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Cancer-associated fibroblasts
in osteosarcoma: key
players in immune escape
and targeted therapy
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Department of Orthopedics, Suzhou Ninth People’s Hospital, Soochow University, Suzhou,
Jiangsu, China
Osteosarcoma represents the most common principal malignant bone tumor

that predominantly appears among teenagers and children. While multimodal

treatment methods have greatly evolved with time, survival for recurrent or

metastatic disease remains low due to the resistance that accumulates during

treatment. Increasing evidence identifies the tumor microenvironment (TME), in

particular cancer-associated fibroblasts (CAFs), as playing an important role in

imposing immune suppression, enhancing tumor aggressiveness, and mediating

resistance toward immunotherapy and chemotherapy. This article gives an

overview of the derivation, phenotypic heterogeneity, and mechanisms of

action of CAFs during osteosarcoma, such as facilitating immune escape,

survival signaling, drug efflux, regulation of genes through exosomes, and

inhibiting ferroptosis. Furthermore, we present existing and new treatment

methods that are centered on CAFs, such as suppression of the paracrine

pathway (e.g., IL-6/STAT3, TGF-b), depletion of CAFs lineages by targeting

fibroblast activation protein (FAP), and conversion toward tumor-restraining

CAFs. Other methods that are gaining popularity are targeting CAFs-releasing

exosomes andmetabolic liabilities. By shedding light on CAFs-basedmethods for

imposing resistance and trying targeted treatments, this review offers insights

into novel therapeutic combinations that can overcome treatment barriers and

improve survival outcomes in osteosarcoma regimens.
KEYWORDS

osteosarcoma, cancer-associated fibroblasts, immune evasion, therapy resistance,
tumor microenvironment
1 Introduction

Osteosarcoma is the most common primary malignant bone tumor and occurs most

frequently in adolescents and young children. While aggressive multimodality treatment—

neoadjuvant chemotherapy combined with limb-sparing surgery and adjuvant

chemotherapy—has improved patient survival for patients with localized tumors,
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1668535/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1668535/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1668535/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1668535/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1668535&domain=pdf&date_stamp=2025-09-01
mailto:jacky61011@126.com
https://doi.org/10.3389/fimmu.2025.1668535
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1668535
https://www.frontiersin.org/journals/immunology


Fan et al. 10.3389/fimmu.2025.1668535
patients with recurrent or metastatic tumors remain poor risks, with

5-year survival rates of under 30% (1, 2). Therapeutically, despite

thorough investigative efforts during three decades, there has been

scant meaningful breakthrough.

Recalcitrance of classic and immune therapies for osteosarcoma

is progressively more controlled by the contribution of the TME,

and TME plays a significant role in immune escape, resistance to

chemotherapy and radiation, and development of metastasis (3). As

a part of non-malignant stromal elements, cancer-associated

fibroblasts (CAFs) are found to play a crucial role in these events.

Initially considered as static supporters, CAFs are currently found

to be active cells that possess the capacity to remodel the

extracellular matrix (ECM), suppress immune responses, and

facilitate therapy resistance (4–6). Although CAFs has been

widely studied in epithelial solid tumors such as breast cancer,

pancreatic cancer and colorectal cancer, its specific function and

mechanism in osteosarcoma are still lack of systematic elucidation.

This knowledge gap limits our in-depth understanding of CAFs-

mediated interstitial remodeling and its unique role in the

pathogenesis and drug resistance of osteosarcoma. Therefore,

clarifying the role of CAFs in osteosarcoma is of great

significance for finding new therapeutic targets and improving the

therapeutic effect of this invasive bone malignancy (4, 5, 7).

CAFs are abundantly present in both primary and metastatic

osteosarcoma lesions and are associated with unfavorable outcome

and immunosuppressive microenvironment (8). Due to their link

with immune cells, tumor stem-like cells, and endothelial cells, they

create a multi-potent crosstalk that promotes tumor growth.

However, CAFs also secrete cytokines such as TGF-b, IL-6, and
CXCL12 that not only modulate immunity but are implicated in

chemoresistance and failure of immune checkpoint blockade (9, 10).

By virtue of these pleiotropic roles, CAFs would represent a new

therapeutic target for immune escape breaking and treatment

resistance in osteosarcoma. The current review hopes to collate

available information pertaining to CAFs in this neoplasm with a

concern for their role in immune evasiveness and treatment resistance,

and discuss new strategies for therapeutically targeting such processes.
2 Origins and characteristics of CAFs
in osteosarcoma

CAFs are highly active stromal cells of the TME that support tumor

growth, immune evasion, and drug resistance. Although nearly

everything that is understood regarding CAFs originates in epithelial

cancers, there is recent literature available that highlights their equally

significant role in mesenchymal cancers such as osteosarcoma (11, 12).
2.1 Origins of CAFs in bone tumors

CAFs can arise from multiple cellular sources, including tissue-

resident fibroblasts, pericytes, bone marrow–derived mesenchymal

stem cells (MSCs), and endothelial cells undergoing endothelial-to-

mesenchymal transition (EndMT) (13).
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In the bone metastatic microenvironment, TGF-b reshapes the

niche by modulating osteoclasts, osteoblasts, and fibroblast-like

stromal cells, thereby promoting tumor cell colonization. Its

recruitment and activation of stromal fibroblasts contribute to

establishing a pro-metastatic and immunosuppressive milieu (5, 14).

Activated CAFs exhibit a secretory and contractile phenotype with

enhanced production of ECM and secretion of immunomodulatory

and survival factors. These characteristics are generally maintained

through persistent paracrine signaling and epigenetic remodeling (10).
2.2 Phenotypic markers and functional
subtypes

CAFs cells do not share one common marker. They are

often identified by a-smooth muscle actin (a-SMA), FAP, and

platelet-derived growth factor receptors (PDGFRa/b) (15).

Immunohistochemical examination identified multiple FAP+ and

a-SMA+
fibroblasts in primary osteosarcoma lesions and lung

metastatic nodules (7, 16, 17). Single-cell transcriptomics defined

that CAFs are not a homogeneous population. At least two

dominant subtypes are invariably observed: (1) myofibroblastic

CAFs (myCAFs): with strong a-SMA expression, with ECM

remodeling gene patterns and contractility; (2) inflammatory

CAFs (iCAFs): with enrichment for cytokines and chemokines IL-

6, CXCL12, and CCL2 (18–20). These types could both be found

within tumors and possibly alternate each other according to signals

by cancer and immune cells, leading to their functional plasticity.
3 CAFs-mediated immune escape in
osteosarcoma

One of the major obstacles to successful cancer immunotherapy

is the immunologically “cold” tumor microenvironment, where

there is minimal infiltration by cytotoxic T cells and there are

abundant immunosuppressive signals (11). CAFs are central

characters in plotting such an immune-excluded phenotype.

Through chemokines, cytokines, and extracellular matrix

components, CAFs mold the immune context and enable tumor

cells to escape host immune detection (15).
3.1 Suppression of T cell infiltration and
function

In osteosarcoma, CAFs secrete CXCL12, which can bind to

CXCR4 on the surface of T cells, hindering their infiltration into the

tumor core area (21). This effect forms an “immune shell” around

the tumor, physically excluding T cells from contact with tumor

cells. Secondly, TGF - b produced by CAFs significantly weakens T

cell function, inhibits its proliferation, cytotoxicity, and cytokine

production, while promoting the differentiation of initial CD4 + T

cells into immunosuppressive regulatory T cells (Tregs). These

processes collectively establish an immunosuppressive tumor
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microenvironment, promoting cancer progression and enhancing

resistance to treatment (10, 22).
3.2 Recruitment of immunosuppressive
immune cells

In addition to directly inhibiting effector T cells, CAFs also

recruit multiple immune suppressive cell populations by secreting

chemokines such as CCL2, IL-6, and CXCL8 (5). These factors

attract bone marrow-derived suppressor cells (MDSCs), M2

polarized macrophages, and Tregs, synergistically creating an

inhibitory immune microenvironment (23). For example, IL-6

mediated activation of the JAK/STAT3 pathway has been shown

to be closely associated with enhanced immune suppression and

accelerated tumor development in osteosarcoma (24).
3.3 ECM-mediated immune exclusion

Cancer associated fibroblasts promote immune escape by

reshaping the ECM, which increases matrix density and stiffness,

forming a physical barrier that hinders the infiltration and migration

of cytotoxic T lymphocytes (10). In the microenvironment of

osteosarcoma, ECM components such as type I collagen and

fibronectin are significantly elevated, while the expression of matrix

metalloproteinases (MMPs) is also upregulated (25). These changes

not only hinder the entry of immune cells into the tumor area, but are

also associated with poor response to immune checkpoint inhibitors,

further highlighting the role of ECM remodeling in immune

suppression of osteosarcoma (26).
3.4 Metabolic reprogramming and immune
dysfunction

The latest research shows that CAFs alter the metabolic

characteristics of the TME by secreting lactate and acidifying the

extracellular environment (27). This metabolic change can inhibit T

cell effector function and promote immune tolerance (28). In

addition, extracellular vesicles derived from CAFs may carry

immunosuppressive miRNAs and proteins that can regulate the

phenotypes of dendritic cells and macrophages (29). Similar

phenomena have also been observed in osteosarcoma: fibroblasts

exhibit high glycolytic properties, while lactate acts as a “metabolic

signal” that promotes epithelial mesenchymal transition (EMT) of

tumor cells and activates immunosuppressive pathways (30).
4 CAFs-mediated therapy resistance in
osteosarcoma

Treatment resistance is the main reason for the failure of

osteosarcoma treatment, especially in cases of recurrence and
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metastasis. Although genetic mutations and epigenetic adaptations of

tumor cells are known resistance mechanisms, increasing evidence

suggests that the TME-especially CAFs-plays a central role in

chemotherapy, immunotherapy, and even radiotherapy resistance.

CAFs contribute to treatment failure through various mechanisms

such as paracrine signaling, ECM remodeling, metabolic support, and

tumor stemness maintenance (31).
4.1 Paracrine signaling activation and
survival pathways

As the main matrix component in the microenvironment of

osteosarcoma, CAFs secrete a large amount of soluble factors such

as IL-6, TGF-b, and CXCL12 (also known as SDF-1). Recent studies

demonstrate that cytokines secreted by CAFs—such as IL−6, IL−11,

TGF−b, and growth differentiation factor—can activate several

oncogenic survival pathways in tumor cells. Moreover, emerging

evidence highlights that CAFs can also suppress ferroptosis, a novel

form of regulated cell death central to anticancer therapy. In

osteosarcoma, FSP1 has been identified as a key determinant of

cellular susceptibility to ferroptotic death, where high FSP1

expression confers resistance, while its inhibition markedly

sensitizes tumor cells to ferroptosis-inducing agents (32).

Similarly, in pancreatic ductal adenocarcinoma, CAFs secrete

cysteine via a TGF−b/SMAD3/ATF4–dependent transsulfuration

pathway, enhancing glutathione (GSH) synthesis in tumor cells and

thereby blocking lipid peroxidation–driven ferroptosis (33).

Mechanistically, hyperactivation of the PI3K/AKT axis in cancer

cells is also known to inhibit ferroptosis by modulating downstream

regulators such as SLC7A11, GPX4, NRF2, and iron metabolism

components (34). Taken together, these observations support the

hypothesis that CAFs−mediated metabolic rewiring and signaling

crosstalk may contribute to ferroptosis resistance and therapy

failure in osteosarcoma.
4.2 Enhancement of drug efflux via ABC
transporters

ABC transporters are a large class of transporters that rely on ATP

(hydrolysis) for energy to transport various substrates across the

membrane. In osteosarcoma, a key mechanism by which CAFs

mediate therapeutic resistance is through induction of ABCB1/P

−glycoprotein in tumor cells, leading to active efflux of

chemotherapy agents (35, 36). Also, a recent study demonstrated

that the glycosyltransferase C1GALT1, which can be upregulated in

the tumor stroma, plays a critical role in promoting doxorubicin

resistance by inducing ABCC1 expression in osteosarcoma cells (37).

Furthermore, targeted disruption of ABCB1 using CRISPR/Cas9 has

been shown to restore doxorubicin sensitivity in resistant osteosarcoma

cell lines (e.g., KHOSR2, U-2OSR2), further confirming the role of

CAFs-induced signaling in drug resistance (35).
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4.3 Exosome-mediated gene regulation
and miRNA transfer

Recent studies suggest that tumor-derived exosomes not only

remodel the pre-metastatic niche but also modulate stromal cells to

support tumor progression and drug resistance. For instance,

osteosarcoma-secreted exosomal linc00881 can be internalized by

lung fibroblasts, inducing their transformation into CAFs-like

phenotypes (38). And once activated, CAFs can further contribute

to tumor progression and therapy resistance by releasing their own

exosomes enriched with oncogenic non-coding RNAs and proteins.

These CAFs-derived exosomes can be internalized by osteosarcoma

cells and reprogram gene expression to enhance survival pathways—

such as PI3K/AKT—and suppress apoptotic responses (39, 40). For

instance, exosomal miR-1228 derived from cancer-associated

fibroblasts has been shown to promote osteosarcoma cell migration

and invasion by directly targeting the tumor suppressor SCAI. This

exosome-mediated intercellular communication reinforces a pro-

tumorigenic microenvironment and may contribute to the

development of aggressive and potentially chemoresistant

phenotypes in osteosarcoma (41).
5 Targeting cancer-associated
fibroblasts in osteosarcoma

CAFs are one of the most abundant and active components of

the TME in osteosarcoma (Figure 1). Although they are not

inherently malignant, CAFs promote tumor progression through

mechanisms such as paracrine signaling, ECM remodeling, immune

regulation, and metabolic support. In osteosarcoma, they promote

drug resistance in tumor cells by activating survival signaling

pathways, inhibiting ferroptosis, enhancing drug efflux, and

promoting immune escape. It also forms physical and chemical

barriers around the tumor, hindering drug delivery (6, 42).

Due to their high genetic stability, CAFs are less likely to develop

drug-resistant mutations compared to tumor cells, making them a

promising therapeutic target. Intervention in CAFs function is expected

to enhance the efficacy of chemotherapy and immunotherapy by

disrupting the mechanisms that support tumors (5).
5.1 Inhibition of CAFs-derived signaling
pathways

One main strategy for targeting CAFs is to block its signaling

pathway activated in osteosarcoma cells. CAFs can secrete various

soluble cytokines and growth factors, including IL-6, TGF - b, and
CXCL12, which bind to receptors on tumor cells and activate

oncogenic signaling pathways such as JAK/STAT3, PI3K/AKT, and

MAPK. Among them, the IL-6/STAT3 axis is particularly crucial in

promoting resistance to amphotericin B and Cisplatin, by enhancing

survival signaling and anti-apoptotic ability (4, 42). The treatment
Frontiers in Immunology 04
methods for blocking this axis include IL-6 receptor antibodies (such

as tocilizumab), STAT3 small molecule inhibitors, or JAK kinase

inhibitors, which are expected to reverse chemotherapy resistance

induced by CAFs. Similarly, TGF - b signaling plays an important

role in EMT, tumor stemness, and matrix deposition. Small molecule

inhibitors such as Galunisterib (LY2157299) target TGF - b type I

receptors and have been studied in various solid tumors, particularly

in the CAFs rich microenvironment (43–45).
5.2 Direct targeting and depletion of CAFs
populations

Another strategy is to physically or functionally clear CAFs by

targeting surface markers or lineage specific proteins. FAP is

selectively overexpressed in CAFs and osteosarcoma cells, but shows

minimal expression in normal fibroblasts (46, 47). In osteosarcoma,

FAP has been shown to promote tumor progression by enhancing

angiogenesis through activation of the AKT and ERK signaling

pathways, and by facilitating cell proliferation, migration, and

invasion (48). These findings not only support its role as a

prognostic marker associated with poor outcomes (49). Although

direct in vivo evidence in osteosarcoma is limited, the presence of

FAP + CAFs is associated with poorer prognosis and stronger drug

resistance. Therefore, the use of anti FAP strategies in combination

with cytotoxic drugs may improve therapeutic efficacy (50). Therefore,

integrating FAP-targeted strategies with conventional chemotherapy

may offer a synergistic approach to overcome resistance and improve

clinical outcomes in osteosarcoma (47, 48).
5.3 Reprogramming or normalization of
CAFs

In addition to direct clearance, recent studies have also attempted

to reprogram activated CAFs into a resting state or anti-tumor

phenotype. In osteosarcoma models, recent studies have begun to

explore reprogramming activated CAFs into a quiescent or tumor-

suppressive phenotype. Vitamin D (via VDR activation) was shown to

inhibit EMT and ROS (reactive oxygen species) signaling—key drivers

of metastasis and tumor survival—and thus may indirectly modulate

stromal fibroblasts toward a less tumor-supportive state in

osteosarcoma xenograft models (51). Although direct data on ATRA

(All-Trans Retinoic Acid) in osteosarcoma CAFs is still lacking,

preclinical evidence from pancreatic and other cancers supports the

concept that vitamin A derivatives can normalize CAFs and suppress

their pro−tumor secretome (52). And the use of HDAC (histone

deacetylase) inhibitors or BET(Bromodomain and Extra-Terminal

domain) inhibitors for epigenetic remodeling is also expected to

transform CAFs into a low tumorigenic state (4). However, studies

on the application of ATRA and HDAC inhibitors in osteosarcoma

remain limited, so further research is needed to evaluate their

therapeutic potential in this context.
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5.4 Targeting CAFs-derived exosomes and
non-coding RNAs

CAFs also plays a role in remote regulation by releasing

extracellular vesicles (EVs), which contain miRNA, lncRNA, and

proteins. In osteosarcoma, CAFs have been shown to release EVs

enriched in non−coding RNAs—particularly miRNAs and lncRNAs—

that modulate tumor cell behavior. For instance, CAFs−derived

exosomal miR−21−5p promotes OS cell proliferation and

chemoresistance by targeting PIK3R1, thereby activating the PI3K/

Akt/mTOR pathway (53, 54). Similarly, exosomal lncRNA−SNHG17

transported from CAFs acts as a competing endogenous RNA

(ceRNA) to sponge miR−2861, leading to MMP2 upregulation,

enhanced migration and invasion of osteosarcoma cells (54).

Additionally, lncRNA PVT1—abundant in exosomes from bone

marrow–derived mesenchymal stromal cells—has been shown to

promote metastasis via the miR−183−5p/ERG axis, and may likewise

be relevant in CAFs−EV cargos (53). These non-coding RNAs often

dysregulate key signaling nodes such as PTEN/PI3K/AKT under

chemotherapy pressure, fostering apoptosis resistance and aggressive

phenotypes. Although direct CAFs-specific PVT1 data in OS is still

emerging, the functional parallels with SNHG17 andmiR-21 support a

convergence on PI3K/Akt signaling modulation (53, 55). And
Frontiers in Immunology 05
potential intervention strategies targeting these EVs include: (1)

using drugs such as GW4869 or sphingomyelinase inhibitors to

suppress their generation or secretion; (2) blocking osteosarcoma cell

uptake of EVs; (3) selectively targeting pathogenic RNA cargo, for

example, using antisense oligonucleotides to interfere with SNHG17 or

miR-21, to disrupt cancer-promoting EV signaling while maintaining

normal stromal cell communication.
5.5 CAFs-mediated suppression of
ferroptosis and metabolic interventions

The latest research has found that CAFs can inhibit ferroptosis by

regulating iron metabolism, promoting glutathione synthesis, and

upregulating SLC7A11 (xCT) expression in tumor cells. CAFs helps

tumor cells resist oxidative stress induced by chemotherapy by

maintaining redox balance (33). Although direct experimental

validation in osteosarcoma is currently insufficient, targeting xCT

mediated cysteine uptake with inhibitors such as sulfasalazine can

make tumor cells more sensitive to ferroptosis inducers. This strategy is

expected to overcome drug tolerance dominated by CAFs by disrupting

redox homeostasis and metabolic support, especially in tumors with

high CAFs activity and strong antioxidant stress resistance (56).
FIGURE 1

Targeting cancer-associated fibroblasts in osteosarcoma.
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6 Conclusion and future perspectives

For orthopedic surgeons, osteosarcoma remains a major challenge

in both clinical treatment and research. Although numerous studies

have clearly supported the tumor promoting effect of CAFs in

osteosarcoma, especially in immune escape and treatment resistance,

we should also recognize that the function of CAFs is context

dependent and may even have contradictory manifestations. In other

solid tumors (such as pancreatic cancer and colorectal cancer), some

CAFs subgroups (such as Meflin+ CAFs) have been confirmed to have

tumor inhibitory potential, which can inhibit tumor progression,

maintain matrix softness, promote drug delivery and enhance the

response of immunotherapy. However, there is no systematic study on

the role of Meflin+ CAFs or other tumor suppressive CAFs in

osteosarcoma. Therefore, in-depth exploration of the functional

characteristics of different CAFs subgroups in osteosarcoma will help

to comprehensively understand its two-way regulatory role in tumor

occurrence and development, and provide theoretical basis and

potential treatment strategies for accurately targeting CAFs (3, 8, 26,

57, 58).

In osteosarcoma, CAFs has been proved to promote tumor

progression and chemotherapy resistance through a variety of

mechanisms. Studies have found that NgR modified CAFs derived

exosomes can deliver circ_0004872-109aa small peptides, which can

effectively reverse the tolerance of osteosarcoma to chemotherapy

drugs by promoting autophagy-dependent ferroptosis (59). In

addition, studies have pointed out that IL-6 from CAFs or MSc

can activate STAT3 signaling pathway, thereby enhancing the

resistance of osteosarcoma cells to doxorubicin, cisplatin and

other drugs (43). At the same time, the exosomes containing IL-6

and IL-8 secreted by osteosarcoma cells can induce normal

fibroblasts to transform into CAFs, further forming a feedback

loop, helping tumor malignant progression and drug resistance

(53). These studies show that although CAFs itself is not a

malignant cell, its tumor promoting properties make it a potential

therapeutic target. However, CAFs population itself has a high

degree of heterogeneity and functional plasticity, which poses a

major challenge to targeted therapy. More importantly, studies have

found that excessive clearance of CAFs may have adverse effects,

such as promoting tumor invasion or inducing immune

dysfunction. Therefore, future treatment strategies need to be

more precise and context specific.

Moreover, integrating multimodal technologies such as single-

cell omics, spatial transcriptomics, and advanced imaging will

provide us with key means to comprehensively understand CAFs

function at the spatial scale (18). At the same time, combining CAFs

targeted drugs with immunotherapy or programmed cell death

inducers is expected to overcome existing resistance barriers and
Frontiers in Immunology 06
achieve synergistic efficacy. Therefore, a deeper understanding of

the interrelationships between CAFs and other components of TME

will open up new paths for precision medicine exploration of

osteosarcoma, which may change the treatment pattern of

refractory or metastatic patients.
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