (36),

Kischkel et al. detected high responsiveness in equivalent PBMC
Frontiers in Immunology 09
samples (37); however, the latter employed heat-killed yeast cells

instead of native cells as the former, and the heat treatment might

have enhanced the immunogenicity of the material. Alternatively,

interspecies variables have to be taken into consideration, as human

and murine immune cells may display distinct recognition patterns,

as observed for Candida albicans (38), which might affect the

interpretation of the profiles and limit direct extrapolations.

Although the definitive contribution of each phagocyte type to

host defense needs to be addressed in the future, the overall poor

inflammatory potential of S. brasiliensis in vivo might in fact

contribute to the aggressiveness of the infection as the host

response is moved toward an environment highly permissive to

fungal dissemination and persistence. In this scenario, dectin-1/

dectin-2 act by limiting the polarization of Tregs and favoring the

cytotoxic activity of CD8 T cells.

In parallel, the finding that IL-17 is involved in host survival,

but not due to a presumed antifungal activity, was unexpected and

intriguing. In addition to the well-known roles of IL-17 cytokines in

driving inflammatory responses, the cytokines are also involved in

tissue maintenance and repair (39). In support of this idea, our

histopathological analysis showed that the IL-17 knockouts did not

exhibit overwhelming fungal dissemination, as observed in dectin-

1/dectin-2 knockouts, but presented compromised, fibrotic livers,

which may have contributed to the demise of the animals. The role

of IL-17 in organ fibrosis remains a matter of debate, as this

cytokine can exert either anti- or profibrotic effects according to

the context of the underlying disease (40). Interestingly, it has been

reported that IL-17A neutralization reduced the extent of

granuloma formation in a model of infection with the parasite
FIGURE 5

Sporothrix brasiliensis is a poor activator of bone marrow-derived dendritic cells (BMDCs). BMDCs were stimulated with S. brasiliensis or
lipopolysaccharides (LPS) for 24h, and the activation markers were analyzed. (A) Levels of IL-1b, IL-6, and TNF in the culture supernatants.
(B) Expression of CD86 on the BMDC surface (representative histograms on the right side). Data shown as the mean ± SEM, pooled from three
independent experiments. Unpaired t-test: *p < 0.05.
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Schistosoma japonicum (41), and a similar mechanism might be

occurring in S. brasiliensis infection, where IL-17 helps to limit the

spread of fungal colonization. Hence, it is tempting to speculate that

the primary role of IL-17 here might be containment of the tissue

damage linked to the infection rather than driving a direct

antifungal response.

The lower levels of IL-17F found in the liver of the Clec7a−/−–

Clec4n−/− animals suggest that dectin-1/dectin-2 can also regulate the

local production of the cytokine; however, this feature might be playing

a coadjutant role. Our results also hint that the cytokine might not

come from a conventional TH17 cell and that alternative sources could

include the local population of gd T cells or group 3 innate lymphoid

cells (42). Nonetheless, considering the decoupling in the phenotypes

between the dectin-1/dectin-2 and IL-17 knockouts for fungal

restriction, assessment of the roles of these cytokines requires an

independent evaluation beyond the scope of this manuscript.

In contrast to our results, Batista-Duharte et al. reported a

mixed IFN-g/IL-17 (TH1/TH17) profile in their infected WT mice

(43). However, they based their interpretations on phorbol

myristate acetate (PMA)/ionomycin-stimulated cells, while we

employed S. brasiliensis yeast cells (antigen-specific stimulation),

which could explain the discrepancy in the results. In addition, they

did not employ immunodeficient animals or pharmacological

blockers to confirm the relevance of these cells/cytokines in their

model, hindering comparisons about functionality between their

study and ours. Nonetheless, they observed that S. brasiliensis

induced a weaker inflammatory response compared with S.

schenckii-infected animals, which was associated with the

induction of Tregs. The same authors have also shown that Tregs

are actively repressing the clearance of S. schenckii (44), indicating

that this might be a common denominator of S. brasiliensis-

driven pathogenesis.

Finally, we acknowledge that we did not investigate the

contribution of B cells and antibodies here. However, it also

needs to be recognized that the relationship between humoral

immunity and the pathogenesis of fungal infections in general is

still a poorly explored territory. In the sporotrichosis field, the

glycoprotein gp70 is well known as the main virulence factor and

antigenic component of Sporothrix spp (45). Although anti-gp70

antibodies can ameliorate the infection severity (46), most of the

studies have focused on their use as biomarkers for diagnosis (47) or

vaccine targets for therapy (48) rather than on their role in the

immunopathogenesis of the infection. Far more obscure is the

connection between dectin-1/dectin-2 and antibody production;

however, it is suggested that b-glucan-driven dectin-1 activation

might help in the production of IgG1 antibodies by B cells (49).

Nevertheless, the humoral immunity is a field worth exploring in

future works.

In summary, we showed here that dectin-1 and dectin-2 are key

determinants of host protection against S. brasiliensis infection.

However, rather than shaping a classical TH17 response, they are

involved in counterbalancing the immunosuppressed environment

driven by the fungal pathogen. Our work paves the way for the

exploration of these receptors and their associated signaling

pathways as key targets to uncover new therapeutic strategies.
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Álvarez JA, Mora-Montes HM. Differential recognition of clinically relevant
sporothrix species by human granulocytes. J Fungi (Basel). (2023) 9:986.
doi: 10.3390/jof9100986
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Differential Recognition of Sporothrix schenckii, Sporothrix brasiliensis, and
Sporothrix globosa by Human Monocyte-Derived Macrophages and Dendritic Cells.
Infect Drug Resist. (2023) 16:4817–34. doi: 10.2147/IDR.S419629

24. Prosser A, Dart S, Larma-Cornwall I, Lucas M. Flow cytometric characterization
of tissue-resident lymphocytes after murine liver and heart transplantation. STAR
Protoc. (2021) 2:100810. doi: 10.1016/j.xpro.2021.100810
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