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Introduction: The emerging fungal pathogen Sporothrix brasiliensis has been
responsible for epidemic outbursts of sporotrichosis in Latin America, particularly
Brazil, in recent years. The higher aggressiveness of the infection and its zoonotic
nature are hallmarks of the pathogen, but the immunological markers of protection
are not fully characterized. The C-type lectin receptors — dectin-1 and dectin-2 -
drive key antifungal responses, and here we aimed to uncover their contribution
against S. brasiliensis in a murine model of disseminated sporotrichosis.

Methods: Wild-type, Dectin-1and/or Dectin-2 knockout, and IL-17A/F knockout
C57BL/6J mice were challenged with S. brasiliensis in a model of systemic
infection. Animals were monitored for parameters as survival and body weight
loss. Immunological analyses as assessment of cytokines and immune cell
profiling were conducted in the livers.

Results: We showed that the receptors are essential for host survival, necessary
to limit the fungal dissemination, and that their main effector functions can be
related to shaping the T cell response, notably the cytotoxic CD8+ and Treg cell
populations, instead of a conventional TH17 profile. While we also observed a
contribution of IL-17 in the host defense, the cytokine is not involved in the
restriction of the fungal growth.

Discussion: Our results uncover dectin-1 and dectin-2 as novel determinants of
protection against S. brasiliensis, but their effector function is not linked to the
induction of IL-17 responses. Our fundings help to expand the understanding of
the pathophysiology of this infection.
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Introduction

Sporothrix brasiliensis is an emerging fungal pathogen
associated with epidemic outbreaks of a more aggressive form of
the mycosis sporotrichosis (1). Belonging to the Sporothrix schenckii
complex, Sporothrix spp. have always caused concern among the
scientific community (2). However, the higher severity of S.
brasiliensis infections linked to its strong epidemic potential has
put this pathogen in the spotlight in recent years (3). Currently, S.
brasiliensis has surpassed the other members of the S. schenckii
complex as the main causative agent of sporotrichosis in Brazil, and
unfortunately, it is spreading across several countries in Latin
America (4), with isolated cases already being reported in Europe
and North America (5).

Infections by Sporothrix spp. are primarily associated with
contact with contaminated soil, plants, or organic matter (hence,
the alias as the “gardener’s disease”) (6); however, for S. brasiliensis,
zoonotic sporotrichosis and animal-to-human transmissions have
been recognized as the main sources of contamination (1, 4). For
instance, the ability of S. brasiliensis to infect animals, particularly
stray cats, helps to explain its rapid dissemination and poses a great
challenge for control by public health measures (4, 7). In addition,
despite the subcutaneous nature of the mycosis, atypical (extra-
cutaneous) presentations with invasive commitment linked to S.
brasiliensis are more common and are on the rise (7, 8).

The higher virulence of S. brasiliensis is not fully understood and
cannot be traced to a single trait. The most important features
include: 1) higher thermotolerance and thermodimorphic behavior
(whereas the mycelial form is considered saprophytic and the yeast
phase parasitic) (7)—but for S. brasiliensis, the zoonotic transmission
occurs directly by yeast inoculation; ii) the ability to form biofilms (9);
and iii) the production of enzymes, adhesion molecules, and melanin
(10). Nevertheless, the interaction of these attributes with the host
system is what determines the infection outcome.

From the host’s perspective, an even larger gap exists about the
immune response triggered against S. brasiliensis, and only in recent
years have some advances in addressing those questions been
observed. In this context, innate immunity is our first layer of
defense, and its operation requires pathogen detection mediated by
pattern recognition receptors (11). The prototypical innate
molecules Toll-like receptor 2 (TLR2) and TLR4 have been
shown to be important for host defense in murine models of S.
brasiliensis infection, mainly by regulating the effector function of
phagocytes and the inflammatory response, although their
deficiency did not compromise animal survival upon the fungal
challenge (12, 13). The complement protein C3 and the surface
molecule CD11b have also been shown to be important for the
interaction between S. brasiliensis and macrophages (14).

The main sensors involved in fungal recognition, however,
belong to the family of the C-type lectin receptors (CLRs).
Dectin-1 (CLEC7A in humans and Clec7a in mice) and dectin-2
(CLEC6A/Clec4n) are the most studied CLRs, and we and others
have reported their roles in the defense against a plethora of fungal
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pathogens (15-20). The induction of T helper 17 (Ty17) responses
is considered their canonical, but not solely, effector function (21).

Independent groups have suggested a marginal contribution of
dectin-1 in the interaction between S. brasiliensis and phagocytes
(22, 23), but these findings are limited to in vitro settings. Thus, the
in vivo relevance of CLRs in anti-S. brasiliensis response is still an
open question. Here, we proposed to evaluate the relevance of
dectin-1/dectin-2 in the host response to S. brasiliensis in an
experimental model of disseminated disease. We observed that
the lack of these receptors severely compromised the ability to
resist the fungal challenge. Curiously, the defective antifungal
response in the absence of CLRs was not directly linked to an
interleukin 17 (IL-17) response, but rather to a dysbalanced profile
of cytotoxic CD8" T cells and regulatory T cells (Tregs), which
could be the result of a poor ability to activate dendritic cells. Our
findings underscore dectin-1/dectin-2 as key determinants for an
efficient host defense against S. brasiliensis.

Materials and methods
Mice

Female mice in C57BL/6] genetic background deficient for
dectin-1 (Clec7a™""), dectin-2 (Clec4n™'"), dectin-1/dectin-2
(Clec7a™""~Clec4n™"), IL-17A/IL-17F (Il]7a’/’—lll7f/’), and rag2
(RagZ’/ ) were used in this study (15). C57BL/6] wild-type (WT)
mice were acquired from CLEA Japan (Tokyo, Japan) and co-
housed with the knockout animals for at least 1 week prior to the
experiments. All mice were maintained under specific pathogen-
free conditions with a gamma ray-sterilized diet and acidified tap
water (0.002 N HCI) ad libitum.

All experiments were conducted following the “Fundamental
Guidelines for Proper Conduct of Animal Experiments and Related
Activities in Academic Research Institutions under the Jurisdiction
of the Ministry of Education, Culture, Sports, Science, and
Technology” (Ministry of Education, Culture, Sports, Science and
Technology, Japan, 2006). The Institutional Animal Care and Use
Committee from Chiba University approved the protocols reported
in this paper under process number A7-198.

Fungal strain and inoculum preparation

The reference strain S. brasiliensis 5110 (Sporothrix brasiliensis
Marimon MYA-4823; American Type Culture Collection,
Manassas, VA, USA) was used throughout this study. The fungus
was maintained in brain heart infusion (BHI) agar (BD, Franklin
Lakes, NJ, USA) at 37°C with biweekly subcultures.

For inoculum preparation, the fungus was seeded in BHI agar
plates and incubated for 5 days at 37°C. Colonies were harvested and
washed in 0.1% Tween-80/PBS (phosphate-buffered saline) solution,
resuspended in saline solution (0.9% NaCl), and kept at 4°C until use.
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In vivo infections

For in vivo infections, the animals were inoculated through the
intravenous route (lateral caudal vein) with 5 x 10° yeast cells in 100 pl
of saline solution. Animal weight and survival were monitored daily
for up to 27 days post-infection (dpi).

Fungal burden analysis

On the indicated dpi, the animals were euthanized by cervical
dislocation, and the organs were perfused with ice-cold PBS before
surgical removal. After being weighed, the organs were macerated
in PBS through mesh sieves. Dilutions of the macerates were plated
on PDA plates (Eiken Chemical, Tokyo, Japan), incubated at 30°C
for 4 days, and the recovered colony-forming units (CFU) counted.
Fungal burden was expressed as CFU per gram of organ. The
macerates were centrifuged at 14,000 x g for 5 min, and the
supernatants were collected and stored at —80°C for cytokine
analysis (see below).

Histopathological analyses

On the indicated dpi, the livers were perfused with PBS and
fixed overnight in commercial formalin solution (Fujifilm Wako,
Osaka, Japan). Samples were embedded in paraffin, and sections
were stained with routine hematoxylin-eosin, Grocott’s
methenamine silver, or Masson’s trichrome staining method.

Isolation of liver leukocytes and flow cytometry
analysis

Liver leukocytes were isolated from the sample macerates by
Percoll centrifugation as described by Prosser et al. (24). The
recovered cells were submitted to surface and intracellular
staining for flow cytometry evaluation. For cell permeabilization,
the commercial kits “Foxp3 Staining Buffer Set” (for CD4" T-cell
evaluation) and “Fixation & Permeabilization Buffer Set” (CD8" T
cells) (eBioscience, San Diego, CA, USA) were used according to the
manufacturer’s instructions. Data were acquired with a FACSVerse
flow cytometer (eight-color; BD, Franklin Lakes, NJ, USA) and
analyzed using FlowJo (v.10.7.1 for Mac OS X; BD, Franklin Lakes,
NJ, USA). The list of antibodies used for the analysis is provided in
Supplementary Table SI, and representative gating strategies are
shown in Supplementary Figure S1.

Bone marrow-derived dendritic cells and in
vitro infections

Bone marrow-derived dendritic cells (BMDCs) were generated
from bone marrow cells harvested from the femur and tibia of the
WT and Clec7a™"~Clec4n™"~ mice by granulocyte-macrophage
colony-stimulating factor (GM-CSF) differentiation protocol as
previously described (15). On the day of the assay, 1 x 10°
BMDCs were stimulated with freshly harvested S. brasiliensis
yeast cells (multiplicity of infection, 1:1) or 100 ng/ml of
lipopolysaccharide (LPS) (from Escherichia coli O111:B4; Sigma-
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Aldrich, St. Louis, MO, USA) for 24h at 37°C and 5% CO,. The
supernatants were harvested for cytokine measurements (see
below), and the cells were stained with antibodies (Supplementary
Table S1) for the flow cytometry analysis.

Cytokine measurements

Cytokines [except for IL-10 and transforming growth factor
beta (TGF-[3)] were quantified using the BD Cytometric Bead Array
assay according to the manufacturer’s instructions. Data were
acquired using FACSVerse and analyzed with the FCAP Array
software (v.3.0.1; BD, Franklin Lakes, NJ, USA). The detection
limits were as follows: IL-13 = 1.9 pg/ml, IL-6 = 1.4 pg/ml, tumor
necrosis factor (TNF) = 2.8 pg/ml, interferon gamma (IFN-y) = 0.5
pg/ml, IL-4 = 0.3 pg/ml, IL-17A = 0.95 pg/ml, and IL-17F = 0.81
pg/ml.

The levels of IL-10 and TGF-B were quantified by sandwich
ELISA using commercially available kits (DuoSet' ™ ELISA
Development System, BioTechne/R&D Systems, Minneapolis,
MN, USA) according to the manufacturer’s instructions. The
adopted measurement range was 2,000-31.2 pg/ml.

Statistical analysis

Statistical analyses were performed using the software
GraphPad Prism (v.10 for OSX; GraphPad Inc., La Jolla, CA,
USA). Data were screened for the detection of outliers using the
ROUT method. The statistical test employed for each analysis, the
sample size, and the number of replicates in each experiment are
described in the figure legends. A p-value <0.05 was considered
statistically significant.

Results

Dectin-1/dectin-2 are essential for
protection against S. brasiliensis infection

Systemic sporotrichosis is the most studied experimental model
for investigating host-pathogen interactions and the immune
response (25). We established a model of disseminated disease by
administering S. brasiliensis yeast cells through the intravenous
route and analyzed the outcome of the infection among WT and
dectin-1 and/or dectin-2 knockout mice (Figure 1).

In agreement with our initial expectations, animals lacking
dectin-1/dectin-2 were remarkably susceptible to S. brasiliensis
infection (Figure 1). In addition to the enhanced mortality
observed in the Clec7a '~ ~Clecn™~
infection caused a more intense weight loss during the course of

animals (Figure 1A), the

the experiment compared with their WT counterparts (Figure 1B),
indicating a more aggressive disease in the absence of the receptors.
In line with this, the knockouts also presented higher fungal
burdens in the liver, spleen, lungs, and kidneys (measured at 14
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FIGURE 1

Dectin-1 and dectin-2 are essential for resistance against Sporothrix brasiliensis infection. (A, B) Wild type (WT), Clec7a™~, Clec4n™"~, and Clec7a™'~—
Clec4n™~ mice were infected intravenously with 5 x 10° yeast cells, and the survival (A) and body weight loss (B) were monitored for up to 27 days
post-infection (dpi). n = 16—20 mice per group, pooled from two independent experiments. (A) Survival curves compared by log-rank (Mantel-Cox)
test: #¥p < 0.01 (vs. WT); ****p < 0.0001 (vs. Clec7a~’~ and Clec4n™""). (B) Body weight loss plots and area under the curve (AUC) bars shown as the
mean + SEM. One-way ANOVA and Fisher’s least significant difference (LSD) posttest: **p < 0.001. (C) Fungal burden in the organs harvested at 14
dpi. Data shown as colony-forming units (CFU) per gram of organ. n = 7-9 mice per group, pooled from two independent experiments. Each dot
represents one mouse, and bars indicate the mean + SEM. Kruskal-Wallis and Dunn’s posttest: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
(D) Micrographs of the liver sections stained with hematoxylin—eosin (HE, first row) or Grocott's methenamine silver (second row) methods. Scale
bars represent 100 um. Data representative of two (sham)—four (infected) mice per group from two independent experiments.

dpi), pointing to a systemic inability to restrain the pathogen
dissemination (Figure 1C).

Interestingly, when the individual contribution of each receptor
was analyzed using single knockout animals, dectin-1 appeared to play
the dominant role, while the lack of dectin-2 alone did not remarkably
alter the analyzed parameters (Figure 1). Nevertheless, it must be
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highlighted that the Clec7a™~ mice could not fully recapitulate the
double-knockout profile, as the Clec7a™~Clec4n™~ animals remained
the most sensitive group. This suggests that dectin-2 is still involved in
the protective response, but it may act by potentiating the functionality
of dectin-1. Thus, to better characterize the host mechanisms involved,
we followed the subsequent analyses with double-knockout animals.
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These initial results indicate that dectin-1/dectin-2 are essential
players in the host defense against S. brasiliensis, required for fungal
restriction and maintenance of the host fitness.

Lack of dectin-1/dectin-2 does not enhance
tissue inflammation

The results from the fungal burden analysis pointed to the liver as
the most compromised organ (Figure 1C), and it was chosen as a
proxy for the response characterization. Initially, we confirmed the
fungal colonization in the livers by histopathological analysis
(Figure 1D). Interestingly, S. brasiliensis infection led to the
development of diftuse, granuloma-like inflammatory foci around
the fungal structures both in the WTs and the knockouts (Figure 1D,
top row). However, as expected, in the Clec7a™'"~Clecdn™ mice, a
massive fungal burden could be detected, as observed in the silver

10.3389/fimmu.2025.1668445

staining images (Figure 1D, bottom row). Thus, we next measured
the levels of the cytokines classically involved in the inflammatory
response and host defense to fungal pathogens (26) (Figure 2).

Curiously, despite the massive fungal colonization, the
inflammatory cytokines were not proportionally augmented
(Figure 2A). While TNF and IL-6 were not altered by the lack of
dectin-1/dectin-2, lower levels of IL-1 were found in the
knockouts. Interestingly, with regard to the cytokines associated
with adaptive immunity, we found a predominance of the IL-17
response, particularly IL-17F, whose levels were compromised by
the deficiency of the receptors (Figure 2B). Concurrently, we did not
detect differences in the levels of the anti-inflammatory cytokines,
i.e,, IL-10 and TGEF-B (Figure 2C).

Thus, instead of an overt inflammation driven by an
unrestrained fungal growth, the lower levels of IL-1f and IL-17F
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FIGURE 2

Cytokine profile in the liver macerates of Sporothrix brasiliensis-infected mice. Wild-type (WT) and Clec7a~~—Clec4n™'~ mice were infected
intravenously with 5 x 10° yeast cells, and livers were harvested at 14 days post-infection (dpi). (A) Levels of IL-1B, TNF, and IL-6. (B) Levels of IFN-y,
IL-4, IL-17A, and IL-17F. (C) Levels of IL-10 and TGF-f. Data shown as picograms of cytokine per gram of organ. n = 8 mice per group, pooled from
two independent experiments. Each dot represents one mouse, and bars indicate the mean + SEM. Mann—-Whitney U test: *p < 0.05.
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FIGURE 3

IL-17A/F promote resistance against Sporothrix brasiliensis infection, but do not alter fungal restriction. (A, B) Wild-type (WT), Clec7a™'~—Clec4n™'",
and ll17a~'~ =117~ mice were infected intravenously with 5 x 10° yeast cells, and the survival (A) and body weight (B) loss were monitored for up to
27 days post-infection (dpi). n = 18—20 mice per group, pooled from two independent experiments. (A) Survival curves compared by log-rank
(Mantel-Cox) test: ****p < 0.0001. (B) Body weight loss plots and area under the curve (AUC) bars shown as the mean + SEM. One-way ANOVA and
Fisher's least significant difference (LSD) posttest: **p < 0.001, ****p < 0.0001. (C) Fungal burden in the organs harvested at 18 dpi. Data shown as
colony-forming units (CFU) per gram of organ. n = 8 mice per group, pooled from two independent experiments. Each dot represents one mouse,
and bars indicate the mean + SEM. Mann—-Whitney U test: no significance detected. (D) Micrographs of the liver sections stained with hematoxylin—
eosin (HE, first row), Grocott's methenamine silver (second row), or Masson'’s trichrome (third row) method. Scale bars represent 100 um. Data

representative of two (sham)—four (infected) mice per group from two independent experiments.
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would argue in favor of a hypothesis of dectin-1/dectin-2 promoting
protection against S. brasiliensis through the induction of a
prototypical type 3 (IL-17-driven) response, which is the
paradigmatic branch of the adaptive immunity linked to
resistance against fungal infections (27).

IL-17A/F are required for protection, but they do
not regulate the fungal containment

To validate the importance of IL-17 in our model, we challenged
the I117a~-I117f"~ mice with S. brasiliensis and compared their
infection outcome to those of the WT and Clec7a™'~Clec4n™~ groups
(Figures 3A, B). As expected, IL-17 deficiency did compromise the
host defense, leading to higher mortality and weight loss compared
with the WT. Nonetheless, the Clec7a™ ~Clec4n™~ mice were still
more susceptible than their I117a™"~Il17f"~ counterparts, indicating
the involvement of additional mechanisms.

Astoundingly, despite the higher susceptibility of the IL-17
knockouts to the fungal challenge, the absence of the cytokines
did not affect the fungal burden in any of the assessed organs
(Figure 3C) as observed for dectin-1/dectin-2 deficiency
(Figure 1C). Rather than uncontrolled fungal dissemination, the
1117a™"~1117f~ mice were colonized to the same levels as the WTs.

To obtain further insight into this observation, we also
performed histopathological analysis of the livers from these
animals (Figure 3D). Intriguingly, in contrast to the diffuse
inflammatory foci observed, as shown in Figure 1D, deficiency in
IL-17 led to a disorganized tissue structure, characterized by
massive fibrosis, as revealed by Masson’s trichrome staining. It
should also be noted that these features were not accompanied by
widespread fungal growth, in agreement with the fungal burden
data (Figure 3C), unlike what was observed in animals deficient in
dectin-1/dectin-2 (Figure 1). These results suggest that the
maintenance of host fitness against S. brasiliensis does not
exclusively involve pathogen containment.

Dectin-1/dectin-2 do not shape the local T-
helper cell profile

The disconnection between dectin-1/dectin-2 and IL-17 in the
control of the fungal dissemination prompted us to re-evaluate whether
type 3 immunity is the major response induced by the CLRs.

Initially, we aimed to confirm the requirement of lymphocytes
for host resistance in our model by using animals knockout for Rag2
(15) and comparing their performance upon S. brasiliensis
challenge (Figures 4A, B). Indeed, the lack of lymphocytes
severely compromised the survival of the mice and led to a
marked weight loss during the experiment. More importantly,
their phenotype was virtually identical to Clec7a ' ~Clec4n™~
mice, strongly implying that the lymphocyte response could be
the primary effector function of dectin-1/dectin-2.

Subsequently, we aimed to identify the dominant adaptive
response induced by S. brasiliensis. Firstly, we harvested
splenocytes from infected mice, re-stimulated them with the
pathogen yeast cells, and measured the hallmark cytokines in the
culture supernatants (Supplementary Figure S2). Interestingly, IFN-
v was the predominant cytokine observed, whereas IL-4, IL-17A,

Frontiers in Immunology

10.3389/fimmu.2025.1668445

and IL-17F were barely detected. Furthermore, the levels of IFN-y
were compromised by the lack of dectin-1/dectin-2. These results
suggest that S. brasiliensis infection polarizes toward a type 1/Tyl,
not type 3/Ty17, profile and that the process is instructed by dectin-
1/dectin-2.

Thus, we next evaluated the profile of the CD4" T-cell population
in the livers of the infected animals (Figures 4C, D), which revealed
no alterations in the population of total CD4" T cells (Figure 4C).
Furthermore, we characterized the subpopulations of Ty cells based
on the expression of the classical transcription factors, ie., T-bet
(Tyl), GATA3 (Ty2), and RORYt (Ty17) (28). In agreement with the
splenocyte results (Supplementary Figure S2), the major subset was
composed of Tyl cells, whereas the other subtypes were detected at
lower levels (Figure 4D). Unexpectedly, no changes in their
proportions were observed due to the lack of CLRs.

Therefore, even though dectin-1/dectin-2 might be needed to
shape the T-cell response in secondary lymphoid organs, such as the
spleen, this does not necessarily reflect in the cell profile at
peripheral organs.

Deficiency of dectin-1/dectin-2 favors an
immunosuppressed T-cell environment

The weak influence of dectin-1/dectin-2 over the Ty-cell
population prompted us to investigate other branches of the T-
cell response, particularly CD8" T cells and Tregs (Figures 4E-G).

Curiously, there was a pronounced influx of CD8" T cells in the
knockout group (Figure 4E). However, these cells showed lower
levels of granzyme B (GzmB) compared with their WT counterparts
(Figure 4F). Therefore, despite the higher presence of CD8"
lymphocytes, they displayed a dampened cytotoxic profile in the
absence of dectin-1/dectin-2.

Remarkably, we could also detect a significant population of
Tregs that was further increased in the Clec7a™'"—Clec4n™ ™ mice
(Figure 4G). Together with the impaired presence of cytotoxic
CD8" T cells, these results indicate that the lack of dectin-1/
dectin-2 favors an immunosuppressed environment that might be
less able to counter the fungal growth.

S. brasiliensis is a poor activator of dendritic cells

Our results indicate that dectin-1/dectin-2 are required for the
balance of the lymphocyte response against S. brasiliensis. However,
notwithstanding the profile of T cells that the receptors might
enforce, rather than working directly on lymphocytes, CLRs act by
shaping the profile of antigen-presenting cells, particularly dendritic
cells (28).

To conciliate our findings, we analyzed the response of BMDCs
stimulated with S. brasiliensis (Figure 5). Interestingly, we observed
that the pathogen is a very weak BMDC activator. In contrast to the
positive control LPS, S. brasiliensis triggered almost no cytokine
production (Figure 5A) or expression of the co-stimulatory
molecule CD86 (Figure 5B). We only observed a dectin-1/dectin-
2-dependent production of TNF (Figure 5A), suggesting that these
CLRs are still needed for a minimal level of cell activation.

The poor response of BMDCs could be indicative of a
polarization toward a tolerogenic profile (29), and dendritic cells
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The T-cell profile is affected by the lack of dectin-1/dectin-2. (A, B) Wild type (WT), Clec7a'~~Clec4n™'~, and Rag2™'~ mice were infected
intravenously with 5 x 10° yeast cells, and the survival (A) and body weight loss (B) were monitored for up to 27 days post-infection (dpi). n = 19-20
mice per group, pooled from two independent experiments. (A) Survival curves compared by log-rank (Mantel-Cox) test: ****p < 0.0001. (B) Body
weight loss plots and area under the curve (AUC) bars shown as the mean + SEM. One-way ANOVA and Fisher’s least significant difference (LSD)
posttest: ****p < 0.0001. (C—G) T-cell profile in the livers of infected mice harvested at 14 dpi. Frequency and counts of the total CD4 T cells (C);
Tul Tu2, and Tl7 cells (D); total CD8 T cells (E); granzyme B (GzmB)-expressing CD8 T cells (F); and regulatory T cells (Tregs) (G). n = 8 mice per
group, pooled from two independent experiments. Each dot represents one mouse, and bars indicate the mean + SEM. Mann—Whitney U test:

*p < 0.05, ***p < 0.001.
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lacking dectin-1/dectin-2 show an even less activated phenotype
that might reflect in potentiation of Treg differentiation, leading to a
poorer cytotoxic environment that favors fungal proliferation.

Discussion

The world is witnessing a mounting rise in the cases of fungal
infections in recent years, partially driven by the emergence of
novel, more aggressive pathogens such as S. brasiliensis, Candida
auris (30), and Trichophyton indotineae (31). The understanding of
the immunology of these infections is an urgent requirement for
counteractions. Here, we showed that dectin-1 and dectin-2 are key
receptors for host resistance against S. brasiliensis, but the infection
itself displays features of dampened inflammation, which can
sustain the chronic evolution of the disease.

The poor activation of BMDCs argues in favor of this
hypothesis. In agreement with our data, human dendritic cells
and granulocytes were also shown to be less responsive to S.
brasiliensis stimulation (22, 23), while human macrophages were
more sensitive (23). Interestingly, most of the immunogenicity of S.
brasiliensis is suggested to be carried by extracellular vesicles
secreted by the fungus instead of the fungal cell per se (32, 33).
Antigen masking could be a possible strategy to escaping host
detection, as S. brasiliensis has been shown to have a thicker cell wall
with less antigen exposure (34, 35). Along this line, while Garcia-
Carnero et al. reported low S. brasiliensis-driven cytokine responses
by human peripheral blood mononuclear cells (PBMCs) (36),
Kischkel et al. detected high responsiveness in equivalent PBMC
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samples (37); however, the latter employed heat-killed yeast cells
instead of native cells as the former, and the heat treatment might
have enhanced the immunogenicity of the material. Alternatively,
interspecies variables have to be taken into consideration, as human
and murine immune cells may display distinct recognition patterns,
as observed for Candida albicans (38), which might affect the
interpretation of the profiles and limit direct extrapolations.

Although the definitive contribution of each phagocyte type to
host defense needs to be addressed in the future, the overall poor
inflammatory potential of S. brasiliensis in vivo might in fact
contribute to the aggressiveness of the infection as the host
response is moved toward an environment highly permissive to
fungal dissemination and persistence. In this scenario, dectin-1/
dectin-2 act by limiting the polarization of Tregs and favoring the
cytotoxic activity of CD8 T cells.

In parallel, the finding that IL-17 is involved in host survival,
but not due to a presumed antifungal activity, was unexpected and
intriguing. In addition to the well-known roles of IL-17 cytokines in
driving inflammatory responses, the cytokines are also involved in
tissue maintenance and repair (39). In support of this idea, our
histopathological analysis showed that the IL-17 knockouts did not
exhibit overwhelming fungal dissemination, as observed in dectin-
1/dectin-2 knockouts, but presented compromised, fibrotic livers,
which may have contributed to the demise of the animals. The role
of IL-17 in organ fibrosis remains a matter of debate, as this
cytokine can exert either anti- or profibrotic effects according to
the context of the underlying disease (40). Interestingly, it has been
reported that IL-17A neutralization reduced the extent of
granuloma formation in a model of infection with the parasite
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Schistosoma japonicum (41), and a similar mechanism might be
occurring in S. brasiliensis infection, where IL-17 helps to limit the
spread of fungal colonization. Hence, it is tempting to speculate that
the primary role of IL-17 here might be containment of the tissue
damage linked to the infection rather than driving a direct
antifungal response.

The lower levels of IL-17F found in the liver of the Clec7a™ -
Clec4n™ animals suggest that dectin-1/dectin-2 can also regulate the
local production of the cytokine; however, this feature might be playing
a coadjutant role. Our results also hint that the cytokine might not
come from a conventional Ty;17 cell and that alternative sources could
include the local population of Y3 T cells or group 3 innate lymphoid
cells (42). Nonetheless, considering the decoupling in the phenotypes
between the dectin-1/dectin-2 and IL-17 knockouts for fungal
restriction, assessment of the roles of these cytokines requires an
independent evaluation beyond the scope of this manuscript.

In contrast to our results, Batista-Duharte et al. reported a
mixed IFN-Y/IL-17 (Tgl/Txl7) profile in their infected WT mice
(43). However, they based their interpretations on phorbol
myristate acetate (PMA)/ionomycin-stimulated cells, while we
employed S. brasiliensis yeast cells (antigen-specific stimulation),
which could explain the discrepancy in the results. In addition, they
did not employ immunodeficient animals or pharmacological
blockers to confirm the relevance of these cells/cytokines in their
model, hindering comparisons about functionality between their
study and ours. Nonetheless, they observed that S. brasiliensis
induced a weaker inflammatory response compared with S.
schenckii-infected animals, which was associated with the
induction of Tregs. The same authors have also shown that Tregs
are actively repressing the clearance of S. schenckii (44), indicating
that this might be a common denominator of S. brasiliensis-
driven pathogenesis.

Finally, we acknowledge that we did not investigate the
contribution of B cells and antibodies here. However, it also
needs to be recognized that the relationship between humoral
immunity and the pathogenesis of fungal infections in general is
still a poorly explored territory. In the sporotrichosis field, the
glycoprotein gp70 is well known as the main virulence factor and
antigenic component of Sporothrix spp (45). Although anti-gp70
antibodies can ameliorate the infection severity (46), most of the
studies have focused on their use as biomarkers for diagnosis (47) or
vaccine targets for therapy (48) rather than on their role in the
immunopathogenesis of the infection. Far more obscure is the
connection between dectin-1/dectin-2 and antibody production;
however, it is suggested that B-glucan-driven dectin-1 activation
might help in the production of IgG1 antibodies by B cells (49).
Nevertheless, the humoral immunity is a field worth exploring in
future works.

In summary, we showed here that dectin-1 and dectin-2 are key
determinants of host protection against S. brasiliensis infection.
However, rather than shaping a classical Tl7 response, they are
involved in counterbalancing the immunosuppressed environment
driven by the fungal pathogen. Our work paves the way for the
exploration of these receptors and their associated signaling
pathways as key targets to uncover new therapeutic strategies.
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